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Abstract

Vision–Language–Action (VLA) models are increasingly used for end-to-end
driving due to their world knowledge and reasoning ability. Most prior work,
however, inserts textual chains-of-thought (CoT) as intermediate steps tailored to
the current scene. Such symbolic compressions can blur spatio-temporal relations
and discard fine visual cues, creating a cross-modal gap between perception and
planning. We propose FSDrive, a visual spatio-temporal CoT framework that
enables VLAs to think in images. The model first acts as a world model to
generate a unified future frame that overlays coarse but physically-plausible
priors—future lane dividers and 3D boxes—on the predicted future image. This
unified frame serves as the visual CoT, capturing both spatial structure and temporal
evolution. The same VLA then functions as an inverse-dynamics model, planning
trajectories from current observations and the visual CoT. To equip VLAs with
image generation while preserving understanding, we introduce a unified pre-
training paradigm that expands the vocabulary to include visual tokens and jointly
optimizes VQA (for semantics) and future-frame prediction (for dynamics). A
progressive easy-to-hard scheme first predicts lane/box priors to enforce physical
constraints, then completes full future frames for fine details. On nuScenes and
NAVSIM, FSDrive improves trajectory accuracy and reduces collisions under both
ST-P3 and UniAD metrics, and attains competitive FID for future-frame generation
despite using lightweight autoregression. It also advances scene understanding
on DriveLM. Together, these results indicate that visual CoT narrows the cross-
modal gap and yields safer, more anticipatory planning. Code is available at
https://github.com/MIV-XJTU/FSDrive.

1 Introduction

Recently, given the superior capabilities of multimodal large language models (MLLMs) in world
knowledge, reasoning ability, and interpretability, they have been widely applied in autonomous driv-
ing [20, 43, 87, 31]. One promising direction is the end-to-end vision-language-action (VLA) model,
which leverages pre-trained vision-language model (VLM) to directly extract scene features from
visual observations and language instructions, subsequently generating vehicle control commands
(e.g., speed and trajectory). This paradigm not only simplifies system architecture and minimizes
information loss, but also enables the utilization of the model’s world knowledge to analyze driving
environments and reason about safe decisions in complex scenarios.
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Figure 1: Comparison of different CoT. Textual CoT expression provides insufficient information.
The modalities between the image-text CoT are inconsistent. The proposed spatio-temporal CoT
captures the temporal and spatial relationships in the future.

In the field of language, Chain-of-Thought (CoT) [67, 50, 15, 52] improves reasoning capabilities
and interpretability by encouraging step-by-step thinking. However, existing autonomous driving [27,
44, 14] typically incorporate discrete text CoT (e.g., language descriptions targeting current scenarios
and bounding box coordinates) as intermediate reasoning steps. This method is essentially highly
abstract and symbolized compression of visual information, which may lead to ambiguous temporal
and spatial relationships, loss of fine-grained information, and modality conversion gaps [46, 55, 72],
as shown in the top of Figure 1. For autonomous vehicles requiring deep physical-world interaction,
should their thinking process more closely resemble simulation and imagination of world, rather than
merely relying on logical deduction of language?

Inspired by the human driver’s cognitive mechanism of directly constructing visual representations of
future scenarios in the mind, rather than converting them into language descriptions for reasoning,
we propose a more intuitive spatio-temporal CoT method as shown in the bottom part of Figure 1.
This method avoids information loss during text abstraction and enables the model to think visually
about trajectory planning. First, the VLA serves as a world model to generate unified image frame for
predicting future world states: Inspired by visual prompting engineering [53, 81] that draws red circles
on images to guide model attention and by VLIPP [78] first predicts future bounding boxes to intro-
duce physical priors when generating future frames, we represent future world spatial relationships
through future red lane dividers and 3D detection boxes on the predicted unified frames [80]. These
coarse-grained visual cues direct the model’s attention toward drivable areas and critical objects in
future scenes while enforcing physically plausible constraints. Meanwhile, the temporal relationships
are represented by the ordinary future frame, where the dynamic evolution of visual content intuitively
characterizes temporal progression and the inherent laws of scene development. Subsequently, the
spatio-temporal CoT acts as an intermediate reasoning step, enabling the VLA to function as an
inverse dynamics model for trajectory planning based on current observations and future predictions.
Compared to traditional discrete text CoT, and even image-text CoT methods [27, 91, 41] as shown
in the middle of the Figure 1, our method unifies both future scene representations and perception
outputs in image format, which more effectively conveys the temporal and spatial relationships. This
eliminates semantic gaps caused by cross-modal conversions (e.g., converting visual perceptions into
textual descriptions for reasoning), establishing an end-to-end visual reasoning pipeline that enables
direct visual causal inference by the model.

To endow VLAs with image generation capabilities, we propose a pre-training paradigm that si-
multaneously preserves the semantic understanding of existing MLLM and activates their visual
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generation capacity. Specifically, for the semantic understanding preservation part, we follow pre-
vious approaches [64, 27, 25] by incorporating visual question answering (VQA) tasks for current
scene comprehension. For the activation of visual generation capabilities, we investigate the shared
vocabulary space between image and text, directly unleashing the visual generation potential of
existing MLLMs in the field of autonomous driving through minimal data (approximately 0.3% of
previous methods [70, 73, 24, 35]) without requiring complex model architecture modifications or
redesigns. However, directly generating complete detailed future scenes may fail to adhere to physical
laws [78, 88]. Thus, we propose a progressive, easy-to-hard generation method. We leverage the
world knowledge of VLAs to first infer drivable regions and key object positions in future scenarios,
generating coarse-grained future perception images (e.g., lane dividers and 3D detection) to constrain
physical laws. Subsequently, full future frames are generated under this constraint to supplement
fine-grained details, enabling the model to think visually about accurate future prediction.

Extensive experiments on trajectory planning, future frames generation, and scene understanding
tasks demonstrate the effectiveness of pre-training paradigm and spatio-temporal CoT in FSDrive.
FSDrive achieves road scene comprehension by establishing pixel-level embodied associations with
the environment, rather than relying on human-designed abstract linguistic symbols, advancing
autonomous driving towards visual reasoning. In summary, our main contributions are as follows:

• We propose a spatio-temporal CoT reasoning method that allows the model to enhance
trajectory planning by thinking visually from future temporal and spatial dimensions.

• We propose a unified pre-training paradigm for visual generation and understanding. Mean-
while, we introduce a progressive generation approach that evolves from imposing physical
constraints to supplementing details.

• We conduct comprehensive evaluations across trajectory planning, future frames generation,
and scene understanding tasks, demonstrating the effectiveness of our FSDrive.

2 Related work

2.1 Unified multimodal understanding and generation

Recent research efforts [38, 70, 49, 68] have increasingly focused on unifying multimodal under-
standing and visual generation within a single LLM. On one front, methods like Show-o [74], and
VILA-U [73] employ VQ-VAE [61] to transform images into discrete tokens while training LLMs to
predict them. However, these methods suffer from insufficient semantic information preservation,
often leading to performance degradation in downstream understanding tasks. Alternative meth-
ods [57, 11, 48, 9, 82] utilize ViT [12]-based vision encoders (e.g., CLIP [51]) to encode images into
continuous feature maps. Nevertheless, such methods typically depend on external diffusion models
for image generation or use different training objectives (i.e. diffusion and autoregression) for the two
tasks, further complicates the infrastructure design with overall lower efficiency. Moreover, the afore-
mentioned methods usually require massive billion-scale datasets for extensive training from scratch,
which results in prohibitively high computational costs when disseminating explorations in this form.
In this work, we demonstrate that the visual generative capabilities of existing MLLMs can be directly
activated through minimal training costs (approximately 0.3% of previous methods [70, 58, 42, 8])
without requiring sophisticated architectural designs.

2.2 Vision-language models for autonomous driving

Given the superior capabilities of large language models (LLMs) in world knowledge, reasoning,
and interpretability, recent researches [2, 83, 39, 85] increasingly integrate Vision-Language Models
(VLMs)/LLMs with autonomous driving systems to address limitations in end-to-end approaches.
DriveGPT4 [76] employs LLMs through iterative question-answering interactions to explain vehicle
behaviors and predict control signals. DriveVLM [60] synergizes LLMs with end-to-end architectures,
where LLMs predict low-frequency trajectories that are subsequently refined by the end-to-end model
for final planning. Doe-1 [95] reformulates autonomous driving as a next-token prediction task using
Lumina-mGPT’s [37] multimodal generation capabilities, executing diverse tasks through multimodal
token processing. EMMA [27] leverages Gemini’s multimodal foundation by encoding all non-sensor
inputs (navigation instructions, vehicle status) and outputs (trajectories, 3D positions) as natural
language text, fully exploiting pre-trained LLMs’ world knowledge. In this work, we propose a
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spatio-temporal chain of thought (CoT) reasoning method that unifies the form of images, allowing
the model to think visually about trajectory planning.

2.3 World models for autonomous driving

World models [66, 45, 90, 89] aim to infer ego status and dynamic environments from past obser-
vations to enable accurate future prediction and planning. Current applications of world models in
autonomous driving primarily focus on driving scenario generation [47, 16, 32], planning [66, 41],
and representation learning [45, 79, 84]. For driving scenario generation, most prior works are
built upon diffusion models, with the exception of GAIA-1 [18] which incorporates a progressive
next-token predictor and an additional diffusion image decoder. Recent DrivingGPT [5] leverages
existing vision generation LLM LlamaGen [56] while simultaneously outputting predictions for
future states and actions. However, such VQ-VAE based visual tokens lack semantic information,
often leading to performance degradation in downstream visual understanding tasks [74, 40, 59]. In
this work, we propose to directly activate the visual generation capabilities of existing multimodal
large language models, enabling VLMs to act as world models and predict future frames.

3 Proposed method: FSDrive

The proposed FSDrive is illustrated in Figure 2. Section 3.1 describes the preliminaries. Section 3.2
presents a unified visual generation and understanding pre-training paradigm and a progressive
generation method. Section 3.3 proposes spatio-temporal chain-of-thought methods. Section 3.4
details the training strategy.

3.1 Preliminary

End-to-end trajectory planning. End-to-end autonomous driving directly generates future trajec-
tory from sensor data, convertible to vehicle control actions like acceleration and steering [27]. given
N surround-view images It = {I1t , I2t , . . . , INt } at timestep t, model M outputs a BEV trajectory
Wt = {w1

t , w
2
t , . . . , w

n
t }, where each waypoint wi

t = (xi
t, y

i
t). The process is formulated as:

Wt = M(It, opt(Tcom, Tego)), (1)

opt(Tcom, Tego) denotes optional navigation commands and ego status (e.g., velocity, acceleration).

Unified visual generation and understanding. Recent works [70, 22] unify multimodal under-
standing and vision generation in single LLM. While understanding aligns with standard LLMs,
generation methods [38, 23] typically use VQ-VAE [61] to encode images into discrete tokens.
First, the image tokenizer quantizes image pixels x ∈ RH×W×3 into discrete tokens q ∈ Qh×w,
where h = H/p, w = W/p, p is the downsampling factor, and q(i, j) represents the index of the
image codebook. These h · w tokens are arranged in raster order to train a Transformer [62]-based
autoregressive model. During image generation, a general language modeling (LM) objective is
adopted to autoregressively predict the next token, maximizing the likelihood of each image token:

L = −
∑
i=1

logPθ(qi|q<i), (2)

where qi denotes the visual token and θ represents the LLM parameters. Finally, the VQ-VAE’s
detokenizer converts these image tokens back into image pixels.

3.2 Unified pre-training paradigm for visual generation and understanding

To enable unified pre-training, MLLMs require visual generation capabilities. As described in Sec-
tion 3.1, existing methods (e.g. Lumina-mGPT [37], the visual generation LLM used by Doe-1 [95])
typically employ VQ-VAE to encode images into discrete tokens when extracting visual information.
However, these tokens lack semantic information, which hurts downstream understanding perfor-
mance [74, 97]. Moreover, current methods [70, 96] demand expensive training from scratch on
massive billion-scale datasets without leveraging existing LLM knowledge.
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Figure 2: Overview of FSDrive. Taking the currently surround images and task instructions as input,
MLLM is trained in the form of next token prediction. MLLM predicts the future spatio-temporal
CoT, and then generates trajectory based on the current observation and predicted future.

Our method is directly built upon any existing MLLM that employs ViT-based encoders to convert
images into continuous features. We preserve the original MLLM architecture without altering any
structural components to maintain compatibility with pretrained weights. The sole modification
involves expanding the MLLM’s vocabulary by incorporating image tokens of the VQ-VAE into the
text codebook, thereby extending the vocabulary’s scope from language space to a multimodal space
encompassing both visual and textual modalities. This enhancement enables the MLLM to predict
image tokens, which can then be converted to image pixels through an VQ-VAE’s detokenizer.

Pre-training for visual understanding. To effectively preserve the semantic understanding capa-
bilities of the native MLLM during the pre-training stage, as shown in the left part of Figure 2, we
follow previous methods [64, 27] by using a VQA task, which is crucial for autonomous vehicles
to analyze complex driving scenarios. Given an image-text question-answer pair (I, L), where I
represents the surround-view images of the current scene and L denotes the instructional question,
model M generates a corresponding answer A:

A = M(I, L). (3)

Pre-training for visual generation. Inspired by the world models in autonomous driving [30, 77]
that generate future frames to learn physical laws, after activating the visual generation capability, we
also enable the VLA to predict future frames, thereby capturing the dynamic evolution of the world.
Specifically, given an image-instruction pair (I, L), the model predicts the next visual token of the
future front-view frame through autoregressive generation:

P (q1, q2, . . . , qh·w) = Πh·w
t=1Pθ(qi | q<i). (4)

The predicted visual tokens are then converted back into image pixels by VQ-VAE’s detokenizer.
Since future frames naturally exist in video datasets without requiring any labeled data, this approach
unlocks the potential to harness abundant video data for improving generation quality.

Progressive image generation. However, directly generating complete detailed future scenes may
fail to adhere to physical laws [78]. Therefore, during pre-training stage, we propose a progressive,
easy-to-hard generation method, incorporating annotated data containing lane divider and 3D detec-
tion. Before generating visual tokens of future frames Qf , we leverage the world knowledge of VLA
to first reason about visual tokens of lane dividers Ql, which serve as the skeleton of the road scene
and define drivable areas to enforce static physical constraints. Subsequently, we reason about visual
tokens of 3D bounding boxes Qd, representing motion patterns of key objects to impose dynamic
physical constraints. This progressive method sequence explicitly guides the model to infer structural
layouts and geometric details of future scenes while enforcing physical laws. By leveraging these
intermediate visual reasoning steps as context, the model learns to think visually about the dynamic
evolution of scenes, ultimately enabling accurate future prediction:
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P (Qf | Ql, Qd) = Πh·w
t=1Pθ(qi | q<i, Ql, Qd). (5)

3.3 Think visually with spatio-temporal CoT

Autonomous driving planning requires not only understanding the current scene but also envisioning
potential future developments to achieve forward-looking comprehension. This thinking process
should resemble physical world simulation and imagination rather than purely text symbolic logical
deduction. Since our model has already learned physical constraints through the progressive genera-
tion during pre-training, and considering efficiency, we no longer separately generate lane dividers,
3D detection, and future frames, but instead integrate all these results into a single unified frame. As
shown in the right part of Figure 2, here, VLA serves as a world model to generate a unified image
frame predicting the future world state: Inspired by visual prompting engineering [53] that draws
red circles on images to guide model attention and by VLIPP [78] first predicts future bounding
boxes to introduce physical priors when generating future frames, we represent future world spatial
relationships through future red lane dividers and 3D detection boxes on the predicted unified frames.
These coarse-grained visual cues direct the model’s attention toward drivable areas and critical
objects in future scenes while enforcing physically plausible constraints. Meanwhile, the temporal
relationships are represented by the ordinary future frame, where the dynamic evolution of visual
content intuitively characterizes temporal progression and the inherent laws of scene development.
Subsequently, spatio-temporal CoT QCoT serves as an intermediate reasoning step, allowing the
VLA to function as an inverse dynamics model that plans trajectory based on current observations
and future predictions:

P (Wt | It, QCoT , opt(Tcom, Tego)) = Πn
i=1Pθ(wi | w<i, It, QCoT , opt(Tcom, Tego)). (6)

3.4 Training strategy

Our FSDrive can be initialized from any existing MLLM (e.g., Qwen2-VL, LLaVA), avoiding training
from scratch and saving significant costs. During training, we fully fine-tune the LLM parameters
while freezing all encoders. The training process is divided into two stages:

Stage 1: Unified pre-training. Our objective is to preserve understanding capabilities of MLLMs
through VQA tasks and activate their visual generation capabilities to predict future frames. VQA
task data originates from OmniDrive-nuScenes [64]. We incorporate a large volume of unlabeled
image data from nuScenes [1] for future frame prediction. To implement progressive easy-to-hard
CoT, we integrate nuScenes annotated data to teach the model predicting image-formatted future
lane dividers and 3D detection. Finally, we add future frame prediction with CoT datas containing
intermediate reasoning steps. All the above understanding and generation tasks are trained together.

Stage 2: Supervised fine-tuning. We focus on autonomous driving scene understanding and
trajectory planning. Following OmniDrive [64], scene understanding utilizes DriveLM’s GVQA [54]
dataset. For trajectory planning, we follow VAD [29, 21] using nuScenes, where our spatio-temporal
CoT integrates the holistic future scene, explicit lane dividers, and 3D detection results into a single
future frame as intermediate reasoning steps. We train these tasks simultaneously using a single
model, enabling task-specific predictions during inference through different task prompts.

4 Experiments

4.1 Experimental settings

Datasets. Following the previous methods [29, 13, 4], we evaluate trajectory planning and future
frames generation on the nuScenes [1]. The nuScenes contains 1,000 scenes of approximately 20
seconds each captured by a 32-beam LiDAR and six cameras providing 360-degree field of view.
Specifically, The dataset provides 28,130 (train), 6,019 (val), and 193,082 (unannotated) samples.
Additionally, we conducted experiments on NAVSIM [10], a realistic scenario dataset designed for
real-world planning. This dataset aims to highlight challenging driving scenarios involving dynamic
changes in driving intent, while deliberately excluding simple situations such as static scenes or
constant-speed driving.
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Table 1: End-to-end trajectory planning experiments on nuScenes [1]. We evaluated the L2 and
collision metrics based on the distinct computational methodologies of ST-P3 [19] and UniAD [21],
respectively. * indicates that the ego status is additionally used. VAD [29] and UniAD [21] results are
derived from BEV-Planner [34], while the remaining results are sourced from their respective papers.

Method

ST-P3 metrics UniAD metrics

LLML2 (m) ↓ Collision (%) ↓ L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

Non-Autoregressive methods
ST-P3* [ECCV22] [19] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71 - - - - - - - - -
VAD [ICCV23] [29] 0.69 1.22 1.83 1.25 0.06 0.68 2.52 1.09 - - - - - - - - -
VAD* [ICCV23] [29] 0.17 0.34 0.60 0.37 0.04 0.27 0.67 0.33 - - - - - - - - -
UniAD [CVPR23] [21] - - - - - - - - 0.59 1.01 1.48 1.03 0.16 0.51 1.64 0.77 -
UniAD* [CVPR23] [21] - - - - - - - - 0.20 0.42 0.75 0.46 0.02 0.25 0.84 0.37 -
BEV-Planner [CVPR24] [34] 0.30 0.52 0.83 0.55 0.10 0.37 1.30 0.59 - - - - - - - - -
BEV-Planner* [CVPR24] [34] 0.16 0.32 0.57 0.35 0.00 0.29 0.73 0.34 - - - - - - - - -
PreWorld [ICLR25] [32] - - - - - - - - 0.49 1.22 2.32 1.34 0.19 0.57 2.65 1.14 -

Autoregressive methods
ELM [ECCV24] [98] - - - - - - - - 0.34 1.23 2.57 1.38 0.12 0.50 2.36 0.99 BLIP2-2.7B
FeD* [CVPR24] [86] - - - - - - - - 0.27 0.53 0.94 0.58 0.00 0.04 0.52 0.19 LLaVA-7B
OccWorld [ECCV24] [94] 0.39 0.73 1.18 0.77 0.11 0.19 0.67 0.32 0.52 1.27 2.41 1.40 0.12 0.40 2.08 0.87 GPT3-like
Doe-1 [arxiv24] [95] 0.37 0.67 1.07 0.70 0.02 0.14 0.47 0.21 0.50 1.18 2.11 1.26 0.04 0.37 1.19 0.53 Lumina-mGPT-7B
RDA-Driver* [ECCV24] [26] 0.17 0.37 0.69 0.40 0.01 0.05 0.26 0.10 0.23 0.73 1.54 0.80 0.00 0.13 0.83 0.32 LLaVA-7B
EMMA* [arxiv24] [27] 0.14 0.29 0.54 0.32 - - - - - - - - - - - - Gemini 1-1.8B
OmniDrive [CVPR25] [64] 0.40 0.80 1.32 0.84 0.04 0.46 2.32 0.94 - - - - - - - - LLaVA-7B
OmniDrive* [CVPR25] [64] 0.14 0.29 0.55 0.33 0.00 0.13 0.78 0.30 - - - - - - - - LLaVA-7B

FSDrive (ours) 0.28 0.52 0.80 0.53 0.06 0.13 0.32 0.17 0.40 0.89 1.60 0.96 0.07 0.12 1.02 0.40 Qwen2-VL-2B
FSDrive* (ours) 0.14 0.25 0.46 0.28 0.03 0.06 0.21 0.10 0.18 0.39 0.77 0.45 0.00 0.06 0.42 0.16 Qwen2-VL-2B
FSDrive (ours) 0.29 0.57 0.94 0.60 0.04 0.14 0.38 0.19 0.36 1.01 1.90 1.09 0.08 0.34 1.11 0.51 LLaVA-7B
FSDrive* (ours) 0.13 0.28 0.52 0.31 0.03 0.07 0.24 0.12 0.22 0.51 0.94 0.56 0.02 0.07 0.53 0.21 LLaVA-7B

Table 2: Performance comparison on NAVSIM navtest using closed-loop metrics. All the methods
only use images as input and do not use lidar.

Method NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
VADv2 [arXiv24] [3] 97.2 89.1 91.6 100 76.0 80.9
UniAD [CVPR23] [21] 97.8 91.9 92.9 100 78.8 83.4
DiffusionDrive-Cam [CVPR25] [36] 97.8 92.2 92.6 99.9 78.9 83.6
LTF [TPAMI23] [6] 97.4 92.8 92.4 100 79.0 83.8
PARA-Drive [CVPR24] [69] 97.9 92.4 93.0 99.8 79.3 84.0
LAW [ICLR25] [33] 96.4 95.4 88.7 99.9 81.7 84.6

FSDrive (ours) 98.2 93.8 93.3 99.9 80.1 85.1

Following the previous methods [7, 64], we evaluate scene understanding on DriveLM [54]. This
dataset features keyframe descriptions paired with QA annotations covering full-stack autonomous
driving (perception, prediction, planning), offering comprehensive language support for development.

Metrics. We evaluate trajectory planning using L2 displacement error and collision rate following
previous methods [21, 29, 19]. Notably, UniAD [21] computes L2 metrics and collision rate at
each timestep, whereas ST-P3 [19] and VAD [29] considers the average of all previous time-steps.
For a fair comparison, we adopted these two different calculation methods. Following existing
methods [65, 77, 71], we report Fréchet Inception Distance (FID) [17] to measure the future frames
generation quality. DriveLM GVQA [54] metrics include language metrics like BLEU, ROUGE_L,
and CIDEr for text generation, the ChatGPT Score for open-ended Q&A and accuracy for multiple-
choice questions. For NAVSIM [10], we adopt the official metrics for evaluation, especially PDMS.

Implementation details. We initialize our model with Qwen2-VL-2B [63] and pre-train it for 32
epochs to enable visual generation while preserving semantic understanding. During fine-tuning (12
epochs on 8 NVIDIA RTX A6000), we use 1× 10−4 learning rate and batch size of 16. We expand
the visual codebook of MoVQGAN [92] to the vocabulary of the large language model and use its
detokenizer to convert the visual tokens predicted by the large language model to the pixel space.
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Table 3: Future frames generation results on the nuScenes [1] dataset.

Method DriveGAN DriveDreamer Drive-WM GenAD GEM Doe-1 FSDrive
[CVPR21 [30]] [ECCV24 [65]] [CVPR24 [66]] [CVPR24 [77]] [CVPR25 [16]] [arxiv24 [95]]

Type GAN Diffusion Diffusion Diffusion Diffusion Autoregressive Autoregressive
Resolution 256×256 128×192 192×384 256×448 576×1024 384×672 128×192

FID ↓ 73.4 52.6 15.8 15.4 10.5 15.9 10.1

Table 4: Results on DriveLM [54] GVQA benchmark.
Method Accuracy ↑ChatGPT ↓BLEU_1 ↑ROUGE_L ↑CIDEr ↑Match ↑ Final Score ↑
DriveLM baseline [54] 0.00 0.65 0.05 0.08 0.10 0.28 0.32
Cube-LLM [7] 0.39 0.89 0.16 0.20 0.31 0.39 0.50
TrackingMeetsLMM [28] 0.60 0.58 0.72 0.72 0.04 0.36 0.52
SimpleLLM4AD [93] 0.66 0.57 0.76 0.73 0.15 0.35 0.53
OmniDrive [64] 0.70 0.65 0.52 0.73 0.13 0.37 0.56

FSDrive (ours) 0.72 0.63 0.76 0.74 0.17 0.39 0.57

Table 5: Ablation results of pre-training.

VQA Future Future Future L2 (m) ↓ Collision (%) ↓
frames 3D detection lane divider 1s 2s 3s Avg. 1s 2s 3s Avg.

× × × × 0.45 1.09 2.12 1.22 0.12 0.43 1.45 0.67
✓ × × × 0.46 1.07 2.04 1.19 0.12 0.42 1.42 0.65
× ✓ × × 0.39 0.96 1.71 1.02 0.10 0.38 1.32 0.60
× × ✓ × 0.46 1.06 1.99 1.17 0.10 0.37 1.35 0.61
× × × ✓ 0.42 0.97 1.80 1.06 0.13 0.41 1.40 0.65
✓ ✓ ✓ ✓ 0.39 0.91 1.63 0.98 0.09 0.36 1.33 0.58

4.2 Main results

End-to-End trajectory planning. We present trajectory planning performance on nuScenes fol-
lowing previous methods [29, 21] in Table 1. When using ego status, FSDrive surpasses previous
SOTA methods using ego status in ST-P3 and UniAD metrics. However, following BEV-Planner [34]
findings about ego-status’s performance boost, we prioritize non-ego-status evaluations. Compared to
non-autoregressive (e.g., UniAD) and autoregressive methods (e.g., OmniDrive), FSDrive demon-
strates superior effectiveness. Notably, FSDrive outperforms Doe-1 [95] which also enables vision
generation (L2: 0.53 vs. 0.70 and 0.96 vs. 1.26; collision: 0.19 vs. 0.21 and 0.40 vs. 0.53), indicating
limitations in their VQ-VAE-based discrete visual features for understanding. For a fair comparison,
we also used LLaVA like methods [64, 26, 86, 75]. Under the corresponding settings, FSDrive still
has excellent competitiveness, indicating that FSDrive can be widely applied to any existing MLLM.

Results on NAVSIM. Table 2 shows the evaluation results for NAVSIM [10]. All approaches
rely exclusively on camera input, with no lidar data being used. Achieving a PDMS score of 85.1,
FSDrive outperforms prior camera-only methods like LAW [33] and DiffusionDrive-Cam [36], thus
showcasing its efficacy in the pseudo closed-loop setting.

Evaluation of generation results. Although we generate future frames as CoT for trajectory
planning, we still validate visual quality via FID in Table 3. To enable rapid generation for real-time
driving, we generate frames at 128×192 resolution. Our autoregressive FSDrive achieves competitive
performance against specialized diffusion models. Compared to Doe-1 [95] which employs the vision
generation MLLM Lumina-mGPT 7B [37], FSDrive 2B maintains superior advantages, indicating
that the visual generation capabilities of MLLM can be effectively unlocked even with minimal data.

Results on DriveLM dataset. FSDrive’s scene understanding was evaluated on DriveLM in Table 4,
achieving 0.57 and outperforming recent methods like Cube-LLM [7] and OmniDrive [64]. This
highlights the effectiveness of FSDrive pre-training paradigm for generation and understanding.
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Figure 3: Qualitative analysis of our CoT. The red trajectory is the prediction and the green is the GT.

Table 6: Ablation results of different CoT.

Type L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

None 0.39 0.91 1.63 0.98 0.09 0.36 1.33 0.58
Text CoT 0.39 0.92 1.61 0.97 0.10 0.29 1.21 0.53

Image-text CoT 0.38 0.90 1.65 0.98 0.09 0.25 1.15 0.50
Spatio-temporal CoT 0.40 0.89 1.60 0.96 0.07 0.12 1.02 0.40

4.3 Ablation study

In this section, unless otherwise specified, we evaluate the computing metrics of UniAD [21] based
on the Qwen2-VL-2B model [63] and do not use the ego status.

Qualitative analysis. We evaluate our CoT’s effectiveness in Figure 3. Without spatial-temporal
CoT, erroneous navigation inputs caused significant trajectory deviations and potential collisions.
Use correct instruction when reasoning our CoT, while still employing wrong instruction for planning.
However, FSDrive mitigated instruction errors through observation-based trajectory planning and
future prediction, demonstrating its inverse dynamics modeling capability.

Table 7: Ablation experiments of future frames generation.

(a) Ablations of pre-training data volume.

Data volume FID↓
None 29.4
∼100k 16.2
∼200k 12.7

(b) Ablations of progressive method.

Progressive FID↓Method

× 12.7
✓ 10.1

Pre-training ablation study. The impact of pre-training on trajectory planning is summarized in
Table 5. Pure VQA tasks show negligible effects. Future frame generation pre-training improves
L2 by 16.4% and collisions by 15.8%, validating world-model-based prediction’s effectiveness in
capturing physical dynamics. 3D detection and lane divider pre-training yield moderate gains in
L2/collision metrics respectively. The combined understanding and generation pre-training achieves
better performance, demonstrating our unified paradigm’s capacity to enhance scene representation
and effectively learn physical laws, thereby strengthening spatial understanding capabilities.

Results of different CoT. Ablation studies on CoT variants in Table 6 show marginal L2 changes
but notable collision rate improvements. Pure text CoT (8.6% improvement) exhibits limited repre-
sentation capability due to unimodal perception. Compared to text CoT, image-text CoT (combining
future frames with textual perception) shows insignificant gains due to the inconsistent modalities
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between CoTs. The proposed spatio-temporal CoT achieves 31% improvement, demonstrating that
unified image-based reasoning effectively identifies future collision risks.

Ablation study on generation results. We conduct ablation studies on future frames generation
in Table 7. Table 7a shows that larger pre-training datasets improve MLLM’s visual generation
capability. Despite being much smaller (200K vs. 100M in previous work [70]), our data achieves
more robust visual generation. Scaling datasets may further enhance performance. Table 7b confirms
our progressive method improves autoregressive image generation.

5 Conclusion

This paper proposes FSDrive, an autonomous driving framework based on spatio-temporal CoT
that enables VLAs to think visually. By unifying future scene generation and perception results
through intermediate image-form reasoning steps, our FSDrive eliminates the semantic gap caused
by cross-modal conversions and establishes an end-to-end visual reasoning pipeline. The VLA serves
dual roles: as a world model that predicts future image frames with lane divider and 3D detection,
and as an inverse dynamics model that plans trajectory based on both current observations and future
predictions. To enable visual generation in VLAs, we present a pretraining paradigm that unifies
visual generation and understanding, along with a progressive easy-to-hard visual CoT to enhance
autoregressive image generation. Extensive experimental results demonstrate the effectiveness of the
proposed FSDrive method, advancing autonomous driving towards visual reasoning.

Limitations and broader impacts. Though autonomous driving requires surrounding environ-
mental awareness, considering real-time efficiency, we currently only generate future frames for the
front-view. Future work can attempt to generate Surround views to achieve safer autonomous driving.
Moreover, more robust visual quality can be achieved in future work through the use of larger training
datasets and a more advanced unified paradigm that integrates generation and understanding. In
terms of impact, the ethical challenges posed by LLMs extend to autonomous driving. Advances in
technology and regulation will drive development of safer, more efficient systems.

Acknowledgments. This work was support by the National Natural Science Foundation of China
No. 62572385, the Fundamental Research Funds for the Central Universities No. xxj032023020, and
CAAI-CANN Open Fund, developed on OpenI Community.

References
[1] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and

O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. CVPR, 2020.
[2] X. Chang, M. Xue, X. Liu, Z. Pan, and X. Wei. Driving by the rules: A benchmark for integrating traffic

sign regulations into vectorized hd map. CVPR, 2025.
[3] S. Chen, B. Jiang, H. Gao, B. Liao, Q. Xu, Q. Zhang, C. Huang, W. Liu, and X. Wang. Vadv2: End-to-end

vectorized autonomous driving via probabilistic planning. arXiv preprint arXiv:2402.13243, 2024.
[4] Y. Chen and R. Greer. Technical report for argoverse2 scenario mining challenges on iterative error

correction and spatially-aware prompting. arXiv preprint arXiv:2506.11124, 2025.
[5] Y. Chen, Y.-Q. Wang, and Z. Zhang. Drivinggpt: Unifying driving world modeling and planning with

multi-modal autoregressive transformers. ICCV, 2025.
[6] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger. Transfuser: Imitation with transformer-

based sensor fusion for autonomous driving. TPAMI, 2023.
[7] J. H. Cho, B. Ivanovic, Y. Cao, E. Schmerling, Y. Wang, X. Weng, B. Li, Y. You, P. Krähenbühl, Y. Wang,

et al. Language-image models with 3d understanding. ICLR, 2025.
[8] M. Dai, S. Liu, Z. Zhao, J. Gao, H. Sun, and X. Li. Secure tug-of-war (sectow): Iterative defense-attack

training with reinforcement learning for multimodal model security. arXiv preprint arXiv:2507.22037,
2025.

[9] M. Dai, J. Sun, Z. Zhao, S. Liu, R. Li, J. Gao, and X. Li. From captions to rewards (carevl): Leveraging
large language model experts for enhanced reward modeling in large vision-language models. arXiv
preprint arXiv:2503.06260, 2025.

[10] D. Dauner, M. Hallgarten, T. Li, X. Weng, Z. Huang, Z. Yang, H. Li, I. Gilitschenski, B. Ivanovic,
M. Pavone, A. Geiger, and K. Chitta. Navsim: Data-driven non-reactive autonomous vehicle simulation
and benchmarking. In NeurIPS, 2024.

10



[11] R. Dong, C. Han, Y. Peng, Z. Qi, Z. Ge, J. Yang, L. Zhao, J. Sun, H. Zhou, H. Wei, X. Kong, X. Zhang,
K. Ma, and L. Yi. DreamLLM: Synergistic multimodal comprehension and creation. In ICLR, 2024.

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. ICLR, 2021.

[13] S. Gao, J. Yang, L. Chen, K. Chitta, Y. Qiu, A. Geiger, J. Zhang, and H. Li. Vista: A generalizable driving
world model with high fidelity and versatile controllability. In NeurIPS, 2024.

[14] Y. Gao, C. Li, Z. You, J. Liu, Z. Li, P. Chen, Q. Chen, Z. Tang, L. Wang, P. Yang, et al. Openfly: A
comprehensive platform for aerial vision-language navigation. CoRR, 2025.

[15] J. Guo, Z. Li, J. Wu, Q. Wang, Y. Li, L. Zhang, hai zhao, and Y. Yang. Tom: Leveraging tree-oriented
mapreduce for long-context reasoning in large language models. In EMNLP, 2025.

[16] M. Hassan, S. Stapf, A. Rahimi, P. M. B. Rezende, Y. Haghighi, D. Brüggemann, I. Katircioglu, L. Zhang,
X. Chen, S. Saha, M. Cannici, E. Aljalbout, B. Ye, X. Wang, A. Davtyan, M. Salzmann, D. Scaramuzza,
M. Pollefeys, P. Favaro, and A. Alahi. Gem: A generalizable ego-vision multimodal world model for
fine-grained ego-motion, object dynamics, and scene composition control. CVPR, 2025.

[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. NeurIPS, 2017.

[18] A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall, J. Shotton, and G. Corrado. Gaia-1: A
generative world model for autonomous driving. arXiv preprint arXiv:2309.17080, 2023.

[19] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao. St-p3: End-to-end vision-based autonomous driving via
spatial-temporal feature learning. In ECCV, 2022.

[20] Y. Hu, Q. Li, D. Zhang, J. Yan, and Y. Chen. Context-alignment: Activating and enhancing LLMs
capabilities in time series. In ICLR, 2025.

[21] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, L. Lu, X. Jia, Q. Liu,
J. Dai, Y. Qiao, and H. Li. Planning-oriented autonomous driving. In CVPR, 2023.

[22] J. Huang, M. Yan, S. Chen, Y. Huang, and S. Chen. Magicfight: Personalized martial arts combat video
generation. In Proceedings of the 32nd ACM International Conference on Multimedia, 2024.

[23] J. Huang, G. Zhang, Z. Jie, S. Jiao, Y. Qian, L. Chen, Y. Wei, and L. Ma. M4v: Multi-modal mamba for
text-to-video generation. arXiv preprint arXiv:2506.10915, 2025.

[24] Z. Huang, H. Qian, Z. Cai, A. Wang, J. Wang, and F. Xiong. Intelligent recognition method for urban road
grid patterns by fusing mesh and road features. International Journal of Digital Earth, 2024.

[25] Z. Huang, H. Qian, Z. Cai, X. Wang, L. Xie, and X. Niu. An intelligent multilane roadway recognition
method based on pseudo-tagging. Cartography and Geographic Information Science, 2025.

[26] Z. Huang, T. Tang, S. Chen, S. Lin, and Z. e. a. Jie. Making large language models better planners with
reasoning-decision alignment. ECCV, 2024.

[27] J.-J. Hwang, R. Xu, H. Lin, W.-C. Hung, J. Ji, K. Choi, D. Huang, T. He, P. Covington, B. Sapp, J. Guo,
D. Anguelov, and M. Tan. Emma: End-to-end multimodal model for autonomous driving. TMLR, 2025.

[28] A. Ishaq, J. Lahoud, F. S. Khan, S. Khan, H. Cholakkal, and R. M. Anwer. Tracking meets large multimodal
models for driving scenario understanding. ArXiv preprint arXiv:2503.14498, 2025.

[29] B. Jiang, S. Chen, Q. Xu, B. Liao, J. Chen, H. Zhou, Q. Zhang, W. Liu, C. Huang, and X. Wang. Vad:
Vectorized scene representation for efficient autonomous driving. ICCV, 2023.

[30] S. W. Kim, J. Philion, A. Torralba, and S. Fidler. Drivegan: Towards a controllable high-quality neural
simulation. In CVPR, 2021.

[31] B. Li, Y. Wang, J. Mao, B. Ivanovic, S. Veer, K. Leung, and M. Pavone. Driving everywhere with large
language model policy adaptation. In CVPR, 2024.

[32] X. Li, P. Li, Y. Zheng, W. Sun, Y. Wang, and Y. Chen. Semi-supervised vision-centric 3d occupancy world
model for autonomous driving. ICLR, 2025.

[33] Y. Li, L. Fan, J. He, Y. Wang, Y. Chen, Z. Zhang, and T. Tan. Enhancing end-to-end autonomous driving
with latent world model. ICLR, 2025.

[34] Z. Li, Z. Yu, S. Lan, J. Li, J. Kautz, T. Lu, and J. M. Álvarez. Is ego status all you need for open-loop
end-to-end autonomous driving? CVPR, 2024.

[35] S. Liang, X. Chang, C. Wu, H. Yan, Y. Bai, X. Liu, H. Zhang, Y. Yuan, S. Zeng, M. Xu, et al. Persistent
autoregressive mapping with traffic rules for autonomous driving. arXiv preprint arXiv:2509.22756, 2025.

[36] B. Liao, S. Chen, H. Yin, B. Jiang, C. Wang, S. Yan, X. Zhang, X. Li, Y. Zhang, Q. Zhang, and X. Wang.
Diffusiondrive: Truncated diffusion model for end-to-end autonomous driving. CVPR, 2025.

[37] D. Liu, S. Zhao, L. Zhuo, W. Lin, Y. Qiao, H. Li, and P. Gao. Lumina-mgpt: Illuminate flexible photoreal-
istic text-to-image generation with multimodal generative pretraining. arXiv preprint arXiv:2408.02657,
2024.

[38] H. Liu, W. Yan, M. Zaharia, and P. Abbeel. World model on million-length video and language with
ringattention. ICLR, 2025.

[39] J. Liu, F. Shang, Y. Liu, H. Liu, Y. Li, and Y. Gong. Fedbcgd: Communication-efficient accelerated block
coordinate gradient descent for federated learning. In ACM MM, 2024.

11



[40] W. Liu, J. Chen, K. Ji, L. Zhou, W. Chen, and B. Wang. Rag-instruct: Boosting llms with diverse
retrieval-augmented instructions. EMNLP, 2025.

[41] W. Liu, J. Xu, F. Yu, Y. Lin, K. Ji, W. Chen, Y. Xu, Y. Wang, L. Shang, and B. Wang. Qfft, question-free
fine-tuning for adaptive reasoning. NeurIPS, 2025.

[42] W. Lu, Y. Tong, and Z. Ye. Dammfnd: Domain-aware multimodal multi-view fake news detection. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2025.

[43] Y. Ma, Y. Cao, J. Sun, M. Pavone, and C. Xiao. Dolphins: Multimodal language model for driving. ECCV,
2024.

[44] J. Mao, J. Ye, Y. Qian, M. Pavone, and Y. Wang. A language agent for autonomous driving. COLM, 2024.
[45] C. Min, D. Zhao, L. Xiao, J. Zhao, X. Xu, Z. Zhu, L. Jin, J. Li, Y. Guo, J. Xing, L. Jing, Y. Nie, and B. Dai.

Driveworld: 4d pre-trained scene understanding via world models for autonomous driving. CVPR, 2024.
[46] S. Motamed, L. Culp, K. Swersky, P. Jaini, and R. Geirhos. Do generative video models understand

physical principles? arXiv preprint arXiv:2501.09038, 2025.
[47] J. Ni, Y. Guo, Y. Liu, R. Chen, L. Lu, and Z. Wu. Maskgwm: A generalizable driving world model with

video mask reconstruction. CVPR, 2025.
[48] Y. Qian, X. Li, J. Zhang, X. Meng, Y. Li, H. Ding, and M. Wang. A diffusion-tgan framework for

spatio-temporal speed imputation and trajectory reconstruction. IEEE T-ITS, 2025.
[49] K. Qiu, Z. Gao, Z. Zhou, M. Sun, and Y. Guo. Noise-consistent siamese-diffusion for medical image

synthesis and segmentation. In CVPR, 2025.
[50] D. Qu, H. Song, Q. Chen, Y. Yao, X. Ye, Y. Ding, Z. Wang, J. Gu, B. Zhao, D. Wang, et al. Spatialvla:

Exploring spatial representations for visual-language-action model. RSS, 2025.
[51] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,

J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision. In ICML, 2021.

[52] A. Sarkar, M. Y. I. Idris, and Z. Yu. Reasoning in computer vision: Taxonomy, models, tasks, and
methodologies. arXiv preprint arXiv:2508.10523, 2025.

[53] A. Shtedritski, C. Rupprecht, and A. Vedaldi. What does clip know about a red circle? visual prompt
engineering for vlms. ICCV, 2023.

[54] C. Sima, K. Renz, K. Chitta, L. Chen, H. Zhang, C. Xie, P. Luo, A. Geiger, and H. Li. Drivelm: Driving
with graph visual question answering. ECCV, 2024.

[55] H. Song, D. Qu, Y. Yao, Q. Chen, Q. Lv, Y. Tang, M. Shi, G. Ren, M. Yao, B. Zhao, et al. Hume:
Introducing system-2 thinking in visual-language-action model. arXiv preprint arXiv:2505.21432, 2025.

[56] P. Sun, Y. Jiang, S. Chen, S. Zhang, B. Peng, P. Luo, and Z. Yuan. Autoregressive model beats diffusion:
Llama for scalable image generation. arXiv preprint arXiv:2406.06525, 2024.

[57] Q. Sun, Q. Yu, Y. Cui, F. Zhang, X. Zhang, Y. Wang, H. Gao, J. Liu, T. Huang, and X. Wang. Generative
pretraining in multimodality. ICLR, 2024.

[58] S. Sun, W. Yu, Y. Ren, W. Du, L. Liu, X. Zhang, Y. Hu, and C. Ma. Gdiffretro: Retrosynthesis prediction
with dual graph enhanced molecular representation and diffusion generation. AAAI, 2025.

[59] W. Tan, D. Chen, J. Xue, Z. Wang, and T. Chen. Teaching-inspired integrated prompting framework: A
novel approach for enhancing reasoning in large language models. In COLING: Industry Track, 2025.

[60] X. Tian, J. Gu, B. Li, Y. Liu, Z. Zhao, Y. Wang, K. Zhan, P. Jia, X. Lang, and H. Zhao. Drivevlm: The
convergence of autonomous driving and large vision-language models. CoRL, 2024.

[61] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In NeurIPS,
2017.

[62] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, 2017.

[63] P. Wang, S. Bai, S. Tan, S. Wang, Z. Fan, J. Bai, K. Chen, X. Liu, J. Wang, W. Ge, Y. Fan, K. Dang, M. Du,
X. Ren, R. Men, D. Liu, C. Zhou, J. Zhou, and J. Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

[64] S. Wang, Z. Yu, X. Jiang, S. Lan, M. Shi, N. Chang, J. Kautz, Y. Li, and J. M. Álvarez. Omnidrive: A
holistic llm-agent framework for autonomous driving with 3d perception, reasoning and planning. CVPR,
2025.

[65] X. Wang, Z. Zhu, G. Huang, X. Chen, J. Zhu, and J. Lu. Drivedreamer: Towards real-world-driven world
models for autonomous driving. ECCV, 2024.

[66] Y. Wang, J. He, L. Fan, H. Li, Y. Chen, and Z. Zhang. Driving into the future: Multiview visual forecasting
and planning with world model for autonomous driving. CVPR, 2024.

[67] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, F. Xia, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. NeurIPS, 2022.

[68] Q. Wei, P. Dai, W. Li, B. Liu, and X. Wu. Copeft: Fast adaptation framework for multi-agent collaborative
perception with parameter-efficient fine-tuning. In AAAI, 2025.

[69] X. Weng, B. Ivanovic, Y. Wang, Y. Wang, and M. Pavone. Para-drive: Parallelized architecture for real-time
autonomous driving. In CVPR, 2024.

12



[70] C. Wu, X. Chen, Z. Wu, Y. Ma, X. Liu, Z. Pan, W. Liu, Z. Xie, X. Yu, C. Ruan, et al. Janus: Decoupling
visual encoding for unified multimodal understanding and generation. CVPR, 2024.

[71] C. Wu, H. Huang, L. Zhang, J. Chen, Y. Tong, and M. Zhou. Towards automated 3d evaluation of water
leakage on a tunnel face via improved gan and self-attention dl model. Tunn Undergr Space Technol, 2023.

[72] J. Wu, H. Li, X. Zhang, X. Liu, Y. Huang, J. Luo, Y. Zhang, Z. Li, R. Chu, Y. Yang, and S. Li. Teaching
your models to understand code via focal preference alignment. In EMNLP, 2025.

[73] Y. Wu, Z. Zhang, J. Chen, H. Tang, D. Li, Y. Fang, L. Zhu, E. Xie, H. Yin, L. Yi, et al. Vila-u: a unified
foundation model integrating visual understanding and generation. ICLR, 2025.

[74] J. Xie, W. Mao, Z. Bai, D. J. Zhang, W. Wang, K. Q. Lin, Y. Gu, Z. Chen, Z. Yang, and M. Z. Shou.
Show-o: One single transformer to unify multimodal understanding and generation. ICLR, 2025.

[75] M. Xie, S. Zeng, X. Chang, X. Liu, Z. Pan, M. Xu, and X. Wei. Seqgrowgraph: Learning lane topology as
a chain of graph expansions. In ICCV, 2025.

[76] Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K.-Y. K. Wong, Z. Li, and H. Zhao. Drivegpt4: Interpretable
end-to-end autonomous driving via large language model. IEEE Robotics and Automation Letters, 2024.

[77] J. Yang, S. Gao, Y. Qiu, L. Chen, T. Li, B. Dai, K. Chitta, P. Wu, J. Zeng, P. Luo, J. Zhang, A. Geiger,
Y. Qiao, and H. Li. Generalized predictive model for autonomous driving. In CVPR, 2024.

[78] X. Yang, B. Li, Y. Zhang, Z. Yin, L. Bai, L. Ma, Z. Wang, J. Cai, T.-T. Wong, H. Lu, and X. Jia. Vlipp:
Towards physically plausible video generation with vision and language informed physical prior. ICCV,
2025.

[79] Z. Yang, L. Chen, Y. Sun, and H. Li. Visual point cloud forecasting enables scalable autonomous driving.
In CVPR, 2024.

[80] Z. Yu, M. Y. I. Idris, H. Wang, P. Wang, J. Chen, and K. Wang. From physics to foundation models: A
review of ai-driven quantitative remote sensing inversion. arXiv preprint arXiv:2507.09081, 2025.

[81] Z. Yu, M. Y. I. Idris, P. Wang, Y. Xia, and Y. Xiang. Forgetme: Benchmarking the selective forgetting
capabilities of generative models. Engineering Applications of Artificial Intelligence, 2025.

[82] Y. Yuan, C. Wu, X. Chang, S. Wang, H. Zhang, S. Liang, S. Zeng, and M. Xu. Unimapgen: A generative
framework for large-scale map construction from multi-modal data. arXiv preprint arXiv:2509.22262,
2025.

[83] B. Yue, S. Guo, K. Hu, C. Wang, B. Wang, K. Jia, and G. Liu. Real-time verification of embodied reasoning
for generative skill acquisition. arXiv preprint arXiv:2505.11175, 2025.

[84] S. Zeng, X. Chang, X. Liu, Z. Pan, and X. Wei. Driving with prior maps: Unified vector prior encoding for
autonomous vehicle mapping. arXiv preprint arXiv:2409.05352, 2024.

[85] S. Zeng, D. Qi, X. Chang, F. Xiong, S. Xie, X. Wu, S. Liang, M. Xu, and X. Wei. Janusvln: Decoupling
semantics and spatiality with dual implicit memory for vision-language navigation. arXiv preprint
arXiv:2509.22548, 2025.

[86] J. Zhang, Z. Huang, A. Ray, and E. Ohn-Bar. Feedback-guided autonomous driving. In CVPR, 2024.
[87] J. Zhang, C. Xu, and B. Li. Chatscene: Knowledge-enabled safety-critical scenario generation for

autonomous vehicles. In CVPR, 2024.
[88] L. Zhang, B. Wang, X. Qiu, S. Reddy, and A. Agrawal. Rearank: Reasoning re-ranking agent via

reinforcement learning. EMNLP, 2025.
[89] Y. Zhang, X. Liu, R. Tao, Q. Chen, H. Fei, W. Che, and L. Qin. Vitcot: Video-text interleaved chain-of-

thought for boosting video understanding in large language models. ACM MM, 2025.
[90] Y. Zhang, X. Liu, R. Zhou, Q. Chen, H. Fei, W. Lu, and L. Qin. Cchall: A novel benchmark for joint

cross-lingual and cross-modal hallucinations detection in large language models. ACL, 2025.
[91] Q. Zhao, Y. Lu, M. J. Kim, Z. Fu, Z. Zhang, Y. Wu, Z. Li, Q. Ma, S. Han, C. Finn, A. Handa, M.-Y. Liu,

D. Xiang, G. Wetzstein, and T.-Y. Lin. Cot-vla: Visual chain-of-thought reasoning for vision-language-
action models. In CVPR, 2025.

[92] C. Zheng, L. T. Vuong, J. Cai, and D. Q. Phung. Movq: Modulating quantized vectors for high-fidelity
image generation. NeurIPS, 2022.

[93] P. Zheng, Y. Zhao, Z. Gong, H. Zhu, and S. Wu. Simplellm4ad: An end-to-end vision-language model
with graph visual question answering for autonomous driving. ArXiv preprint arXiv:2407.21293, 2024.

[94] W. Zheng, W. Chen, Y. Huang, B. Zhang, Y. Duan, and J. Lu. Occworld: Learning a 3d occupancy world
model for autonomous driving. ECCV, 2024.

[95] W. Zheng, Z. Xia, Y. Huang, S. Zuo, J. Zhou, and J. Lu. Doe-1: Closed-loop autonomous driving with
large world model. arXiv preprint arXiv: 2412.09627, 2024.

[96] P. Zhou, W. Min, C. Fu, Y. Jin, M. Huang, X. Li, S. Mei, and S. Jiang. Foodsky: A food-oriented large
language model that can pass the chef and dietetic examinations. Patterns, 2025.

[97] P. Zhou, X. Peng, J. Song, C. Li, Z. Xu, Y. Yang, Z. Guo, H. Zhang, Y. Lin, Y. He, et al. Opening: A
comprehensive benchmark for judging open-ended interleaved image-text generation. In CVPR, 2025.

[98] Y. Zhou, L. Huang, Q. Bu, J. Zeng, T. Li, H. Qiu, H. Zhu, M. Guo, Y. Qiao, and H. Li. Embodied
understanding of driving scenarios. ECCV, 2024.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the contri-
bution and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper focuses on experimental verification and does not involve strict
mathematical proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose information that reproduces the main experimental results of the
paper in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code upon completion of the approval process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We illustrate all the training and testing details in the Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report information about the statistical significance of the experiments in
the Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the computer resources needed to reproduce the
experiments in the Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper complies in all respects with the NeurIPS
ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the impacts of the work in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the data and models used in the paper were appropriately
credited and in compliance with the license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our new assets (code and model) will be made publicly available upon
completion of the approval process.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLM to polish the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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