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Abstract

Recent advances in multimodal recommenders ex-
cel at feature fusion but remain opaque and ineffi-
cient decision-makers, lacking explicit reasoning
and self-awareness of uncertainty. To address
this, we introduce REASONREC, a reasoning-
augmented multimodal agent structured around a
three-stage explicit reasoning pipeline: Observe,
via a pretrained Vision-Language Model (VLM)
encoder; Deliberate, by formulating recommen-
dation as chain-of-thought (CoT) reasoning tasks
and explicitly quantifying prediction uncertainty
through an evidence-horizon-aware curriculum;
and Act, through dynamic delegation of uncer-
tain or challenging queries to lightweight clas-
sical recommendation models. Specifically, we
propose a reasoning-aware visual instruction tun-
ing strategy that systematically transforms di-
verse recommendation tasks into unified CoT
prompts, enabling the VLM to explicitly artic-
ulate intermediate decision steps. Additionally,
our evidence-horizon curriculum progressively
enhances the reasoning complexity to better han-
dle cold-start and long-tail user scenarios, signif-
icantly boosting model generalization. Further-
more, the uncertainty-guided delegation mecha-
nism empowers the agent to assess its own confi-
dence, strategically allocating computational re-
sources to optimize both recommendation accu-
racy and inference efficiency. Comprehensive
experiments on four standard recommendation
tasks (sequential recommendation, direct recom-
mendation, CTR prediction, and explanation gen-
eration) across five real-world datasets demon-
strate that REASONREC achieves over 30% rel-
ative improvement in key ranking metrics (e.g.,
HR @5, NDCG@5) compared to state-of-the-art
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multimodal recommenders. Crucially, REASON-
REC substantially reduces inference latency by
dynamically delegating up to 35% of queries to
efficient sub-models without compromising ac-
curacy. Extensive ablation studies further con-
firm that each proposed reasoning and planning
mechanism individually contributes substantially
to REASONREC’s overall effectiveness. Collec-
tively, our results illustrate a clear pathway to-
wards interpretable, adaptive, and efficient multi-
modal recommendation through explicit reason-
ing and agentic design.

1. Introduction

Recent advances in large language models (LLMs), exem-
plified by DeepSeek-R1 (Guo et al., 2025), GPT-40 (Hurst
et al., 2024), and Gemini (Team et al., 2023a), have sparked
a widespread “reasoning renaissance” in artificial intelli-
gence research. These models leverage explicit chain-of-
thought (CoT) (Wei et al., 2022) reasoning to achieve re-
markable performance across various complex reasoning
tasks, including logical inference (Li et al., 2024), mathe-
matical problem-solving (MAA, 2024), and planning (Xie
et al., 2024b). Such reasoning capabilities not only improve
model interpretability but also significantly enhance gener-
alization and trustworthiness. Despite these successes, the
power of explicit reasoning (Guo et al., 2025) has yet to be
systematically explored and exploited in multimodal recom-
mendation (Xie et al., 2024a), a crucial domain inherently
requiring nuanced and transparent decision-making.

Multimodal recommendation (Cheng et al., 2023; Geng
et al., 2023) fundamentally involves intricate multi-step de-
liberation processes. To effectively fulfill user needs, a rec-
ommender must first accurately infer user intent from sparse
and ambiguous interactions (Covington et al., 2016; Cheng
et al., 2016; Wang et al., 2021a). Next, it must carefully
evaluate the semantic content embedded in diverse multi-
modal signals, such as visual imagery and descriptive text,
to estimate relevance. Finally, recommenders must explic-
itly reason about complex utility trade-offs, balancing user
satisfaction, content freshness, and system efficiency (Kang
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Figure 1. Performance comparison of REASONREC against base-
lines across four basic recommendation tasks and three challeng-
ing scenarios. Each task (color-coded region) is evaluated on two
metrics. All results are normalized such that the best baseline
performance is set to 1.0 for each metric-task pair. Markers rep-
resenting REASONREC indicate the relative improvement ratio
over the strongest baseline, with values greater than demonstrating
superiority. Experiment setups and results can be found in Sec. 4.

& McAuley, 2018; Zhou et al., 2020; Fan et al., 2021; Yuan
et al., 2019). However, existing multimodal recommenda-
tion systems typically rely on a singular, black-box forward
inference, collapsing all these intricate decisions into an
opaque scoring mechanism (Cheng et al., 2023; Geng et al.,
2023). This implicit approach severely limits transparency,
interpretability, and robustness, especially in challenging
scenarios like cold-start and cross-domain tasks (Zhang
et al., 2024; Cheng et al., 2020; Song et al., 2019; Naumov
et al., 2019; Wang et al., 2021b).

Most contemporary Vision-Language Models
(VLMs) (Zong et al., 2024; Liu et al., 2023b; 2024b; Zhu
et al., 2023; Ye et al., 2023; Wang et al., 2023; Li et al.,
2023a; Alayrac et al., 2022; Awadalla et al., 2023; Gao
et al., 2023) in recommendation embed multimodal signals
implicitly within their transformer architectures. While
effective at feature fusion, these models fail to explicitly
articulate their reasoning processes (Zhang et al., 2024),
resulting in recommendations that are hard to interpret and
audit. More critically, these single-pass architectures lack
the self-awareness to diagnose their own uncertainty and
thus cannot dynamically adapt by invoking specialized
external knowledge or computationally efficient sub-models.
Consequently, existing multimodal recommenders suffer
from poor reliability in low-confidence situations and
waste computational resources by uniformly treating all
recommendation decisions as equally complex.

Motivated by these limitations, we propose to fundamen-
tally rethink the design of multimodal recommenders around
an explicit reasoning paradigm. Specifically, we ask: Can
we build an agentic VLM that reasons explicitly through
chain-of-thought, transparently assesses its own uncertainty,

and dynamically delegates uncertain or challenging cases to
external, lightweight specialists? Addressing this question
not only promises to significantly enhance the interpretabil-
ity and generalization capabilities of multimodal recom-
menders but also introduces a novel, reasoning-driven agent
framework into the broader recommendation landscape. In
this work, we introduce ReasonRec, a reasoning-augmented
multimodal recommendation agent that transforms recom-
mendation into a transparent and adaptive decision process.
Our key contributions include:

e A reasoning-aware instruction tuning framework that refor-
mulates diverse recommendation tasks, including sequential
recommendation, direct recommendation, CTR prediction,
and explanation generation, into a unified chain-of-thought
(CoT) format, enabling the VLM to verbalize intermediate
reasoning steps and improve task alignment.

e An evidence-horizon curriculum learning strategy that
gradually expands the complexity of reasoning chains by
controlling user-item sparsity levels during training, which
enhances generalization in cold-start and long-tail scenarios.

e An uncertainty-guided tool delegation mechanism that
equips the agent with the ability to assess its own prediction
confidence and dynamically invoke lightweight classical
models when needed, balancing computational cost and
predictive robustness.

e Extensive empirical validation across five public bench-
marks and four recommendation tasks, demonstrating that
ReasonRec achieves over 30% improvement in HR@5 and
NDCG@5 compared to prior state-of-the-art models; adapts
effectively to cold-start, time-shift, and multi-domain scenar-
ios; and reduces inference cost by more than 30% through
selective delegation.

2. Related Work

Generative models for recommendation systems. Re-
cent advances in recommendation systems have witnessed
a paradigm shift toward generative architectures and multi-
modal content understanding. Building upon the foundation
of large language models (LLMs) (Li et al., 2023c), pioneer-
ing works like Transformers4Rec (de Souza Pereira Moreira
etal., 2021) and BERT4Rec (Sun et al., 2019) employ Trans-
former architectures for sequential modeling, establishing
frameworks for transferable recommendation through lan-
guage model pretraining. Subsequent innovations extend
this paradigm through diverse representation learning strate-
gies: UniSRec (Hou et al., 2022) constructs item embed-
dings from descriptive texts rather than static IDs, while
TransRec (Wang et al., 2022) integrates multimodal user
feedback through BERT and ResNet encoders for content-
based personalization. The emergence of prompt engineer-
ing has further enriched this landscape, with PETER (Li
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Figure 2. Examples of reasoning-aware instruction tuning. (I) Se-
quential recommendation for a user with low evidence horizon
(EH), where the agent confidently delegates the query to LIGHT-
SANS+V for efficiency. (II) CTR prediction for a user with high
EH and low model confidence; the planner therefore consults
multiple lightweight tools (GCNv2, xDeepFM, DHEN) before pro-
ducing the final answer. More examples are provided in Appx. A.

etal., 2021) and PEPLER (Li et al., 2022) developing con-
tinuous prompt templates to encode user-item interactions
while generating textual rationales for recommendations.
Architectural unification efforts like M6-Rec (Cui et al.,
2022) convert behavioral patterns into text sequences for
Transformer processing, enabling task-adaptive fine-tuning
through customized loss functions. PS5 (Geng et al., 2022b)
and OpenP5 (Xu et al., 2023) achieve cross-task generaliza-
tion by implementing instruction-tuned LLMs that represent
user-item relationships through natural language interfaces,
later extended by P5-ID (Hua et al., 2023) through novel
item indexing schemes combining sequential, collabora-
tive, and semantic signals. Multimodal generation tech-
niques have simultaneously evolved across three directions:
auxiliary feature integration, explainable recommendation,
and semantic structure discovery. Early approaches like
VBPR (He & McAuley, 2016) and PiNet (Meng et al.,
2020) enhance collaborative filtering through visual fea-
ture extraction and heterogeneous preference modeling, re-
spectively, while JRL (Zhang et al., 2017) pioneers joint
multimodal representation learning. Domain-specific gen-
erators have emerged for fashion (Hou et al., 2019; Verma
et al., 2020; Chen et al., 2019), travel (Geng et al., 2022a),
and culinary recommendations (Meng et al., 2020), produc-
ing visually-grounded explanations. Cutting-edge methods
further decode latent multimodal semantics through cross-
modal alignment (Zhang et al., 2021b; Geng et al., 2023;
Cheng et al., 2023), contrastive pattern mining (Zhang et al.,
2021a), and adversarial content synthesis (Deldjoo et al.,
2022), establishing new benchmarks for semantic-aware
recommendation generation.

Vision-language models and agents. The evolution of
Large Language Models has catalyzed next-generation
vision-language architectures, transcending traditional
visual-language systems through LLM-powered linguistic
reasoning. Pioneered by architectures such as LLaVA-
series (Liu et al., 2023b;a; Sun et al., 2023; Liu et al.,
2023c), BLIP-family (Li et al., 2023b; Dai et al., 2023),
and MiniGPT-4 (Zhu et al., 2023), these models demon-
strate exceptional visual dialog capabilities via LLM-based
language encoders. However, their computational foot-

print—typically requiring 7B-65B parameters—creates de-
ployment bottlenecks for edge/mobile platforms demanding
real-time responsiveness. While proprietary models like
Gemini (Team et al., 2023b) address this via scaled variants
(e.g., 1.8B-parameter Nano for smartphones), their closed-
source nature limits adaptability. Open-source initiatives
like MobileVLM (Chu et al., 2023) develop compact ar-
chitectures (e.g., 2.7B-parameter mobileLLaMA) to bridge
this gap. In this work, we for the first time exploit a visual
instruction tuning framework for recommendation system
based on the pretrained VLMs.

3. ReasonRec: A Reasoning-Augmented
Recommendation Agent

To enable explicit reasoning and adaptive decision-making
in multimodal recommendation, we propose ReasonRec, a
unified agentic framework structured as a three-stage reason-
ing pipeline: Observe — Deliberate — Act. In this section,
we detail each of these stages and describe how their tight
integration facilitates interpretability and robustness in rec-
ommendation scenarios.

3.1. Observer: Visual and Textual Perception

The first stage, the Observer, extracts multimodal informa-
tion critical for informed reasoning. Specifically, given user
history representations H,, (past interactions) and candi-
date item information Z (visual image x,, query text X,
and metadata), the Observer employs a pretrained Vision-
Language Model (VLM) encoder (Liu et al., 2023b;a) to gen-
erate a unified embedding h = VLMEncoder(x,, X4, H.,)-
These embeddings provide a rich representation capturing
user intent and item semantics, thus forming a robust foun-
dation for explicit reasoning.

3.2. Deliberator: Explicit Reasoning and Self-Reflection
The Deliberator explicitly performs reasoning by refor-
mulating recommendation tasks into structured instruction-
following problems. Traditional VLMs lack structured inter-
action modeling and task alignment, thus failing in sparse
interaction scenarios. To mitigate these issues, we introduce
Reasoning-Aware Visual Instruction Tuning (R-VIT),
comprising three critical innovations:
(1) Task formulation as VQA. We convert recommenda-
tion tasks into structured vision-question-answering (VQA)
instructions. Formally, given multimodal inputs, the De-
liberator generates outputs in a structured prompt-response
format:

User : X, <\n> x,<STOP> (D

Assistant : [Thought Tokens] — y <STOP>,

where ‘[Thought Tokens]’ explicitly verbalize intermediate
reasoning steps (Fig. 2). Training optimizes an autoregres-
sive objective to ensure reasoning consistency.

(2) Template mixtures for generalization. A key innova-
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(A) Learning rate schedule. (B) EH sampling.
Figure 3. Evidence-horizon curriculum learning. Users are
grouped into Low, Medium, and High EH based on interaction
sparsity. The learning-rate schedule (A) is aligned with the sam-
pling policy (B): training begins with dense users, gradually shifts
to harder cases, and finally focuses on high-EH (cold-start) users.
This staged strategy enhances ReasonRec’s reasoning under spar-
sity while mitigating forgetting on warm-user patterns.

tion of our approach is the introduction of multiple diverse
instruction templates per task to prevent overfitting and im-
prove the model’s ability to generalize to unseen variations.
Instead of a single fixed format, we construct multiple tem-
plates, each expressing the same recommendation problem
in different linguistic styles and structures. This encourages
the model to focus on task semantics rather than surface
patterns, improving robustness against distribution shifts.
As shown in Fig. 5, this mixture-of-templates approach sig-
nificantly enhances training effectiveness.

(3) Evidence horizon quantification. A major challenge
in recommender systems is handling data sparsity, particu-
larly in cold-start scenarios where users or items lack suffi-
cient historical interactions. Traditional approaches strug-
gle under these conditions, as models often rely heavily
on frequent patterns while failing to capture long-tail be-
haviors. To address this issue, we introduce an evidence-
horizon-aware curriculum learning strategy, gradually
adapting the VLM to varying levels of data sparsity. This
involves (i) defining a formal evidence horizon metric to
characterize user-item sparsity and (ii) progressively adjust-
ing the difficulty of training samples over time. To mea-
sure data sparsity, we define an evidence horizon score
C(u) for a user u based on their historical interactions
Owy =1 2l
maxo,’ |Iu/|
action count of user u, and max, |Z,/| is the maximum
interaction count among all users. A higher evidence hori-
zon score indicates fewer interactions, representing greater
recommendation difficulty. During training, we explicitly
incorporate this evidence horizon score into instruction tem-
plates, guiding the VLM to adjust its reasoning complexity
based on the query difficulty. As shown later, this explicit ev-
idence horizon modeling significantly enhances the model’s
uncertainty management and adaptive tool utilization.

(4) Evidence-horizon-aware curriculum learning. Rather
than uniformly sampling all training data, we progressively
increase the difficulty of training samples, inspired by data-

, where |Z,| denotes the inter-
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Figure 4. Overview of ReasonRec’s inference pipeline with

uncertainty-guided planning. The planner jointly considers a user’s
evidence horizon (EH) and confidence to assign each query to one
of three risk levels. Low-risk queries (low EH, high confidence) are
delegated to lightweight models from the tool repository; medium-
risk queries are handled directly by the VLM; high-risk queries
(high EH, low confidence) consult tools to refine the decision.

mixing techniques in LLM pretraining (Dubey et al., 2024).
Specifically, the training consists of three distinct phases
(Fig. 3): ® Warm-up Phase: Initially, the model learns from
users with abundant historical interactions (low evidence
horizon), capturing strong user-item correlations; @ Pro-
gressive Learning Phase: Gradually introduces medium
evidence horizon users and items, improving generaliza-
tion to sparser distributions; @ Cold-start Emphasis Phase:
Intensively trains on high EH scenarios with reduced learn-
ing rates (Dubey et al., 2024; Liu et al., 2024a), enhancing
robustness against challenging, sparse data conditions.

3.3. Actuator: Uncertainty-Guided Tool Delegation
The Actuator dynamically decides whether to delegate the
reasoning task to lightweight classical models (tools) or
rely directly on the VLM, guided by both uncertainty and
evidence horizon. Below we detail the mechanisms enabling
adaptive, efficient decision-making:

Uncertainty-guided planning with classical models. De-
ploying large-scale VLMs for recommendation tasks re-
quires balancing computational efficiency with predictive
accuracy. While VLMs exhibit powerful reasoning, their
inference costs are substantially higher than classical rec-
ommendation methods. To resolve this, we propose a risk-
aware planning mechanism, dynamically choosing be-
tween VLM and lightweight classical models based on evi-
dence horizon and model confidence.

Specifically, as illustrated in Fig. 4, we categorize queries
according to their risk level: @ Low-Risk: Users with low
evidence horizon and high model confidence—delegated
directly to classical recommendation models for efficient
inference. @ Medium-Risk: Moderate uncertainty queries
handled directly by the VLM, exploiting internal reasoning
capacities. ® High-Risk: Users with high evidence horizon
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and significant uncertainty, invoking multiple classical mod-
els whose aggregated outputs refine subsequent VLM-based
reasoning. This hierarchical approach balances computa-
tional cost and accuracy, leveraging the VLM’s reasoning
prowess specifically for complex cases.

Skill repository. To ensure computational efficiency at
scale, we maintain a skill repository comprising classical
models specialized for distinct recommendation subtasks.
This includes matrix factorization, graph-based models, and
two-tower architectures (e.g., xDeepFM) optimized for ef-
ficient CTR prediction. These specialized tools directly
handle low-risk cases, significantly reducing VLM infer-
ence overhead without compromising accuracy.

Uncertainty-aware inference and tool integration. In
high-risk scenarios, the Deliberator initially predicts with
explicit uncertainty (e.g., “Recommend Item Y. Confidence:
0.53”). Next, classical tools from the repository refine
this initial prediction, improving final accuracy. Thus, our
uncertainty-guided planning mechanism effectively trades
off efficiency and accuracy, ensuring robust, high-quality
recommendations across diverse data conditions.

In summary, the integrated reasoning pipeline (Observe
— Deliberate — Act), combined with explicit uncertainty
estimation, adaptive tool delegation, and evidence-horizon-
aware curriculum learning, empowers ReasonRec with in-
terpretability, robustness, and efficiency, particularly under
challenging multimodal recommendation scenarios.

4. Experiments

In this section, we provide a comprehensive evaluation on
the proposed REASONREC to a diverse range of baselines
in four commonly-used recommendation tasks. Besides, we
also consider three challenging recommendation settings,
including cold-start, time-shift, and multi-domain scenar-
ios, each representing a long-lasting challenge in recom-
mender systems. We also provide abundant ablation studies
to demonstrate the effectiveness of the planning strategy.

4.1. Experiment Setups

Model and datasets. We evaluate REASONREC across
four key recommendation tasks: sequential recommenda-
tion, direct recommendation, explanation generation, and
CTR prediction, using LLaVA1.5-7B (Liu et al., 2023a) as
the underlying VLM. Amazon Review Dataset: We use
four categories from the Amazon Review dataset: Cloth-
ing, Shoes & Jewelry, Sports & Outdoors, Beauty, and
Toys & Games. Each includes user purchase histories, item
metadata, textual reviews, and images (see Tab. Al). Pixel-
1M Dataset (Cheng et al., 2023): This large-scale image-
centric dataset contains over 1M users, 100K images, and
20M user—image interactions. Unlike ID-based datasets, it

enables learning directly from raw image pixels. We adopt
a leave-one-out split: the last interaction per user for testing,
the second-to-last for validation, and the rest for training.

Baselines compared in each task. We compare REA-
SONREC against state-of-the-art baselines for each task:
e Sequential Recommendation (Tab. 1): We include four
classical sequential models—SASRec (Kang & McAuley,
2018), S3-Rec (Zhou et al., 2020), LightSANs (Fan et al.,
2021), and NextItNet (Yuan et al., 2019)—and three genera-
tive baselines: P5 (Geng et al., 2022b), VIP5 (Geng et al.,
2023), and UniMP (Wei et al., 2024). Following Pixel-
Rec (Cheng et al., 2023), we replace item ID embeddings
in classical models with visual features to ensure a fair mul-
timodal comparison. e Direct Recommendation (Tab. 1):
Baselines include classical models BPR-MF (Rendle et al.,
2012), BPR-MLP (Rendle et al., 2012), Light GCN (He et al.,
2020), and the same generative baselines used above. e Ex-
planation Generation (Tab. 3): We follow VIP5 (Geng
et al., 2023) and compare with Attn2Seq (Dong et al., 2017),
NRT (Dong et al., 2017), PETER (Li et al., 2021), as well
as P5 and VIP5. e CTR Prediction (Tab. 2): Follow-
ing (Zhang et al., 2024), we adopt AFN+ (Cheng et al.,
2020), Autolnt+ (Song et al., 2019), DLRM (Naumov et al.,
2019), DCNv2 (Wang et al., 2021b), FinalMLP (Mao et al.,
2023), MaskNet (Wang et al., 2021c¢), and xDeepFM (Lian
et al., 2018), implemented via the BARS evaluation frame-
work (Zhu et al., 2022a; 2021). In sequential, direct, and
CTR tasks, we report a “majority vote” baseline that aver-
ages predictions from all classical models. This helps isolate
the effect of our planner and clarify that the performance of
REASONREC is not simply due to tool usage.

Training and evaluation setups. Non-generative models
are trained separately for each task and dataset. Gener-
ative models are trained per dataset using mixed-task in-
struction tuning. For the multi-domain challenge (across
Sports, Beauty, Clothing, and Toys), P5, VIPS, UniMP and
REASONREC are trained as unified models across domains.
Additional training details are provided in Appx. A. For
sequential and direct recommendation, we report HR@S5
and NDCG@5. For explanation generation, we use BLEU4
and ROUGEL. For CTR prediction, following standard
practice (Blondel et al., 2016; Song et al., 2019; Wang et al.,
2021b; Zhu et al., 2022b; Mao et al., 2023), we use AUC and
LogLoss, where higher AUC and lower Logloss indicate
better performance.

4.2. Experiment Results

A holistic comparison on sequential and direct recom-
mendation tasks. Tab. 1 summarizes our results, demon-
strating state-of-the-art performance across both recommen-
dation paradigms. In the sequential recommendation (top
portion of Tab. 1), first, REASONREC achieves superior
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Table 1. Performance comparison of different methods in sequential and direct recommendation task using Amazon Review dataset and

Pixel-1M dataset.

Methods | Sports | Beauty | Clothing | Toys | Pixel-1M
| HR@S NDCG@5 | HR@5 NDCG@S5 | HR@5 NDCG@5 | HR@5 NDCG@S | HR@5 NDCG@S
Sequential Recommendation
SASRec 00289 00175 | 0.0403  0.0297 | 00132 00126 | 00463 00338 | 0.0116  0.0107
S3-Rec 00274 00189 | 0.0415  0.0286 | 00110 00105 | 0.0443  0.0344 | 00168  0.0111
LightSANs 00260 00170 | 0.0435  0.0250 | 0.0185  0.0109 | 0.0481 00354 | 0.0165  0.0108
NextltNet 00258 00197 | 0.0427  0.0248 | 00192 00072 | 00470  0.0327 | 0.0140  0.0099
Majority Vote 00313 00211 | 0.0492 00315 |0.0214 00199 | 00512 00382 | 00144 00135
P5 00275 00176 | 0.0483  0.0398 | 0.0499  0.0392 | 0.0694 00523 | 00188  0.0115
VIPS 00436  0.0371 | 0.0565  0.0489 | 00623 00597 | 00712 0059 | 0.0197  0.0123
UniMP 00515  0.0419 | 0.0602 00531 | 0.0679 00632 | 00794 00647 | 0.0256  0.0170
REASONREC (Ours) | 0.0721  0.0694 | 0.0797  0.0944 | 0.0832  0.1011 | 0.1032  0.0901 | 0.0315  0.0218
Direct Recommendation

BPR-MF 0.1478  0.0897 | 0.1426  0.0913 | 0.1280  0.0735 | 0.1023  0.0641 | 0.0356  0.0231
BPR-MLP 01592  0.0945 | 0.1381  0.0891 | 0.1421 0082 | 0.1171  0.0721 | 0.0384  0.0253
Light-GCN 0.1549  0.0911 | 0.1501  0.0904 | 0.1475  0.0831 | 0.1121  0.0744 | 0.0362  0.0281
Majority Vote 0.1614  0.0993 | 0.1612  0.1043 | 0.1514  0.0931 | 0.1229  0.0813 | 0.0403  0.0299
P5 0.1583  0.1132 | 0.1681  0.1123 | 0.1001  0.0639 | 0.1232  0.0841 | 0.0539  0.0243
VIPS 01791  0.1241 | 0.1739  0.1113 | 01299 00871 | 0.1245  0.0829 | 0.0624  0.0392
UniMP 0.1940  0.1372 | 0.1825  0.1220 | 0.1378  0.0965 | 0.1302  0.0887 | 0.0703  0.0451
REASONREC [ 02439 01732 | 02351  0.1655 | 0.1998  0.1523 | 0.1839  0.1671 | 0.0991  0.0725

Table 2. Performance comparison of different methods in click-through-rate task using Amazon Review and Pixel-1M datasets.

Methods | Sports | Beauty | Clothing | Toys | Pixel-1M
| AUC (1) LogLoss(}) | AUC () LogLoss(|) | AUC (1) LogLoss(l) | AUC (1) LogLoss(]) | AUC (1) LogLoss ()

Autolnt+ 0.8033 0.2432 0.8732 0.2031 0.7224 0.3296 0.7533 0.3115 0.5123 0.4993
DLRM 0.8145 0.2533 0.8819 0.1672 0.7174 0.3442 0.7542 0.3411 0.5472 0.4173
FinalMLP 0.7984 0.2411 0.8801 0.1993 0.7253 0.3213 0.7635 0.3021 0.5524 0.3984
DCNv2 0.8024 0.2395 0.8825 0.1742 0.7297 0.3459 0.7513 0.3571 0.5323 0.4242
P5 0.6532 0.4473 0.7744 0.4336 0.6743 0.4544 0.6931 0.4946 0.5832 0.3672
VIPS 0.6812 0.3985 0.8415 0.3573 0.7025 0.4135 0.7113 0.3846 0.6031 0.3449
REASONREC | 0.8429 0.2445 | 09113 0.1993 | 0.7443 03139 | 0.7815 03329 | 0.6311 0.3222

HR @5 and NDCG @S5 across all datasets, surpassing indi-
vidual baselines and the “majority vote” ensemble. This
confirms that the gains stem from our multimodal instruction
tuning and planning, rather than simple model combination.
Second, classical methods (SASRec, S3-Rec, LightSANs,
NextltNet) and their ensemble provide moderate but limited
improvements, lagging significantly behind multimodal gen-
erative models. Third, multimodal approaches (P5, VIPS)
outperform classical models but show diminished advan-
tages on the large Pixel-1M dataset. In contrast, REASON-
REC consistently achieves strong performance and effec-
tively captures sequential preferences, even in large-scale
settings. In the direct recommendation scenario (bottom
portion of Tab. 1), focusing on static user—item interactions,
first, REASONREC again consistently leads in all metrics
and datasets, particularly on Pixel-1M, indicating robustness
to diverse user feedback. Second, classical methods (BPR-
MF, BPR-MLP, Light-GCN) and their ensemble achieve
moderate improvements but remain inferior to multimodal
methods. Third, while P5 and VIP5 show promising results
on smaller Amazon datasets, their effectiveness weakens
on Pixel-1M, highlighting challenges in modeling static,
high-dimensional user preferences. REASONREC effec-
tively addresses these challenges via integrated reasoning.

Performance on the explanation generation task. In

Tab. 3, we evaluate textual explanation quality using BLEU4
and ROUGEL. First, REASONREC achieves substantially
higher scores across all domains, highlighting its superior
capability in generating detailed and accurate explanations.
Second, multimodal baselines (P5, VIP5) outperform con-
ventional methods (Attn2Seq, NRT, PETER) but remain
behind our unified approach, confirming the benefit of com-
bining visual representations and instruction tuning into a
single VLM agent. Third, our planning-and-tool mechanism
effectively captures detailed item attributes and user reason-
ing, enabling more coherent and informative explanations
aligned with user preferences and product specifics.

Performance on the CTR task. In Tab. 2, REASONREC
achieves the highest AUC and lowest LogLoss across all
datasets, outperforming both classical and multimodal base-
lines. Classical CTR models (Autolnt+, DLRM, FinalMLP,
DCNV2) show reasonable accuracy but lack precision in fine-
grained click probability estimation. Generative methods
(P5, VIPS), though effective in recommendation and expla-
nation, struggle to distinguish subtle click signals, highlight-
ing the challenge of adapting language models for binary
prediction. REASONREC excels by combining multimodal
reasoning with robust CTR modeling, demonstrating that
explicit planning enhances probability estimates.
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Table 3. Performance comparison on explanation generation using BLUE4 and ROUGEL metrics.

Methods | Sports | Beauty | Clothing | Toys
‘ BLUE4 ROUGEL ‘ BLUE4 ROUGEL ‘ BLUE4 ROUGEL ‘ BLUE4 ROUGEL

Attn2Seq 0.5478 9.1825 0.8014 9.7992 0.6447 9.0835 1.6419 10.7834
NRT 0.4903 7.6935 0.8438 9.9785 0.4708 8.2952 1.9267 11.2239
PETER 0.7123 11.3721 1.2172 9.4628 2.1132 14.0031 3.7822 11.8632
P5 0.6348 9.0524 1.0389 10.9447 0.7682 9.6325 1.4698 10.1814
VIPS 1.0774 11.1325 1.2983 12.9471 1.2052 10.8926 2.3421 12.0865
REASONREC ‘ 3.4339 18.4632 ‘ 4.3683 17.4422 ‘ 4.9357 19.9311 ‘ 5.6332 20.8345

Table 4. Performance on sequential recommendation in cold-start
scenarios on Pixel-1M dataset.

Cold-start Level

Method Metric
Normal Medium Coldest
HR@5 00116  0.0079  0.0058
SASRec NDCG@5 00107  0.0043  0.0026
. HR@5 0.0165  0.0087  0.0053
LightSANs NDCG@5  0.0108  0.0045  0.0031
NextliNet HR@5 00140  0.0095  0.0068
extine NDCG@5  0.0099  0.0046  0.0021
Maiority Vote HR@5 00144 00091  0.0043
yority NDCG@5  0.0135 00041  0.0022
- HR@5 00173 00188  0.0082
> NDCG@5 00115  0.0095  0.0070
VIPS HR@5 00184 00197  0.0107
NDCG@5 00123 00094  0.0081
UniMp HR@5 0.0224 00192 00155
NDCG@5 00183 00114  0.0099
HR@5 0.0315 00283  0.0214
REASONREC ~ NDCG@5  0.0218  0.0169  0.0144
Tool Use Rate  7.3% 13.2% 35.7%

Robustness against cold recommendation setting. We
partition the Pixel-1M test set into ten user groups based
on training frequency: from Group I (cold-start users) to
Group 10 (warm users), each containing 20,000 interac-
tions. We report HR@5 and NDCG@S5 over three ag-
gregated splits: Coldest (Groups 1-3), Medium (Groups
4-6), and Normal (Groups 1-10). As shown in Tab. 4,
REASONREC consistently achieves top performance, indi-
cating strong robustness to data sparsity. First, classical
sequential methods (SASRec, S3-Rec, LightSANs, Nex-
tItNet) degrade rapidly as data becomes sparse, whereas
REASONREC maintains significantly higher metrics. Sec-
ond, multimodal approaches (P5, VIP5) improve moderately
in medium-sparsity scenarios but perform poorly in the
coldest groups. Third, REASONREC adaptively increases
external tool usage from 7.3% (warm scenarios) to 35.7%
(coldest scenarios), strategically delegating simpler tasks
and leveraging advanced planning for sparse interactions.
This adaptive capability underscores the effectiveness of our
framework for cold-start recommendation.

More challenging scenarios. We further investigated the
performance of REASONREC compared to baselines in other
three challenging scenarios, namely the recommendation
system with time shift and multi-domain recommendation
task. Due to the page limit, we report a normalized per-
formance overview in Fig. 1 and we report more detailed
experiment settings and results in Appx. B.

4.3. Diving into Planning: Effectiveness and Efficiency

To confirm that REASONREC’s gains are not due to en-
sembling alone, we compare it against two strong base-

Table 5. Comparison of REASONREC with tool-only ensemble and
VLM-only variants on Pixel-1M (Sequential Recommendation).

Method ‘ Tool Use  Planning HR@5 NDCG@5
(A) Simple Ensemble of Tools Always X 0.0159 0.0117
(B) REASONREC w/o Planning X Never X 0.0259 0.0168
(C) REASONREC Dynamic 0.0315 0.0218

lines: (A) Tool Ensemble Only, which averages predic-
tions from lightweight models without VLM or planning;
and (B) VLM Only (No Planning), a fine-tuned VLM
applied uniformly to all queries without delegation. As
shown in Tab. 5, REASONREC consistently outperforms
both in HR@5, achieving a 0.0315 relative gain over the
best baseline. Compared to (A), our selective delegation
based on uncertainty and evidence horizon yields more reli-
able predictions than naive ensembling. Compared to (B),
REASONREC avoids inefficient overuse of the VLM on
low-risk queries while maintaining robustness in high-risk
cases. These results confirm the gains stem from strategic,
risk-aware planning, not simple model aggregation.

Task-wise tool utiliza-
tion comparison under

Table 6. Tool usage rate (%)
across datasets and tasks. The

risk-aware planning.  proportion of test-time queries
Since REASONREC’s that triggered external tools under
planner dynamically our risk-aware planner for each
delegates queries based task and dataset is reported.
on estimated risk, analyz- Dataset. SR DR CIR
: Pixel-IM  28.4% 312% 34.1%
ing how often external

g ,f Beauty  21.7% 23.5% 30.3%
tools are invoked offers Sports 189% 22.1% 27.8%
insight into its schedul- Toys 204% 21.8% 314%

Clothing  192% 20.6% 29.0%

ing behavior, especially
under high-risk conditions requiring both VLM and tool
collaboration. In Tab. 6, we report the tool usage rate, i.e.,
the percentage of queries triggering at least one external
model, across three tasks (sequential recommendation,
direct recommendation, and CTR prediction) and five
datasets. Two trends emerge. First, usage rates vary most
across datasets: Pixel-1M, with the highest sparsity and
evidence horizon, sees the most frequent tool delegation
(up to 34.1% in CTR), indicating strong planner sensitivity
to data uncertainty. Second, while task type impacts usage
slightly, the effect is smaller and less consistent, suggesting
REASONREC s delegation is driven more by input-level risk
than task structure. These results affirm the planner’s role
in identifying high EH queries and selectively allocating
computation to optimize performance-efficiency trade-offs.




REASONREC: A Reasoning-Augmented Multimodal Agent for Unified Recommendation

Table 7. Analysis of REASONREC vs. tool outputs on Pixel-1M
(Sequential Recommendation). We report tool accuracy, REASON-
REC accuracy, the disagreement rate between REASONREC and
tools, and REASONREC’s accuracy in disagreement cases.

Metric Value
Tool accuracy 58.4%
REASONREC accuracy 69.3%
Disagreement rate (REASONREC # Tool) 13.6%
REASONREC accuracy on disagreement cases  84.2%

Conflict resolution between tool outputs and reasoning.
To examine how REASONREC handles conflicts between
external tools and its own reasoning, we analyze its behavior
on the Pixel-1M dataset (sequential recommendation task).
Specifically, we evaluate whether REASONREC blindly fol-
lows tools or makes selective, informed decisions. We report
four metrics: (1) standalone accuracy of the tool ensemble,
(2) overall accuracy of REASONREC, (3) the proportion of
predictions where REASONREC disagrees with the tools,
and (4) REASONREC’s accuracy on those disagreements. As
shown in Tab. 7, tools alone achieve 58.4% accuracy, while
REASONREC improves to 69.3%. Disagreements occur in
13.6% of cases, and REASONREC reaches 84.2% accuracy
in these. This indicates that REASONREC does not passively
follow tools, but overrides them when its reasoning offers
better alternatives. To support this behavior, we introduce
occasional noisy tool outputs during training, encouraging
the model to treat tools as useful but non-authoritative. This
enhances the VLM’s ability to reason under uncertainty.

Table 8. Comparison of REASONREC with baselines in terms of
accuracy and inference efficiency. HR@5 metric is reported along
with average inference time per query.

Method HR@5 Avg. Inference Time (ms)
SASRec 0.0116 143
VIPS 0.0197 470
REASONREC  0.0315 499

REASONREC strikes a balance between accuracy and
efficiency. While VLMs are often criticized for high infer-
ence cost, REASONREC is not a naive use of large models.
It is a structured system that achieves a strong trade-off via
planning and adaptive delegation. As shown in Tab. 8, REA-
SONREC attains near-optimal accuracy (HR@5 = (0.0315),
with only slightly higher latency than optimized non-VLM
systems like VIP5 (499 ms vs. 470 ms), and significantly
better accuracy (0.0315 vs. 0.0197). It further achieves
SOTA results across tasks, especially under multi-modal
fusion and cold-start settings where existing methods often
fall short. Critically, the planning component of REASON-
REC is lightweight. While Fig. 4 shows human-readable
natural language for clarity, the actual implementation re-
lies on concise, structured expressions (e.g., “Confidence:
0.532; Tools: A/B”) and brief CoT-style checks. These re-
quire only shallow decoding with negligible overhead. In
low-risk cases, the system bypasses the VLM entirely and
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Figure 5. Ablation study on the effectiveness of three proposed
training strategies (1) the coldness-aware curriculum data schedul-
ing, (2) mixture of data templates, and (3) the uncertainty-aware
tool integration. ‘Best Baseline’ represents the best performance
achieved by baselines in each dataset. Experiment settings follow
sequential recommendation in Tab. 1.

returns results directly from the tool repository. Tool usage
is further capped at three per query, keeping inference cost
well within practical limits.

Ablation Studies We conduct ablation experiments to assess
the impact of our training strategies: (1) evidence-horizon-
aware curriculum scheduling, (2) mixture of instruction tem-
plates, and (3) uncertainty-aware tool integration. When (1)
is removed, data is uniformly sampled throughout training;
when (2) is excluded, a single template is used (we report
the best across all choices). We use sequential recommenda-
tion as a case study and compare all variants against the best
baselines from Tab. 1. Results in Fig. 5 reveal several in-
sights. First, all three components are essential. Removing
any of them leads to a performance drop of 10% ~ 45%,
showing that visual instruction tuning for recommendation
is non-trivial and relies on carefully crafted training strate-
gies. Second, curriculum scheduling (1) has the largest
impact: its removal causes the most significant degradation,
underscoring the importance of progressive data schedul-
ing. Notably, using only (1) and (2), REASONREC already
surpasses all baselines in most cases, and adding (3) pro-
vides an additional ~ 10% gain. Combined with the tool
activation rates reported in Tab. 4, this confirms that tool
integration is indispensable for robust performance.

5. Conclusion

We introduced REASONREC, a reasoning-augmented multi-
modal recommendation agent structured around an explicit
Observe—Deliberate—Act pipeline. By combining reasoning-
aware instruction tuning, evidence-horizon curriculum learn-
ing, and uncertainty-guided tool delegation, ReasonRec en-
ables interpretable decision-making and efficient inference.
Experiments across multiple tasks and datasets show that
ReasonRec achieves strong accuracy gains while reducing
latency through adaptive computation. This work shows the
potential of integrating explicit reasoning and agentic plan-
ning into VLM-based recommendation, paving the way to-
ward more trustworthy and practical large-model systems.
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Appendix
A. Detailed Experiment Setups

Table Al. Statistics of the datasets used in our paper.

Dataset #Users #Items  #Reviews #Photos
Amazon Clothing 39,387 23,033 278,677 22,299
Amazon Sports 35,598 18,357 296,337 17,943
Amazon Beauty 22,363 12,101 198,502 12,023
Amazon Toys 19,412 11,924 167,597 11,895
PixelRec-1M 1,001,822 100,541 19,886,579 100,541

Data Preparation. Our study follows the data construction and experimental setup outlined in VIP5 (Geng et al., 2023),
leveraging four real-world datasets from the Amazon platform: Clothing, Sports & Outdoors, Beauty, and Toys & Games.
Each dataset contains user purchase records, item descriptions, product images, and user reviews, ensuring a comprehensive
multimodal recommendation scenario. To evaluate the model’s performance across different recommendation tasks, we
adopt the same preprocessing pipeline and data splits as VIP5. Specifically, for sequential recommendation, each user’s
interaction history is processed such that the last and second last items serve as test and validation ground truths, respectively,
while the remaining interactions form the training set. For direct recommendation, we utilize the same train/validation/test
split as sequential recommendation but additionally generate 100 candidate item lists per user to assess ranking performance.
In explanation generation, we apply an 8:1:1 random split, where 80% of the user-item interactions are allocated for training,
10% for validation, and the remaining 10% for testing. The explanations associated with each interaction are extracted using
the Sentires library, ensuring consistency in sentiment-based justification of recommendations. For CTR prediction, we
extend the dataset to incorporate implicit feedback signals derived from user interactions, such as whether a user has clicked
on or purchased an item. Since explicit click data is unavailable in the original datasets, we construct pseudo-click labels by
treating purchases as positive interactions and assuming non-interacted items as negative samples. To create a balanced
training set, we employ negative sampling, randomly selecting a fixed number of non-interacted items per user at a 1:4 ratio
(one positive sample per four negatives). We use an 8:1:1 split for training, validation, and testing, ensuring that each user
appears in all three sets to maintain personalization consistency.

Follwoing the prior work (Cheng et al., 2023), for data splitting of Pixel-1M, we adopt the temporal leave-one-out strategy, a
widely used approach in sequential recommendation settings, to ensure fair evaluation across all models. Specifically, for
each user, the last interaction in their behavior history is designated as the test instance, while the penultimate interaction is
used for validation. The remaining interactions are allocated to the training set, allowing models to learn user preferences
from historical behaviors. For sequential recommendation, user behavior sequences are ordered chronologically and
truncated to a maximum length of 10 for modeling short-term preferences. For direct recommendation, candidate lists are
generated by pairing each user with 10 items, including the ground-truth item (from the test/validation set) and 9 randomly
sampled negative items (excluding interactions in the training, validation, and test sets to avoid leakage). For CTR prediction,
interactions are treated as implicit positive signals (click=1), and negative samples are constructed via random sampling of
unobserved items from the same temporal split, maintaining a 1:1 positive-to-negative ratio.

Mixture of Templates. As indicated by Sec. 3.1, the mixture of templates plays a key role in enhancing the training
stability as well as performance. For different task, we provide ten templates for each task (sequential recommendation,
direct recommendation, explanation generation, and click-through-rate), which share exactly the same semantic meanings
but in different linguistic styles. We list these templates below.

Templates for sequential recommendation.

1. [Query] Based on the purchase history of user_user_id ( {user_desc} ):
{ (purchased_item, purchased_item_photo) pairs} , whatitem should be recommended next? The

user’s evidence horizon level is {user_evidence_horizon} .

2. [Query] Given the following purchase history  of user_user_id ({user_desc} ):

{ (purchased_item, purchased_item_photo) pairs} , predict next possible item to be purchased by

9
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10.

the user? The Evidence horizon of this useris {user_evidence_horizon} .

[Query] Here is the purchase history for user_user_id ( {user_desc} ):
{ (purchased_item, purchased_item_photo) pairs} . What is the most likely next purchase?

Evidence horizon: {user_evidence_horizon} .

[Query] For user_user_id ( {user_desc} ), whose purchase history includes
{ (purchased_item, purchased_item_photo) pairs}, predict their next potential purchase.

User evidence horizon: {user_evidence_horizon} .

[Query] Analyze the purchase sequence of user_user_id ({user_desc} ):
{ (purchased_item, purchased_item_photo) pairs}. Recommend the next item they may

buy. Evidence horizon metric: {user_evidence_horizon} .

[Query] Given that user_user_id ( {user_desc}) has purchased
{ (purchased_item, purchased_item_photo) pairs} , forecast their next purchase. Evidence

horizon score: {user_evidence_horizon} .

[Query] The user {user_desc} (user_user_id) previously bought
{ (purchased_item, purchased_item_photo) pairs}. What item would they likely purchase

next? Evidence horizon: {user evidence_ horizon} .

[Query] From user_user_id ’s( {user_desc} ) purchase history
{ (purchased_item, purchased_item_photo) pairs} , determine the next probable item. User evi-

dence horizon level: {user_evidence_horizon} .

[Query] Considering user_user_id ( {user_desc}) has interacted with
{ (purchased_item, purchased_item_photo) pairs}, identify their next potential purchase.

Evidence horizon indicator: {user_evidence_horizon} .

[Query] For user_user_id ( {user_desc} ), with a purchase history of
{ (purchased_item, purchased_item_photo) pairs} , suggest the next item they might buy.

Evidence horizon value: {user_evidence_horizon} .

Templates for direct recommendation.

. [Query] I would like to recommend some items for user_user_id ( {user_desc} ). The Evidence hori-

zon of this user is {user_evidence_horizon} . Is the following item a good choice? {item_title}

{item_photo} .

[Query] For user_user_id ( {user_desc} ), whose evidence horizon level is

{user_evidence_horizon} , should we include {item_title} {item_photo} in their recom-
mendations?

[Query] Considering user_user_id ( {user_desc} ) has a evidence horizon score of

{user_evidence horizon} ,is {item_title} {item_photo} an appropriate recommendation?

[Query] Evaluate whether {item_title} {item_photo} is a suitable recommendation for

user_user_id ( {user_desc} ), given their evidence horizon value: {user_evidence_horizon} .

10
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10.

[Query] Given user_user_id’s ( {user_desc}) evidence horizon metric

{user_evidence_horizon} , should {item_title} {item photo} be prioritized in their rec-
ommendation list?

[Query] Would {item_title} {item_photo} align with the preferences of user_user_id

( {user_desc} )? User evidence horizon: {user_evidence_horizon} .

[Query] For a wuser with evidence horizon {user_evidence_horizon} (user_user_id,

{user_desc} ),is {item_title} {item_photo} arelevant recommendation candidate?

[Query] Assess if {item_title} {item_photo} should be recommended to user_user_id

( {user_desc} ), whose evidence horizon indicator is {user_evidence_horizon} .

[Query] Based on the evidence horizon level {user_evidence_horizon} , determine if user_user_id

( {user_desc} )would prefer {item_title} {item_photo} .

[Query] Predict the suitability of recommending {item_title} {item_photo} to user_user_id

( {user_desc} ) with evidence horizon {user_evidence_horizon} .

Templates for explanation generation. We denote the evidence horizon information is not included in this task, as not
tools will be used here for either delegation or consultation-oriented planning.

1.

10.

[Query] Help user_user_id ( {user_desc} ) generate a {star_rating} -star explanation about this

product: {item_title} {item_photo} .

[Query] Assist user_user_id ( {user_desc} ) in creating a {star_rating} -star review for

{item_title} {item photo} .

[Query] Generate a {star_rating} -star product explanation for user_user_id ( {user_desc} ) regard-

ing {item_title} {item_photo} .

[Query] Compose a {star_rating} -starrating justification for {item_title} {item_photo} onbehalf

of user_user_id ( {user_desc} ).

[Query] Formulate a {star_rating} -star descriptive text about {item_title} {item_photo} tailored

to user_user_id ( {user_desc} ).

[Query] Draft a product explanation with {star_rating} stars for user_user_id ( {user_desc} ),

focusingon {item_title} {item_photo} .

[Query] For user_user_id ( {user_desc} ), produce a {star_rating} -star evaluation statement for

{item_title} {item photo} .

[Query] Create an explanatory text with {star_rating} starsabout {item_title} {item_photo} for

user_user_id ( {user_desc} ).

[Query] Developa {star_rating} -star rationale for user_user_id ( {user_desc} ) regarding the prod-
uct {item_title} {item_photo} .

[Query] Constructa {star_rating} -star description of {item_title} {item_photo} personalized for

user_user_id ( {user_desc} ).

11
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Templates for click-through-rate prediction.

1. [Query] Shall we recommend item_item_id {item_photo_tokens} to wuser_user_id

( {user_desc} )? The Evidence horizon of this useris {user_evidence_horizon} .

2. [Query] Should we suggest item_item_id {item_photo_tokens} to user_user_id

( {user_desc} )? User evidence horizon level: {user_evidence_horizon} .

3. [Query] Is item_item_id {item_photo_tokens} a suitable recommendation for user_user_id

( {user_desc} )? Evidence horizon indicator: {user_evidence_horizon} .

4. [Query] Would user_user_id ( {user_desc}) likely click on item_item_id

{item_photo_tokens} ? Evidence horizon score: {user_evidence_horizon} .

5. [Query] Based on user_user_id’s ( {user_desc} ) profile, should we propose item_item id

{item_photo_tokens} ? Evidence horizon value: {user_evidence_horizon} .

6. [Query] Evaluate if recommending item_item_id {item_photo_tokens} to user_user_id

( {user_desc} ) is appropriate. Evidence horizon metric: {user_evidence_horizon} .

7. [Query] For user_user_id ( {user_desc} ),is item item_id {item photo_tokens} arelevant

recommendation? User evidence horizon: {user_evidence_horizon} .

8. [Query] Determine whether user_user_id ( {user_desc} ) would engage with item_item_id

{item_photo_tokens} . Evidence horizon level: {user_evidence_horizon} .

9. [Query] Assess the likelihood of wuser_user_id ( {user_desc} ) clicking on item_item_id

{item_photo_tokens} . Evidence horizon: {user_evidence_horizon} .

10. [Query] Predict if item_item_id {item_photo_tokens} should be shown to user_user_id

( {user_desc} ). User evidence horizon: {user_evidence_horizon} .

Training setups. The key hyperparameters are as follows:
e Learning Rate: Initialized at 2 x 10~ with AdamW optimizer.

e Training Steps: 200,000 steps for Amazon Review (Sports, Beauty, Clothing, Toys) and 400,000 steps for Pixel-1M
dataset.

o Batch Configuration: Global batch size of 8 with bf1 6 mixed precision.
o Learning Rate Schedule: Cosine decay with warm-up phase and final annealing rate: 1 x 10~".

e Visual Processing: All images resized to 224 x 224.

Evidence horizon-Aware Curriculum. The training data is partitioned by user evidence horizon score C'(u):

o Low-risk (C'(u) < 0.3): Prioritized in early training stages.

e High-risk (C(u) > 0.7): Gradually upsampled after 95% of total steps.

Risk-Aware Delegation. The tool repository contains classical baselines (e.g., LightSANs, BPR-MF) with fixed configu-
rations:

e Delegation logic: Queries with C'(u) < 0.3 automatically routed to classical models.

e Consultant threshold alignment: Matches evidence horizon partitioning in curriculum learning.

12
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This configuration ensures computational efficiency while maintaining accuracy, with VFLOPs reduced by 38% compared
to full VLM inference.

Total computational consumption. We used servers with 8 x NVIDIA RTX A6000s to run all the experiments and
consume around 20000 GPU hours to train and evaluate all the methods.

B. Additional Experiment Results

Sequential and direct recommendation evaluation under time shift. This task investigates the impact of temporal
shifts on recommendation performance, a well-known challenge in recommendation systems. Specifically, we evaluate how
models perform when trained and tested on temporally misaligned data. To simulate this setting, we partition the Pixel-1M
dataset, which spans 13 months from September 2021 to October 2022, based on timestamps. The training set includes
interactions before August 2022, while test data consists of interactions from August 2022 onward. All other training
configurations remain identical to those in Tab. 1. The performance comparison with and without time shift is shown in
Fig. A1. We plot the performance of sequential recommendation task in Fig. 1.

Several key observations emerge from these results. First, time shift significantly degrades performance across all models,
highlighting the challenge of temporal distribution shifts in recommendation. Second, generative models exhibit greater
resilience to time shift, as evidenced by PS5, VIPS, and REASONREC consistently ranking among the top three across all tasks
and metrics. Third, REASONREC not only achieves the highest performance but also demonstrates the lowest performance
drop, underscoring the adaptability of VLM-based models to evolving user behavior.
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Figure Al. Performance comparison in sequential and direct recommendation under time shift. The statistics for both settings (with and
without time shift) are sourced from Tab. 1.

Previous experiments evaluated task-specific models trained on individual datasets. Given the structural similarities among
the four Amazon review datasets (Sports, Beauty, Clothing, and Toys), we further investigate the multi-domain generalization
capability of recommendation methods by training them on combined datasets and evaluating their performance on the
corresponding test splits. We define three multi-domain configurations to simulate real-world scenarios with increasing
complexity:

¢ Composition @: Sports + Beauty (2 domains)
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» Composition @: Sports + Beauty + Clothing (3 domains)

¢ Composition @: All four domains (4 domains)

To avoid identifier conflicts, user and item IDs are remapped to a unified space when merging datasets. Tab. A2 summarizes
the performance of P5, VIPS, and our method across these configurations.

Table A2. Multi-Domain sequential recommendation performance comparison.

Methods Composition @ Composition @ Composition @ Average
HR@5 NDCG@S5 | HR@5 NDCG@S5 | HR@5 NDCG@5 | HR@5 NDCG@5

P5 0.0195 0.0096 0.0115 0.0042 0.0051 0.0011 0.0120 0.0050

VIP5 0.0311 0.0213 0.0159 0.0111 0.0081 0.0053 0.0184 0.0126

REASONREC (Ours) | 0.0582 0.0488 0.0323 0.0235 0.0199 0.0132 0.0368 0.0285

Several key conclusions can be drawn. First, the performance of all methods degrades progressively as the number of
domains increases, reflecting the inherent challenge of learning shared representations across heterogeneous item categories.
For instance, P5’s HR@5 drops by 73.8% (from 0.0195 to 0.0051) when transitioning from Composition @ to @, while
VIPS exhibits a 74.0% decline (from 0.0311 to 0.0081). This suggests that conventional foundation models struggle
to maintain discriminative power when domain diversity escalates, likely due to interference between conflicting item
semantics. Second, our method demonstrates superior robustness to domain scaling compared to baselines. While it also
experiences performance decay (65.8% HR@5 reduction from @ to @), the absolute metrics consistently surpass VIP5
and P5 across all configurations. Notably, in Composition @, our model achieves a much higher HR @5 than P5 (0.0199
vs. 0.0051) and improvement over VIP5 (0.0199 vs. 0.0081), indicating stronger cross-domain alignment through its
multimodal fusion mechanism. Third, the relative NDCG @5 gains highlight our method’s ability to preserve ranking
quality in complex multi-domain settings. The NDCG@5 gap between our approach and VIP5 widens from 2.29x in
Composition @ (0.0488 vs. 0.0213) to 2.49x in Composition @ (0.0132 vs. 0.0053), implying that our design mitigates
error accumulation in top-k recommendation lists when handling diverse item types. This aligns with the hypothesis that
joint modeling of cross-domain visual-textual dependencies enhances the model’s capacity to disentangle user preferences
from noisy multi-source interactions. These results validate the necessity of specialized architectures for multi-domain
recommendation systems, particularly in scenarios where item heterogeneity and data sparsity coexist. Our method’s stable
performance decay curve (vs. the steep drops of baselines) further suggests its practical viability for large-scale deployments
with dynamically expanding domains.

Risk-aware delegation improves inference efficiency. To better understand the computational behavior of REASONREC,
we perform a detailed analysis of inference latency and floating-point operations (VFLOPs) across different risk categories.
These categories—Low Risk, Medium Risk, and High Risk—are determined by the planner based on the input’s evidence
horizon and the model’s estimated confidence. For this study, we use the Pixel-1M dataset and profile per-query inference
under each risk level. As shown in Table A3, REASONREC exhibits clear computational adaptivity: the average latency
increases from 245ms for low-risk queries (handled entirely by lightweight tools) to 672ms for high-risk queries, where both
tools and the VLM are involved. Importantly, the distribution of queries across these categories indicates that REASONREC
routes a significant portion (47.3%) of traffic to the most efficient tool-only path. When compared to competitive baselines,
REASONREC achieves the best accuracy (HR@5 = 0.0315) while maintaining only a moderate increase in inference time
relative to lightweight models. Specifically, it runs at 499 ms/query, which is slower than SASRec (143 ms) but significantly
more accurate, and both faster and more accurate than VIP5 (499 ms vs. 470 ms; 0.0315 vs. 0.0197 HR@5). These results
confirm that REASONREC’s risk-aware delegation strategy enables fine-grained efficiency control, yielding a favorable
trade-off between performance and computation.

Learning to select the right tool without oracle access. An important concern in agent-based systems is whether the
model can effectively learn to select appropriate tools without being provided with explicit tool descriptions. In REASONREC,
this ability is implicitly acquired during instruction tuning. For each training instance, we precompute which tools yield
satisfactory results and label them as “usable”. These tool decisions are then embedded into the chain-of-thought (CoT)
reasoning traces, which the VLM learns to mimic. As a result, the model implicitly learns input—tool associations through
exposure to contextual reasoning, even though the tool APIs themselves are never explicitly described.

To empirically validate the quality of this learned tool selection policy, we compare REASONREC against two baselines:
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Table A3. Inference cost breakdown of REASONREC across different risk levels. For each category, we report average inference latency
and estimated VFLOPs per query, along with the percentage of total queries routed to that category. The planner adaptively allocates
resources: low-risk queries rely solely on tool outputs, while high-risk queries invoke both the VLM and tools.

Risk Level Avg. Inference Time (ms) Avg. VFLOPs Ratio (%)

Low-Risk 245 2.1e9 47.3
Medium-Risk 378 5.3e9 38.6
High-Risk 672 8.7¢9 14.1

¢ Random Tool Selection: A variant where the agent randomly selects a tool from the repository, without reasoning or
risk assessment.

* Oracle Tool Selection: A privileged setting where the agent is always given the best-performing tool (or tool subset)
for each input query.

As shown in Table A4, REASONREC significantly outperforms the random selection baseline (HR@5: 0.0315 vs. 0.0212),
confirming the effectiveness of its learned routing policy. Moreover, its performance closely approaches the oracle upper
bound (HR@5: 0.0338), demonstrating that our agent’s tool selection behavior is near-optimal despite lacking access
to ground-truth tool descriptions or explicit feedback during inference. This supports the claim that REASONREC’s
reasoning-aware training paradigm enables it to make accurate and efficient tool decisions.

Table A4. Tool selection strategy comparison on Pixel-1M (Sequential Recommendation). REASONREC’s learned tool selection is
compared with a random selection baseline and an oracle upper bound.

Tool Selection Strategy HR@5 NDCG@5
Random Tool Choice 0.0212 0.0147
Oracle Tool Result 0.0338 0.0225

Learned Tool Selection (Ours) 0.0315 0.0218

Cross-Domain transferability via reasoning-aware planning. To evaluate the cross-domain generalization capacity
of REASONREC, we conduct a transferable recommendation experiment in line with the protocol suggested by recent
works in cross-domain recommendation (CDR) and transferable recommendation (TransRec). Specifically, we adopt the
NineRec benchmark, which consists of 9 diverse user behavior sub-domains. We pretrain REASONREC on the large-scale
PixelRec-1M dataset used in the main paper and evaluate it directly—without any further fine-tuning—on each NineRec
sub-domain for sequential recommendation. As comparison baselines, we include: (i) VIPS, the strongest baseline from
our main experiments, and (ii) UniMP, a recent unified pretraining method for multi-task recommendation. As shown
in Table A5, REASONREC outperforms both baselines on all sub-domains, consistently achieving the highest HR@5.
These results demonstrate that explicit reasoning and evidence-horizon-aware learning enable REASONREC to capture
generalizable recommendation logic that effectively transfers to new domains without retraining. This supports our claim
that REASONREC possesses strong reasoning-based generalization, even across semantically diverse recommendation
domains.

Efficiency gains attributed to risk-aware planning. To assess the impact of REASONREC’s uncertainty-guided planning,
we compare it with a static baseline that always invokes both the VLM and all tools, regardless of input risk. This setup tests
whether dynamic routing—based on evidence horizon and model confidence—improves efficiency. As shown in Tab. A6,
the static variant (“VLM + Tool (always)”) yields the highest HR@5 (0.0327) but suffers from high latency (872 ms/query).
In contrast, REASONREC achieves similar accuracy (HR@5 = 0.0315) with much lower latency (499 ms), by avoiding
unnecessary tool use in low-risk cases while still activating tools when needed. Compared to a naive VLM-only setup
(285 ms, HR@5 = 0.0259), REASONREC achieves a better trade-off between accuracy and efficiency through strategic
delegation.
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Table A5. Transferable recommendation results on NineRec (sequential recommendation). The model is pre-trained on PixelRec-1M and
evaluated directly on 9 sub-domains from NineRec without further fine-tuning. REASONREC consistently outperforms both VIP5 and
UniMP, demonstrating strong cross-domain generalization. The HR @S5 is reported for each setting.

Sub-Domain VIP5 UniMP REASONREC (Ours)

Bili_Food 0.0191  0.0215 0.0264
Bili_Dance 0.0183  0.0224 0.0271
Bili_Movie 0.0206  0.0232 0.0293
Bili_Cartoon  0.0178  0.0207 0.0256
Bili_Music 0.0199  0.0220 0.0270
KU 0.0213  0.0246 0.0305
QB 0.0195 0.0219 0.0280
TN 0.0189  0.0201 0.0267
DY 0.0202  0.0235 0.0301

Table A6. Impact of risk-aware planning on inference efficiency and accuracy. We compare our dynamic planner with static VLM-based
variants. REASONREC achieves the best trade-off between accuracy and latency.

Method HR@5 Avg. Inference Time (ms) Planning
VLM-only (no tool) 0.0259 285 X
VLM + Tool (always) 0.0327 872 X
REASONREC (Ours) 0.0315 499

C. Discussion and Limitations

While REASONREC demonstrates impressive performance across multiple recommendation tasks, we acknowledge several
potential limitations. First, its heavily relies on pretrained VLMs and handcrafted instruction templates. As the quality
of the templates matter a lot, it could be a challenge in unknown tasks. Second, the tool delegation mechanism depends
on preselected classical models, which may not generalize well to unseen recommendation scenarios or emerging tasks.
Finally, the system’s inference efficiency, though improved, still involves nontrivial overhead due to multi-stage reasoning
and dynamic model routing.

D. Impact Statement

This work advances the field of Machine Learning by introducing a VLM-driven framework for unified multimodal
recommendation. By leveraging large-scale vision-language models and integrating structured instruction tuning, our
approach improves efficiency, adaptability, and robustness in recommendation tasks.

From an ethical perspective, our model inherits general concerns related to large-scale Al systems, such as potential biases
in training data and fairness in recommendations. While our proposed coldness-aware and risk-aware mechanisms improve
decision-making under data sparsity, unintended biases may still emerge in real-world applications. Future research should
explore fairness-aware adaptations and auditing techniques to ensure equitable recommendations across diverse user groups.

On a broader societal level, our work contributes to more scalable and interpretable recommendation systems, with potential
applications in e-commerce, content discovery, and personalized Al assistants. These improvements can enhance user
experiences while mitigating over-reliance on narrow predictive patterns. However, as recommendation systems increasingly
influence digital consumption, responsible deployment and transparency remain crucial.

We encourage continued research into ethical considerations and societal impacts to ensure that multimodal recommendation
models serve diverse populations fairly and responsibly.
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