
SheetAgent: A Generalist Agent for Spreadsheet Reasoning and
Manipulation via Large Language Models

Yibin Chen * 1 Yifu Yuan * 2 Zeyu Zhang 2 Yan Zheng 1 Jinyi Liu 2 Fei Ni 2 Jianye Hao 2

Abstract
Spreadsheet manipulation is crucial for daily tasks
and boosts efficiency significantly. Recent efforts
have leveraged large language models (LLMs) for
automating these tasks, yet complex, real-world
scenarios involving multi-step reasoning and am-
biguous instructions remain underexplored. We
introduce SheetRM, a benchmark designed to ad-
dress real-life challenges through long-horizon,
multi-category tasks requiring intricate reason-
ing. To tackle these challenges, we propose Shee-
tAgent, an innovative autonomous agent built
on LLMs. SheetAgent features three synergis-
tic modules: a Planner, an Informer, and a Re-
triever. These modules collaborate to enable ad-
vanced reasoning and precise spreadsheet manip-
ulation autonomously, through iterative task rea-
soning and reflection. Our extensive testing shows
that SheetAgent enhances pass rates by 20–30%
across various benchmarks, significantly improv-
ing accuracy and showcasing superior reasoning
capabilities in spreadsheet tasks.

1. Introduction
Tabular data is vital in fields like scientific research, finance,
and marketing, where spreadsheets support tasks such as
calculations, analysis, and visualization (Kandel et al., 2012;
Hasan et al., 2020; Edeling et al., 2021). These tasks often
require significant repetitive work and expertise (Gulwani,
2011; Chen et al., 2021b). While automation has simplified
basic functions, complex real-world scenarios demand ad-
vanced reasoning, such as identifying specific content within
multiple, ambiguously instructed sheets (Chen et al., 2021b;
Li et al., 2023a). This complexity highlights the need for
more sophisticated automation to enhance productivity in
handling intricate spreadsheet tasks.

*Equal contribution 1School of New Media and Communi-
cation, Tianjin University 2College of Intelligence and Com-
puting, Tianjin University. Correspondence to: Yan Zheng
<yanzheng@tju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Designing an advanced method for spreadsheet manipula-
tion requires integrating sophisticated reasoning and han-
dling capabilities. Research shows that LLMs are adept at
tasks like table question answering and fact verification (Ye
et al., 2023; Jiang et al., 2023). This motivates us to question
whether LLMs can effectively manage complex spreadsheet
tasks involving challenging reasoning elements. Developing
such an agent faces several hurdles: (1) Dynamic Changes
in Sheet Content: Complex tasks often involve multiple op-
erations that dynamically alter the content of a spreadsheet.
Continuously reloading the entire spreadsheet into LLMs is
unfeasible due to token limitations and the risk of generating
inaccurate information (Cheng et al., 2022; Ye et al., 2023).
(2) Limited Table Understanding: Although adept with
natural language, LLMs have a constrained understanding
of tabular data (Li et al., 2023b). (3) Lack of Comprehen-
sive Benchmark: Current benchmarks like SheetCopilot do
not sufficiently mimic real-world demands, often simplify-
ing tasks and overlooking the need for multi-step reasoning
and long-horizon operations (Li et al., 2023a).

To bridge the dataset gap in spreadsheet manipulation, we
introduce SheetRM, a benchmark designed to develop and
evaluate LLM-based agents equipped with advanced reason-
ing capabilities and precise manipulation skills. SheetRM
also supports flexible automatic evaluation. Additionally,
we present SheetAgent, a generalist agent that leverages
LLMs for sophisticated sheet reasoning and manipulation.
Our tests show that SheetAgent significantly outperforms
existing baselines in spreadsheet tasks and competes well
in table reasoning tasks without needing fine-tuning. Our
contributions are manifold: (1) We introduce SheetRM, a
benchmark tailored for LLM-based agents, fostering the
development and evaluation of agents that can manipulate
spreadsheets with complex reasoning needs. (2) We develop
SheetAgent, a versatile LLM-based agent that enhances the
interaction between humans and spreadsheets through com-
bined capabilities in sheet manipulation and reasoning. (3)
SheetAgent demonstrates a notable 20–30% increase in pass
rates across various benchmarks, underscoring its enhanced
reasoning and manipulation skills.

2. SheetRM Benchmark
Unlike existing datasets (Payan et al., 2023; Li et al., 2023a)
that focus on precise spreadsheet manipulation, our objec-

1



SheetAgent

Complex Computational Logic

Reasoning Challenges

Vague Requirements

Incoherent Data Format

Information Extraction

Task Instruction

Criterion: "Background_FILL"
Sheet Index: 0
Area: "H2:H365"
Properties: ["yellow"]

Checklist

... (more items)

Item 1

Item 2

Criterion: "Chart_Type"
Sheet Index: 0
Area: None
Properties: ["pie"]

Python Evaluative Criteria

def background_fill(workbook, sheet_index, area, properties):
sheet = workbook.sheets[sheet_index]
# compare background fill
color_code_gt = utils.color2rgb(properties[0])
color_code_ans = sheet.range(area).api.Interior.Color
success = color_code_gt == color_code_ans

return success
... (more criteria)

S
te

p-
b
y
-
ste

p proce
d
ure

 e
va

lua
tion

Matching

Comparison

Worksheet 
Management

Value 
Processing

Format 
Adjustment

Chart
Design

Content
Summary

⚫ Create Worksheet
⚫ Delete Worksheet
⚫ Rename Worksheet
⚫ Label Color
⚫ Page Size
⚫ Orientation

⚫ Calculate
⚫ Insert
⚫ Delete
⚫ Auto Fill
⚫ Sort

⚫ Copy &
     Paste
⚫ Replace
⚫ Hyperlink
⚫ Distinction
⚫ Filter

⚫ Font Name
⚫ Font Color
⚫ Font Size
⚫ Bold & Italic
⚫ Underline
⚫ Merge & 
     Unmerge
⚫ Alignment
⚫ Row Height & 

Column Width
⚫ Background Fill
⚫ Numeric Format

⚫ Chart Type
⚫ Chart Data Source
⚫ Chart Caption
⚫ Chart Legend
⚫ Chart Position
⚫ Chart Axis
⚫ Data Label
⚫ Trendline

Manipulation 
Categories ⚫ Pivot Creation

⚫ Summary
     Function

(a) Multi-category (b) Reasoning-Dependent Manipulation & (c) Long Horizon

Spreadsheet Assets

Checklist

(d) Procedure Evaluation
Processed Spreadsheet

Evaluation

• Highlight the best-selling computer accessory in orange.
• Draw a pie chart reflecting the sales of each product
• Highlight the best-selling products in blue.
• Set the format of "Unit Price" to $ currency

Product Unit Price Sales Volume Sales ...

Mouse 150 300 45,000 ...

... ... ... ... ...

Electronics_Sales.xlsx The workbook is about conducting statistical 
analysis of the company’s sales.

Format AdjustmentType: Chart Design Vague Requirements 

Figure 1. Overview and features of SheetRM: (a) Multi-category: SheetRM includes real-life tasks across multiple manipulation
categories and reasoning challenges, testing both manipulation and reasoning skills. (b & c) Long horizon and reasoning-dependent
manipulation: Features tasks with multiple components including spreadsheet data, task category descriptions, and long horizon task
instructions. A checklist supports the evaluation of procedural execution. (d) Procedure evaluation: SheetRM conducts automatic
step-by-step task evaluation using a checklist and specific evaluative criteria to ensure thorough procedure assessment.

tive with the SheetRM dataset is to create a more realistic
setting by incorporating complex multi-step reasoning and
ambiguous requirements, bridging the gap between simu-
lated scenarios and real-world applications. We source real-
life spreadsheets from the internet and identify a diverse set
of operations commonly employed in practical scenarios.
For detailed data construction procedure, please refer to
Appendix A.1. Our SheetRM dataset is characterized by the
following elements:

• Reasoning-dependent manipulation: Tasks require
multi-step reasoning across spreadsheets.

• Multi category: The dataset includes 5 broad types and
36 subtypes of manipulation tasks, each paired with 4
reasoning challenges, testing both manipulation and rea-
soning skills.

• Long horizon: Tasks consist of several subtasks, posing
challenges of dynamic spreadsheet changes.

• Procedure evaluation: An automated program evaluation
method in SheetRM assesses not only the completion of
the entire task but also the individual subtasks.

2.1. Task Schema

Each task in SheetRM is defined by the following three
parts:

Spreadsheet Assets. Each task corresponds to a spreadsheet
file. We summarize the contents of the spreadsheet in a one-
sentence natural language overview as context, aiming to
stimulate the internal knowledge of LLMs.

Task Instruction. A task instruction outlines the high-level

goal expressed in natural language. A series of operations
on the target spreadsheet is required to complete a task
instruction.

Checklist. A task is paired with a checklist designed to eval-
uate its completion. Each item in the checklist corresponds
to the evaluation of a fine-grained operation with tailored
criteria. An example is illustrated in Fig. 1.

2.2. Automatic Evaluation

We have designed a model-free automatic evaluation sys-
tem specifically tailored to assess fine-grained operations
within our dataset. This system enables us to monitor
the performance of intermediate sub-tasks. As shown
in Fig. 1, the evaluation is structured around a check-
list for each task instruction. Each item on the check-
list is defined by a (Criterion, Sheet Index,
Area, Properties) tuple. We use (Sheet Index,
Area) to pinpoint the specific region within the spread-
sheet for comparison. The Criterion is then applied to
confirm if the identified region conforms to the specified
Properties. This approach allows for a comprehensive
evaluation of LLMs by meticulously assessing the execution
of each task step.

3. SheetAgent Framework
To quantify the challenges posed by SheetRM, we introduce
an LLM-based agent framework SheetAgent. As outlined
in Fig. 2, SheetAgent consists of three key components: the
Planner, the Informer, and the Retriever. We detail these

2



SheetAgent

Highlight	 the	 best-selling	 computer	 accessory	 in
yellow.	Draw	a	pie	 chart	 reflecting	 the	 sales	 of	 each
product	...	(omitted	for	concision)

Task	Instruction

Electronics_Sales.xlsx

Planner Sandbox

Executed	successfully,
no	output.

STDOUT:

Planning	History

Load	 "Sales"	 sheet,	 and	 highlight	 the	 best-selling
computer	accessory	based	on	the	"Sales"	column.
from	openpyxl.styles	import	PatternFill

#	Load	"Sales"
sheet_sales	=	workbook["Sales"]

#	Select	the	computer	accessories	based	on	the	evidence
computer_accessories	=	["Mouse",	"Headphone",
"Keyboard",	''(]

#	Locate	the	row	of	computer	accessory	with	highest
sales
max_sales	=	0
max_sales_row	=	0
for	row	in	range(2,	sheet_sales.max_row	+	1)0
				''(

#	Highlight	the	"Product"	column	with	the	highest	sales
in	yellow.
sheet_sales.cell(row=max_sales_row,	column=1).f1ll	=
PatternFill(start_color="FFFF00",	end_color="FFFF00",
f1ll_type="solid")

Sheet	 "Sales"	 has	 9	 rows	 and	 6	 columns	 (A(1):
"Product"	 <class	 'str'>,	 B(2):	 "Unit	 Price"	 <class	 'int'>,
C(3):	"Sales	Volume"	<class	'int'>,	...).

Sheet	State

This	 workbook	 records	 the	 sales	 of	 electronics
products.

Description

Prompt

Product Unit	Price Sales	Volume Sales 	...

Mouse 150 300 45,000 	...

Laptop 6,500 100 650,000 	...

Headpohone 450 400 180,000 	...

... ... ... ... ...

You	are	a	spreadsheet	agent	and	a	Python	expert	who
can	 utilize	 proper	 functions	 to	 solve	 complicated
spreadsheet-related	tasks	...

System	Prompt

Spreadsheet

File

Erroneous	Code

Top-k	Retrieved
Code	Fragments

Code
Repository

Embedding
Model

Retriever

Planner
I	 need	 to	 plot	 a	pie	 chart	 reflecting	 the	 sales	 of
each	electronics	product.
from	openpyxl.chart	import	PieChart,	Reference

#	Create	a	pie	chart	object
pie_chart	=	PieChart()

#	Categories	the	labels	and	the	data
labels	=	Reference(sheet_sales,	min_col=1,	min_row=2,
max_row=sheet_sales.max_row)
data	=	Reference(sheet_sales,	min_col=4,	min_row=2,
max_row=sheet_sales.max_row)

pie_chart.add_data(data,	titles_from_data=False)
pie_chart.set_categories(labels)
pie_chart.set_title("Sales	Distribution	of	Computer
Electronics	Products")

#	Add	the	chart	to	the	sheet
sheet_sales.add_chart(pie_chart,	"G2")

Sandbox

AttributeError:	'PieChart'
object	has	no	attribute
'set_title'

STDERR:

Planner
Based	 on	 the	 retrieved	 codes	 and	 exception
information,	I	need	to	modify	the	approach	for
setting	the	title.
''(

pie_chart.add_data(data,	titles_from_data=False)
pie_chart.set_categories(labels)
#	Set	title	in	a	correct	way
pie_chart.title	=	"Sales	Distribution	of	Electronics
Products"

#	Add	the	chart	to	the	sheet
sheet_sales.add_chart(pie_chart,	"G2")

Product Sales
Volume Sales 	...

Mouse 150 45,000 	...

Headpohone 400 180,000 	...

... ... ... ...

Processed	Spreadsheet

Informer
The	 Planner	 needs	 to	 identify	 the
best-selling	 computer	 assessory.	 So
I	will	retrieve	the	product	names.

SELECT	DISTINCT	"Product"	FROM	"Sales"

SQL	query:

Evidence

Database

Sandbox

Executed	successfully,
no	output.

STDOUT:...

Sheet	"Sales"

Figure 2. An Overview of SheetAgent. SheetAgent comprises three key components, including the Planner, the Informer, and the
Retriever. The Planner interacts with the target spreadsheet in a ReAct way via a virtual sandbox. The Informer provides subtask-specific
SQLs, the execution results of which serve as the evidence for the Planner to handle reasoning challenges. The Retriever is invoked to
retrieve similar tutorial code snippets upon encountering an error, effectively correcting the error.

components in the following sections.

3.1. Proficient Spreadsheet Manipulation with Planner

Achieving precision in complex spreadsheet tasks requires
a robust feedback mechanism. We employ a closed-loop
planning process where the Planner, utilizing feedback and
reflection, interacts with the spreadsheet in a ReAct man-
ner. Initially, the Planner is fed with concatenated task
instruction I , system prompt PP , description D, and the
initial sheet state s0, which includes row and column counts,
headers, and data types. At each step t, the Planner gener-
ates an action at = Planner(at|I, PP , D, st, ht−1), lever-
aging the current sheet state and previous planning history
ht−1. This action is tested in a sandbox, yielding feedback
ot = Sandbox(at). If errors are detected, the Planner re-
vises the action to a∗t = Planner(a∗t |I, PP , D, st, ht−1, ot).
Successful actions update the spreadsheet to st+1 and re-
fresh the planning history to ht = (ht−1, ot, at). This pro-
cess ensures accurate spreadsheet manipulation based on
essential information rather than the entire dataset.

3.2. Accurate Spreadsheet Perception with Informer

Maintaining awareness of the spreadsheet’s state alone is
insufficient for the Planner to overcome the reasoning chal-
lenges illustrated in Fig. 1. For example, identifying com-
puter accessories as per Fig. 2 requires discerning specific
products amidst potentially frequent changes in the spread-

sheet due to multiple modifications, challenging due to to-
ken limitations.

To address this, we introduced the Informer, which gen-
erates task-specific SQL queries. Initially, data from the
target spreadsheet is extracted and stored in a lightweight
database. At each step t, the Informer aims to identify
entries that align with both the task instruction I and the
state at that step. It combines the system prompt P I ,
the task instruction I , and a sequence of previous actions
At−1 = (a1, · · · , at−1) into its input. The Informer then
executes qt = Informer(qt|P I , I, At−1, st), where At−1

helps trace the Planner’s reasoning, enabling the generation
of precise and robust SQL queries. The execution of these
queries produces evidence et, which the Planner uses to
more effectively perceive and interact with the spreadsheet,
thus better addressing the reasoning challenges.

3.3. Robust Solution Generation with Retriever

The Retriever aids the Planner in task planning by providing
error correction support through relevant code examples
from a repository. We gather high-quality code snippets
from GitHub and categorize them according to the ma-
nipulation types shown in Fig. 1. Using Milvus (Wang
et al., 2021), an open-source vector database, these snippets
are vectorized into a set V and stored. When an error is
detected by the sandbox, the Retriever is activated. This
process is defined as S = topk(cos(E(Cq), vi)|vi ∈ V ),
where S represents the k highest similarity scores between

3



SheetAgent

the erroneous code snippet Cq and the vectors. The em-
bedding function E utilizes any pre-trained language model
to find the top-k similar code snippets Ck

ret. These are
then used to enhance the Planner’s replanning process with
a∗t = Planner(a∗t |I, P,D, st, ht− 1, ot, C

k
ret), facilitating

the generation of more accurate and reliable actions.

4. Experiment
4.1. Experiment Setup

Dataset. We employ a diverse array of benchmarks to
evaluate SheetAgent’s manipulation and reasoning capabili-
ties. For manipulation, we use the SheetCopilot Benchmark
(SCB) (Li et al., 2023a) and our own SheetRM. For assess-
ing reasoning skills, we test on table reasoning datasets such
as WikiTableQuestions (WTQ) (Pasupat & Liang, 2015) and
TabFact (Chen et al., 2019).

Evaluation Metrics. For manipulation tasks, following
SheetCopilot, we use Exec@1 and Pass@1 metrics, along
with SubPass@1 to measure the success rate of subtasks
within each task, assessing instruction following capabili-
ties. For reasoning tasks, we utilize accuracy for WTQ and
TabFact.

Baselines. We select various baselines for comprehensive
comparison. Refer to Appendix C.1 for detailed introduc-
tion.

4.2. Main Results

SheetAgent enhances spreadsheet manipulation accu-
racy. Utilizing gpt-3.5-turbo-0613 as the LLM
backbone, SheetAgent aligns with SheetCopilot bench-
marks. Despite a one-shot prompt limitation, Table 1 indi-
cates that SheetAgent significantly surpasses SheetCopilot
by achieving a 16.8 higher Pass@1, showcasing superior uti-
lization of LLMs for spreadsheet tasks. Additionally, even
without the Informer and Retriever, SheetAgent outperform
other baselines in Exec@1 and Pass@1 metrics, proving the
robustness of Python code generated by GPT-3.5 over VBA
or custom APIs.

SheetAgent demonstrates advanced reasoning ability for
more complex long-horizon spreadsheet tasks. Extensive
testing on the SheetRM dataset reveals SheetAgent’s capa-
bilities in demanding scenarios, shown in Table 2. Notably,
SheetAgent achieves a SubPass@1 of 69.1, more than dou-
bling the score of SheetCopilot with GPT-4, and a Pass@1
of 30.8, demonstrating profound reasoning strength where
SheetCopilot struggles. Furthermore, SheetAgent’s Exec@1
of 92.5 markedly exceeds that of SheetCopilot, highlighting
the durability and adaptability of its solutions.

SheetAgent achieves competitive performance in table
reasoning tasks. We remove the Retriever in this setting.

SheetAgent still outperforms in table reasoning tasks like
WTQ as detailed in Table 3. SheetAgent outshines baselines
and matches the best prompting-based methods, affirming
the efficacy of the Planner and Informer. These components
collaboratively enhance table structure and generate im-
pactful SQLs, boosting the system’s reasoning capabilities
significantly. This synergy plays a vital role in SheetAgent’s
exceptional performance in table reasoning tasks.

Table 1. Performance comparison of different methods for SCB.
VBA and SheetCopilot results are from Li et al. (2023a). † denotes
results derived from a subset of SCB.

Method Exec@1 Pass@1

VBA 77.8 37.1
SheetCopilot† (GPT-4) 65.0 55.0
SheetCopilot (GPT-3.5) 87.3 44.3
SheetAgent (GPT-3.5) 94.1 61.1

w/o Informer+Retriever 88.7 50.7

Table 2. Results of different methods for our SheetRM dataset.
SheetAgent significantly surpasses other methods.

Method Exec@1 Pass@1 SubPass@1

SheetCopilot (GPT-3.5) 66.7 0 15.8
SheetCopilot (GPT-4) 50.2 1.7 30.4
SheetAgent (GPT-3.5) 92.5 30.8 69.1

Table 3. Results of different methods on WTQ (denotation accu-
racy) and TabFact (accuracy) test set. The results are sourced from
the original paper. Best results are highlighted in bold.

Method WTQ TabFact

Fine-tuning based LLMs
TAPAS 48.8 81.0
UnifiedSKG 49.3 83.7
TAPEX 57.5 84.2
Prompting based LLMs
Binder 61.9 85.1
DATER 65.9 85.6
StructGPT 52.2 87.6

SheetAgent (GPT-3.5) 63.3 84.8

5. Conclusion
In this work, we present SheetRM, a sophisticated and real-
istic benchmark designed to evaluate and foster the develop-
ment of generalist agents adept at intricate spreadsheet ma-
nipulations and advanced reasoning tasks. Additionally, we
introduce SheetAgent, a robust framework that utilizes the
capabilities of LLMs to address these complex challenges.
Our extensive experiments demonstrate the proficiency of
SheetAgent in both reasoning and manipulation. We an-
ticipate that SheetRM will become a foundational bench-
mark for advancing generalist agents focused on spreadsheet
tasks. Moreover, we envision SheetAgent facilitating the au-

4



SheetAgent

tomation of tedious and repetitive spreadsheet transactions,
significantly enhancing workflow efficiency.

References
Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen, H.,

Yang, L., Yi, X., Wang, C., Wang, Y., et al. A survey
on evaluation of large language models. arXiv preprint
arXiv:2307.03109, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, W., Wang, H., Chen, J., Zhang, Y., Wang, H., Li,
S., Zhou, X., and Wang, W. Y. Tabfact: A large-scale
dataset for table-based fact verification. In International
Conference on Learning Representations, 2019.

Chen, X., Maniatis, P., Singh, R., Sutton, C., Dai, H., Lin,
M., and Zhou, D. Spreadsheetcoder: Formula predic-
tion from semi-structured context. In International Con-
ference on Machine Learning, pp. 1661–1672. PMLR,
2021b.

Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.,
Xiong, C., Radev, D., Ostendorf, M., Zettlemoyer, L.,
et al. Binding language models in symbolic languages.
In The Eleventh International Conference on Learning
Representations, 2022.

Edeling, A., Srinivasan, S., and Hanssens, D. M. The
marketing–finance interface: A new integrative review of
metrics, methods, and findings and an agenda for future
research. International Journal of Research in Marketing,
38(4):857–876, 2021.

Gulwani, S. Automating string processing in spreadsheets
using input-output examples. ACM Sigplan Notices, 46
(1):317–330, 2011.

Hasan, M. M., Popp, J., and Oláh, J. Current landscape and
influence of big data on finance. Journal of Big Data, 7
(1):1–17, 2020.

Herzig, J., Nowak, P. K., Mueller, T., Piccinno, F., and
Eisenschlos, J. Tapas: Weakly supervised table parsing
via pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
4320–4333, 2020.

Jiang, J., Zhou, K., Dong, Z., Ye, K., Zhao, W. X., and
Wen, J.-R. Structgpt: A general framework for large
language model to reason over structured data. arXiv
preprint arXiv:2305.09645, 2023.

Kandel, S., Paepcke, A., Hellerstein, J. M., and Heer, J.
Enterprise data analysis and visualization: An interview
study. IEEE transactions on visualization and computer
graphics, 18(12):2917–2926, 2012.

Li, H., Su, J., Chen, Y., Li, Q., and Zhang, Z. Sheetcopilot:
Bringing software productivity to the next level through
large language models. arXiv preprint arXiv:2305.19308,
2023a.

Li, P., He, Y., Yashar, D., Cui, W., Ge, S., Zhang, H., Fain-
man, D. R., Zhang, D., and Chaudhuri, S. Table-gpt:
Table-tuned gpt for diverse table tasks. arXiv preprint
arXiv:2310.09263, 2023b.

Liu, Q., Chen, B., Guo, J., Ziyadi, M., Lin, Z., Chen, W.,
and Lou, J.-G. Tapex: Table pre-training via learning
a neural sql executor. In International Conference on
Learning Representations, 2021.

Nan, L., Hsieh, C., Mao, Z., Lin, X. V., Verma, N., Zhang,
R., Kryściński, W., Schoelkopf, H., Kong, R., Tang, X.,
et al. Fetaqa: Free-form table question answering. Trans-
actions of the Association for Computational Linguistics,
10:35–49, 2022.

Pasupat, P. and Liang, P. Compositional semantic parsing
on semi-structured tables. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pp. 1470–1480, 2015.

Payan, J., Mishra, S., Singh, M., Negreanu, C., Poelitz,
C., Baral, C., Roy, S., Chakravarthy, R., Van Durme, B.,
and Nouri, E. Instructexcel: A benchmark for natural
language instruction in excel. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023, pp.
4026–4043, 2023.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Wang, J., Yi, X., Guo, R., Jin, H., Xu, P., Li, S., Wang, X.,
Guo, X., Li, C., Xu, X., et al. Milvus: A purpose-built
vector data management system. In Proceedings of the
2021 International Conference on Management of Data,
pp. 2614–2627, 2021.

Xie, T., Wu, C. H., Shi, P., Zhong, R., Scholak, T., Ya-
sunaga, M., Wu, C.-S., Zhong, M., Yin, P., Wang, S. I.,
et al. Unifiedskg: Unifying and multi-tasking structured
knowledge grounding with text-to-text language mod-
els. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 602–631,
2022.

5



SheetAgent

Ye, Y., Hui, B., Yang, M., Li, B., Huang, F., and Li, Y. Large
language models are versatile decomposers: Decompos-
ing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pp. 174–184, 2023.

6



SheetAgent

A. Details of SheetRM Benchmark
A.1. Dataset Construction

We gather and refine publicly available spreadsheets through a selection and cleaning process. Tasks are generated with both
human and GPT-4 annotation. All the tasks are attached with verified answers, which enables model-free evaluation. The
statistics of our dataset are shown in Table 4. We refer to Appendix A.2 for more detailed statistics.

Table 4. Basic statistics of SheetRM.
Item Count

# Spreadsheet1 Files 25
# Sheets 83
# Average Rows per File 296.37
# Average Columns per File 24.15
# Task Instructions 201
# Subtasks 1024

Spreadsheet Files Collection. We initially collect real-world spreadsheets from a public examination question bank. We
filter out files that are protected, corrupted, or otherwise inaccessible. To ensure diversity, we select files covering multiple
meaningful domains. We require most files to have at least 2 sheets, with each file containing a minimum of 20 rows and
5 columns in total to guarantee scale sufficiency. Besides, any external dependencies (e.g., images and web pages) are
converted into natural language or embedded sheets if feasible. We finally shortlist 25 spreadsheets with a total of 83 sheets.
On average, each spreadsheet contains 296.37 rows and 24.15 columns.

Task Generation. We begin by referring to websites about spreadsheet software skills and consult corporate staff about
commonly used spreadsheet operations in their work. As shown in Fig. 1, we conclude five coarse operation categories
and their fine-grained specific operations for manipulation. Drawing insights from common table reasoning datasets like
WikiTableQuestions and TabFact, we summarize four challenges in the process of sheet reasoning: (1) complex computation
logic, (2) vague requirements, (3) incoherent data format and (4) information extraction. We detail these challenges in the
Appendix A.3. Then, we instruct GPT-4 to propose realistic tasks that mimic user requests adhering to four guidelines: the
tasks should only involve predefined operations, cover diverse manipulation categories, exhibit a long-horizon nature by
encompassing multiple subtasks, and incorporate at least one subtask that presents the specified reasoning challenges. This
process yields a compilation of 1,657 subtasks. We eliminate semantically redundant entries for identical files to maintain
uniqueness. To guarantee quality, our internal annotators manually validate subtasks using programming and specialized
software such as Excel. Certain unreasonable subtasks are excluded throughout this process. By combining these subtasks
for different spreadsheets considering horizon and complexity, we ultimately assemble 201 task instructions, encompassing
a total of 1024 subtasks. Full prompts are available in Appendix E.1.

A.2. Detailed Statistics of Dataset

Spreadsheet Files. We provide more detailed statistics of our SheetRM dataset. We collect spreadsheets covering multiple
fields. As illustrated in Fig. 3 (Left), we categorize these spreadsheet files into five main fields, reflecting the significant areas
where spreadsheets are frequently employed to handle a variety of tasks. We manually annotate a short natural language
description as a summary for each spreadsheet file, aiming to stimulate inherent knowledge of LLMs. Each description
provides an overview for LLMs to better understand the background information. We provide the descriptions in Table 5.

Task Instruction. We cluster the commonly used operation when working with spreadsheets into five categories, namely
Value Processing, Worksheet Management, Format Adjustment, Chart Design, and Content Summary. For each
manipulation category, we further break it down into fine-grained operations. We believe these operations can cover
most spreadsheet affairs. The description of these operations is introduced in Table 6. Fig. 3 (Right) demonstrates the
distribution of verb-noun phrases within our 201 task instructions. We highlight the ten most frequent root verbs and their
four primary associated nouns, showcasing the diversity of task instructions in the SheetRM dataset. Additionally, we show
the distributions of the number of manipulation categories and subtasks for these task instructions (see Fig. 4 (Left)). The
majority of tasks span 2 or 3 manipulation categories, with a decent portion encompassing 4 categories, underscoring the

1A spreadsheet is a collection of sheets that are organized into a document. A table represents a structured arrangement of data in rows
and columns. Each sheet within the spreadsheet contains a table.

7



SheetAgent

diversity of tasks in the SheetRM dataset. We further count the number of subtasks in each task. As displayed in Fig. 4, each
task includes at least 2 sub-tasks, with the most complex extending to 10. Predominantly, the tasks vary in length from 3 to
7. This reflects the long horizon feature of SheetRM, which poses a significant challenge to LLMs.

A.3. Explanation of Reasoning Challenges

Our SheetRM dataset stands out from other spreadsheet manipulation collections due to its emphasis on reasoning-dependent
manipulation. Specifically, each task incorporates reasoning challenges. We draw inspiration from several popular table
reasoning tasks, including table question answering datasets WikiTableQuestions and FeTaQA (Nan et al., 2022), and table
fact verification task TabFact. We analyze cases within these datasets that most models struggled with and identify four types
of reasoning challenges, namely Complex Computational Logic, Vague Requirements, Incoherent Data Format, and
Information Extraction. We find that these reasoning challenges are prevalent in real-world spreadsheet manipulation tasks
due to the diversity of human expression. Thus, integrating practical insights, we incorporate these reasoning challenges into
our spreadsheet manipulation tasks. We elaborate these challenges with descriptions and specific examples:

Complex Computational Logic

Description:
Problems that require more than one reasoning steps to be solved.
Example Sheet:

Name Date of Entry Educational Qualification Salary
Alice 3/1/2001 Master 11,100
Bob 12/1/2006 Bachelor 10,350
... ... ... ...

John 1/9/2011 Doctor 41,100

Instruction:
Which period, 2001-2006 or 2007-2012, had a higher proportion of employees with bachelor’s degrees? For the
period with the higher proportion, calculate the average salary of the undergraduate employees and put it in cell E1.
Challenge:
To fulfill this instruction, the capability of multi-step reasoning is required.

Vague Requirements

Description:
Problems that refer to incomplete or ambiguous specifications which lack clarity and precision, making it challenging
to understand and fulfill the intended goals or objectives.
Example Sheet:

BookID Book Name Unit Price
BK-83024 VB Programming 38
BK-83026 Access Programming 35

... ... ...
BK-83029 Network Technology 43

Instruction:
Highlight database-related books in yellow.
Challenge:
To fulfill this instruction, Reasoning over the sheet contents to identify which books are relevant to the database.

8



SheetAgent

Incoherent Data Format

Description:
Problems that arise when the description provided pertains to the spreadsheet data, yet the units or formats mentioned
do not align with those represented in the spreadsheet.
Example Sheet:

Name Date of Birth
Alice 12/27/1964
Bob 9/28/1974
... ...

John 7/19/1987

Instruction:
Mark the names of employees born after 1985-1-1 in red.
Challenge:
To fulfill this instruction, the “Date of Birth” column should be inferred to align the format.

Information Extraction

Description:
Problems that require specific information to be extracted from the spreadsheet.
Example Sheet:

Venue Opponent Final Score
Memphis, Tennessee, USA Jim Courier 7-5, 6-7, 6-7
Australian Open, Melbourne, Australia Pete Sampras 6-7, 4-6, 4-6
... ... ...
Estoril, Portugal Albert Costa 6-2, 3-6

Instruction:
Extract the scores from the first round of the finals into the new column ”First Round Score”.
Challenge:
To fulfill this instruction, Information about the “Final Score” is required to determine how to extract the first round
score.

set

mark

fill

create

calculate

insert add
put

copy

highlight

cell

column

font
height

name
titlescore

num
ber

column

cell

name
price

sheet

char
t

gra
ph

hist
ogr

am

score

am
ou
nt

co
lu
m
n

va
lu
e

column

in
ve

nt
or

y
sh

ee
t

colum
n

border

row
total

result

num
ber

price

salary

sheet

class

sale

total

name

cell
category
course

33.3%

22.2%

22.2%

14.8%

7.41%

Marketing
Education
Accounting
Administration
Infrastructure

Figure 3. (Left) Distribution of fields to which the spreadsheet files belong. (Right) An illustration of verb-noun phrases in the task
instructions. We count the top 10 most frequent root verbs and their associated nouns, ranking the top four for each. These verb-noun
combinations showcases the diversity of the generated instructions.

9



SheetAgent

Figure 4. (Left) Distribution of manipulation categories in each task. (Right) Histogram of the task length.

Table 5. A short natural language description of the spreadsheet files we collect in SheetRM dataset.

Spreadsheet File Description

BookSales This workbook presents data related to book sales.
StudentsGrade This workbook is about organizing and analyzing student transcripts for first-grade students.
ABProductSales This workbook presents data related to product A and B.
Reimbursement The workbook shows the company’s travel expense reimbursement status for the year 2013.
ElectronicsSales The workbook is about conducting statistical analysis of the company’s sales.
PayrollSummary The workbook is the March 2014 employee salary sheet.
TeachingFees This workbook shows the teaching situation and instructor hourly fees for the courses in the

Teaching Research Office in the year 2012.
Deposit The workbook is a bank deposit journal.
ComputerBookSales The workbook depicts the sales figures for computer-related books in December 2012.
ScienceMajorGrade The workbook shows the final exam grades for the Information and Science major.
PersonnalInformation This workbook is the personnel file information of company employees.
ComputerBookSales2 This workbook represents the sales statistics of computer-related books.
AppliancesSales This workbook shows the sales statistics of various household appliances.
DepartmentSales This workbook documents the sales performance of company’s products in the first half of

the year.
QuartersSales This workbook summarizes the sales performance for the first two quarters.
FinalGrade This workbook provides a detailed analysis of students’ final grades.
ParkingFees This workbook keeps track of parking fees and the associated rates.
LivingCosts This workbook displays an individual’s monthly expense report.
StudentsGrade2 This workbook displays the grades for each subject in the class.
LawMajorGrade This workbook presents the final grade analysis of law students from the 2012 cohort.
YearsSales This workbook documents the sales statistics of company products in 2012 and 2013.
YearEndSalary This workbook provides the year-end salary details of employed staff members.
AirQuality This workbook illustrates the air quality data for major cities in China.
SalesAndPurchase This workbook is a record of this year’s sales and purchase data.
PersonnelChange This workbook contains the personal details of company employees for the year 2019,

including their entry and departure information.

10



SheetAgent

Table 6. Description of each fine-grained operation involved in SheetRM dataset.

Manipulation Category Operation Description

Value Processing Calculate Calculations and statistics.
Insert Insert rows or columns.
Delete Delete cells, rows or columns.
Auto Fill Fill according to the control relationship.
Sort Sort rows or columns in ascending or descending order.
Copy & Paste Copy and paste cell values.
Replace Replace the values of a cell at a specified location.
Hyperlink Set up hyperlinks.
Distinction Remove duplicates.
Filter Filter specified cells according to certain conditions.

Worksheet Management Create Worksheet Create a new worksheet.
Delete Worksheet Delete the specified worksheet.
Rename Worksheet Rename the specified worksheet.
Label Color Modify the color of worksheet name labels.
Page Size Modify page size.
Orientation Set the page orientation.

Format Adjustment Font Name Set the font category.
Font Color Set the font color.
Font Size Set the font size.
Bold & Italic Set the font to be bold or slanted.
Underline Underline cell contents.
Merge & Unmerge Merge or split cells.
Alignment Align cells horizontally or vertically.
Row Height & Column Width Set cell row height or column width.
Background Fill Set cell background fill color.
Numeric Format Set cell number formatting.

Chart Design Chart Type Set the Chart Type.
Chart Data Source Set the data source for the chart.
Chart Caption Set the title of the chart.
Chart Legend Set the Chart Legend.
Chart Position Specify where to place the chart.
Chart Axis Set the axes of a chart.
Data Label Set data labels for charts.
Trendline Add a trendline to the chart.

Content Summary Pivot Creation Create pivot table.
Summary Function Set statistical functions of the pivot.

11



SheetAgent

B. Explanations of The Code-Centric Design in Planner
What is generated by the Planner is crucial for precise manipulation. Li et al. (2023a) introduces a set of virtual APIs
as the action space for its proposed agent. However, these APIs lack scalability and are prone to hallucinations when
invoked due to conflicts with the inherent knowledge of LLMs. Considering the strong code generation capabilities of
LLMs (Chang et al., 2023), we assign the Planner to generate codes to control spreadsheets. During the process of dataset
construction (Appendix A.1), we find that Python, compared with VBA, is suitable for manipulating spreadsheets and aligns
well with existing training corpus (Chen et al., 2021a; Roziere et al., 2023) for LLMs. We assess various Python libraries for
spreadsheet control and decide to primarily use openpyxl2 and pandas3 as a combination of them can cover all operations
shown in Fig. 1.

C. Experimental Details
C.1. Selection of Baselines

For SCB, we compare with SheetCopilot (Li et al., 2023a), an LLM-based agent framework, and VBA (Li et al., 2023a), a
method that generates and runs VBA code. For the SheetRM dataset, we select SheetCopilot as the baseline with different
LLM backbones. For the table-based reasoning task, we group the baselines into two aspects, i.e., fine-tuning based LLMs
and prompting-based LLMs. For WikiTableQuestions and TabFact, we select TAPAS (Herzig et al., 2020), UnifiedSKG
(Xie et al., 2022), and TAPEX (Liu et al., 2021) as fine-tuning based LLMs, Binder (Cheng et al., 2022), DATER (Ye et al.,
2023) and StructGPT (Jiang et al., 2023) as prompting-based LLMs.

C.2. Implementation Details of SheetAgent

In the experiments, we adopt GPT-3.5 and GPT-44 (i.e., gpt-4-0613) as the LLM backbones for our SheetAgent.
Multiple versions of GPT-3.5 are involved for alignment. Specifically, for SCB, WikiTableQuestions and TabFact, we
use gpt-3.5-turbo-0613. For our SheetRM, we employ gpt-3.5-turbo-1106. We adopt 1 in-context example
for SCB and 2 for the rest datasets. The version of Milvus we use is 2.3.1. Note that the Planner and the Informer in
SheetAgent do not share the backbone.

C.3. Table Representation Examples

We investigate what representation formats can better help LLMs to reason over tables. We explore 4 prevalent table
formats: JSON, DFLoader, Markdown, and HTML. We provide an illustration of these formats, as shown in Fig. 5. Notably,
DFLoader is represented by the corresponding Python code snippet that utilizes the pandas DataFrame API to define the
table.

D. Ablation Study
D.1. Ablation of proposed Components in SheetAgent.

Table 7 showcases the impact of the designed modules for SheetRM. We observe a dramatic decline of Pass@1 without
Informer, which indicates that Informer can perform precise queries in the face of dynamically changing spreadsheets,
highlighting its significance for tasks involving reasoning challenges. The Exec@1 drops sharply due to the removal of
Retriever, demonstrating that high-quality tutorial examples enable the Planner to generate more robust and reliable code.
Finally, when both the Informer and Retriever are removed, SheetAgent shows the poorest performance across all metrics,
underscoring that both strong reasoning and precise manipulation capabilities are indispensable for tackling the challenging
tasks of SheetRM. Interestingly, even with only the Planner module, SheetAgent maintains decent performance compared to
SheetCopilot. This highlights the benefits of a code-centric approach over solely relying on language commands.

2https://openpyxl.readthedocs.io
3https://pandas.pydata.org
4https://platform.openai.com/docs/models

12

https://openpyxl.readthedocs.io
https://pandas.pydata.org
https://platform.openai.com/docs/models


SheetAgent

pd.DataFrame({
				"Name":	["John",	"Emily",	"Michael",	���],
				"Age":	[28,	36,	29,	���],
				"Occupation":	["Engineer",	"Teacher",	"Doctor",	���]
})

HTML

|	Name				|			Age	|	Occupation			|
|-.///////0/////1-|-.////////////2
|	John				|				28	|	Engineer					|
|	Emily			|				36	|	Teacher						|
|	Michael	|				29	|	Doctor							|
|			���			|		���		|						���					|

Markdown

DFLoader

{
				{"Name":"John","Age"-28,"Occupation":"Engineer"},
				{"Name":"Emily","Age"-36,"Occupation":"Teacher"},
				{"Name":"Michael","Age"-29,"Occupation":"Doctor"},
				���
}

JSON

<table>
		<thead>
				<tr>
						<th>Name67th>
						<th>Age67th>
						<th>Occupation67th>
				67tr>
		67thead>
		<tbody>
				<tr>
						<td>John67td>
						<td>2867td>
						<td>Engineer67td>
				67tr>
				<tr>
						<td>Emily67td>
						<td>3667td>
						<td>Teacher67td>
				67tr>

				���
		67tbody>
67table>

Figure 5. An illustration of 4 different table representations we use in our experiments.

D.2. Ablation Study on Temperature

We conduct evaluations of our method using the proposed SheetRM dataset under varying conditions by adjusting the
temperature settings to investigate the impact of temperature on the performance of LLMs. For these experiments,
gpt-3.5-turbo-1106 is selected as the LLM backbone. Our findings reveal that our method, SheetAgent, achieves its
best performance at a temperature of 0.0, with minor performance fluctuations observed at a temperature of 0.2. However, a
noticeable decline in performance across all metrics occurs when the temperature is increased to 0.4. This trend suggests
that higher temperature settings lead to more unpredictable outcomes from SheetAgent, reflecting a decrease in the stability
and reliability of the solutions it generates.

Table 7. Ablation study of different proposed components in SheetAgent on SheetRM dataset.

Method Exec@1 Pass@1 SubPass@1

SheetAgent (GPT-3.5) 92.5 30.8 69.1
w/o Informer 96.5 12.4 65.5
w/o Retriever 83.1 20.9 62.7
w/o Informer+Retriever 87.1 10.0 56.7

E. Prompts
E.1. Prompt for Subtask Generation

The subtask generation stage involves two aspects, namely generating subtasks with diverse fine-grained operations, and
generating subtasks with four reasoning challenges. Fig. 6 lists the prompt for the first aspect. To ensure the generation
quality, we prompt GPT-4 to choose 4-5 fine-grained operation at a time. To narrow the gap with realistic requirements,
we ask GPT-4 to express in a tone of real-life users. Moreover, an in-context example is provided to teach GPT-4. With
these prerequisites, GPT-4 can continuously generate diverse and sufficient subtasks. Fig. 7-10 showcase the prompts for

13



SheetAgent

Table 8. Ablation study on the temperature of LLM.

Temperature Exec@1 Pass@1 SubPass@1

0.0 92.5 30.8 69.1
0.2 94.5 28.9 67.4
0.4 89.1 25.9 63.7

generating subtaks with 4 reasoning challenges. Particularly, GPT-4 is prompted under the principle that the generated
subtasks should only be solved by reasoning over spreadsheets. This guarantees the existence of reasoning factors in the
subtasks to some extent. For the last three challenges, we ask GPT-4 to annotate response with its thinking logic so that we
could verify that it makes sense.

E.2. Prompt for Planner

Fig. 11 lists the prompt template for the Planner in SheetAgent. The Planner is prompted to mainly use openpyxl and pandas
to manipulate spreadsheets. We also prompt Planner to reason and plan in a ReAct way. It can invoke Python tool to interact
with a Python sandbox for solution evaluation, and Answer tool to submit the answer corresponding to the question.

E.3. Prompt for Informer

The prompt for the Informer is shown in SheetAgent. To increase the robustness and reliability of generated SQLs, we
provide the Informer with the table schemas of all sheets, along with 3 example rows.

14



SheetAgent

#	System	prompt
Role
As	a	spreadsheet	expert,	you	have	the	ability	to	formulate	specific	questions	for	given	spreadsheets.	These	questions	are	utilized	to	evaluate	the	large
language	model's	capabilities	to	manipualte	spreadsheets.	

Constraints
1.Choose	4-5	fine-grained	operations	from	the	classification	below.	Use	the	provided	spreadsheet	to	create	tasks,	and	then	merge	them	into	a	complete
question.
2.Generate	an	appropriate	number	of	questions	each	time.
3.Generate	questions	from	the	user's	perspective,	considering	elements	such	as	thought	process	and	tone	of	speech.
4.Simplify	the	language	by	focusing	only	on	subproblems	composed	of	fine-grained	operations.
5.List	the	fine-grained	operations	involved	behind	each	problem.	For	example,	(fine-grained	operation：Numeric	Format,	Auto	Fill,	Font	Color)
6.Make	each	question	more	complex	and	comprehensive.

Fine-grained	operations
Here	are	the	fine-grained	operations	you	can	choose	within	the	five	categories:
A.Value	Processing:Calculate,Insert,Delete,Auto	Fill,Sort,Copy	&	Paste,Replace,Hyperlink,Distinction,Filter
B.Worksheet	Management:Create	Worksheet,Delete	Worksheet,Rename	Worksheet,Label	Color,Page	Size,Orientation
C.Format	Adjustment:Font	Name,Font	Color,Font	Size,Bold	&	Italic,Underline,Merge	&	Unmerge,Alignment,Row	Height	&	Column	Width,Background	Fill,Numeric
Format
D.ChartDesign:Chart	Type,Chart	Data	Source,Chart	Caption,Chart	Legend,Chart	Position,Chart	Axis,Data	Label,Trendline
E:ContentSummary:Pivot	Creation,Summary	Function

#	In-context	example
I	will	give	you	an	example	first:
Given	a	spreadsheet:
Sheet	name	"Order	Details":
|Orderid|Date|Bookstore	Name|Bookid|Bookname|Unit	Price|Sales	Volume|Subtotal|Purchaser|
|BTW-08634|2012/10/31|Dingsheng	Bookstore|BK-83024|VB	Language	Programming|38|36|	1,368.0|Jiguang	Ma|
|BTW-08633|2012/10/30|Boda	Bookstore|BK-83036|Database	Principles|37|49|1,813.0|Ruiguo	Zhang|
|BTW-08632|2012/10/29|Boda	Bookstore|BK-83032|Information	Security	Technology	|39|20|780.0|Qianghui	Huang|

Referring	to	the	details	provided	in	the	table	above,	I'll	present	the	following	complex	computational	logic	questions:
1.In	sheet	"Order	Details",	adjust	"Unit	Price"	and	"Subtotal"	to	accounting	with	2	decimal	places	and	CNY	currency	symbol	format.	Fill	the	"Bookname"
column	based	on	"Bookid".	Identify	the	bookstore	with	the	largest	decrease	in	"Subtotal"	in	January	to	October	2012	compared	to	January	to	October	2011.
（fine-grained	operation：Numeric	Format，Auto	Fill,	Font	Color）
2.In	sheet	"Order	Details",	fill	in	the	"BookiD"	based	on	the	"Bookname".	Add	a	column	named	"Adjusted	Quantity"	to	the	last	column	of	the	sheet.
Calculate	the	data	in	this	column	by	multiplying	20	with	the	current	values	in	the	"Subtotal"	column	and	then	dividing	by	the	maximum	value	of	Subtotal.
（fine-grained	operation：Auto	Fill,	Calculate,	Shading,	Font	Color）

#	User	instruction
Now	it’s	your	turn.
Given	a	spreadsheet:
Sheet	name	"Grade":	
|Student	Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total	Score|Average	Score|
|120305|Hongwei	Bao|class	3|91.5|89|94|92|91|86|86|629.5|89.93|
|120203|Wandi	Chen|class	2|93|99|92|86|86|73|92|621|88.71|
|120206|Beida	LI|class	2|100.5|103|104|88|89|78|90|652.5|93.21|

#	GPT	response
Sort	the	students'	names	alphabetically.	Identify	the	student	who	has	the	highest	average	score	after	sorting.	(fine-grained	operation:	Sort,	Calculate)
Merge	cells	to	group	students	based	on	their	"Class".	Find	out	which	class	has	the	highest	total	sum	of	all	subjects	combined.	(fine-grained	operation:
Merge	&	Unmerge,	Calculate,	Sort)
Create	a	new	column	called	"Science	Total",	which	sums	up	the	scores	for	"Biological",	"Geography",	and	"History".	Then,	find	the	student	with	the	lowest
sum	in	"Science	Total".	(fine-grained	operation:	Calculate,	Insert)
Adjust	the	"Total	Score"	and	"Average	Score"	columns	to	display	only	one	decimal	place.	After	this	adjustment,	determine	if	there	are	any	students	whose
average	score	is	exactly	equal	to	the	rounded	"Average	Score".	(fine-grained	operation:	Numeric	Format,	Operation)

Generation	of	Subtasks

Figure 6. Prompt for generating subtasks with diverse fine-grained operations.

15



SheetAgent

#	System	prompt
Role
As	a	spredsheet	expert,	you	have	the	ability	to	formulate	specific	questions	for	given	spreadsheets.	These	questions	are	utilized	to	evaluate	the	large
language	model's	comprehension	of	spreadsheets.

Constraints
1.Begin	by	grasping	the	content	of	the	provided	worksheets,	then	formulate	questions	related	to	"Complex	Computational	Logic."	These	types	of	questions
necessitate	the	use	of	multiple	statistical	procedures	for	resolution.
2.Keep	the	focus	of	the	question	on	asking,	without	delving	into	the	specifics	of	the	procedural	steps.
3.The	guiding	principle	for	formulating	questions	is	that	they	should	only	be	solvable	by	referencing	the	content	of	the	worksheets.
4.Generate	an	appropriate	number	of	questions	each	time	you	approach	the	task.
5.Conclude	each	question	with	a	fine-grained	operation,	integrating	it	with	the	problem	to	present	the	result.
6.Elevate	the	complexity	and	comprehensiveness	of	each	question.

Fine-grained	operations
Here	are	the	fine-grained	operations	you	can	choose	within	the	five	categories:
A.Value	Processing:	Calculate,Insert,Delete,Auto	Fill,Sort,Copy	&	Paste,Replace,Hyperlink,Distinction,Filter
B.Worksheet	Management:	Create	Worksheet,Delete	Worksheet,Rename	Worksheet,Label	Color,Page	Size,Orientation
C.Format	Adjustment:	Font	Name,Font	Color,Font	Size,Bold	&	Italic,Underline,Merge	&	Unmerge,Alignment,Row	Height	&	Column	Width,Background	Fill,Numeric
Format
D.ChartDesign:	Chart	Type,Chart	Data	Source,Chart	Caption,Chart	Legend,Chart	Position,Chart	Axis,Data	Label,Trendline
E:ContentSummary:	Pivot	Creation,Summary	Function

#	In-context	example
I	will	give	you	an	example	first:
Given	a	spreadsheet
Sheet	name	"Order	detail":
|Orderid|Date|Bookstore	Name|Bookid|Bookname|Unit	Price|Sales	Volume|Subtotal|Purchaser|
|BTW-08634|2012/10/31|Dingsheng	Bookstore|BK-83024|VB	Language	Programming|38|36|	1,368.0|Jiguang	Ma|
|BTW-08633|2012/10/30|Boda	Bookstore|BK-83036|Database	Principles|37|49|1,813.0|Ruiguo	Zhang|
|BTW-08632|2012/10/29|Boda	Bookstore|BK-83032|Information	Security	Technology	|39|20|780.0|Qianghui	Huang|

Referring	to	the	details	provided	in	the	table	above,	I'll	present	the	following	complex	computational	logic	questions:
1.In	sheet	"Statistical	Report",	identify	the	quarter	with	the	highest	book	sales	in	2011,	then	determine	which	bookstore	has	the	most	sales	in	this	quarter,
and	fill	its	name	of	bookstore	in	B6	cell.（fine-grained	operation：Calculate）
2.Identify	the	bookstore	with	the	largest	decrease	in	"Subtotal"	in	January	to	October	2012	compared	to	January	to	October	2011.	Then,	determine	the
best-selling	book	with	the	most	volume	in	that	year	for	this	bookstore	and	highlight	its	row	in	red	font	in	the	"Statistical	Report"	sheet.（fine-grained
operation：Font	Color）

#	User	instruction
Given	a	spreadsheet:
Sheet	name	"Grade":								
|Student	Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total	Score|Average	Score|
|120305|Hongwei	Bao|class	3|91.5|89|94|92|91|86|86|629.5|89.93|
|120203|Wandi	Chen|class	2|93|99|92|86|86|73|92|621|88.71|
|120206|Beida	LI|class	2|100.5|103|104|88|89|78|90|652.5|93.21|

#	GPT	response
From	the	"Grade"	sheet,	calculate	the	average	score	of	each	subject	across	all	classes,	identify	the	subject	with	the	lowest	class	average,	and	replace	the
title	of	that	subject	with	"Needs	Improvement"	in	cell	D1.（fine-grained	operation：Replace）
In	the	"Grade"	sheet,	determine	the	student	with	the	highest	total	score	for	each	class,	then	create	a	new	worksheet	named	"Top	Students"	and	copy	&
paste	the	information	of	these	students	into	the	new	worksheet.（fine-grained	operation：Copy	&	Paste）
On	the	"Grade"	sheet,	filter	the	students	who	scored	above	90	in	English	and	then	sort	these	records	in	descending	order	by	their	Total	Score.	Once	sorted,
apply	a	background	fill	of	light	green	to	these	rows.（fine-grained	operation：Background	Fill）
Within	the	"Grade"	sheet,	identify	the	class	with	the	highest	average	total	score	and	then	merge	cells	A1	and	B1	and	label	this	merged	cell	with	"Best
Performing	Class".（fine-grained	operation：Merge	&	Unmerge）

Generation	of	Subtasks	with	Reasoning	Challenges
Complex	Computational	Logic

Figure 7. Prompt for generating subtasks with “complex computational logic” reasoning challenge.

16



SheetAgent

#	System	prompt
Role
As	a	spreadsheet	expert,	you	have	the	ability	to	formulate	specific	questions	for	given	spreadsheets.	These	questions	are	utilized	to	evaluate	the	large
language	model's	comprehension	of	spreadsheets.

Constraints
1.First,	grasp	the	content	of	the	provided	worksheet,	and	then	formulate	questions	about	"Vague	Requirements".	Questions	about	vague	requirements	involve
using	synonyms	or	generic	terms	to	identify	statistical	objects	instead	of	directly	using	their	real	names.
2.Focus	the	questions	on	asking	without	delving	into	the	specifics	of	how	to	accomplish	it.
3.The	principle	for	generateing	questions	is	that	they	should	only	be	answerable	by	referencing	the	contents	of	the	worksheet.
4.Generate	an	appropriate	number	of	questions	each	time.
5.Generate	questions	from	the	user's	perspective,	considering	elements	such	as	thought	process	and	tone	of	speech.
6.Conclude	each	question	with	a	fine-grained	operation,	integrating	it	with	the	problem	to	present	the	result.
7.Specify	the	referenced	object;	for	instance,	when	mentioning	"Office-related	books",	it	refers	to	"MS	Office	Advanced	Applications"	and	"Word	Applications."

Fine-grained	operations
Here	are	the	fine-grained	operations	you	can	choose	within	the	five	categories:
A.Value	Processing:	Calculate,Insert,Delete,Auto	Fill,Sort,Copy	&	Paste,Replace,Hyperlink,Distinction,Filter
B.Worksheet	Management:Create	Worksheet,Delete	Worksheet,Rename	Worksheet,Label	Color,Page	Size,Orientation
C.Format	Adjustment:Font	Name,Font	Color,Font	Size,Bold	&	Italic,Underline,Merge	&	Unmerge,Alignment,Row	Height	&	Column	Width,Background	Fill,Numeric
Format
D.ChartDesign:Chart	Type,Chart	Data	Source,Chart	Caption,Chart	Legend,Chart	Position,Chart	Axis,Data	Label,Trendline
E:ContentSummary:Pivot	Creation,Summary	Function

#	In-context	example
I	will	give	you	an	example	first:
Given	a	spreadsheet:
Sheet	name	"Statistical	Report":
|Orderid|Date|Bookstore	Name|Bookid|Bookname|Unit	Price|Sales	Volume|Subtotal|Purchaser|
|BTW-08634|2012/10/31|Dingsheng	Bookstore|BK-83024|VB	Language	Programming|38|36|	1,368.0|Jiguang	Ma|
|BTW-08633|2012/10/30|Boda	Bookstore|BK-83036|Database	Principles|37|49|1,813.0|Ruiguo	Zhang|
|BTW-08632|2012/10/29|Boda	Bookstore|BK-83032|Information	Security	Technology	|39|20|780.0|Qianghui	Huang|

Referring	to	the	details	provided	in	the	table	above,	I'll	present	the	following	vague	requirements	questions:
1.In	sheet	"Statistical	Report",	determine	the	month	with	the	highest	sales	volume	of	programming	language-related	books(“programming	language-related
books”	are	synonyms	or	generic	terms	for	“VB	Language	Programming”	and	“C	Language	Programming”)	in	2012,	and	then	calculate	its	proportion	to	the	total
sales	volume	of	that	month.	Put	the	result	in	A1	of	the	new	sheet（fine-grained	operation：Calculate）
2.	In	sheet	"Statistical	Report",	mark	the	Office-related	books(“Office-related	books”	are	synonyms	or	generic	terms	for	“MS	Office	Advanced	Applications”
and	“Word	Applications”)	in	red	font	color.（fine-grained	operation：Font	Color）

#	User	instruction
Now	it’s	your	turn.
Given	a	spreadsheet:
Sheet	name	"Grade":				
|Student	Number|Name|Class|Chinese|Mathematics|English|Biological|Geography|History|Politics|Total	Score|Average	Score|
|120305|Hongwei	Bao|class	3|91.5|89|94|92|91|86|86|629.5|89.93|
|120203|Wandi	Chen|class	2|93|99|92|86|86|73|92|621|88.71|
|120206|Beida	LI|class	2|100.5|103|104|88|89|78|90|652.5|93.21|

#	GPT	response
In	the	"Grade"	sheet,	figure	out	which	student	performed	best	in	language	courses	(language	courses	is	a	generic	term	for	"Chinese"	and	"English")	and	put
the	student's	name	and	average	score	of	the	language	courses	in	A1	and	B1	of	a	new	worksheet.	（fine-grained	operation:	Calculate,	Create	Worksheet）
In	the	"Grade"	sheet,	determine	the	average	score	for	science	courses	(science	courses	is	a	generic	term	for	"Biological",	"Geography")	in	class	3,	filter	the
students	with	average	science	courses	scores	below	this	average	and	highlight	their	name	in	yellow.	（fine-grained	operation:	Calculate,	Filter,	Background
Fill）

Generation	of	Subtasks	with	Reasoning	Challenges
Vague	Requirements

Figure 8. Prompt for generating subtasks with “vague requirements” reasoning challenge.

17



SheetAgent

#	System	prompt
Role
As	a	spreadsheet	expert,	you	have	the	ability	to	formulate	specific	questions	for	given	spreadsheets.	These	questions	are	utilized	to	evaluate	the	large
language	model's	comprehension	of	spreadsheets.

Constraints
1.Start	by	comprehending	the	content	of	the	provided	form,	and	then	generate	questions	related	to	"Incoherent	Data	Format"	where	the	description	involves
the	same	meaning	but	different	units	or	data	formats.
2.Focus	the	questions	on	asking	without	delving	into	the	specifics	of	how	to	accomplish	it.
3.The	principle	for	generateing	questions	is	that	they	should	only	be	answerable	by	referencing	the	contents	of	the	worksheet.
4.Generate	an	appropriate	number	of	questions	each	time.
5.Conclude	each	question	with	a	fine-grained	operation,	integrating	it	with	the	problem	to	present	the	result.
6.Generate	questions	from	the	user's	perspective,	considering	elements	such	as	thought	process	and	tone	of	speech.
7.List	equivalent	data	at	the	end	of	the	question.

Fine-grained	operations
Here	are	the	fine-grained	operations	you	can	choose	within	the	five	categories:
A.Value	Processing:Calculate,Insert,Delete,Auto	Fill,Sort,Copy	&	Paste,Replace,Hyperlink,Distinction,Filter
B.Worksheet	Management:Create	Worksheet,Delete	Worksheet,Rename	Worksheet,Label	Color,Page	Size,Orientation
C.Format	Adjustment:Font	Name,Font	Color,Font	Size,Bold	&	Italic,Underline,Merge	&	Unmerge,Alignment,Row	Height	&	Column	Width,Background	Fill,Numeric
Format
D.ChartDesign:Chart	Type,Chart	Data	Source,Chart	Caption,Chart	Legend,Chart	Position,Chart	Axis,Data	Label,Trendline
E:ContentSummary:Pivot	Creation,Summary	Function

#	In-context	example
I	will	give	you	an	example	first:
Given	a	spreadsheet:
Sheet	name	"Employee	Information":
|Job	number|	Name|Sex|Section|Educational	background|Telephone|Telephone	type|Date	of	birth|
|19|Chen	Junjie|Female|Technical	department|Master|12383605517|Cell	phone|1980/11/16|
|20|Tong	Minru|Male|Technical	department|Undergraduate	course|12733582889|Cell	phone|1985/6/28|
|21|Gong	Junxi|Male|Technical	department|Master|90870409|Landline|1969/4/24|

Referring	to	the	details	provided	in	the	table	above,	I'll	present	the	following	incoherent	data	format	questions:
1.	In	sheet	"Employee	Information",	italicize	the	owner's	name	of	86-12733582889.（The	phone	numbers	86-12733582889	and	12733582889	are	equivalent.）
（fine-grained	operation：Bold	&	Italic）
2.	In	sheet	"Employee	Information",	highlight	the	names	of	people	born	on	July	21,	1981	in	red.（The	date	July	21,	1981	and	1981/7/21	are	equivalent)（fine-
grained	operation：Font	Color）

#	User	instruction
Now	it’s	your	turn.
Given	a	spreadsheet:
Sheet	name	"Payroll":
|Name|Department|Position|Id	Number|Gender|Date	Of	Birth|Age|EducationalBackground|On-Board	Time|Length	Of	Service	(years)|Contract	Monthly	Wages|
Monthly	Seniority	Wage|Basic	Monthly	Wage|
|Baifeng	Dao|Management	department|General	manager|110108196301020119|Male|1963/1/2|115|Doctor|1981/2/1|34|40000|1700|41700|
|Chunqiu	Ding|Administration	department|Secretary|110105198903040128|Female|1989/3/4|115|Junior	college|2012/3/1|3|4800|60|4860|
|Xiaocui	Ma|Management	department|Manager|310108197712121139|Male|1977/12/12|115|Master|2003/7/1|12|12000|360|12360|

#	GPT	response
In	the	current	sheet,	apply	a	green	background	fill	to	the	cell	of	the	employee	who	joined	the	company	in	February	1981.	(The	date	'Feb-1981'	and	'1981/2/1'
are	equivalent.)	(fine-grained	operation:	Background	Fill)
Please	adjust	the	Basic	Monthly	Wage	cell	for	Chunqiu	Ding	to	display	it	in	thousands.	(given	that	$4860	is	equivalent	to	$4.86K.)	(fine-grained	operation:
Numeric	Format)

Generation	of	Subtasks	with	Reasoning	Challenges
Incoherent	Data	Format

Figure 9. Prompt for generating subtasks with “incoherent data format” reasoning challenge.

18



SheetAgent

#	System	prompt
Role
As	a	spreadsheet	expert,	you	have	the	ability	to	formulate	specific	questions	for	given	spreadsheets.	These	questions	are	utilized	to	evaluate	the	large
language	model's	comprehension	of	spreadsheets.

Constraints
1.First,	grasp	the	content	of	the	provided	form	and	then	generate	questions	related	to	Information	Extraction.	The	Information	Extraction	problem	involves
extracting	additional	information	from	the	content	in	the	sheet.
2.Focus	the	questions	on	asking	without	delving	into	the	specifics	of	how	to	accomplish	it.
3.The	principle	for	generateing	questions	is	that	they	should	only	be	answerable	by	referencing	the	contents	of	the	worksheet.
4.Generate	an	appropriate	number	of	questions	each	time.
5.Generate	questions	from	the	user's	perspective,	considering	elements	such	as	thought	process	and	tone	of	speech.
6.Conclude	each	question	with	a	fine-grained	operation,	integrating	it	with	the	problem	to	present	the	result.
7.Provide	examples	of	the	extracted	sources	and	content.	For	example,	extract	the	birthday	"1986-05-15"	from	the	string	"220303198605153610."

Fine-grained	operations
Here	are	the	fine-grained	operations	you	can	choose	within	the	five	categories:
A.Value	Processing:Calculate,Insert,Delete,Auto	Fill,Sort,Copy	&	Paste,Replace,Hyperlink,Distinction,Filter
B.Worksheet	Management:Create	Worksheet,Delete	Worksheet,Rename	Worksheet,Label	Color,Page	Size,Orientation
C.Format	Adjustment:Font	Name,Font	Color,Font	Size,Bold	&	Italic,Underline,Merge	&	Unmerge,Alignment,Row	Height	&	Column	Width,Background	Fill,Numeric
Format
D.ChartDesign:Chart	Type,Chart	Data	Source,Chart	Caption,Chart	Legend,Chart	Position,Chart	Axis,Data	Label,Trendline
E:ContentSummary:Pivot	Creation,Summary	Function

#	In-context	example
I	will	give	you	an	example	first:
Given	a	spreadsheet:
Sheet	name	"Statistical	Report":
|Orderid|Date|Bookstore	Name|Bookid|Bookname|Unit	Price|Sales	Volume|Subtotal|Purchaser|PurchaserID|
|BTW-08634|2012/10/31|Dingsheng	Bookstore|BK-83024|VB	Language	Programming|38|36|	1,368.0|Jiguang	Ma|211322198509260317|
|BTW-08633|2012/10/30|Boda	Bookstore|BK-83036|Database	Principles|37|49|1,813.0|Ruiguo	Zhang|211481198401154411|
|BTW-08632|2012/10/29|Boda	Bookstore|BK-83032|Information	Security	Technology	|39|20|780.0|Qianghui	Huang|522324197508045617|

Referring	to	the	details	provided	in	the	table	above,	I'll	present	the	following	information	extraction	questions:
1.In	sheet	"Statistical	Report",	bold	the	name	of	the	buyer	with	the	surname	"Ma"（Extract	the	last	name	"Ma"	from	"Hongyu	Ma"）.（fine-grained
operation：Bold	&	Italic）
2.	In	sheet	"Statistical	Report",	extract	the	buyer's	date	of	birth	based	on	the	Purchaser	ID,	create	a	new	column	labeled	"Birthday,"	and	put	the
result（Extract	the	birthday	"1986-05-15"	from	"220303198605153610"）.（fine-grained	operation：Font	Color）

#	User	instruction
Now	it’s	your	turn.
Given	a	spreadsheet:
Sheet	name	"Championship":
|Outcome|Date|Venue|Surface|Opponent	in	the	final|Score	in	the	final|
|Runner-up|February	15,	1993|Memphis,	Tennessee,	USA|Hard	(i)|Jim	Courier|7-5,	6-7(4-7),	6-7(4-7)|
|Winner|May	17,	1993|Coral	Springs,	Florida,	USA|Clay|David	Wheaton|6-3,	6-4|
|Runner-up|July	26,	1993|Washington	D.C.,	USA|Hard|Amos	Mansdorf|6-7(3-7),	5-7|

#	GPT	response
In	the	provided	worksheet,	could	you	filter	out	and	display	all	matches	that	have	a	"Score	in	the	final"	that	includes	a	tie-breaker	set?	(Extract	the	score
"6-7(4-7)"	as	an	example	of	a	tie-breaker	set).	(fine-grained	operation:	Filter)
In	the	workbook,	identify	all	the	occasions	where	the	final	match	was	won	in	straight	sets	and	label	these	rows	with	a	distinct	background	color	(for
example,	the	final	against	David	Wheaton	with	the	score	6-3,	6-4).	(fine-grained	operation:	Background	Fill)

Generation	of	Subtasks	with	Reasoning	Challenges
Information	Extraction

Figure 10. Prompt for generating subtasks with “information extraction” reasoning challenge.

19



SheetAgent

#	System	prompt
Role
You	are	a	spreadsheet	agent	and	a	python	expert	who	can	find	proper	functions	to	solve	complicated	spreadsheet-related	tasks	based	on	language
instructions.

Prerequisites
1.	I	will	show	you	the	headers	(along	with	data	type)	and	row	numbers	of	spreadsheets	for	your	reference.
2.	Your	partner,	"Informer,"	aids	in	task	completion	by	providing	sheet	content	represented	in	{table_representation},	known	as	"potentially	helpful
information".	This	information	might	be	truncated	due	to	token	limits,	so	it's	essential	to	deduce	the	complete	information	from	what	is	provided.
3.	Please	provide	step-by-step	solutions	without	explanation.
4.	You	can	use	any	python	library,	but	when	it	comes	to	manipulating	spreadsheets,	you	shoud	primarily	use	the	openpyxl	and	pandas	library,	which	has	been
already	imported	as	`openpyxl`	and	`pd`.
5.	You	should	only	give	one	python	code	snippet	at	a	time.	Try	not	to	add	comments,	and	if	you	must,	keep	them	as	concise	as	possible.
6.	The	python	code	snippet	should	be	started	with	```python	and	enclosed	with	```.
7.	If	you	want	to	see	the	output	of	a	value,	you	should	print	it	out	with	`print(x)`	instead	of	`x`.

Response	Format	Guidance
1.	If	you	think	a	python	code	snippet	is	needed,	write	using	the	following	output	format:
Think:	(what	you	need	to	solve	now	and	how	to	solve)
Action:	Python
Action	Input:	(your	python	code	snippet,	which	should	be	in	accordance	with	above	prerequisites)
2.	If	you	think	there	is	a	question	to	be	answered,	give	your	answer	using	the	following	format:
Think:	(how	do	you	get	the	answer)
Action:	Answer
Action	Input:	(your	answer)
2.	If	you	think	task	instruction	is	accomplished,	finish	with	the	following	format:
Finish:	Done!

#	In	context	example
...

#	Instruction
Now	it's	your	turn.	This	Workbook	presents	data	related	to	book	sales.	The	workbook	is	already	loaded	as	`workbook`	using	openpyxl,	you	only	need	to	load
the	sheet(s)	you	want	to	use	manually.	Besides,	the	workbook	will	be	automatically	saved,	so	you	don't	need	to	save	it	manually.

Sheet	state:	Sheet	"Order	Details"	has	635	rows	(Including	the	header	row)	and	8	columns	(A(1):	"Orderid"	(<class	'str'>),	B(2):	"Date"	(<class
'datetime.datetime'>),	C(3):	"Bookstore	Name"	(<class	'str'>),	D(4):	"Bookid"	(<class	'str'>),	E(5):	"Bookname"	(<class	'NoneType'>),	F(6):	"Unit	Price"	(<class	'int'>),
G(7):	"Sales	Volume"	(<class	'int'>),	H(8):	"Subtotal"	(<class	'int'>)).	Sheet	"Numbering	Reference"	has	18	rows	(Including	the	header	row)	and	3	columns	(A(1):
"Bookid"	(<class	'str'>),	B(2):	"Bookname"	(<class	'str'>),	C(3):	"Unit	Price"	(<class	'int'>)).	Sheet	"Statistical	Report"	has	5	rows	(Including	the	header	row)	and
2	columns	(A(1):	"Statistical	Item"	(<class	'str'>),	B(2):	"Statistical	Value"	(<class	'int'>)).	

Task	instruction:	Format	the	"Order	Details"	worksheet,	adjust	"Unit	Price"	and	"Subtotal"	to	accounting	with	2	decimal	places	and	CNY	currency	symbol
format.	Fill	the	"Bookname"	column	based	on	Bookid.	Identify	the	bookstore	with	the	largest	decrease	in	sales	subtotal	in	2012	compared	to	January	to
October	2011.	Then,	determine	the	best-selling	book	in	that	year	for	this	bookstore	and	highlight	its	row	in	red	in	the	"Numbering	Reference"	worksheet.

Please	provide	your	first	step	according	to	the	"Response	Format	Guidance".

#	Planner	response
Think:	Apply	accounting	format	with	2	decimal	places	and	CNY	currency	symbol	to	the	"Unit	Price"	and	"Subtotal"	columns	in	the	"Order	Details"	worksheet.
Action:	Python
Action	Input:
```python
#	Load	the	"Order	Details"	sheet
order_details_sheet	=	workbook["Order	Details"]

#	Apply	accounting	format	with	2	decimal	places	and	CNY	currency	symbol	to	"Unit	Price"	and	"Subtotal"	columns
for	cell	in	order_details_sheet["F"][1:]	+	order_details_sheet["H"][1:]:
				cell.number_format	=	'"¥"#,##0.00_);[Red]("¥"#,##0.00)'
```
......

Planner

Figure 11. A prompt template for the Planner.

20



SheetAgent

Informer

#	System	prompt
You	are	a	table	retrieval	expert	who	team	up	with	a	spreadsheet	agent	named	"Planner"	to	accomplish	complicated	spreadsheet-related	tasks.	Your	partner
excel	in	manipulating	spreadsheets.	However,	some	of	manipulations	require	an	understanding	of	specific	content	of	the	spreadsheet.	Therefore,	your	role	is	to
retrieve	key	information	from	spreadsheets	for	your	partner's	reference.

#	In	context	example
...

#	Instruction
Now	it's	your	turn.	To	make	it	easier	for	you	to	retrieve,	all	sheets	are	stored	in	a	SQLite	database.
Table	schema	of	"First	semester	final	grades":
CREATE	TABLE	"First	semester	final	grades"	(
		"Student	Number"	INTEGER,
		"Name"	TEXT,
		"Class"	REAL,
		...
)
/*
3	example	rows:
SELECT	*	FROM	"First	semester	final	grades"	LIMIT	3;
{
		"1":{"Student	Number":120305,"Name":"Hongwei	Bao","Class":null,"Chinese":91.5,"Mathematics":89,"English":94,"Biological":92,"Geography":91,"History":
86,"Politics":86,"Total	Score	":null,"Average	Score":null},
		"2":{"Student	Number":120203,"Name":"Wanchi	Chen","Class":null,"Chinese":93.0,"Mathematics":99,"English":92,"Biological":86,"Geography":86,"History":
73,"Politics":92,"Total	Score	":null,"Average	Score":null},
		...
}
*/
Task	instruction:	Calculate	the	total	score	and	average	score	of	each	student,	and	fill	in	the	"Total	Score"	and	"Average	Score"	columns	respectively.	Fill	in
the	"Class"	column	according	to	the	"Student	Number".	There	are	three	classes:	1,	2,	and	3.	Fill	the	cells	with	scores	of	no	less	than	110	points	in	the	three
subjects	of	Chinese,	Mathematics,	and	English	in	red	respectively,	and	mark	the	cells	with	scores	above	95	points	in	the	other	four	subjects	in	red	font.

Previous	completed	subtasks	of	the	spreadsheet	agent	(which	is	presented	from	your	partner's	point	of	view	and	is	more	of	your	partner's	thought	while
finishing	the	subtasks):
1.	Load	the	"First	semester	final	grades"	sheet	and	calculate	the	total	and	average	scores	for	each	student.

Given	the	task	instruction	and	subtasks	your	partner	has	completed,	predict	what	your	patner	will	solve	next,	and	determine	what	content	is	most	needed	by
your	partner.	Write	a	SQLite	select	statement	to	achieve	this	goal.	If	there	is	no	need	to	retrieve	information	from	any	spreadsheet,	please	type	"pass".
Based	on	above,	responde	in	the	following	format:
Think:	(how	do	you	think)
Action:	(your	SQLite	statement,	e.g.,	`SELECT	*	FROM	w	WHERE	age	<	18;`,	or	"pass")

#	Informer	response
Think:	According	to	the	task	instruction	and	completed	subtasks,	the	next	step	for	the	Planner	is	more	likely	be	to	fill	the	"Class"	column.	The	rule	for	filling
"Class"	depends	on	the	"Student	Number"	column,	so	I	should	provide	the	agent	with	the	"Student	Number"	information.
Action:	SELECT	"Student	Number"	FROM	"First	semester	final	grades"	LIMIT	3;

Figure 12. A prompt template for the Informer.

21


