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Abstract
Human speech contains paralinguistic cues that
reflect a speaker’s physiological and neurolog-
ical state, potentially enabling non-invasive de-
tection of various medical phenotypes. We in-
troduce the Human Phenotype Project Voice cor-
pus (HPP-Voice): a dataset of 7,188 recordings
in which Hebrew-speaking adults count for 30
seconds, with each speaker linked to up to 15
potentially voice-related phenotypes spanning res-
piratory, sleep, mental health, metabolic, immune,
and neurological conditions. We present a sys-
tematic comparison of 14 modern speech embed-
ding models, where modern speech embeddings
from these 30-second counting tasks outperform
MFCCs and demographics for downstream health
condition classifications. We found that embed-
ding learned from a speaker identification model
can predict objectively measured moderate to se-
vere sleep apnea in males with an AUC of 0.64
± 0.03, while MFCC and demographic features
led to AUCs of 0.56 ± 0.02 and 0.57 ± 0.02, re-
spectively. Additionally, our results reveal gender-
specific patterns in model effectiveness across dif-
ferent medical domains. For males, speaker iden-
tification and diarization models consistently out-
performed speech foundation models for respira-
tory conditions (e.g., asthma: 0.61 ± 0.03 vs. 0.56
± 0.02) and sleep-related conditions (insomnia:
0.65 ± 0.04 vs. 0.59 ± 0.05). For females, speaker
diarization models performed best for smoking
status (0.61 ± 0.02 vs 0.55 ± 0.02), while Hebrew-
specific models performed best (0.59 ± 0.02 vs.
0.58 ± 0.02) in classifying anxiety compared to
speech foundation models. Our findings provide
evidence that a simple counting task can support
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large-scale, multi-phenotypic voice screening and
highlight which embedding families generalize
best to specific conditions, insights that can guide
future vocal biomarker research and clinical de-
ployment.

1. Introduction
Human speech is a richly layered signal. Beyond lexical
content, it carries prosody, articulation, timing, respiration,
and other paralinguistic cues that mirror a speaker’s physiol-
ogy and neurological state(Fant, 1971; Härmä et al., 2024).
Recent deep learning work has capitalized on these cues for
emotion recognition (Latif et al., 2021), speaker verification
(Mittal & Dua, 2022), and detection of neurodegenerative
(Tao et al., 2025) or pulmonary disorders (Sharma et al.,
2020). However, most clinical studies remain narrow: they
target a single disease (e.g., Parkinson’s disease (Moro-
Velazquez et al., 2021) and Alzheimer’s disease (Luz et al.,
2021)), use small cohorts, or focus on non-speech events
such as coughs and breaths (Baur et al., 2024).

In this study, we leverage the extensive and uniquely com-
prehensive data from the Human Phenotype Project (HPP)
(Shilo et al., 2021) to investigate associations between voice
characteristics and health conditions. Furthermore, we sys-
tematically compare multiple voice feature extraction tech-
niques, ranging from classical spectral features to advanced
embeddings derived from state-of-the-art self-supervised
foundation models for speech.

Why fluent counting? A brief ”count-to-30” prompt is easy
to administer remotely, highly reproducible, and intuitively
understood by speakers of any language (Wardle et al., 2011;
Schöbi et al., 2022). It also elicits sustained phonation and
prosodic variability, which are not captured in cough-centric
corpora such as Coswara (Sharma et al., 2020).

The HPP-Voice corpus. We introduce HPP-Voice, com-
prising 7,188 recordings from 6,760 adults (3,211 males /
3,549 females, age 52± 10 years). Each utterance is paired
with 15 health conditions spanning across 6 body systems:
respiratory, metabolic, neurological, mental health, immune,
and sleep (Shilo et al., 2021).
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Our contributions are:

1. Large, clinically diverse corpus. We release a novel
dataset of fluent speech paired with verified diagnoses
across six body systems.

2. Comprehensive benchmark. Fifteen state-of-the-art
encoders (e.g., MFCC (Davis & Mermelstein, 1980),
x-vector (Snyder et al., 2018), wav2vec 2.0 (Baevski
et al., 2020), WavLM (Chen et al., 2022)) are evaluated
under identical splits.

3. Phenotype-specific insights. We demonstrate which
speech representations outperform for specific clini-
cal domains, providing a comprehensive evaluation of
their relative efficacy across different healthcare appli-
cations.

2. Dataset: HPP-Voice
HPP-Voice is the voice arm of the Human Phenotype Project
(HPP), a longitudinal, multi-omics registry designed to un-
ravel chronic-disease mechanisms at the population scale.

Cohort description The HPP cohort currently comprises
11,460 adults. Between December 2019 and December
2024, 6,760 unique speakers were invited for voice sam-
pling and completed the protocol, yielding 7,188 recordings.
Among the 6,760 speakers, 3,549 were women (52%) aged
52.4±10.7 years and 3,211 were men (48%) aged 52.6±9.9
years.

Recording protocol Speech was captured in a controlled
laboratory environment using 32-bit 384 kHz sampling, then
down-sampled to 16 kHz mono. Each participant performed
a single 30-second counting task at a comfortable pace.

Medical labels Medical and phenotype labels were de-
rived from the HPP questionnaire and medical records.
Sleep apnea was defined as present if the averaged Apnea-
Hypopnea Index (AHI) measured across three nights of
monitoring exceeded 15 events per hour (Kohn et al., 2025).
Cases were also included if the subject self-reported the
condition. All other health conditions were based on self-
report. For analysis, we grouped the conditions into six body
systems: respiratory (asthma, current smoker, past smoker,
chronic sinusitis), metabolic (anemia, hyperthyroidism, hy-
pothyroidism), neurological (migraine, headache), mental
health (depression, anxiety), immune (COVID-19, allergy),
and sleep-related (sleep apnea, insomnia). Notable condi-
tion prevalence differences by gender include sleep apnea
(14.89

3. Method
Our pipeline converts every HPP-Voice recording into a sin-
gle fixed-length vector, feeds these vectors into downstream
classifiers, and compares performance across a diverse set
of embedding models.

3.1. Representation families

To compare how different types of acoustic representations
capture health-relevant voice information, we systematically
evaluate 14 different speech embeddings across five cate-
gories, each capturing unique aspects of the speech signal
(see Table 1). In addition, we compute and evaluate the per-
formance of Mel-Frequency Cepstral Coefficients (MFCCs)
as a classical, non-deep learning baseline.

3.2. Experimental setup

We conducted gender-specific stratification based on con-
founding analysis, as preliminary testing revealed that all
embedding models could predict participant gender with
very high performance (AUCs 0.92-0.98). After applying
quality control and removing repeated visits, we retained
2,150 recordings from unique female participants and 1,993
recordings from unique male participants.

For classifier training and evaluation, we employed a Light-
GBM classifier (Ke et al., 2017) trained using 4-fold cross-
validation, with hyperparameter optimization conducted via
Optuna (Akiba et al., 2019). The entire process was re-
peated across 20 random seeds to ensure robustness. Age
was included as an additional input feature to adjust for its
potential confounding effect.

4. Results
We begin our analysis with sleep apnea, as this condition
was curated using objective physiological recordings. Our
analysis focused on sleep apnea prediction in males, where
this disorder is more prevalent (14.89% in our cohort). As
shown in Figure 1, speaker identification models demon-
strated superior performance. The x-vector model achieved
the highest performance with an AUC of 0.64 ± 0.03,
significantly outperforming both MFCC features (AUC =
0.56 ± 0.02) and baseline demographic features (AUC =
0.57± 0.02). Among speech foundation models, WavLM-
Large exhibited strong performance, while models trained
for emotion recognition and language-specific models did
not significantly improve over baseline.

Beyond sleep apnea, we extended our analysis to multi-
ple self-reported medical conditions, as shown in Figure 2.
The analysis reveals pronounced gender-specific patterns in
model effectiveness. For males, SI and SD models consis-
tently outperformed speech foundation models for respira-
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Table 1. Speech-embedding models evaluated in this study. Dataset acronyms: LS (LibriSpeech) (Panayotov et al., 2015), LL (Libri-
Light) (Kahn et al., 2020), LVG (LibriLight+VoxPopuli (Wang et al., 2021)+Gigaspeech (Chen et al., 2021)). PT (Pre-training), FT
(Fine-tuning).

Family Model Params Training Data

Speech foundation wav2vec2-Base (Baevski et al., 2020) 95M PT: LS 960 hr
wav2vec2-Large (Baevski et al., 2020) 317M PT: LL 60k hr
WavLM-Base (Chen et al., 2022) 95M PT: LS 960 hr
WavLM-Large (Chen et al., 2022) 317M PT: LVG 94k hr
XLSR-53 (Conneau et al., 2021) 300M PT: 53-language mixed corpus 56k hr

Hebrew-specific XLSR Hebrew-PT 300M PT: XLSR-53 corpus + ivrit.ai (Marmor et al., 2023)
XLSR Hebrew-FT 300M PT: same as above; FT: Hebrew ASR on Common

Voice (Ardila et al., 2020)

Speaker diarization WavLM-SD (Chen et al., 2022) 317M PT: LVG 94k hr; FT: SD on LibriMix
pyannote (Bredin et al., 2019) 4.3M PT: VoxCeleb (Nagrani et al., 2020)

Speaker identification pyannote-FT 4.3M PT: VoxCeleb; FT: SI on HPP-Voice
x-vector (Snyder et al., 2018) 4.2M PT: VoxCeleb
EffNet (Tan & Le, 2020) 6M PT: HPP-Voice

Emotion wav2vec2-SER (Ravanelli et al., 2021) 95M PT: LS 960 hr; FT: IEMOCAP (Busso et al., 2008)
WavLM-SED (Wang et al., 2023) 317M PT: LVG 94k hr; FT: IEMOCAP, RAVDESS (Living-

stone & Russo, 2018)

tory conditions (e.g., asthma: 0.61± 0.03 vs. 0.56± 0.02)
and sleep-related conditions (insomnia: 0.65 ± 0.04 vs.
0.59± 0.05). In contrast, among females, SD models per-
formed best for smoking status (0.61±0.02 vs. 0.55±0.02),
while Hebrew-specific models achieved superior perfor-
mance (0.59± 0.02 vs. 0.58± 0.02) in classifying anxiety
compared to speech foundation models.

5. Discussion and Conclusion
This study introduces HPP-Voice and systematically bench-
marks 14 speech embedding models for multi-condition
classification. Using only a 30-second counting task per
subject, we demonstrate that modern speech representa-
tions, particularly those trained for speaker identification
and diarization, can detect clinically relevant signals for
various conditions, accounting for age and gender as poten-
tial confounders. The optimal embedding family varied by
both medical domain and gender, indicating the presence of
condition-specific and population-specific acoustic markers.

Several hypotheses may explain why counting, despite
its constrained linguistic content, encodes such health-
relevant information. The dynamics of breathing pauses
during fluent counting may reflect respiratory health and
sleep-disordered breathing patterns (Sharma et al., 2020).
Prosodic features such as pitch variability, rhythm, and
speech rate are known to reflect psychological and neu-
rological states (Luz et al., 2021; Latif et al., 2021). Articu-
latory stability and vocal tract control may be modulated by
metabolic or cognitive impairments (Tracey et al., 2023).

Our findings underscore the clinical potential of voice as

a scalable, low-effort health monitoring modality. A short
counting task, easily administered in remote settings, may
support non-invasive pre-screening for multiple health con-
ditions. By identifying which embedding families gener-
alize best to specific conditions, this work offers practical
guidance for future development of voice-based diagnostic
systems.
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