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ABSTRACT

Zero-shot inference is a powerful paradigm that enables the use of large pretrained
models for downstream classification tasks without further training. However,
these models are vulnerable to inherited biases that can impact their performance.
The traditional solution is fine-tuning, but this undermines the key advantage of
pretrained models, which is their ability to be used out-of-the-box. We propose
ROBOSHOT, a method that improves the robustness of pretrained model embed-
dings in a fully zero-shot fashion. First, we use language models (LMs) to obtain
useful insights from task descriptions. These insights are embedded and used to
remove harmful and boost useful components in embeddings—without any su-
pervision. Theoretically, we provide a simple and tractable model for biases in
zero-shot embeddings and give a result characterizing under what conditions our
approach can boost performance. Empirically, we evaluate ROBOSHOT on nine
image and NLP classification tasks and show an average improvement of 15.98%
on worst group accuracy, with trivial decrease in overall accuracy over several
zero-shot baselines. Additionally, we demonstrate that ROBOSHOT is compatible
with a variety of pretrained and language models and propose a way to further
boost performance with a zero-shot adaptation variant.1

1 INTRODUCTION

Zero-shot prediction is among the most exciting paradigms in machine learning. Zero-shot models
obviate the need for data collection and training loops by simply asking for a prediction on any set of
classes. Unfortunately, such models inherit biases or undesirable correlations from their large-scale
training data (Dixon et al., 2018; Torralba & Efros, 2011). In a now-canonical example (Koh et al.,
2021), they often associate waterbirds with water background. This behavior leads to
decreased performance, often exacerbated on rare data slices that break in-distribution correlations.

A growing body of literature (Yang et al., 2023; Goyal et al., 2022; Zhang & Ré, 2022) seeks to
improve robustness in zero-shot models. While promising, these works require labeled data to train
or fine-tune models, and so do not tackle the zero-shot setting. A parallel line of research seeking
to debias word embeddings (Aboagye et al.; Bolukbasi et al., 2016; Dev & Phillips, 2019; Lauscher
et al., 2020) often sidesteps the need for labeled data. Unfortunately, these works often require
domain expertise and painstaking manual specification in order to identify particular concepts that
embeddings must be invariant to. As a result, out-of-the-box word embedding debiasing methods
also cannot be applied to zero-shot robustification.

Can we robustify zero-shot models without (i) labeled data, (ii) training or fine-tuning, or (iii) manual
identification? Surprisingly, despite this seemingly impoverished setting, it is often possible to do
so. Our key observation is that language models contain actionable insights that can be exploited
to improve themselves or other models. These insights are noisy but cheaply available at scale and
can be easily translated into means of refinement for zero-shot representations. These refinements
improve performance, particularly on underperforming slices, at nearly no cost.

*These authors contributed equally to this work
1Code can be found in https://github.com/SprocketLab/roboshot
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Figure 1: Left: vanilla zero-shot classification. Right: ROBOSHOT projects original embeddings to
a space with reduced spurious components and increased useful components

.
We propose ROBOSHOT, a system that robustifies zero-shot models via language model-based in-
sights without labels, training, or manual specification. Using just the task description, ROBOSHOT
obtains positive and negative insights from a language model (potentially the model to be improved
itself). It uses embeddings of these noisy insights to recover harmful, beneficial, and benign sub-
spaces of zero-shot latent representation spaces. Representations are then modified to neutralize and
emphasize their harmful and beneficial components, respectively.

Theoretically, we introduce a simple and tractable model to capture and quantify failures in zero-
shot models. We provide a result that characterizes the quantity and quality of insights that must
be obtained as a function of the severity of harmful correlations. Empirically, ROBOSHOT achieves
15.98% improvement across nine image and NLP datasets while offering sufficient versatility to
apply to a diverse variety of base models. Most excitingly, in certain cases, it reaches comparable
or greater improvements even when compared to fine-tuned models that rely on labeled data. In
summary, our contributions include:

1. A simple theoretical model describing zero-shot failures along with a theoretical analysis
of our approach that characterizes the amount of information required for obtaining im-
provements as a function of the most harmful unwanted correlation,

2. ROBOSHOT, an algorithm that implements our core idea. It extracts insights from founda-
tion models and uses them to improve zero-shot representations,

3. Extensive experimental evidence on zero-shot language and multimodal models, showing
improved worst-group accuracy of 15.98% across nine image and NLP datasets,

4. A technique to add further robustness by training an adapter without any labels requiring
only minimal amounts of validation data.

2 RELATED WORK

We describe related work in zero-shot model robustness and debiasing embeddings. We provide a
more exhaustive list of related work in Appendix B, including papers studying guiding multi-modal
models using language and using LMs as prior information.

Zero-shot inference robustness. Improving model robustness to unwanted correlations is a heavily
studied area (Sagawa et al., 2019; Arjovsky et al., 2019; Krueger et al., 2021; Kirichenko et al.,
2022; Liu et al., 2021; Lee et al., 2022). Some methods require training from scratch and are less
practical when applied to large pretrained architectures. Existing approaches to improve robustness
post-pretraining predominantly focus on fine-tuning. (Yang et al., 2023) detects spurious attribute
descriptions and fine-tunes using these descriptions. A specialized contrastive loss is used to fine-
tune a pretrained architecture in (Goyal et al., 2022) and to train an adapter on the frozen embed-
dings in (Zhang & Ré, 2022). While promising, fine-tuning recreates traditional machine learning
pipelines (e.g., labeling, training, etc.), which sacrifices some of the promise of zero-shot models.
In contrast, our goal is to avoid any training and any use of labeled data. Concurrent work seeks to
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Figure 2: Visualization on CelebA (200 random samples). L-R: (i) original embedding (ii) harmful
concept removal (iii) helpful concept addition (iv) full ROBOSHOT. Y 0 and Y 1 are class labels

robustify CLIP zero-shot predictions against spurious features by debiasing the classifier (i.e., the
labels embedding) against harmful concepts (Chuang et al., 2023)—but does so via manual spec-
ification. In contrast, our work amplifies helpful concepts and automates the process of obtaining
debiasing vectors.

Debiasing embeddings. A parallel line of work seeks to debias text embeddings (Aboagye et al.)
(Bolukbasi et al., 2016) (Dev & Phillips, 2019) (Lauscher et al., 2020) and multimodal embeddings
(Wang et al., 2022; Berg et al., 2022; Wang et al., 2021) by removing subspaces that contain un-
wanted concepts. We use a similar procedure as a building block. However, these methods either
target specific fixed concepts (such as, for example, gender in fairness contexts) or rely on concept
annotations, which limits their applicability across a wide range of tasks. In contrast, our method au-
tomates getting both beneficial and unwanted concepts solely from the task descriptions. Moreover,
our goal is simply to add robustness at low or zero-cost; we do not seek to produce fully-invariant
representations as is often desired for word embeddings.

3 ROBOSHOT: ROBUSTIFYING ZERO-SHOT MODELS

We are ready to provide our setup and describe the ROBOSHOT algorithm. As mentioned before,
we use embedding debiasing principles as building blocks. For our purpose, we utilize concepts ob-
tained from language models and get their embeddings to build the beneficial and unwanted concept
subspaces to work with. We call these embeddings the insight representations.

3.1 MODELING AND SETUP

Suppose that the zero-shot model’s latent space contains an (unknown) concept set; similar notions
have been studied frequently in the literature (Dalvi et al., 2022). For simplicity, we assume that this
concept set is given by the orthonormal vectors {z1, . . . , zk}. The model’s encoder produces, for a
particular input, a representation x that is a mixture of concepts

∑
i γizi, where γi ≥ 0 are weights.

We work with the following theoretical model for zero-shot classification. For simplicity, we assume
that there are two classes. It is straightforward to extend the analysis below to multi-class. We take∑

i αizi to be the embedding of a datapoint, while c0 =
∑

i βi,0zi is the embedding of the first class
and c1 =

∑
i βi,1zi is that of the second. We assume that we have access to m answers v1, . . . , vm

from a set of queries to the language model; we describe how these queries are used practically
further on. These are given by vj =

∑
i γi,jzi for j ≤ m. We call these insight representations.

In the standard approach, the prediction is made by ŷ = 1{(
∑

i αizi)
T (
∑

i βi,0zi) <
(
∑

i αizi)
T (
∑

i βi,1zi)}, so that we predict the class that has the higher inner product with the
datapoint’s embedding. Next, we assume that each input representation x can be represented by
partitioning the mixture components into three groups,

x =

S∑
s=1

αharmful
s zs +

S+R∑
r=S+1

αhelpful
r zr +

S+R+B∑
b=S+R+1

αbenign
b zb. (1)

In other words, representations comprise of mixture of embeddings pertaining to harmful, helpful,
and benign or neutral concepts—this holds for class and insight representations. In Appendix F.5,
we empirically show that this assumption holds in real scenarios.
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Example. We illustrate how harmful correlations produce errors on rare slices of data through a
standard task setting, Waterbirds (Koh et al., 2021). Here the goal is to classify landbirds versus
waterbirds, and the background (land or water) is spurious. Suppose that we have these
terms relate to concepts such that zwater = −zland and zwaterbird = −zlandbird.

Algorithm 1: ROBOSHOT

1: Parameters: Input embedding x, class embeddings
c0, c1, harmful insight representations v1, . . . , vS ,
helpful insight representations u1, . . . , uR

2: for j ∈ {1, 2, . . . , S} do
3: Remove harmful insight vj : set

x← x−
〈
x, vj

〉
/
〈
vj , vj

〉
vj

4: Renormalize x = x/ ||x||
5: end for
6: for k ∈ {1, 2, . . . , R} do
7: Amplify helpful insight uk: set

x← x+
〈
x, uk

〉
/
〈
uk, uk

〉
uk

8: end for
9: ŷ = 1{xT c0 < xT c1}

10: Returns: Robustified zero-shot prediction ŷ

Consider a datapoint coming from
a data slice rarely encountered
in the training set, for instance,
an image of landbird over wa-
ter. Its embedding might be
x = 0.7zwater + 0.3zlandbird. We
may also have that cwaterbird =
0.4zwater + 0.6zwaterbird and
clandbird = 0.4zland+0.6zlandbird.
Then, xT cwaterbird = 0.1 >
xT clandbird = −0.1, which gives
us waterbird prediction, and is
incorrect. This is caused by the
presence of harmful components in
both the class embedding (caused
by seeing too many images with
water described as waterbirds) and
the datapoint embedding (where the
water background appears). Our goal
is to remove harmful components (the zs’s) and boost helpful components (the zr’s)—without
labels or training. Our approach follows.

3.2 ROBOSHOT: ROBUSTIFYING ZERO-SHOT INFERENCE

We describe ROBOSHOT in Algorithm 1. It uses representations of insights from language models
to shape input and class embeddings to remove harmful components and boost helpful ones. Figure
2 is helpful in understanding the intuition behind these procedures. Note how unhelpful directions
are neutralized while perpendicular directions are boosted.

Obtaining insight representations from LMs. The first question is how to obtain insight repre-
sentations in a zero-shot way– we use textual descriptions of harmful and helpful concepts by query-
ing language models using only the task description. For example, in the Waterbirds dataset, we use
the prompt “What are the biased/spurious differences between waterbirds and landbirds?”. We list
the details of the prompts used in Appendix D.2. Let s1, s2 be the text insights obtained from the
answer (e.g., {‘water background,’ ‘land background’}). We obtain a spurious insight
representation by taking the difference of their embedding v = (g(s1)− g(s2))/

∣∣∣∣g(s1)− g(s2)
∣∣∣∣,

where g is the text encoder of our model. In addition to attempting to discover harmful correlations,
we seek to discover helpful components in order to boost their magnitudes past the harmful ones.
We obtain insight representations using language models. For example, we ask “What are the true
characteristics of waterbirds and landbirds?’ and obtain e.g., {‘short beak,’ ‘long beak’}.
The remainder of the procedure is identical to the case of harmful components.

Prompting a language model is typically inexpensive, which will enable obtaining multiple insight
vectors ṽ1, . . . , ṽm. From these, we obtain an orthogonal basis v1, . . . , vm separately for harmful
and helpful components using standard matrix decomposition methods. Thus we have access to
recovered subspaces spanned by such components.

Removing and boosting components. ROBOSHOT applies simple vector rejection to mitigate
harmful components (lines 2-5 of Algorithm 1) and boosts helpful ones (lines 6-9). To see the
impact of doing so, we return to our earlier example. Suppose that we have a single harmful insight
vharmful = 0.9zwater+0.1zlandbird and a single helpful insight vhelpful = 0.1zwater+0.9zlandbird.
Note that even these insights can be imperfect: they do not uniquely identify what are harmful or
helpful concepts, as they have non-zero weights on other components.
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From removing the harmful component (ignoring normalization for ease of calculation), we obtain

x̂← x−
〈
x, vharmful

〉
⟨vharmful, vharmful⟩

vharmful = −0.0244zwater+0.2195zlandbird. Then, we already we have

that xT cwaterbird = −0.1415 < xT clandbird = 0.1415, thus the correct class is obtained. From
a single insight we have neutralized a harmful correlation and corrected what had been an error.
Adding in the helpful component further helps. Using vector addition equation in Algorithm 1 line
7, we obtain −0.0006zwater + 0.4337zlandbird. This further increases our margin. Note that it is
not necessary to fully neutralize (i.e., to be fully invariant to) spurious or harmful components in our
embeddings. The only goal is to ensure, as much as possible, that their magnitudes are reduced when
compared to helpful components (and to benign components). In Section 4, we provide a theoretical
model for the magnitudes of such components and characterize the conditions under which it will
be possible to correct zero-shot errors.

3.3 LABEL-FREE ADAPTATION (LFA)

Algorithm 2: Label-free adaptation
1: Parameters: Input embedding matrix X , ROBOSHOT

projected embedding matrix Xproj , spurious insight
representations v, useful insights representations u,
class embeddings c0, c1, epoch number e

2: Initialize Π = XprojX
†

3: for epoch in 1, 2, . . . , e do
4: Πi+1 ← argminΠ Ex[LLFA(Πix, u, v)]
5: end for
6: ŷ = 1{ΠxT c0 < ΠxT c1}
7: Returns: Robustified zero-shot prediction ŷ

Additionally, we explore the limit
of neutralizing harmful and boost-
ing helpful insights in the embed-
ding space via an alternative adap-
tation approach when users seek to
maximize robustness and have access
to unlabeled training set and small
labeled validation set (with as few
as 100 samples). We learn a fea-
ture space parameterized by projec-
tion matrix Π : Rd → Rd, where
d is embedding dimension. We opti-
mize Π so it projects x to a space with
minimum dot product with harmful
insights ⟨Πx, v⟩, and maximum with
the helpful ones ⟨Πx, u⟩. More formally, Π = argminΠ Ex [LLFA(Πx, u, v)]. The loss is given by

LLFA(Πx, u, v) =
1

|S|

S∑
j=1

〈
Πx, vj

〉
− 1

|R|

R∑
k=1

〈
Πx, uk

〉
,

where S and R are the number of harmful and helpful insights. We observed that the best results
are achieved by initializing Π as the ROBOSHOT projection matrix, Π0 = XprojX

†, where X =
[x1 x2 · · · xN ] is the embedding matrix, X† its Moore-Penrose pseudo-inverse, and Xproj is
the ROBOSHOT projection matrix. Algorithm 2 details LFA algorithm. We draw inspiration from
(Chen et al., 2023) where the authors learn an orthogonal feature space from a source domain dataset
and adapt it to a target domain. In contrast to this approach, our focus is on learning the feature space
without any training labels and using insights as the only form of supervision.

4 THEORETICAL ANALYSIS

Next, we provide an analysis that characterizes under what conditions ROBOSHOT can correct zero-
shot errors. First, we consider the following error model on the weights of the representations. For
all benign representations, we assume αb, βb, γb ∼ N (0, σ2

benign). That is, the magnitudes of benign
components are drawn from a Gaussian distribution. The value of σbenign is a function of the amount
of data and the training procedure for the zero-shot model. Appendix F.5 empirically shows that in
real scenarios, benign components can be canceled out, indicating that this assumption often holds.

Next, we assume that the insight embedding vs =
∑k

i=1 γi,szi (where 1 ≤ s ≤ S) satisfies the
property that for i ̸= s, γi,s ∼ N (0, σ2

insight), while γs,s is a constant. In other words, the vectors
v1, . . . , vS spanning the harmful component subspace are well-aligned with genuinely harmful con-
cepts, but are also affected by noise. Similarly, we assume that helpful insights vr =

∑k
i=1 γi,rzi

(where S+1 ≤ r ≤ S+R) satisfy the same property. We seek to understand the interplay between
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this noise, benign noise, and the coefficients of the other vectors (i.e., helpful components). Let the
result of ROBOSHOT with insight representations v1, . . . , vS+R be

x̂ = x−
S∑

s=1

xT vs

||vs||2
vs +

S+R∑
r=S+1

xT vr

||vr||2
vr =

S+R+B∑
i=1

Aizi.

We first provide a bound on As, the targeted harmful concept coefficient after applying ROBOSHOT.
Theorem 4.1. Under the noise model described above, the post-ROBOSHOT coefficient for harmful
concept s (1 ≤ s ≤ S) satisfies

|EAs| ≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣+
∣∣∣∣∣∣

S+R∑
t=1,t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).

The proof is included in Appendix C.3. The theorem illustrates how and when the rejection com-
ponent of ROBOSHOT works—it scales down harmful coefficients at a rate inversely proportional
to the harmful coefficients of the insight embeddings. As we would hope, when insight embed-
dings have larger coefficients for harmful vectors (i.e., more precise in specifying non-useful terms),
ROBOSHOT yields better outcomes. In addition, we observe that the harmful coefficients decrease
when the insight embeddings have less noise. In fact, we have that limσinsight→0 As = 0 — the
case of perfectly identifying harmful, helpful concepts.

Next, we provide a bound on Ar, the post-ROBOSHOT coefficient of a targeted helpful concept.
Theorem 4.2. With an additional assumption αs ≤ 0 (1 ≤ s ≤ S) under the described noise
model, the post-ROBOSHOT coefficient for helpful concept r (S + 1 ≤ r ≤ S +R) satisfies

EAr ≥

(
1 +

γ2
r,r

γ2
r,r + (k − 1)σ2

insight

)
αr.

Refer to Appendix C.3 for the proof. Theorem 4.2 implies the helpful coefficients are scaled up at
a rate inversely proportional to the noise rate σinsight. When concepts are perfectly identified, i.e.
σinsight = 0, the coefficient αr is doubled, yielding more emphasis on the concept zr as desired.

5 EXPERIMENTAL RESULTS

This section evaluates the following claims:

• Improving multimodal models (Section 5.1): ROBOSHOT improves zero-shot classification ro-
bustness of various multimodal models, even outperforming prompting techniques that include
spurious insight descriptions (which we do not have access to) in the label prompts.

• Improving language models (Section 5.2): ROBOSHOT improves zero-shot robustness using LM
embeddings for text zero-shot classification, outperforming direct prompting to get predictions.

• Label-free adaptation (Section 5.3): LFA (Algorithm 2) can further improve performance with
only a small labeled set for validation (100 samples).

• Extracting concepts from LM with varying capacities (Section 5.4): ROBOSHOT can extract
insights from language models with varying capacities. Improvements persist with weaker LMs.

• Ablations (Section 5.5): ROBOSHOT benefits from both removing harmful and boosting helpful
representations (line 3 and line 7 in ROBOSHOT Algorithm 1).

Metrics. We use three metrics: average accuracy % (AVG), worst-group accuracy % (WG), and
the gap between the two (Gap). While a model that relies on harmful correlations may achieve high
AVG when such correlations are present in the majority of the test data, it may fail in settings where
the correlation is absent. A robust model should have high AVG and WG, with a small gap
between them.

Baselines. We compare against the following sets of baselines:
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Table 1: Main results. Best WG and Gap performance bolded, second best underlined.

Dataset Model ZS GroupPrompt ZS ROBOSHOT

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds
CLIP (ViT-B-32) 80.7 27.9 52.8 81.6 43.5 38.1 82.0 54.4 28.6
CLIP (ViT-L-14) 88.7 27.3 61.4 70.7 10.4 60.3 79.9 45.2 34.7
ALIGN 72.0 50.3 21.7 72.5 5.8 66.7 50.9 41.0 9.9
AltCLIP 90.1 35.8 54.3 82.4 29.4 53.0 78.5 54.8 23.7

CelebA
CLIP (ViT-B-32) 80.1 72.7 7.4 80.4 74.9 5.5 84.8 80.5 4.3
CLIP (ViT-L-14) 80.6 74.3 6.3 77.9 68.9 9.0 85.5 82.6 2.9
ALIGN 81.8 77.2 4.6 78.3 67.4 10.9 86.3 83.4 2.9
AltCLIP 82.3 79.7 2.6 82.3 79.0 3.3 86.0 77.2 8.8

PACS
CLIP (ViT-B-32) 96.7 82.1 14.6 97.9 82.7 15.2 97.0 86.3 10.7
CLIP (ViT-L-14) 98.1 79.8 18.3 98.2 86.6 11.6 98.1 83.9 14.2
ALIGN 95.8 77.1 18.7 96.5 65.0 31.5 95.0 73.8 21.2
AltCLIP 98.5 82.6 15.9 98.6 85.4 13.2 98.7 89.5 9.2

VLCS
CLIP (ViT-B-32) 75.6 20.5 55.1 - 76.5 33.0 43.5
CLIP (ViT-L-14) 72.6 4.20 68.4 - 71.1 12.6 58.5
ALIGN 78.8 33.0 45.8 - 77.6 39.8 37.8
AltCLIP 78.3 24.7 53.6 - 78.9 25.0 53.9

CXR14 BiomedCLIP 55.3 28.9 26.4 - 56.2 41.6 14.6

1. Multimodal baselines: (i) vanilla zero-shot classification (ZS) and (ii) ZS with group informa-
tion (Group Prompt ZS). We use a variety of models: CLIP (ViT-B-32 and ViT-L-14) (Radford
et al., 2021), ALIGN (Jia et al., 2021), and AltCLIP (Chen et al., 2022). Group Prompt ZS
assumes access to spurious or harmful insight annotations and includes them in the label prompt.
For instance, the label prompts for waterbirds dataset become [waterbird with water
background, waterbird with land background, landbird with water
background, landbird with land background]. We only report Group Prompt ZS
results on datasets where spurious insight annotations are available.

2. Language model baselines: (i) zero-shot classification using language model embeddings,
namely BERT (Reimers & Gurevych, 2019) and Ada (Neelakantan et al., 2022) (ZS), (ii) di-
rect prompting to LMs, namely BART-MNLI (Lewis et al., 2019; Williams et al., 2018) and
ChatGPT (Ziegler et al., 2019) (Direct prompting). We also compare with calibration methods
for zero-shot text classification (Holtzman et al., 2021), results can be found in Appendix F.1.

5.1 IMPROVING MULTIMODAL MODELS

Setup. We experimented on five binary and multi-class datasets with spurious correlations and
distribution shifts: Waterbirds (Sagawa et al., 2019), CelebA (Liu et al., 2015), CXR14 (Wang
et al., 2017), PACS (Li et al., 2017), and VLCS (Fang et al., 2013). Dataset details are provided in
Appendix D.1. For CXR14, we use BiomedCLIP (Zhang et al., 2023)– a variant of CLIP finetuned
on biomedical data. All experiments are conducted using frozen pretrained models embeddings. We
evaluate on four model variants: CLIP (ViT-B-32 and ViT-L-14), ALIGN, and AltCLIP.

Results. Table 1 shows that ROBOSHOT significantly improves the worst group performance
(WG) and maintains (and sometimes also improves) the overall average (AVG) without any auxiliary
information (in contrast to Group Prompt, which requires access to spurious insight annotation).
Improved robustness nearly across-the-board suggests that both the insights extracted from LMs
and the representation modifications are useful. We also provide insights into the rare case where
our method does not improve the baseline (e.g., ALIGN model on Waterbirds) in Appendix F.3.

5.2 IMPROVING LANGUAGE MODELS

Setup. We experimented on four text classification datasets: CivilComments-WILDS (Borkan
et al., 2019; Koh et al., 2021), HateXplain (Mathew et al., 2021), Amazon-WILDS (Ni et al., 2019;
Koh et al., 2021) and Gender Bias classification dataset (Dinan et al., 2020; Miller et al., 2017). We
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Table 2: ROBOSHOT text zero-shot classification. Best WG bolded, second best underlined. We use
inference models comparable to BERT embedding model (i.e., BART-MNLI) and to Ada embedding
model (i.e., ChatGPT) for direct prompting experiments.

Dataset Model ZS Direct prompting ROBOSHOT

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

CivilComments BERT 48.1 33.3 14.8 32.5 15.7 16.8 49.7 42.3 7.4
Ada 56.2 43.2 13.0 85.6 19.2 66.4 56.6 44.9 11.7

HateXplain BERT 60.4 0.0 60.4 61.2 5.3 55.9 57.3 14.0 43.3
Ada 62.8 14.3 48.5 55.4 12.2 43.2 63.6 21.1 42.5

Amazon BERT 81.1 64.2 16.8 74.9 36.0 38.9 81.0 64.4 16.6
Ada 81.2 63.4 17.8 80.1 73.5 6.6 82.9 63.8 19.1

Gender Bias BERT 84.8 83.7 1.1 86.1 78.4 7.6 85.1 84.9 0.2
Ada 77.9 60.0 17.9 90.1 86.6 3.5 78.0 60.1 17.9

use the default test splits of all datasets. In text experiments, the distinctions between harmful and
helpful insights are less clear than for images– so here we only use harmful vector rejection (line
3 in ROBOSHOT). CivilComments and HateXplain are toxic classification datasets with unwanted
correlation between toxicity labels and mentions of demographics (e.g., male, female, mentions of
religions). The datasets are annotated with demographic mentions of each text, and we directly use
them to construct vj . For Amazon and Gender Bias datasets, we query LMs with task descriptions.
All experiments are conducted using frozen pretrained model embedding. We provide full list of
prompts used in Direct Prompting experiments in Appendix D.3.

Results. Table 2 shows that ROBOSHOT also improves zero-shot text classification, as shown by
our consistent boost over the baselines across all datasets on BERT embedding model and BART-
MNLI direct prompting. In the Gender Bias and Amazon experiments, RoboShot lifts weaker/older
model performance to a level comparable to modern LLMs (ChatGPT).

5.3 LABEL-FREE ADAPTATION (LFA)

Next, we evaluate our technique for maximzing robustness when users have access to labeled vali-
dation data (as before, we do not use any training data). Setup. We run LFA (Algorithm 2) across

Table 3: LFA on CLIP ViT-B-32 embedding. Best WG bolded, second best underlined. Best WG
in blue , best AVG in green

Dataset ROBOSHOT LFA LFA (100 val)

AVG WG AVG WG AVG WG

Waterbirds 82.0 54.5 83.8 ± 0.74 55.2 ± 0.75 84.2 ± 1.1 53.6 ± 1.76

CelebA 84.8 80.5 86.7 ± 0.811 83.4 ± 1.02 86.5 ± 0.72 83.8 ± 1.17

PACS 95.6 79.7 96.6 ± 0.43 84.3 ± 1.3 96.9 ± 0.38 82.5 ± 2.16

VLCS 74.1 25.0 76.3 ± 1.27 36.5 ± 5.0 77.0 ± 0.35 37.4 ± 3.34

5 different random seeds and report the mean and standard deviation test results from the model
with the best validation performance. Table 3 shows results from using only 100 random validation
samples (LFA 100 val) and the full validation set (LFA). We use WILDS (Koh et al., 2021) default
splits in Waterbirds and CelebA, and randomly shuffle 70:20:10 train:test:validation splits in PACS
and VLCS. Note that ROBOSHOT performance is slightly different from Table 1, because there we
use all samples for test. The training was conducted using two NVIDIA RTX A4000 GPUs, and we
report the hyperparameter choices in Appendix D.5.

Results. LFA gives extra improvements on both AVG and WG. Improvement mostly persists even
when using only 100 validation samples. If users have more validation labels, performance can be
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Table 4: ROBOSHOT with LMs of varying capacity. Best WG bolded, second best underlined

Dataset ZS Ours (ChatGPT) Ours (Flan-T5) Ours (GPT2) Ours (LLaMA)

AVG WG AVG WG AVG WG AVG WG AVG WG

Waterbirds 80.7 27.9 82.0 54.4 72.1 32.4 88.0 39.9 84.8 36.5

CelebA 80.1 72.7 84.8 80.5 77.5 68.2 80.3 74.1 84.2 82.0

PACS 96.7 82.1 97.0 86.3 96.2 80.3 97.2 74.0 94.8 71.9

VLCS 75.6 20.5 76.5 33.0 69.6 20.5 75.5 26.1 72.0 18.2

further improved. This indicates that LFA can serve as a lightweight training-based alternative to
the fully zero-shot approach ROBOSHOT when a small set of labeled validation data is available.

5.4 EXTRACTING CONCEPTS FROM LMS WITH VARYING CAPACITIES

Setup. We use LMs with different capacities: ChatGPT (Ouyang et al., 2022), Flan-T5 (Chung
et al., 2022), GPT2 (Radford et al., 2019), and LLaMA (Touvron et al., 2023), to obtain insights.

Results. Table 4 shows that even though the LM strength/sizes correlate with the performance,
ROBOSHOT with weaker LMs still outperforms zero-shot baselines. We hypothesize, based on
Theorem 4.1 and 4.2, that insight outputs from weaker/smaller LMs are still precise in specifying
the useful and non-useful terms and thus ROBOSHOT is able to use the insight embeddings.

Table 5: Ablation. Best WG and Gap performance bolded, second best underlined.

Dataset Model ZS Ours (vj only) Ours (uk only) Ours (both)

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds CLIP (ViT-B-32) 80.7 27.9 52.8 82.0 50.4 31.6 82.6 30.2 52.4 83.0 54.4 28.6
CLIP (ViT-L-14) 88.7 27.3 61.4 82.7 35.8 46.9 88.3 29.8 58.5 79.9 45.2 34.7

CelebA CLIP (ViT-B-32) 80.1 72.7 7.4 85.2 81.5 3.7 79.6 71.3 8.3 84.8 80.5 4.3
CLIP (ViT-L-14) 80.6 74.3 6.3 85.9 82.8 3.1 80.0 73.1 6.9 85.5 82.6 2.9

PACS CLIP (ViT-B-32) 96.7 82.1 14.6 97.0 83.7 13.3 96.6 84.2 12.4 97.0 86.3 10.7
CLIP (ViT-L-14) 98.1 79.8 18.3 98.0 79.8 18.2 98.1 83.8 14.3 98.1 83.9 14.2

VLCS CLIP (ViT-B-32) 75.6 20.5 55.1 75.6 22.7 52.9 76.4 29.5 46.9 76.5 33.0 43.5
CLIP (ViT-L-14) 72.6 4.2 68.4 70.9 6.8 64.1 73.4 8.9 64.5 71.1 12.6 58.5

CXR14 BiomedCLIP 55.3 28.9 26.4 55.7 41.8 13.9 54.8 21.8 33.0 56.2 41.6 14.6

5.5 ABLATIONS

Setup. We run ROBOSHOT with only harmful component mitigation (reject vj : ROBOSHOT line 3),
only boosting helpful vectors (amplify uk: ROBOSHOT line 7), and both. Due to space constraint,
we only include CLIP-based models ablations. Results on all models can be found in Appendix F.

Results. The combination of both projections often achieves the best performance, as shown in
Table 5. Figure 2 provides insights into the impact of each projection. Rejecting vj reduces variance
in one direction, while increasing uk amplifies variance in the orthogonal direction. When both
projections are applied, they create a balanced mixture.

6 CONCLUSION

We introduced ROBOSHOT, a fine-tuning-free system that robustifies zero-shot pretrained models in
a truly zero-shot way. Theoretically, we characterized the quantities required to obtain improvements
over vanilla zero-shot classification. Empirically, we found that ROBOSHOT improves both multi-
modal and language model zero-shot performance, has sufficient versatility to apply to various base
models, and can use insights from less powerful language models.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Hugo Berg, Siobhan Mackenzie Hall, Yash Bhalgat, Wonsuk Yang, Hannah Rose Kirk, Aleksandar
Shtedritski, and Max Bain. A prompt array keeps the bias away: Debiasing vision-language
models with adversarial learning. arXiv preprint arXiv:2203.11933, 2022.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai.
Man is to computer programmer as woman is to homemaker? debiasing word embed-
dings. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification. In Companion pro-
ceedings of the 2019 world wide web conference, pp. 491–500, 2019.

Annie S Chen, Yoonho Lee, Amrith Setlur, Sergey Levine, and Chelsea Finn. Project and
probe: Sample-efficient domain adaptation by interpolating orthogonal features. arXiv preprint
arXiv:2302.05441, 2023.

Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, and Ledell Wu. Alt-
clip: Altering the language encoder in clip for extended language capabilities. arXiv preprint
arXiv:2211.06679, 2022.

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Stefano Ermon. Lmpriors: Pre-trained language
models as task-specific priors. arXiv preprint arXiv:2210.12530, 2022.

Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio Torralba, and Stefanie Jegelka. Debias-
ing vision-language models via biased prompts. arXiv preprint arXiv:2302.00070, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam, Nadir Durrani, Jia Xu, and Hassan Sajjad. Discovering
latent concepts learned in BERT. In International Conference on Learning Representations, 2022.

Sunipa Dev and Jeff Phillips. Attenuating bias in word vectors. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 879–887. PMLR, 2019.

Emily Dinan, Angela Fan, Ledell Wu, Jason Weston, Douwe Kiela, and Adina Williams. Multi-
dimensional gender bias classification. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 314–331, Online, November 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.23. URL https:
//www.aclweb.org/anthology/2020.emnlp-main.23.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Measuring and miti-
gating unintended bias in text classification. 2018.

Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1657–1664, 2013.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato, and
Tomas Mikolov. Devise: A deep visual-semantic embedding model. Advances in neural infor-
mation processing systems, 26, 2013.

10

https://proceedings.neurips.cc/paper_files/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.23
https://www.aclweb.org/anthology/2020.emnlp-main.23


Published as a conference paper at ICLR 2024

Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Finetune like
you pretrain: Improved finetuning of zero-shot vision models. arXiv preprint arXiv:2212.00638,
2022.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface form compe-
tition: Why the highest probability answer isn’t always right. arXiv preprint arXiv:2104.08315,
2021.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International Conference on Machine Learning, pp. 4904–4916.
PMLR, 2021.

Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language
models: Opening a new frontier for causality. arXiv preprint arXiv:2305.00050, 2023.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pp. 5637–5664. PMLR, 2021.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (rex). In International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.
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APPENDIX

The appendix contains additional related work, details, proofs, and experimental results. The glos-
sary contains a convenient reminder of our terminology (Appendix A). Appendix C provides the
proofs of theorems that appeared in Section 4. In Appendix D, we give more details and analysis
of the experiments and provide additional experiment results. Finally, Appendix F entails additional
experiments combining ROBOSHOT with other methods to highlight its versatility.

A GLOSSARY

The glossary is given in Table 6.

Symbol Definition

x input vector
X embedding matrix
Xproj ROBOSHOT projected embedding matrix
y, ŷ class label, prediction
ci embedding of class i
z1, . . . , zk The concept vectors consisting of orthonormal vectors
vi, uj insight representations
αj The coefficient of input x with respect to the concept zj (before ROBOSHOT)
Aj The coefficient of transformed input x̂ with respect to the concept zj (after ROBOSHOT)
βi,j The coefficient of j-th class embedding with respect to the concept zi
γi,j The coefficient of j-th insight vector with respect to the concept zi
S the number of harmful concepts
R the number of helpful concepts
B the number of benign concepts
g text encoder to get embeddings
si text string for insight vectors
σbenign, σinsight noise rates in the coefficients of benign/insight concepts

Table 6: Glossary of variables and symbols used in this paper.
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B EXTENDED RELATED WORK

Using language to improve visual tasks. A large body of work has shown the efficacy of us-
ing language to improve performance on vision tasks Radford et al. (2021); Frome et al. (2013);
Le Cacheux et al. (2020). Most relevant are those that focus on robustness, such as Yang et al.
(2023), which uses text descriptions of spurious attributes in a fine-tuning loss to improve robust-
ness. In contrast to these works, we focus on using textual concepts to improve zero-shot model
robustness—without fine-tuning. Other zero-shot works attempt to provide improvements to accu-
racy. For example, (Novack et al., 2023) increases zero-shot accuracy by first expanding the class
options into their subclasses (e.g., dog into labrador and golden retriever) and producing a final
prediction by mapping them back to the superclass. The most closely related of these to our work
is Menon & Vondrick (2022); Maniparambil et al. (2023), where GPT-3 generated class descrip-
tors are first generated, then CLIP predictions scores are grounded by additive decomposition of
scores from the prompts with the descriptors. This approach also does not require fine-tuning. How-
ever, it focuses mainly on grounding through prompting with class descriptors, while ours focuses
on removing harmful concepts and increasing helpful concepts in the embedding space—enabling
improved robustness on difficult slices.

Language models as priors. The basis of our work is the observation that language models contain
information that can serve as a prior for other tasks. Kıcıman et al. (2023) finds that LLMs can
perform causal reasoning tasks, substantially outperforming existing methods. Choi et al. (2022)
prompts LLMs for task-specific priors, leading to substantial performance improvements in fea-
ture selection, reinforcement learning, and causal discovery. Our work shares the spirit of these
approaches in using the insights embedded in language models to enhance zero-shot robustness.

C THEORY DETAILS

C.1 HARMFUL CONCEPT REMOVAL

As the simplest form of ROBOSHOT, we consider the case of ROBOSHOT the harmful concept
removal only, without boosting helpful concepts. Recall our noise model:

x =

S∑
s=1

αszs +

S+R∑
r=S+1

αrzr +

S+R+B∑
b=S+R+1

αbzb

vt =
S∑

s=1

γs,tzs +
S+R∑

r=S+1

γr,tzr +
S+R+B∑

b=S+R+1

γb,tzb (1 ≤ t ≤ S).

Again, we assume that benign coefficients are drawn from a zero-centered Gaussian distribution,
i.e. αb, γb,t ∼ N (0, σbenign) and also helpful coefficients and non-target harmful coefficients are
assumed to be drawn from a Gaussian distribution, i.e. γq,t ∼ N (0, σinsight), where 1 ≤ q ≤ R,
q ̸= t so that only γt,t is a constant.

C.1.1 EFFECTS ON HARMFUL COEFFICIENTS

Now we prove the following theorem.

Theorem C.1. Under the noise model described above, the post-removal coefficient As for harmful
concept zs satisfies

|EAs| ≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).
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Proof. Let x̂ be the output of harmful concept removal procedure such that

x̂ = x−
S∑

s=1

xT vs

||vs||2
vs

=

k∑
i=1

αizi −
S∑

s=1

∑k
i αiγi,s∑k
l=1 γ

2
l,s

(

k∑
j=1

γj,szj)

As the first step, we sort out the coefficients of features. For notational convenience, let Ts =∑k
l=1 γ

2
l,s. Then,

x̂ =

k∑
i=1

αizi −
S∑

s=1

∑k
i=1 αiγi,s

Ts
(

k∑
j=1

γj,szj)

=

k∑
i=1

αizi −
S∑

s=1

k∑
i=1

k∑
j=1

αiγi,sγj,s

Ts
zj

=

k∑
j=1

αjzj −
k∑

j=1

S∑
s=1

k∑
i=1

αiγi,sγj,s

Ts
zj

=

k∑
j=1

(
αj −

S∑
s=1

k∑
i=1

αiγi,sγj,s

Ts

)
zj

Thus we can get the expression for the coefficient of the target feature zs (1 ≤ s ≤ S),

As = αs −
S∑

t=1

k∑
i=1

αiγi,tγs,t

Tt

Next, we get the bound of the absolute expectation |EAs|.

|EAs| =

∣∣∣∣∣Eαs −
S∑

t=1

k∑
i=1

αiγi,tγs,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
S∑

t=1

αsγ
2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣+
∣∣∣∣∣

S∑
t=1

E
∑S

i=1,i̸=s αiγi,tγs,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
Here, the second term on RHS is 0 by independence, i.e.∣∣∣∣∣E

∑S
i=1,i̸=s αiγi,tγs,t∑k

l=1 γ
2
l,t

∣∣∣∣∣ ≤
∣∣∣∣∣E
∑k

i=1,i̸=s αiγi,tγs,t

γ2
t,t

∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

i=1,i̸=s

αi

γ2
t,t

Eγi,tγs,t

∣∣∣∣∣∣ = 0

since Eγs,tγj,t = 0 by independence. Now we split the first term and get the bounds separately.
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|EAs| ≤

∣∣∣∣∣Eαs −
S∑

t=1

αsγ
2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t=1,t̸=s

E
αsγ

2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣∣
The upper bound for the first term can be obtained by∣∣∣∣∣Eαs −

αsγ
2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣ =
∣∣∣∣∣E−

∑k
i ̸=s αsγ

2
i,s∑k

l=1 γ
2
l,s

∣∣∣∣∣
≤

∣∣∣∣∣E
∑k

i ̸=s αsγ
2
i,s

γ2
s,s

∣∣∣∣∣
≤

∣∣∣∣∣∣ αs

γ2
s,s

k∑
i̸=s

Eγ2
i,s

∣∣∣∣∣∣
≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣ .
And, for the second term,

∣∣∣∣∣∣
S∑

t=1,t̸=s

E
αsγ

2
s,t∑k

i=1 γ
2
i,t

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

S∑
t=1,t̸=s

E
αsγ

2
s,t

γ2
t,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
S∑

t=1,t̸=s

αs

γ2
t,t

Eγ2
s,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
S∑

t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣
Combining two bounds, we get the proposed result.

|EAs| ≤

∣∣∣∣∣ (k − 1)αsσ
2
insight

γ2
s,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ .

While the constant (k − 1) can look daunting since it actually increases as the number of concepts
increases, a bound less affected by σ2

insight exists as well, scaling down the target coefficient αs.

Corollary C.1.1. Under the noise model of Theorem C.1, the post-removal coefficient for harmful
concept s satisfies

|EAs| ≤

∣∣∣∣∣αs

(k − 1)σ2
insight

γ2
s,s + (k − 1)σ2

insight

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t ̸=s

αsσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).
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Proof. With the identical steps to the proof of Theorem C.1, we can obtain

|EAs| ≤

∣∣∣∣∣Eαs −
S∑

t=1

αsγ
2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t=1,t̸=s

E
αsγ

2
s,t∑k

l=1 γ
2
l,t

∣∣∣∣∣∣
≤

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
t=1,t̸=s

αs

γ2
t,t

Eγ2
s,t

∣∣∣∣∣∣ .
We improve the first term as follows.

∣∣∣∣∣Eαs −
αsγ

2
s,s∑k

l=1 γ
2
l,s

∣∣∣∣∣ =
∣∣∣∣∣αs − αsγ

2
s,sE

1∑k
l=1 γ

2
l,s

∣∣∣∣∣
≤

∣∣∣∣∣αs − αsγ
2
s,s

1

E
∑k

l=1 γ
2
l,s

∣∣∣∣∣ ∵ Jensen’s inequality E
1∑k

l=1 γ
2
l,s

≥
1

E
∑k

l=1 γ
2
l,s

=

∣∣∣∣∣αs

(
1−

γ2
s,s

E
∑k

l=1 γ
2
l,s

)∣∣∣∣∣
=

∣∣∣∣∣αs

(
1−

γ2
s,s

γ2
s,s + (k − 1)σ2

insight

)∣∣∣∣∣
=

∣∣∣∣∣αs

(
(k − 1)σ2

insight

γ2
s,s + (k − 1)σ2

insight

)∣∣∣∣∣ .

C.1.2 EFFECTS ON HELPFUL, BENIGN COEFFICIENTS

Based on the coefficient expression

Aq = αq −
S∑

t=1

k∑
i=1

αiγi,tγq,t∑k
l=1 γ

2
l,t

,

we analyze the bound of |EAq| for S +1 ≤ q ≤ k. Essentially, the following theorem implies help-
ful, benign coefficients are less affected than harmful coefficients as long as the harmful coefficients
of insight embeddings are significant and the noise is small.

Theorem C.2. Under the same noise model described above, the post-removal coefficient for helpful
or benign concept q satisfies

|EAq − αq| ≤

∣∣∣∣∣
S∑

t=1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
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Proof. The proof technique is essentially identical to Theorem C.1.

|EAq − αq| =

∣∣∣∣∣αq − Eαq −
S∑

t=1

αqγ
2
q,t +

∑
j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣E
S∑

t=1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣+
∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
=

∣∣∣∣∣E
S∑

t=1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣ ∵

∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣ = 0

≤

∣∣∣∣∣
S∑

t=1

αq

γ2
t,t

Eγ2
q,t

∣∣∣∣∣
=

∣∣∣∣∣
S∑

t=1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .

This bound implies the differences of helpful or benign features by harmful concept removal are pro-
portional to the noise of insight embeddings σ2

insight, and inversely proportional to the coefficients
of harmful coefficients of insight embeddings.

C.2 HELPFUL CONCEPT ADDITION

With a similar fashion to the harmful concept removal, we consider the following noise model for
the helpful concept addition.

x =

S∑
s=1

αszs +

S+R∑
r=S+1

αrzr +

S+R+B∑
b=S+R+1

αbzb

vt =

S∑
s=1

γs,tzs +

S+R∑
r=S+1

γr,tzr +

S+R+B∑
b=S+R+1

γb,tzb (S + 1 ≤ t ≤ S +R)

. Again, we assume that benign coefficients are drawn from a zero-centered Gaussian distribution,
i.e. αb, γb,t ∼ N (0, σbenign) and also harmful coefficients and non-target helpful coefficients are
assumed to be drawn from another Gaussian distribution, i.e. γq,t ∼ N (0, σinsight), where 1 ≤ q ≤
S +R, q ̸= t so that only γt,t are constants.

C.2.1 LOWER BOUND FOR THE COEFFICIENT OF HELPFUL CONCEPT

Theorem C.3. Under the described noise model, the post-addition coefficient for helpful concept r
satisfies

EAr ≥

(
1 +

γ2
r,r

γ2
r,r + (k − 1)σ2

insight

)
αr.

Proof. Let x̂ be the output of helpful concept addition procedure such that

x̂ = x+

S+R∑
t=S+1

xT vt

||vt||2
vt

=

k∑
i=1

αizi +

S+R∑
t=S+1

∑k
i=1 αiγi,t∑k
l=1 γ

2
l,t

(

k∑
j=1

γj,tzj).
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As the first step, we sort out the coefficients of concepts. For notational convenience, let Tt =∑k
l=1 γ

2
l,t. Then,

x̂ =

k∑
i=1

αizi +

S+R∑
t=S+1

∑k
i=1 αiγi,t

Tt
(

k∑
j=1

γj,tzj)

=

k∑
i=1

αizi +

S+R∑
t=S+1

k∑
i=1

k∑
j=1

αiγi,tγj,t

Tt
zj

=

k∑
j=1

αjzj +

k∑
j=1

S+R∑
t=S+1

k∑
i=1

αiγi,tγj,t

Tt
zj

=

k∑
j=1

(
αj +

S+R∑
t=S+1

k∑
i=1

αiγi,tγj,t

Tt

)
zj .

Thus we can get the expression for the coefficient of the target concept zr (S + 1 ≤ r ≤ S +R),

Ar = αr +

S+R∑
t=S+1

k∑
i=1

αiγi,tγr,t

Tt
.

Then,

EAr = Eαr +

S+R∑
t=S+1

k∑
i=1

αiγi,tγr,t

Tt

= αr +

S+R∑
t=S+1

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

+

k∑
i=1,i̸=r

E
αiγi,rγr,r∑k

l=1 γ
2
l,r

+

S+R∑
t=S+1,t̸=r

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

+

k∑
i=1,i̸=r

γr,rE
αiγi,r∑k
l=1 γ

2
l,r

+

S+R∑
t=S+1,t̸=r

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

+

S+R∑
t=S+1,t̸=r

k∑
i=1

E
αiγi,tγr,t∑k

l=1 γ
2
l,t

∵ by symmetry

= αr + E
αrγ

2
r,r∑k

l=1 γ
2
l,r

∵ by law of total expectation and symmetry

≥ αr + αrγ
2
r,rE

1∑k
l=1 γ

2
l,r

≥ αr + αrγ
2
r,r

1

E
∑k

l=1 γ
2
l,r

∵ Jensen’s inequality

= αr + αrγ
2
r,r

1

γ2
r,r + (k − 1)σ2

insight

.

Thus, we obtain the result.

EAr ≥

(
1 +

γ2
r,r

γ2
r,r + (k − 1)σ2

insight

)
αr.
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C.2.2 EFFECTS ON HARMFUL, BENIGN COEFFICIENTS

For notational convenience, let Ichelpful be the non-helpful concept index set such that Ichelpful =
{i ∈ N|i ≤ S or S + R + 1 ≤ i ≤ S + R + B}. For q ∈ IcR, we obtain the bound of effects on
harmful, benign coefficients with a similar fashion to the harmful concept removal case.
Theorem C.4. Under the same noise model described above, the post-addition coefficient for help-
ful or benign concept q satisfies

|EAq − αq| ≤

∣∣∣∣∣
S+R∑

t=S+1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
Proof.

|EAq − αq| =

∣∣∣∣∣αq − Eαq +

S∑
t=1

αqγ
2
q,t +

∑
j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
≤

∣∣∣∣∣E
S+R∑

t=S+1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣+
∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣
=

∣∣∣∣∣E
S+R∑

t=S+1

αqγ
2
q,t∑k

l=1 γ
2
l,t

∣∣∣∣∣ ∵

∣∣∣∣∣E
∑

j=1,j ̸=q αqγq,tγj,t∑k
l=1 γ

2
l,t

∣∣∣∣∣ = 0

≤

∣∣∣∣∣
S+R∑

t=S+1

αq

γ2
t,t

Eγ2
q,t

∣∣∣∣∣
=

∣∣∣∣∣
S+R∑

t=S+1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .

C.3 COMBINED MAIN RESULTS

Now, we are ready to provide the combine main result, i.e. the coefficient bounds with harmful
concept removal and helpful concept addition. The noise model can be described as follows.

x =

S∑
s=1

αszs +

S+R∑
r=S+1

αrzr +

S+R+B∑
b=S+R+1

αbzb

vt =

S∑
s=1

γs,tzs +

S+R∑
r=S+1

γr,tzr +

S+R+B∑
b=S+R+1

γb,tzb (1 ≤ t ≤ S +R)

αb, γb,t ∼ N (0, σbenign)

γq,t ∼ N (0, σinsight),

where 1 ≤ q ≤ S + R, q ̸= s so that only γt,t is a constant. We can obtain the expression for each
coefficient as before.

x̂ =
∑
j=1

(
aj −

S∑
s=1

k∑
i=1

αiγi,sγj,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγj,r

Tr

)
zj

Aq = aq −
S∑

s=1

k∑
i=1

αiγi,sγq,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγq,r

Tr
,

where Aq is the coefficient of zq(1 ≤ q ≤ k) after ROBOSHOT(ignoring normalization) and Tt =∑k
l=1 γ

2
l,t. Using the results from the previous subsections, we provide an upper bound on harmful

coefficients, a lower bound on helpful coefficients, and an upper bound on the change in the benign
coefficients. We restate Theorem 4.1, 4.2 and provide proofs.
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Theorem 4.1. Under the combined noise model described above, the post-ROBOSHOT coefficient
for harmful concept q (1 ≤ q ≤ S) satisfies

|EAq| ≤

∣∣∣∣∣ (k − 1)αqσ
2
insight

γ2
q,q

∣∣∣∣∣+
∣∣∣∣∣∣

S+R∑
t=1,t̸=q

αqσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ,
where k is the number of concepts (k = S +R+B).

Proof.

|EAq| =

∣∣∣∣∣Eaq −
S∑

s=1

k∑
i=1

αiγi,sγq,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγq,r

Tr

∣∣∣∣∣
≤

∣∣∣∣∣ (k − 1)αqσ
2
insight

γ2
q,q

∣∣∣∣∣+
∣∣∣∣∣∣

S∑
s=1,s ̸=q

αqσ
2
insight

γ2
s,s

∣∣∣∣∣∣+
∣∣∣∣∣
S+R∑

t=S+1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣
=

∣∣∣∣∣ (k − 1)αqσ
2
insight

γ2
q,q

∣∣∣∣∣+
∣∣∣∣∣∣

S+R∑
t=1,t̸=q

αqσ
2
insight

γ2
t,t

∣∣∣∣∣∣ ∵ two terms have the same sign by aq

Next, we state the lower bound for the helpful features. We assume the signs of harmful concepts in
input embeddings

αs ≤ 0 (1 ≤ s ≤ S),

to keep the appearance of the result clear.

Theorem 4.2. With an additional assumptions αs ≤ 0 (1 ≤ s ≤ S) under the combined noise
model, the post-ROBOSHOT coefficient for helpful concept q(S + 1 ≤ q ≤ S +R) satisfies

EAq ≥

(
1 +

γ2
q,q

γ2
q,q + (k − 1)σ2

insight

)
αq.

Proof.

EAq = Eaq −
S∑

s=1

k∑
i=1

αiγi,sγq,s

Ts
+

S+R∑
r=S+1

k∑
i=1

αiγi,rγq,r

Tr

= Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr
− E

S∑
s=1

k∑
i=1

αiγi,sγq,s

Ts

= Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr
− E

S∑
s=1

αsγ
2
q,s

Ts
− E

S∑
s=1

k∑
i=1,i̸=q

αiγi,sγq,s

Ts
.

Here, E
∑S

s=1

∑k
i=1,i̸=q

αiγi,sγq,s

Ts
= 0 by symmetry and law of total expectation, and

−E
∑S

s=1

αsγ
2
q,s

Ts
≥ 0 since αs ≤ 0 by assumption, which can be dropped for a lower bound.
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EAq = Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr
− E

S∑
s=1

αsγ
2
q,s

Ts
− E

S∑
s=1

k∑
i=1,i̸=q

αiγi,sγq,s

Ts

≥ Eaq +
S+R∑

r=S+1

k∑
i=1

αiγi,rγq,r

Tr

≥

(
1 +

γ2
q,q

γ2
q,q + (k − 1)σ2

insight

)
αq.

Now, we state the upper bound on the changes in benign concepts. The proof is straightforward
from the previous ones in harmful concept removal and helpful concept addition.
Corollary C.4.1. Under the same combined noise model, the post-ROBOSHOT coefficient for benign
concept q satisfies

|EAq − αq| ≤

∣∣∣∣∣
S+R∑
t=1

αqσ
2
insight

γ2
t,t

∣∣∣∣∣ .
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D EXPERIMENTS DETAILS

D.1 DATASETS

Table 7 provides details of the datasets used in our experiments. For Gender Bias dataset Dinan et al.
(2020); Miller et al. (2017), we test using the train set to get more data. For all other datasets, we
use the default test set. For Amazon-WILDS Ni et al. (2019) dataset, we convert the original 5-class
rating classification into binary, by removing all samples with rating 3, and convert rating 1 and 2
into bad label, and 4 and 5 into good label.

Dataset Groups Nall Nwg nclass classes

Waterbirds

{ landbird in land,

5794 642 2

{landbird,
landbird in water, waterbird }
waterbird on land,
waterbird on water }

CelebA

{ male & not blond,

19962 180 2

{not blond,
female & not blond, blond}
male & blond ,
female & blond }

PACS
{ art, cartoons,

9991 80 7
{dogs, elphant,

photos, sketches,} giraffe, guitar,
house, person }

VLCS

{ Caltech101,

10725 20 5

{bird, car,
LabelMe, chair, dog, person}
SUN09,
VOC2007 }

CXR14 { no-pneumothorax, 2661 20 2 {no-pneumothorax,
pneumothorax } pneumothorax}

CivilComments-WILDS
{male, female, LGBTQ,

133782 520 2
{non-toxic,

christian, muslim, toxic }
other religions, black, white }

HateXplain

{hindu, islam, minority,

1921 6 2

{normal,
refugee, indian, caucasian, offensive}
hispanic, women, disability,
homosexual, arab, christian,
jewish, men, african,
nonreligious, asian, indigenous,
heterosexual, buddhism,
bisexual, asexual}

Amazon-WILDS

{beauty, garden, books,

90078 25 2

{good,bad}
luxury beauty, kindle store,
movies and TV, pet supplies,
industrial and scientific,
office products,
CDs and vinyl, electronics,
cell phones, magazine,
clothing, groceries, music,
instruments, tools, sports,
automotive, toys, arts crafts,
kitchen, video games,
pantry, software, gift cards }

Gender Bias {male, female } 22750 3594 2 {female, male}

Table 7: Dataset details
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Dataset Model vharmful prompt vhelpful prompt

All

ChatGPT ”List the biased/spurious differences ”List the true visual differences
between [classes].” between [classes].”

Flan-T5 & GPT2 {”[class] typically”, ”[class] usually”} {”a characteristic of [class]: ”,
”[class] are”, ””a [class] is”,
”Charactericstics of [class]”
”Stereotype of [class]”
”Typical characteristic of [class]”}

LLaMA ”List the biased/spurious ”List the visual characteristics of [class]”
characteristics of [class]”

Table 8: Image dataset prompt details

Dataset Model vharmful prompt

Amazon-WILDS ChatGPT ”what are the biased differences between good and bad amazon reviews?”

Gender bias ChatGPT ”what are the biased differences
between comments about female and comments about male?”

Table 9: NLP dataset prompt details

Dataset Class prompt

Waterbirds [ ”a landbird”, ”a waterbird” ]

CelebA [ ”person with dark hair”, ”person with blond hair” ]

PACS ”an image of [class]”

VLCS ”this object is [class]”

CXR14 [ ”non-pneumothorax”, ”pneumothorax” ]

CivilComments-WILDS [ ”non-toxic”, ”toxic” ]

HateXplain [ ”normal”, ”offensive” ]

Amazon-WILDS [ ”negative”, ”positive” ]

Gender Bias [ ”female”, ”male” ]

Table 10: Class prompt details

D.2 PROMPT TEMPLATES

We provide details on prompts used to get the vharmful and vhelpful on image datasets in Table
8. As mentioned in the main body, for NLP datasets we only used vharmful. Additionally, we use
the demographic mentions annotations to construct vharmful in CivilComments-WILDS Borkan
et al. (2019); Koh et al. (2021) and HateXplain Mathew et al. (2021). We provide prompt details to
get vharmful for Amazon-WILDS Ni et al. (2019); Koh et al. (2021) and Gender Bias Dinan et al.
(2020); Miller et al. (2017) datasets in Table 9. We also provide class prompts in Table 10.

D.3 DIRECT PROMPTING PROMPT TEMPLATES

Table 11 shows the prompts used for Direct Prompting ChatGPT baseline in Table 2. For BART-
MNLI, we directly use the dataset labels as label input to the model.
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Dataset Prompt

CivilComments-WILDS Is this a toxic comment? Answer with yes/no

HateXplain Is this a toxic comment? Answer with yes/no

Amazon-WILDS Is this a positive or negative product review? Answer with pos/neg

Gender Bias Is this text about male/female? Answer with male/female

Table 11: Direct prompting prompts for ChatGPT

D.4 ROBOSHOT EXPERIMENT DETAILS

All ROBOSHOT experiments are carried out using frozen weights and embeddings from huggingface
(ALIGN, AltCLIP) and open-clip (CLIP ViT-B-32 and ViT-L-14, BiomedCLIP), and no training is
involved. There is no randomness in the ROBOSHOT experiment results reported in the main body
of the paper.

D.5 LFA EXPERIMENT DETAILS

Dataset Batch size Learning rate

Waterbirds {1.5e−8, 2.5e−8, 5e−8, 2.5e−7} {16, 32, 64}

CelebA {7.5e−9, 1e−8, 2.5e−8} {16, 32, 64}

PACS {2.5e−9, 5e−9, 7.5e−9, 1.5e−8} {16, 32, 64}

VLCS {2.5e−9, 5e−9, 7.5e−9, 1.5e−8} {16, 32, 64}

Table 12: LFA hyperparameter choices

Table 12 shows the choices of hyperparameters we tune over for LFA experiments. We use SGD
optimizer with fixed default momentum form PyTorch. All training are run for a fixed maximum
epoch of 300, and we choose model based on validation performance.
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E FULL ABLATION RESULT

Table 13: Ablation. Best WG and Gap performance bolded, second best underlined.

Dataset Model ZS Ours (vj only) Ours (uk only) Ours (both)

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds
CLIP (ViT-B-32) 80.7 27.9 52.8 82.0 50.4 31.6 82.6 30.2 52.4 83.0 54.4 28.6
CLIP (ViT-L-14) 88.7 27.3 61.4 82.7 35.8 46.9 88.3 29.8 58.5 79.9 45.2 34.7
ALIGN 72.0 50.3 21.7 56.4 41.6 14.8 62.8 56.4 6.4 50.9 41.0 9.9
AltCLIP 90.1 35.8 54.3 81.4 59.0 22.4 89.1 35.2 53.9 78.5 54.8 23.7

CelebA
CLIP (ViT-B-32) 80.1 72.7 7.4 85.2 81.5 3.7 79.6 71.3 8.3 84.8 80.5 4.3
CLIP (ViT-L-14) 80.6 74.3 6.3 85.9 82.8 3.1 80.0 73.1 6.9 85.5 82.6 2.9
ALIGN 81.8 77.2 4.6 83.9 78.0 5.7 83.9 81.4 2.5 86.3 83.4 2.9
AltCLIP 82.3 79.7 2.6 86.1 75.6 10.5 81.9 79.0 2.9 86.0 77.2 8.8

PACS
CLIP (ViT-B-32) 96.7 82.1 14.6 97.0 83.7 13.3 96.6 84.2 12.4 97.0 86.3 10.7
CLIP (ViT-L-14) 98.1 79.8 18.3 98.0 79.8 18.2 98.1 83.8 14.3 98.1 83.9 14.2
ALIGN 95.8 77.1 18.7 95.8 78.0 17.8 95.1 71.1 24.0 95.0 73.8 21.2
AltCLIP 98.5 82.6 15.9 98.4 83.0 15.4 98.6 88.8 9.8 98.7 89.5 9.2

VLCS
CLIP (ViT-B-32) 75.6 20.5 55.1 75.6 22.7 52.9 76.4 29.5 46.9 76.5 33.0 43.5
CLIP (ViT-L-14) 72.6 4.2 68.4 70.9 6.8 64.1 73.4 8.9 64.5 71.1 12.6 58.5
ALIGN 78.8 33.0 45.8 78.2 30.7 47.5 78.0 43.2 34.8 77.6 39.8 37.8
AltCLIP 78.3 24.7 53.6 77.5 24.4 53.1 79.0 20.5 58.5 78.9 25.0 53.9

CXR14 BiomedCLIP 55.3 28.9 26.4 55.7 41.8 13.9 54.8 21.8 33.0 56.2 41.6 14.6

We note that when doing both projections does not improve the baseline, using only uk or vj still
outperforms the baseline. For instance, the ALIGN model in the Waterbirds dataset achieves the
best performance with only uk projection. This suggests that in certain cases, harmful and helpful
concepts are intertwined in the embedding space, and using just one projection can be beneficial.
We leave further investigation to future work.

F ADDITIONAL EXPERIMENTS

F.1 COMBINATION WITH THE CALIBRATION METHODS

Table 14: Additional baseline: text-classification calibration method Holtzman et al. (2021)

Dataset Model Calibration ROBOSHOT Calibration + ROBOSHOT

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

CivilComments BERT 51.0 37.3 13.7 49.7 42.3 7.4 53.4 36.9 16.5
Ada 73.3 31.2 42.1 56.6 44.9 11.7 68.3 35.0 33.3

HateXplain BERT 60.9 15.8 45.1 57.3 14.0 43.3 56.7 22.8 33.9
Ada 61.9 31.6 30.3 63.6 21.1 42.5 59.6 33.3 26.3

Amazon BERT 78.0 57.7 20.3 81.0 64.4 16.6 79.0 59.2 19.8
Ada 71.2 50.5 20.7 82.9 63.8 19.1 83.2 63.9 19.3

Gender Bias BERT 85.4 83.2 2.2 85.1 84.9 0.2 85.7 82.5 3.2
Ada 84.2 77.8 6.4 78.0 60.1 17.9 84.2 77.9 6.3

Table 14 shows that ROBOSHOT further benefits from the calibration methods. This further high-
lights the versatility of ROBOSHOT—we can combine it with such methods with no additional work.
To showcase this, we show additional results from (1) applying the calibration method alone, (2) our
method, (3) the combination.

This result show that the best performing method across the board is either ROBOSHOT or the
combination. The underlying reason for this is that as the two methods are orthogonal, adding
calibration can further improve the results.
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Figure 3: Synthetic experiment with varying σnoise. As expected, the performance improves at a
rate inversely proportional to σnoise.

F.2 SYNTHETIC EXPERIMENTS

Setup. We validate our theoretical claims by performing a synthetic experiment where we vary
the noise level in the insight vectors (σinsight). Higher σinsight indicates more noise. We use the
following basis vectors as concept vectors zhelpful = (1, 0, 0), zspurious = (0, 1, 0), zbenign =
(0, 0, 1), and class embedding vectors c1 = zhelpful + zspurious + zbenign and c0 = −zhelpful −
zspurious + zbenign. Experiments are repeated 100 times.

• Synthetic data input distribution (s denotes spurious feature group)

– x|y = 1, s = 0 ∼ N ([whelpful, wspurious, wbenign], σinputI), n = 2500

– x|y = 1, s = 1 ∼ N ([whelpful,−wspurious, wbenign], σinputI), n = 2500

– x|y = 0, s = 0 ∼ N ([−whelpful,−wspurious, wbenign], σinputI), n = 2500

– x|y = 0, s = 1 ∼ N ([−whelpful, wspurious, wbenign], σinputI), n = 2500

• Insight vectors

– vhelpful = γhelpfulzhelpful + γszspurious + γbzbenign, where γs ∼ N (0, σinisght),
γb ∼ N (0, σbenign)

– vharmful = γczhelpful+γharmfulzspurious+γbzbenign, where γc ∼ N (0, σinisght),
γb ∼ N (0, σbenign)

For the experiment reported in Figure 3, we used whelpful = 1, wspurious = 1, wbenign =
0.5, γhelpful = 1, γharmful = 1, σinput = 0.5, σbenign = 0.01

Results. In Figure 3, we observe that up to 10 - 20% of noise level to signal (harmful, helpful
coefficients = 1), our algorithm works well, recovering worst group accuracy and improving average
group accuracy. This result supports our claims in Theorems 4.1 and 4.2.

F.3 EMBEDDING ANALYSIS

We provide insights into the case where our method does not improve the baseline (ALIGN model
on Waterbirds) in Fig. 4. In Fig. 4a, we visualize the original and projected input embeddings (x in
green and red points, respectively), and the label embeddings (c0 and c1). Fig. 4a (left) shows the
embeddings from the ALIGN model. We observe that the projected embeddings (red) still lie within
the original embedding space, even with reduced variance. In contrast, when examining the CLIP
model embeddings (Figure 4a (right)), we observe that the projected embeddings are significantly
distant from the original ones. Unsurprisingly, Figure 4b (left) reveals that vj and uk (harmful and
helpful insight embeddings in black and blue stars, respectively) are not distinguishable in the text
embedding space of ALIGN, collapsing the input embeddings after ROBOSHOT is applied.
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(a) (b)

Figure 4: (a) Original (green) and projected (red) input embeddings x, and label embeddings c0 and
c1. (b) label embeddings c0 and c1, harmful insight embeddings vk (black star) and helpful insight
embeddings uj (blue star)

F.4 ANALYSIS ON THE ROBUSTNESS TO SPURIOUS CORRELATIONS.

We provide in-depth result analysis to explain the performance changes in the average accuracy
(AVG) and worst group accuracy (WG), especially with respect to spurious correlations. Concretely,
consider the distribution of the margin M : X → R given by M(x) := ⟨c+, x⟩ − ⟨c−, x⟩, where
c+, c− are the correct/incorrect class embeddings. Accuracy can be expressed as EI(M(x)). The
margin distributions and the margin changes by roboshot are illustrated in Figure 5 (Waterbirds),
6 (CelebA). We denote data with spurious features as Dsp (i.e. waterbirds with land background,
landbirds with water background), and data with non-spurious features as Dnsp (i.e. waterbirds
with water background, landbirds with land background). In the first column, M(x) denotes the
margin distribution of zeroshot prediction. In the second column, M(x̂rm) −M(x) represents the
margin changes by the roboshot harmful concept removal procedure. In the third column, M(x̂ad)−
M(x̂rm) represents the margin changes by the roboshot helpful concept addition. Typically, inputs
with spurious features Dsp tend to be closer to the decision boundary, inducing more errors. As
expected, we can observe that harmful insight removal procedure increases the margin of Dsp, but
decreases the margin of inputs with non-spurious features Dnsp. This can explain the potential
tradeoff between the accuracy of Dsp and Dnsp. If the gain in Dsp outweights the loss in Dnsp,
the average accuracy increases as in most cases. However, if the gain in Dsp is less the loss in
Dnsp, the average accuracy decreases as in ALIGN. In either case, the model performance in Dsp is
improved by this procedure. In addition step, we expect that margins improve in both of Dsp, Dnsp

on average. Helpful insight addition procedure turns out be quite effective in CelebA dataset, where
visual features can be described more easily by language models.

F.5 ISOLATING CONCEPTS BY AVERAGING RELEVANT CONCEPTS

Table 15: Left: Cosine similarity between concept images and original embedding vs. averaged
embedding. Right: ROBOSHOT on Waterbirds with original vs. averaged embedding

Concept Original Average

Green 0.237 0.241

Red 0.236 0.240

Blue 0.213 0.229

Yellow 0.237 0.246

Square 0.214 0.220

ZS ROBOSHOT Original ROBOSHOT Average

AVG WG Gap AVG WG Gap AVG WG Gap

86.6 29.6 57.0 87.1 31.5 55.6 78.8 55.1 23.7

We conduct experiments to test the viability of our concept modeling. Specifically, we want to find
out if CLIP input representation x contains harmful, helpful, and benign components (zs, zr, and zb
respectively in equation 1) and whether it is reasonable to assume benign components as noise.
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Figure 5: Margin analysis in Waterbirds dataset. Typically, inputs with spurious featuresDsp tend to
be closer to the decision boundary, inducing more errors. As expected, we can observe that harmful
insight removal procedure increases the margin of Dsp, but decreases the margin of inputs with
non-spurious features Dnsp. This can explain the potential tradeoff between the accuracy of Dsp

and Dnsp. If the gain in Dsp outweights the loss in Dnsp, the average accuracy increases as in most
cases. However, if the gain in Dsp is less the loss in Dnsp, the average accuracy decreases as in
ALIGN. In either case, the model performance in Dsp is improved by this procedure. In addition
step, we expect that margin improves in both of Dsp, Dnsp on average as in ViT-B-32. However, in
most cases, the margin changes are not that crucial, implying extracting helpful insights is not easy
in Waterbirds dataset.
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Figure 6: Margin analysis in CelebA dataset. Again, inputs with spurious features ”blond” tend
to induce errors (”men”-”blond”, ”girl”-”non-blond”). As expected, we can observe that harmful
insight removal procedure increases the margin of Dsp, but decreases the margin of inputs with
non-spurious features Dnsp, which may lead to the potential tradeoff. However, in CelebA dataset,
the helpful insight addition step turns out to be helpful, increasing the margins of both distributions
much. It can be interpreted as helpful insights can be captured easily in images.
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(a) Waterbirds (b) CelebA

Figure 7: Number of insights ablations

Can we partition CLIP input representation into harmful, helpful, and benign concepts? For
a particular concept (e.g., “land”), we hypothesize that the true concept component is mixed with
other concept components due to the signal in training data. For instance, land often co-occurs with
sky, cattle, and other objects. Thus, the CLIP representation of “land” is entangled with these other
concepts. To potentially isolate the helpful concept, we ask LM for an exhaustive list of concepts
related to “land” and average the embedding of all related concepts. The intuition here is that a clean
“land” component exists in each individual embedding, and the remaining is likely to be random,
which can be averaged out and leave us with the true concept.

To verify this intuition, we compare the original and averaged embeddings of concepts listed in Table
15 (left). For each concept, we get 100 Google image search results and filter out noisy images (e.g.,
images with large text and artifacts) by eyeballing. We then report the average cosine similarity
between the images and original embedding vs. the embedding from our averaging procedure.
Averaged embedding has higher cosine similarity across the board than original CLIP embedding.
To some extent, this indicates that the averaging procedure isolates the true concept. And thus,
benign components in embeddings can be canceled out.

Does ROBOSHOT gain improvement with isolated concept? Table 15 (right) compares
ROBOSHOT with removing harmful insights using original CLIP embedding vs. averaged embed-
ding. We use Waterbirds dataset because the harmful insights are known in prior. To isolate the
effect of our averaging procedure, we use “landbird” and “waterbird” as labels without additional
prompts (e.g., “a picture of [label]”), and we only use “land” and “water” as the harmful insights to
remove, which causes slight difference with the results reported in Table 1. Confirming our intuition,
using the averaged embedding results in better WG performance and smaller Gap.

F.6 ROBOSHOT WITHOUT DECOMPOSITION

To see the effectiveness of QR decomposition of insight vectors, we conduct additional ablation ex-
periment of decomposition method. In Table 16, w/o QR (vj only), w/o QR (uk only), and w/o QR
(both) represents roboshot rejection only, addition only, both without QR decomposition step. Con-
trary to our expectation, in binary classification (Waterbirds, CelebA), Roboshot method works well
without QR decomposition. This can be interpreted as insights from LLM provide almost orthogo-
nal vectors. However, in multiclass classification, where rejection, addition vectors are generated by
combinatorially paring insights for each class, Roboshot method get worse. Especially, addition step
collapse. While rejection step wears off the subspace that the insight vectors span and there couldn’t
be more difference, addition steps can push multiple times to the similar directions. From this ab-
lation experiment, the benefits of obtaining subspace via decomposition can be explained by two
ways. First, in removal step, it provides a clean way to remove the subspace that spurious features
span. Secondly, int addition step, it prevents overemphasis on some helpful insight directions.
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Table 16: Ablation of QR decomposition

Dataset Model Roboshot w/ QR w/o QR (vj only) w/o QR (uk only) w/o QR (both)

AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

Waterbirds
CLIP (ViT-B-32) 83.0 54.4 28.6 79.5 58.3 21.2 83.0 31.2 51.8 79.6 62.5 17.1
CLIP (ViT-L-14) 79.9 45.2 34.7 79.3 36.3 43.0 88.8 31.6 57.2 75.0 45.8 29.2
ALIGN 50.9 41.0 9.9 53.3 36.6 16.7 62.0 50.9 11.1 38.2 36.5 1.7
AltCLIP 78.5 54.8 23.7 70.8 56.1 14.7 89.0 35.0 54.0 64.3 52.8 11.5

CelebA
CLIP (ViT-B-32) 84.8 80.5 4.3 85.3 81.6 3.7 80.5 73.2 7.3 86.5 83.5 3.0
CLIP (ViT-L-14) 85.5 82.6 2.9 86.1 81.7 4.4 79.7 72.5 7.2 85.8 80.0 5.8
ALIGN 86.3 83.4 2.9 84.4 78.9 5.5 83.9 81.5 2.4 86.8 84.5 2.3
AltCLIP 86.0 77.2 8.8 86.5 75.6 9.9 80.4 75.6 4.8 86.0 77.8 8.2

PACS
CLIP (ViT-B-32) 97.0 86.3 10.7 97.0 82.9 14.1 85.5 37.8 47.7 83.8 33.0 50.8
CLIP (ViT-L-14) 98.1 83.9 14.2 98.0 79.8 18.2 84.9 13.4 71.5 85.8 11.8 74.0
ALIGN 95.0 73.8 21.2 95.7 75.9 19.8 56.9 0.2 56.7 58.0 0.2 57.8
AltCLIP 98.7 89.5 9.2 98.4 83.1 15.3 67.8 4.0 63.8 65.0 2.8 62.2

VLCS
CLIP (ViT-B-32) 75.6 33.0 43.5 75.5 20.5 55.0 21.4 0.0 21.4 30.7 0.0 30.7
CLIP (ViT-L-14) 71.1 12.6 58.5 71.1 6.9 64.2 22.3 0.0 22.3 22.1 1.3 20.8
ALIGN 77.6 39.8 37.8 78.1 33.0 45.1 36.2 0.0 36.2 32.7 0.1 32.6
AltCLIP 78.9 25.0 53.9 77.5 25.1 52.4 31.4 0.0 31.4 30.6 2.0 28.6

CXR14 BiomedCLIP 56.2 41.6 14.6 55.9 36.6 19.3 55.2 23.9 31.3 56.1 37.2 18.9
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Figure 8: Synthetic experiment on the number of insights

F.7 INSIGHTS ANALYSIS

In Figure 7 we show ablations on the number of insights used in ROBOSHOT. We can clearly observe
that both average and worst-group accuracy improves (almost) linearly with the number of insights
used.

In our theory, increasing the number of insights is beneficial until the span of insight vectors cover
the subspace of helpful/harmful features — thus for the optimality, we need insight vectors up to the
rank of helpful/harmful subspaces. To validate it, we conduct a synthetic experiment with varying
the number of insights. Here, the number of helpful/harmful/benign concepts is 12 respectively,
with the embedding dimension 36 (12 + 12 +12). We add sequentially increase the number of
insights based on a similar synthetic experiment setup in Appendix F.2 — after all target concepts
are covered by at least one insight, we resample insights for each target concept. In Figure 8, we
can observe that the AVG/WG performance improves until the number of insights is the same with
the rank of harmful/helpful subspace. More detailed synthetic experiment setup is as follows.

• zs = es, where S = 12 and 1 ≤ s ≤ S
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• zr = er, where R = 12 and S + 1 ≤ r ≤ S +R

• zb = eb, where B = 12 and S +R+ 1 ≤ b ≤ S +R+B

• vspurious =
∑S

s=1 zs

• vhelpful =
∑S+R

r=S+1 zr

• vbenign =
∑S+R+B

b=S+R+1 zb

• Synthetic data input distribution (s denotes spurious feature group)
– x|y = 1, s = 0 ∼ N ([wspuriousvspurious, whelpfulvhelpful, wbenignvbenign], σinputI), n =
2500

– x|y = 1, s = 1 ∼ N ([−wspuriousvspurious, whelpfulvhelpful, wbenignvbenign], σinputI), n =
2500

– x|y = 0, s = 0 ∼ N ([−wspuriousvspurious,−whelpfulvhelpful, wbenignvbenign], σinputI), n =
2500

– x|y = 0, s = 1 ∼ N ([wspuriousvspurious,−whelpfulvhelpful, wbenignvbenign], σinputI), n =
2500

• Insight vectors follow the same assumptions in theory — the only target concept has the
constant coefficient (γi,i for 1 ≤ i ≤ S + R) and other coefficients are sampled from
N (0, σinsight) or N (0, σbenign).

• For the experiment reported in Figure 8, we used whelpful = 1, wspurious =
0.5, wbenign = 0.01, γi,i = 1 for 1 ≤ i ≤ S +R, σinput = 1, σbenign = 1
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