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Abstract

Fin whales produce low-frequency vocalizations critical for monitoring but are1

often masked by anthropogenic noise. While supervised detectors perform well,2

they require costly labels and degrade under noise or data scarcity. We present the3

first application of self-supervised learning (SSL) to fin-whale detection, combining4

contrastive predictive coding with an amplitude-aware encoder. Across datasets5

collected in the Norwegian Sea and the Mediterranean Sea, SSL models outperform6

supervised Transformers in low-label and low SNR regimes and transfer effectively7

across regions. Embedding visualizations further show robust class separability.8

These results highlight SSL as a scalable approach for passive acoustic monitoring,9

reducing annotation needs and paving the way for scalable, label-efficient acoustic10

monitoring across diverse marine habitats.11

1 Introduction12

Fin whales (Balaenoptera physalus) produce stereotyped low-frequency vocalizations, near 20 Hz and13

125 Hz, that propagate over hundreds of kilometers, enabling long-range pelagic communication Croll14

et al. [2002], Tyack [2008], Best et al. [2022]. Since only males sing, vocalizations are closely related15

to reproduction, making passive acoustic monitoring (PAM) a key tool for population assessment and16

mitigation Croll et al. [2002]. However, fin whale vocalizations overlap with intense anthropogenic17

noise (e.g., shipping), leading to masking and reduced communication range Duarte et al. [2021],18

Castellote et al. [2012].19

Supervised deep-learning methods have recently shown strong performance in fin-whale detection,20

but they rely on costly expert labels and degrade under label noise, low SNR, or limited data. Self-21

supervised learning (SSL) offers a promising alternative. By learning robust embeddings from22

unlabeled audio, it reduces annotation needs and improves detection and transferability. Advances23

in contrastive and predictive audio SSL Oord et al. [2018], Baevski et al. [2020], Stowell [2022]24

highlight its potential for bioacoustics.25

We compare a supervised lightweight transformer encoder and SSL-based detectors on two datasets,26

evaluate seeds with uncertainty, and analyze learned embeddings with t-SNE. We further test robust-27

ness under noise, data scarcity, and cross-site transfer between two noisy regions: the Norwegian Sea28

and the Mediterranean Sea.29

2 Related Work30

2.1 Supervised Detection of Fin Whale Songs31

Supervised deep learning has already shown strong results on fin whale vocalizations. Best et al.32

[2022] introduced an active-learning framework with lightweight CNNs to detect stereotyped 2033
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Hz calls in the Northwestern Mediterranean Sea. Their model, with only 36k trainable parameters,34

achieved outstanding performance AUROC scores (0.992 at Bombyx, 0.997 at Boussole) on the35

FinWhaleSong dataset, while remaining efficient for deployment in resource-limited monitoring set-36

tings. These results demonstrate the potential of supervised CNNs for detection in noisy soundscapes;37

however, their dependence on expert validation limits scalability to large, unlabeled datasets.38

2.2 Self-Supervised Learning for Bioacoustics39

Supervised methods depend on expensive and noisy labels, while self-supervised learning (SSL)40

leverages unlabeled audio to learn robust representations. SSL frameworks such as CPC Oord et al.41

[2018] and wav2vec 2.0 Baevski et al. [2020] achieve near-supervised performance in speech, and in42

bioacoustics they improve detection, support few-shot classification, and transfer effectively from43

human to animal vocalizations Stowell [2022], Moummad et al. [2024], Sarkar and Doss [2023,44

2025]. However, SSL has not yet been applied to fin-whale calls. To fill this gap, we release an45

annotated dataset and compare supervised and SSL-based detectors.46

3 Methodology47

3.1 Supervised Transformer Encoder Model48

First, we transform the input signal into a low-dimensional spectrogram using an STFT.49

Our supervised baseline is a lightweight Transformer encoder applied directly to spectrogram inputs.50

Each column S(:, t) ∈ RF , corresponding to F frequency bins at time step t, is treated as the input51

embedding at that step. This avoids the need for an explicit embedding layer, following recent work52

in audio Transformers Gong et al. [2021], Dong et al. [2018].53

The encoder consists of 4 Transformer blocks, each with 4 heads of self-attention and a feed-forward54

layer, combined with residual connections and layer normalization. Unlike most Transformer models,55

we omit explicit positional encodings, allowing the model to rely purely on spectral–temporal patterns56

and the receptive field of the attention heads to capture dependencies Su et al. [2024].57

The output sequence is projected through a linear layer to obtain frame-level probabilities ŷt, which58

are then flattened and aggregated into a binary classification of presence/absence.59

3.2 Self-Supervised Method60

For the self-supervised model, we adopt the contrastive predictive coding framework Oord et al.61

[2018], which combines a Sinc-based Ravanelli and Bengio [2018] front-end, a convolutional encoder62

with amplitude-aware normalization, and a uni-directional gated recurrent unit (GRU) Dey and Salem63

[2017] context model. The model takes raw waveform windows and learns to predict future latent64

representations K steps ahead using the InfoNCE objective.65

Given an input waveform xt ∈ X , the encoder is defined as a mapping genc : X → Z param-66

eterized by a five-layer convolutional network, producing representations zt = genc(xt). The67

first convolutional layer is a Sinc-based filter constrained to learn band-pass filters g[n, fl, fh] =68

2fh · sinc(2πfhn)− 2fl · sinc(2πfln), where sinc(x) = sin(x)
x . Each filter learns only the low and69

high cutoff frequencies (fl, fh), reducing parameters while yielding physically interpretable filters.70

For fin-whale vocalizations, this design ensures the encoder emphasizes ecologically relevant bands71

and suppresses redundant signals. An ablation of the SincNet is provided in Appendix F.2.72

We propose Batch-RMS Normalization (BRN) to better preserve amplitude information in fin-73

whale detection. While Layer and Group Normalization Ba et al. [2016], Wu and He [2018] used in74

SSL frameworks Baevski et al. [2020], Hsu et al. [2021], Chen et al. [2022] stabilize training, they75

remove mean and scale, enforcing amplitude invariance which is detrimental when amplitude is an76

ecologically meaningful cue. Batch Normalization (BN) Ioffe and Szegedy [2015] retains such cues77

but is unstable with small batches and under distribution shift Li et al. [2019], Yang et al. [2022].78

BRN interpolates between BN and RMSNorm Zhang and Sennrich [2019] with a learnable gate79

ρ: BRN(x) =
(
ρ · BN(x) + (1 − ρ) · RMSNorm(x)

)
⊙ γ + β, where γ, β are trainable affine80

terms. BRN thus preserves amplitude-sensitive cues essential for pulse detection, while inheriting the81

stability and robustness of modern normalization. Ablation results are provided in Appendix F.1.82

2



Figure 1: Performance of supervised method and SSL method under varying training set sizes on
Seglvik Fjords dataset, demonstrating the robustness of our SSL compared to Supervised.

Figure 2: Performance of supervised method and SSL method under varying training set sizes on
Mediterranean Sea.

With amplitude-sensitive features extracted by the encoder, the model employs an autoregressive83

context module to capture temporal dependencies and optimize predictive representations. Specifi-84

cally, we use a GRU gar : Z → C, which summarizes past representations z≤t into a context vector85

ct = gar(z≤t). To predict the future, K linear predictors {Wk}Kk=1 generate ẑt+k = Wkct. Training86

follows the InfoNCE objective Oord et al. [2018], where the model learns to identify the true zt+k87

among negatives {zj}Nj=1.88

Lk = − log
exp (sim(ẑt+k, zt+k)/τ)∑

j∈{t+k}∪N
exp (sim(ẑt+k, zj)/τ)

, (1)

with sim(u, v) = u⊤v and temperature τ . The final loss is averaged across steps: L = 1
K

∑K
k=1 Lk,89

ensuring the model jointly optimizes predictions over multiple future steps.90

After pretraining, we freeze the backbone model, and use the GRU outputs ct as input to a lightweight91

classifier consisting of a single convolutional layer and a linear head, trained in a supervised manner92

on labeled fin-whale pulse data. Detailed pipeline of the SSL model is shown in Appendix G.93

3.3 Datasets94

We evaluate on two fin-whale datasets. Seglvik Fjords (Norway) comprises over 1500 hours of95

recordings collected in a noisy Arctic environment with seasonal whale aggregations. Training96

labels were obtained through YOLOv5 Jocher et al. [2022], while validation and test sets were fully97

manually curated. Each sample is represented as a 3-s segment centered on the 125 Hz pulse band.98

Mediterranean Sea (Bombyx and Boussole) uses the FinWhaleSong dataset Best et al. [2022],99

containing nearly 3700 annotated 20 Hz pulses generated by their CNN. We create a train/val/test100

split as described in Appendix A and extract 5-s segments with one simple temporal augmentation.101

Further details on data collection, annotation, and preprocessing are provided in Appendix A.102

4 Experiments103

4.1 Experimental Setup & Protocol104

Our downstream task is binary pulse detection: given an audio segment, the model predicts fin-whale105

presence or absence. We evaluate with Accuracy, AUROC, F1, Recall, Specificity, and FPR,106

averaging results over 10 random seeds for reproducibility. Models are tested on both Seglvik Fjords107

and Mediterranean Sea datasets using full training sets and subsets ranging from 1–100% of labeled108

data. To further probe noise robustness, we conduct an auxiliary Seglvik experiment (Appendix D)109

where training subsets are restricted to low-SNR samples (τ ∈ −4, 0, 2, 4 dB) while evaluation110
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Figure 3: t-SNE embeddings of the SSL model at different SNR thresholds with the Seglvik
dataset. Left to right: all signals, SNR ≥ 0, ≥ 2, and ≥ 5 dB.

remains on the full testset. Additional implementation details, including optimizer settings and model111

sizes, are provided in Appendix B.112

4.2 Result & Analysis113

On the Seglvik Fjords dataset, the supervised Transformer Encoder and SSL-pretrained encoder114

perform comparably with full supervision (Table 1, 2). In low-label regimes, however, SSL yields115

consistently higher accuracy, F1, and specificity, while nearly halving false positives. As shown in116

Fig. 1, with only 1% of labeled data, the SSL model already achieves strong performance, indicating117

that pretraining provides robust, discriminative features for detection under annotation scarcity. As118

labeled data increase, the supervised model closes the gap, slightly surpassing the frozen SSL encoder,119

which is expected given the absence of fine-tuning. These results demonstrate the potential of SSL120

to substantially reduce labeling requirements while suggesting that further fine-tuning could unlock121

additional gains in high-label settings.122

To assess transferability and generalization, we used the Seglvik-pretrained model as the feature123

extractor and trained a lightweight classifier on the Mediterranean Sea dataset, compared to a124

supervised Transformer Encoder trained from scratch. As shown in Fig. 2, SSL substantially outper-125

forms supervised model with 1–15% of labeled data and achieves strong performance, demonstrating126

that it has captured generalizable features of fin-whale vocalizations. With more annotations, the127

supervised model overtakes the frozen SSL encoder as freezing limits the SSL model’s ability to128

adapt. Importantly, this result addresses a core challenge in bioacoustics: acoustic conditions differ129

drastically across regions, making large annotated datasets impractical for every site. SSL thus offers130

a scalable solution by reducing reliance on expert labels and enabling effective cross-site monitoring.131

After comparing the SSL model and the supervised model, we next investigate the separability of132

embeddings from the frozen pretrained encoder. We input 3-s audio segments from the Seglvik133

Fjords testset into the frozen pretrained model, extract embeddings with RMS-weighted pooling,134

and visualize them with t-SNE. As shown in Fig. 3, pulse and non-pulse samples are already clearly135

separated in 2D space, indicating that the model encodes discriminative features for detection without136

task-specific fine-tuning. When stratifying the testset by SNR, the boundaries between classes become137

progressively sharper, demonstrating robustness to noise and enhanced separability with higher SNR.138

For the supervised model, which does not yield explicit embeddings, we instead use the output of139

the last transformer encoder block to visualize contextual representations of pulses and non-pulse as140

described in Appendix E.1.141

5 Discussion & Conclusion142

We introduced the first study applying self-supervised learning to fin-whale vocalization detection,143

comparing a lightweight supervised Transformer Encoder with a CPC-based encoder augmented144

by SincNet and amplitude-aware normalization. Across two large-scale datasets, our results show145

that SSL substantially improves performance in low-label regimes and provides transferable repre-146

sentations across geographically distinct acoustic environments. These findings highlight SSL as a147

practical and scalable approach for passive acoustic monitoring of whales, alleviating the reliance on148

costly expert labels and enabling more efficient deployment across diverse sites. Future work could149

extend this direction by incorporating fine-tuning, multi-species training, and large-scale pretraining150

to develop general-purpose bioacoustic representation models.151
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Appendix217

A Datasets & Code218

Seglvik Fjords (Norway). The Seglvik Fjords dataset was collected in northern Norway and219

comprises 1555 hours of recordings between November 12, 2022 and January 23, 2023. The site220

hosts seasonal aggregations of fin whales in an environment characterized by high variability in221

ambient noise due to shipping and other cetaceans. Recordings were made at a 190 kHz sampling rate,222

but since fin whale vocalizations occur at very low frequencies, all audio files were downsampled to223

3.2 kHz. For this dataset, fin whale pulses are observed at ∼125 Hz.224

Annotation was conducted in several stages. First, we manually labeled 207 fin whale pulses and 22225

non-pulses. A YOLOv5 detector was then trained and applied to the entire 1555 hours of recordings,226

producing 160,161 candidate detections. To ensure a low label-noise, we retained only detections227

with a confidence score above 0.9, which reduced the training set from 160,161 to 4,129 pulses.228

Non-pulses are generated, in the same quantity as pulses, by avoiding pulse zones with all YOLO229

confidence levels. This constitutes the training dataset used in our experiments.230

In addition to the YOLO-based training labels, we curated fully manual annotations for a more231

consistent test set and validation set. The test set contains 581 manually validated 125 Hz fin232

whale pulses, and the validation set contains 144 pulses. Each sample is extracted as a 3-s segment,233

not necessarily centered on the event and filtered with the frequency band 100–150 Hz. No data234

augmentation was applied for this dataset.235

The full dataset can be downloaded from https://drive.google.com/file/d/17WUR35hvPUp_236

wJpOSdN_DTxTEk39E4rY/view?usp=sharing.237

Mediterranean Sea (Bombyx and Boussole). We also evaluate on the FinWhaleSong dataset Best238

et al. [2022], which was generated using their CNN on the audio collected in the Northwestern239

Mediterranean: Bombyx and Boussole. Recordings were made with hydrophones and downsampled240

to 200 Hz, which is sufficient to capture the stereotyped ∼20 Hz pulses produced by fin whales. The241

initial dataset was manually annotated through an active learning cycle, yielding high-quality labels242

of pulse occurrences.243

The published benchmark contains 39 hours of audio recordings and 3,688 annotations of fin whale244

pulses using their CNN. Since the public version is not pre-partitioned, we filtered by CNN confidence245

and randomly divided the dataset into training (1,031 pulses and 1,031 non-pulses), validation (103246

pulses and 103 non-pulses), and test (97 pulses and 97 non-pulses) subsets. The generation of247

non-pulses follows the same approach as those generated with the Seglvik dataset.248

For input representation, each sample is extracted as a 5-s segment non-centered. To enhance249

robustness, we applied simple data augmentation by shifting each segment once along the time axis.250

We also filtered the signal with the 15-35 Hz frequency band.251

The full dataset can be downloaded from https://drive.google.com/file/d/1OznWIDn0Ta_252

deoVzSiDqeCotQTUbmjJR/view?usp=sharing.253

Code. The code for preprocessing both datasets and training the model with evaluation can be down-254

loaded from https://drive.google.com/file/d/1ShGh0cGTkUHSBlX2PgHL-sCmGTzaHIBb/255

view?usp=drive_link.256

B Experimental Setup257

Supervised training. For supervised models, we use the AdamW optimizer with weight decay258

1e−5, a OneCycleLR scheduler, and a binary cross-entropy loss. Training is performed for 20 epochs259

with a batch size of 32 on a single RTX 3090 GPU for 2 mins, followed, depending on the type of260

dataset, by an additional fine-tuning phase of four epochs on the validation set in order to adapt the261

decision limits or the calculation of the optimal threshold based on the results on the validation set.262

The models are deliberately compact, with 84k parameters on the Seglvik dataset and 60k on the263

Mediterranean Sea dataset with 4 encoder blocks and 4 heads, ensuring a fair comparison with prior264

CNN-based baselines Best et al. [2022].265
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Self-supervised pretraining & Downstream Task training. For SSL, we adopt Adam with an initial266

learning rate 1e−4 and weight decay 1e−5, together with a customized scheduler that dynamically267

adjusts the learning rate per step. Pretraining runs for 50 epochs on Seglvik’s training dataset on268

4× RTX 3090 GPUs with a batch size of 512 for 3 days, yielding a backbone of 7M parameters.269

During downstream adaptation, the pretrained encoder and GRU are frozen, and only a lightweight270

classification head is trained. The downstream task training uses AdamW with cosine annealing with271

an initial learning rate 1e−3, weight decay 1e−4, and a batch size of 32 on a single RTX 3090 GPU272

for 2 mins.273

C Evaluation Metrics for Supervised vs. SSL-pretrained (frozen) model.274

Table 1 & Table 2 report metrics on the Seglvik dataset, trained with the full training set. Evaluation275

was performed using an automatically selected optimal threshold strategy based on the results of the276

validation set.

Model Acc AUROC FPR Spec F1

Supervised 0.947 ± 0.001 0.990 ± 0.000 0.065 ± 0.006 0.935 ± 0.006 0.948 ± 0.001
SSL 0.937 ± 0.001 0.981 ± 0.001 0.065 ± 0.004 0.935 ± 0.004 0.937 ± 0.001

Table 1: Seglvik Fjords results: supervised vs SSL. Mean ± sem across 10 seeds.

277

Model Recall Precision Loss

Supervised 0.959 ± 0.004 0.937 ± 0.005 0.372 ± 0.002
SSL 0.938 ± 0.003 0.936 ± 0.004 0.381 ± 0.002

Table 2: Additional metrics on Seglvik Fjords dataset. Mean ± sem across 10 seeds.

Table 3 & Table 4 present results on the Mediterranean dataset. Models were trained on the full278

training set, and evaluation was performed using an automatically selected optimal threshold strategy279

based on the results of the validation set.

Model Acc AUROC FPR Spec F1

Supervised 0.951 ± 0.002 0.988 ± 0.001 0.059 ± 0.003 0.941 ± 0.003 0.951 ± 0.003
SSL 0.927 ± 0.002 0.974 ± 0.001 0.098 ± 0.005 0.902 ± 0.005 0.929 ± 0.002

Table 3: Mediterranean results: supervised vs SSL. Mean ± sem across 10 seeds.

280

Model Recall Precision Loss

Supervised 0.960 ± 0.006 0.942 ± 0.002 0.369 ± 0.002
SSL 0.952 ± 0.003 0.907 ± 0.004 0.401 ± 0.002

Table 4: Additional metrics on Mediterranean dataset. Mean ± sem across 10 seeds.

D Transferability and Robustness Across SNR Conditions281

To directly test model robustness under noisy training data, we construct training sets on the Seglvik282

dataset by applying a maximum SNR threshold, using only samples with SNR ≤ τ , where τ ∈283

−4, 0, 2, 4 dB. The test set remains unchanged and includes the full distribution of SNR levels. Each284

setting is repeated with ten random seeds for statistical reliability. As shown in Fig. 4, supervised285

performance is strongly impacted when trained on low-SNR subsets, with AUROC, accuracy, and286

F1 all suppressed, and false positive rates increasing sharply. In contrast, SSL maintains much287

higher performance across metrics, even when trained only on noisy data, and its advantage is288
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Figure 4: Performance of supervised and SSL-based models on Seglvik when training is restricted
to noisy subsets with SNR ≤ τ , while testing is performed on the full test set. Supervised models
degrade substantially as τ decreases, showing high false positive rates and reduced F1, whereas SSL
remains comparatively stable and robust across thresholds. Results are averaged over 10 random
seeds.

most pronounced at the lowest SNR thresholds. These results confirm that SSL can extract robust289

representations from noisy audio, consistent with our motivation that supervised models are vulnerable290

to label noise and low SNR conditions, whereas SSL leverages unlabeled structure to build more291

resilient features.292

E Embedding visualization293

E.1 t-SNE visualization for the supervised model294

To analyze the internal representations of the supervised detector, we extract hidden states from295

the last transformer encoder block and project them into 2D space with t-SNE. As with the t-SNE296

visualization for the SSL model, we enrich the testset with five temporal-shift augmentations around297

the pulse to provide more stable visualizations and smoother clusters.298

Figure 5 shows that pulse and non-pulse samples remain broadly separable, though the clusters are less299

geometrically distinct than for the frozen encoder. At low SNR, the overlap between classes is more300

pronounced, consistent with the higher classification difficulty. As SNR increases, class separation301

becomes clearer, and the two groups form compact clusters, mirroring the model’s improved detection302

performance at higher signal quality.303

This comparison highlights a key difference: pretrained embeddings encode discriminative features304

in a form that is directly separable even without supervision, while the supervised model orga-305

nizes its internal states around the classification task, yielding more diffuse but still discriminative306

representations.307

Figure 5: t-SNE embeddings of the Supervised model at different SNR thresholds with the
Seglvik dataset. Left to right: all signals, SNR ≥ 0, ≥ 2, and ≥ 5 dB.

E.2 Embedding-Space Separability and Representative Signals308

To provide qualitative examples of the data, we visualize embeddings from the frozen SSL encoder309

using t-SNE together with a few randomly selected audio segments from the Seglvik test set. As310

shown in Fig. 6, pulses and non-pulses form distinct regions in the embedding space, and the311

spectrograms illustrate representative signal patterns for each class.312
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Figure 6: Left: t-SNE projection of frozen SSL embeddings. Right: linear spectrograms of examples

F Ablation Study313

F.1 Normalization Method314

To verify the effect of normalization on amplitude preservation, we conducted an ablation study by315

replacing our proposed BRN with alternative normalization schemes, including Group Normalization316

(with group sizes 1 and 128), Layer Normalization, Batch-Instance Normalization (BIN), RMS317

Normalization, and Batch Normalization.318

Each variant was trained using the same CPC framework and evaluated on the validation set. We319

report CPC loss and CPC accuracy as indicators of pretraining quality, and further assess downstream320

utility by extracting embeddings and applying linear probe classifiers (logistic regression with PCA)321

and k-NN. Each experiment is done with 20 epochs on 4 × 3090 RTX GPUs for about 2 hours. All322

ablation results are reported as mean ± SEM over 3 independent runs due to the high computational323

cost of training.324

Normalization F1 AUROC Precision Recall

Group Norm (gs=1) 0.638 ± 0.037 0.742 ± 0.011 0.664 ± 0.024 0.622 ± 0.039
Group Norm (gs=128) 0.660 ± 0.023 0.725 ± 0.037 0.674 ± 0.032 0.655 ± 0.020
Layer Norm 0.791 ± 0.016 0.861 ± 0.012 0.865 ± 0.033 0.737 ± 0.020
BIN (Batch+Instance) 0.647 ± 0.006 0.736 ± 0.008 0.676 ± 0.004 0.631 ± 0.009
RMS Norm 0.847 ± 0.014 0.908 ± 0.009 0.899 ± 0.006 0.807 ± 0.017
Batch Norm 0.856 ± 0.003 0.913 ± 0.003 0.898 ± 0.012 0.822 ± 0.002
BRN (ours) 0.856 ± 0.002 0.914 ± 0.002 0.900 ± 0.002 0.813 ± 0.008

Table 5: Ablation study of different normalization schemes on CPC encoder. Results are reported as
mean ± SEM over three runs. Metrics are computed via linear probe evaluation on the validation set.

Normalization KNN CPC Acc. CPC Loss

Group Norm (gs=1) 0.642 ± 0.026 0.58 ± 0.21 1.83 ± 0.81
Group Norm (gs=128) 0.646 ± 0.028 0.87 ± 0.05 0.62 ± 0.09
Layer Norm 0.714 ± 0.007 0.40 ± 0.01 4.02 ± 0.03
BIN (Batch+Instance) 0.646 ± 0.003 0.86 ± 0.06 0.68 ± 0.19
RMS Norm 0.728 ± 0.005 0.41 ± 0.01 4.02 ± 0.06
Batch Norm 0.732 ± 0.003 0.41 ± 0.00 3.87 ± 0.20

BRN (ours) 0.737 ± 0.008 0.40 ± 0.01 3.81 ± 0.25
Table 6: Additional ablation results on KNN evaluation and CPC training metrics. Results are
reported as mean ± SEM over three runs.

The ablation results highlight the importance of preserving amplitude cues in fin-whale pulse detection.325

Commonly used schemes such as LayerNorm, GroupNorm, and BIN tend to normalize away absolute326

energy, resulting in embeddings that are less informative for downstream classifiers, as reflected by327

relatively lower F1 scores and AUROC values. By contrast, RMSNorm, which does not subtract328

the mean, retains more amplitude information and achieves stronger separation metrics. BatchNorm329

and our proposed BRN yield comparable downstream results, but BatchNorm is well known to330

10



suffer from instability with small batch sizes and poor generalization under distribution shift. BRN331

alleviates these issues by interpolating between BN and RMSNorm, allowing it to capture amplitude-332

sensitive features without over-reliance on batch statistics. This design leads to more robust amplitude333

preservation and consistent performance across training conditions.334

F.2 SincNet vs. Standard Convolution Front End335

To assess the contribution of the Sinc-based convolutional layer, we replace it with a standard336

learnable convolutional front-end while keeping BRN as the normalization method. The experiment337

settings are same with settings in Appendix F.1. As shown in Table 7, the SincNet front-end338

substantially improves downstream linear probe performance across all metrics. In particular, F1339

score increases from 0.784 to 0.856, and AUROC improves from 0.868 to 0.914, while precision and340

recall also show significant gains. By constraining filters to band-pass responses, SincNet effectively341

emphasizes frequency bands that carry biologically relevant pulse energy while suppressing irrelevant342

noise. These results confirm that SincNet not only enhances the informativeness of the learned343

representations but also reduces the impact of spurious noise, yielding embeddings better suited for344

downstream pulse detection tasks than traditional convolutional layers.345

Metric Conv (plain) SincNet (ours)

F1 0.784 ± 0.004 0.856 ± 0.001
AUROC 0.868 ± 0.003 0.914 ± 0.001
Precision 0.849 ± 0.007 0.900 ± 0.001
Recall 0.742 ± 0.003 0.813 ± 0.006
KNN 0.693 ± 0.003 0.737 ± 0.005
CPC Acc. 0.387 ± 0.009 0.402 ± 0.008
CPC Loss 3.679 ± 0.103 3.807 ± 0.143

Table 7: Replacing the Sinc-based front-end with a standard convolutional front-end. Results are mean
± SEM over three runs on the validation set, following the same evaluation protocol as Section F.1.

G Model Architecture346

Figure 7: The architecture of the Self Supervised model. Left: CPC model with encoder genc and
autoregressive model gar. Right: The structure of genc.
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NeurIPS Paper Checklist347

The checklist is designed to encourage best practices for responsible machine learning research,348

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove349

the checklist: The papers not including the checklist will be desk rejected. The checklist should350

follow the references and follow the (optional) supplemental material. The checklist does NOT count351

towards the page limit.352

Please read the checklist guidelines carefully for information on how to answer these questions. For353

each question in the checklist:354

• You should answer [Yes] , [No] , or [NA] .355

• [NA] means either that the question is Not Applicable for that particular paper or the356

relevant information is Not Available.357

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).358

The checklist answers are an integral part of your paper submission. They are visible to the359

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it360

(after eventual revisions) with the final version of your paper, and its final version will be published361

with the paper.362

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.363

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a364

proper justification is given (e.g., "error bars are not reported because it would be too computationally365

expensive" or "we were unable to find the license for the dataset we used"). In general, answering366

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we367

acknowledge that the true answer is often more nuanced, so please just use your best judgment and368

write a justification to elaborate. All supporting evidence can appear either in the main paper or the369

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification370

please point to the section(s) where related material for the question can be found.371

IMPORTANT, please:372

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",373

• Keep the checklist subsection headings, questions/answers and guidelines below.374

• Do not modify the questions and only use the provided macros for your answers.375

1. Claims376

Question: Do the main claims made in the abstract and introduction accurately reflect the377

paper’s contributions and scope?378

Answer: [Yes]379

Justification: The abstract and introduction clearly state the contributions—first applying380

SSL to fin-whale detection and showing gains in limited labeled data, low SNR and cross-site381

settings—and these claims are directly supported by the experiments in Section 4.2 and382

Appendix D.383

Guidelines:384

• The answer NA means that the abstract and introduction do not include the claims385

made in the paper.386

• The abstract and/or introduction should clearly state the claims made, including the387

contributions made in the paper and important assumptions and limitations. A No or388

NA answer to this question will not be perceived well by the reviewers.389

• The claims made should match theoretical and experimental results, and reflect how390

much the results can be expected to generalize to other settings.391

• It is fine to include aspirational goals as motivation as long as it is clear that these goals392

are not attained by the paper.393

2. Limitations394

Question: Does the paper discuss the limitations of the work performed by the authors?395
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Answer: [Yes]396

Justification: In Section 4.2, we found that in high-label regimes SSL underperforms397

supervised models, likely because a frozen encoder cannot benefit from more labels. This398

limitation and possible improvements are discussed in Section 5.399

Guidelines:400

• The answer NA means that the paper has no limitation while the answer No means that401

the paper has limitations, but those are not discussed in the paper.402

• The authors are encouraged to create a separate "Limitations" section in their paper.403

• The paper should point out any strong assumptions and how robust the results are to404

violations of these assumptions (e.g., independence assumptions, noiseless settings,405

model well-specification, asymptotic approximations only holding locally). The authors406

should reflect on how these assumptions might be violated in practice and what the407

implications would be.408

• The authors should reflect on the scope of the claims made, e.g., if the approach was409

only tested on a few datasets or with a few runs. In general, empirical results often410

depend on implicit assumptions, which should be articulated.411

• The authors should reflect on the factors that influence the performance of the approach.412

For example, a facial recognition algorithm may perform poorly when image resolution413

is low or images are taken in low lighting. Or a speech-to-text system might not be414

used reliably to provide closed captions for online lectures because it fails to handle415

technical jargon.416

• The authors should discuss the computational efficiency of the proposed algorithms417

and how they scale with dataset size.418

• If applicable, the authors should discuss possible limitations of their approach to419

address problems of privacy and fairness.420

• While the authors might fear that complete honesty about limitations might be used by421

reviewers as grounds for rejection, a worse outcome might be that reviewers discover422

limitations that aren’t acknowledged in the paper. The authors should use their best423

judgment and recognize that individual actions in favor of transparency play an impor-424

tant role in developing norms that preserve the integrity of the community. Reviewers425

will be specifically instructed to not penalize honesty concerning limitations.426

3. Theory assumptions and proofs427

Question: For each theoretical result, does the paper provide the full set of assumptions and428

a complete (and correct) proof?429

Answer: [NA]430

Justification: This paper does not include theoretical results.431

Guidelines:432

• The answer NA means that the paper does not include theoretical results.433

• All the theorems, formulas, and proofs in the paper should be numbered and cross-434

referenced.435

• All assumptions should be clearly stated or referenced in the statement of any theorems.436

• The proofs can either appear in the main paper or the supplemental material, but if437

they appear in the supplemental material, the authors are encouraged to provide a short438

proof sketch to provide intuition.439

• Inversely, any informal proof provided in the core of the paper should be complemented440

by formal proofs provided in appendix or supplemental material.441

• Theorems and Lemmas that the proof relies upon should be properly referenced.442

4. Experimental result reproducibility443

Question: Does the paper fully disclose all the information needed to reproduce the main ex-444

perimental results of the paper to the extent that it affects the main claims and/or conclusions445

of the paper (regardless of whether the code and data are provided or not)?446

Answer: [Yes]447
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Justification: The Mediterranean dataset split follows Best et al. (2022), while the Seglvik448

dataset uses YOLOv5 detections for training and manually validated annotations for vali-449

dation and test. Model architectures are detailed in Section 3.1–3.2, with hyperparameters450

in Appendix B. Together with planned dataset and code release, these details ensure our451

experiments are reproducible.452

Guidelines:453

• The answer NA means that the paper does not include experiments.454

• If the paper includes experiments, a No answer to this question will not be perceived455

well by the reviewers: Making the paper reproducible is important, regardless of456

whether the code and data are provided or not.457

• If the contribution is a dataset and/or model, the authors should describe the steps taken458

to make their results reproducible or verifiable.459

• Depending on the contribution, reproducibility can be accomplished in various ways.460

For example, if the contribution is a novel architecture, describing the architecture fully461

might suffice, or if the contribution is a specific model and empirical evaluation, it may462

be necessary to either make it possible for others to replicate the model with the same463

dataset, or provide access to the model. In general. releasing code and data is often464

one good way to accomplish this, but reproducibility can also be provided via detailed465

instructions for how to replicate the results, access to a hosted model (e.g., in the case466

of a large language model), releasing of a model checkpoint, or other means that are467

appropriate to the research performed.468

• While NeurIPS does not require releasing code, the conference does require all submis-469

sions to provide some reasonable avenue for reproducibility, which may depend on the470

nature of the contribution. For example471

(a) If the contribution is primarily a new algorithm, the paper should make it clear how472

to reproduce that algorithm.473

(b) If the contribution is primarily a new model architecture, the paper should describe474

the architecture clearly and fully.475

(c) If the contribution is a new model (e.g., a large language model), then there should476

either be a way to access this model for reproducing the results or a way to reproduce477

the model (e.g., with an open-source dataset or instructions for how to construct478

the dataset).479

(d) We recognize that reproducibility may be tricky in some cases, in which case480

authors are welcome to describe the particular way they provide for reproducibility.481

In the case of closed-source models, it may be that access to the model is limited in482

some way (e.g., to registered users), but it should be possible for other researchers483

to have some path to reproducing or verifying the results.484

5. Open access to data and code485

Question: Does the paper provide open access to the data and code, with sufficient instruc-486

tions to faithfully reproduce the main experimental results, as described in supplemental487

material?488

Answer: [Yes]489

Justification: Anonymized links to datasets and code are provided in Appendix A.490

Guidelines:491

• The answer NA means that paper does not include experiments requiring code.492

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/493

public/guides/CodeSubmissionPolicy) for more details.494

• While we encourage the release of code and data, we understand that this might not be495

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not496

including code, unless this is central to the contribution (e.g., for a new open-source497

benchmark).498

• The instructions should contain the exact command and environment needed to run to499

reproduce the results. See the NeurIPS code and data submission guidelines (https:500

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.501
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• The authors should provide instructions on data access and preparation, including how502

to access the raw data, preprocessed data, intermediate data, and generated data, etc.503

• The authors should provide scripts to reproduce all experimental results for the new504

proposed method and baselines. If only a subset of experiments are reproducible, they505

should state which ones are omitted from the script and why.506

• At submission time, to preserve anonymity, the authors should release anonymized507

versions (if applicable).508

• Providing as much information as possible in supplemental material (appended to the509

paper) is recommended, but including URLs to data and code is permitted.510

6. Experimental setting/details511

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-512

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the513

results?514

Answer: [Yes]515

Justification: All the training and test details can be found in Section 4.1 and Appendix B.516

Guidelines:517

• The answer NA means that the paper does not include experiments.518

• The experimental setting should be presented in the core of the paper to a level of detail519

that is necessary to appreciate the results and make sense of them.520

• The full details can be provided either with the code, in appendix, or as supplemental521

material.522

7. Experiment statistical significance523

Question: Does the paper report error bars suitably and correctly defined or other appropriate524

information about the statistical significance of the experiments?525

Answer: [Yes]526

Justification: We report mean ± SEM performance across 10 random seeds for main527

experiments and mean ± SEM across 3 runs for ablations which can be found in Section 4.2528

and Appendix F.1 & F.2. Fig.1 & 2 also visualize uncertainty with shaded areas representing529

the SEM. Ablations were run three times due to computational cost.530

Guidelines:531

• The answer NA means that the paper does not include experiments.532

• The authors should answer "Yes" if the results are accompanied by error bars, confi-533

dence intervals, or statistical significance tests, at least for the experiments that support534

the main claims of the paper.535

• The factors of variability that the error bars are capturing should be clearly stated (for536

example, train/test split, initialization, random drawing of some parameter, or overall537

run with given experimental conditions).538

• The method for calculating the error bars should be explained (closed form formula,539

call to a library function, bootstrap, etc.)540

• The assumptions made should be given (e.g., Normally distributed errors).541

• It should be clear whether the error bar is the standard deviation or the standard error542

of the mean.543

• It is OK to report 1-sigma error bars, but one should state it. The authors should544

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis545

of Normality of errors is not verified.546

• For asymmetric distributions, the authors should be careful not to show in tables or547

figures symmetric error bars that would yield results that are out of range (e.g. negative548

error rates).549

• If error bars are reported in tables or plots, The authors should explain in the text how550

they were calculated and reference the corresponding figures or tables in the text.551

8. Experiments compute resources552
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Question: For each experiment, does the paper provide sufficient information on the com-553

puter resources (type of compute workers, memory, time of execution) needed to reproduce554

the experiments?555

Answer: [Yes]556

Justification: The computer resources for each experiment, including Ablation, has been557

reported in Appendix B & F.1.558

Guidelines:559

• The answer NA means that the paper does not include experiments.560

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,561

or cloud provider, including relevant memory and storage.562

• The paper should provide the amount of compute required for each of the individual563

experimental runs as well as estimate the total compute.564

• The paper should disclose whether the full research project required more compute565

than the experiments reported in the paper (e.g., preliminary or failed experiments that566

didn’t make it into the paper).567

9. Code of ethics568

Question: Does the research conducted in the paper conform, in every respect, with the569

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?570

Answer: [Yes]571

Justification: The study uses publicly available or ethically collected bioacoustic whale572

datasets and fully complies with the NeurIPS Code of Ethics.573

Guidelines:574

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.575

• If the authors answer No, they should explain the special circumstances that require a576

deviation from the Code of Ethics.577

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-578

eration due to laws or regulations in their jurisdiction).579

10. Broader impacts580

Question: Does the paper discuss both potential positive societal impacts and negative581

societal impacts of the work performed?582

Answer: [NA]583

Justification: The work focuses on whale bioacoustics and does not have direct societal584

impact on humans. Its scope is limited to ecological monitoring research.585

Guidelines:586

• The answer NA means that there is no societal impact of the work performed.587

• If the authors answer NA or No, they should explain why their work has no societal588

impact or why the paper does not address societal impact.589

• Examples of negative societal impacts include potential malicious or unintended uses590

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations591

(e.g., deployment of technologies that could make decisions that unfairly impact specific592

groups), privacy considerations, and security considerations.593

• The conference expects that many papers will be foundational research and not tied594

to particular applications, let alone deployments. However, if there is a direct path to595

any negative applications, the authors should point it out. For example, it is legitimate596

to point out that an improvement in the quality of generative models could be used to597

generate deepfakes for disinformation. On the other hand, it is not needed to point out598

that a generic algorithm for optimizing neural networks could enable people to train599

models that generate Deepfakes faster.600

• The authors should consider possible harms that could arise when the technology is601

being used as intended and functioning correctly, harms that could arise when the602

technology is being used as intended but gives incorrect results, and harms following603

from (intentional or unintentional) misuse of the technology.604
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• If there are negative societal impacts, the authors could also discuss possible mitigation605

strategies (e.g., gated release of models, providing defenses in addition to attacks,606

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from607

feedback over time, improving the efficiency and accessibility of ML).608

11. Safeguards609

Question: Does the paper describe safeguards that have been put in place for responsible610

release of data or models that have a high risk for misuse (e.g., pretrained language models,611

image generators, or scraped datasets)?612

Answer: [NA]613

Justification: The work does not involve high risk models and data. The datasets consist of614

whale bioacoustic recordings with no sensitive or personal information.615

Guidelines:616

• The answer NA means that the paper poses no such risks.617

• Released models that have a high risk for misuse or dual-use should be released with618

necessary safeguards to allow for controlled use of the model, for example by requiring619

that users adhere to usage guidelines or restrictions to access the model or implementing620

safety filters.621

• Datasets that have been scraped from the Internet could pose safety risks. The authors622

should describe how they avoided releasing unsafe images.623

• We recognize that providing effective safeguards is challenging, and many papers do624

not require this, but we encourage authors to take this into account and make a best625

faith effort.626

12. Licenses for existing assets627

Question: Are the creators or original owners of assets (e.g., code, data, models), used in628

the paper, properly credited and are the license and terms of use explicitly mentioned and629

properly respected?630

Answer: [Yes]631

Justification: The FinWhaleSong dataset Best et al. [2022] we used is released under a632

CC-BY 4.0 license, and YOLOv5 is AGPL-3.0; We cite and use all assets strictly within633

their license terms for academic research.634

Guidelines:635

• The answer NA means that the paper does not use existing assets.636

• The authors should cite the original paper that produced the code package or dataset.637

• The authors should state which version of the asset is used and, if possible, include a638

URL.639

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.640

• For scraped data from a particular source (e.g., website), the copyright and terms of641

service of that source should be provided.642

• If assets are released, the license, copyright information, and terms of use in the643

package should be provided. For popular datasets, paperswithcode.com/datasets644

has curated licenses for some datasets. Their licensing guide can help determine the645

license of a dataset.646

• For existing datasets that are re-packaged, both the original license and the license of647

the derived asset (if it has changed) should be provided.648

• If this information is not available online, the authors are encouraged to reach out to649

the asset’s creators.650

13. New assets651

Question: Are new assets introduced in the paper well documented and is the documentation652

provided alongside the assets?653

Answer: [Yes]654

Justification: We introduce a new annotated dataset from Seglvik Fjords recordings and655

code for the SSL model. Documentation is provided in Section 3 and Appendix A, and656

anonymized links to the assets are included in the Appendix A.657
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Guidelines:658

• The answer NA means that the paper does not release new assets.659

• Researchers should communicate the details of the dataset/code/model as part of their660

submissions via structured templates. This includes details about training, license,661

limitations, etc.662

• The paper should discuss whether and how consent was obtained from people whose663

asset is used.664

• At submission time, remember to anonymize your assets (if applicable). You can either665

create an anonymized URL or include an anonymized zip file.666

14. Crowdsourcing and research with human subjects667

Question: For crowdsourcing experiments and research with human subjects, does the paper668

include the full text of instructions given to participants and screenshots, if applicable, as669

well as details about compensation (if any)?670

Answer: [NA]671

Justification: This paper does not involve crowdsourcing nor research with human subjects.672

Guidelines:673

• The answer NA means that the paper does not involve crowdsourcing nor research with674

human subjects.675

• Including this information in the supplemental material is fine, but if the main contribu-676

tion of the paper involves human subjects, then as much detail as possible should be677

included in the main paper.678

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,679

or other labor should be paid at least the minimum wage in the country of the data680

collector.681

15. Institutional review board (IRB) approvals or equivalent for research with human682

subjects683

Question: Does the paper describe potential risks incurred by study participants, whether684

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)685

approvals (or an equivalent approval/review based on the requirements of your country or686

institution) were obtained?687

Answer: [NA]688

Justification: This paper does not involve crowdsourcing nor research with human subjects.689

Guidelines:690

• The answer NA means that the paper does not involve crowdsourcing nor research with691

human subjects.692

• Depending on the country in which research is conducted, IRB approval (or equivalent)693

may be required for any human subjects research. If you obtained IRB approval, you694

should clearly state this in the paper.695

• We recognize that the procedures for this may vary significantly between institutions696

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the697

guidelines for their institution.698

• For initial submissions, do not include any information that would break anonymity (if699

applicable), such as the institution conducting the review.700

16. Declaration of LLM usage701

Question: Does the paper describe the usage of LLMs if it is an important, original, or702

non-standard component of the core methods in this research? Note that if the LLM is used703

only for writing, editing, or formatting purposes and does not impact the core methodology,704

scientific rigorousness, or originality of the research, declaration is not required.705

Answer: [NA]706

Justification: The core method development in this research does not involve LLMs as any707

important, original, or non-standard components.708

Guidelines:709
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• The answer NA means that the core method development in this research does not710

involve LLMs as any important, original, or non-standard components.711

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)712

for what should or should not be described.713
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