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Abstract

Capsule-based network has currently identi-001
fied its effectiveness in analyzing the hetero-002
geneity issue of multimodal sentiment analy-003
sis. However, existing manners could only004
exploit the spatial relation between represen-005
tation and output layer via down-top atten-006
tion, which fails to effectively explore both007
inter-modality and intra-modality context. In008
this paper, during the preprocess period, we009
first present the multimodal dynamic enhanced010
module to facilitate the intra-modality con-011
text, which significantly boost the learning effi-012
ciency in dealing with multimodal heterogene-013
ity issue. Furthermore, the bi-direction atten-014
tion capsule-based network (BACN) is pro-015
posed to capture dynamic inter-modality con-016
text via the novel bi-direction dynamic routing017
mechanism. Specifically, BACN firstly high-018
lights the static and low-level inter-modality019
context based on top-down attention. Then,020
the static multimodal context is transmitted to021
dynamic routing procedure, naturally allowing022
us to investigate dynamic and high-level inter-023
modality context. This indeed unleash the ex-024
pressive power and provides the superior ca-025
pability to bridge the modality gap among all026
the modalities. The experiments demonstrate027
that BACN can achieve state-of-the-art perfor-028
mance.029

1 Introduction030

Multimodal sentiment analysis has raised increas-031

ing interests in the artificial intelligence systems,032

where text, acoustic and visual modalities are033

popularly utilized to analyze the related research034

task(Ain et al., 2017; Rahman et al., 2020). The035

primary concern of multimodal analysis task is to036

learn a rich representation that better encapsulates037

two types of context: intra-modal and inter-modal038

context from multiple heterogeneous modalities.039

Indeed, the above context provide us the benefit to040

decrease the intra-modality and inter-modality re-041

dundancy simultaneously, allowing for effectively042

bridging the modality gaps of the heterogeneous 043

modalities (Hazarika et al., 2020). 044

Recently, capsule-based networks have gained 045

widespread attention for their significant perfor- 046

mance in capturing the part-whole relationships 047

among various modalities in computer vision and 048

NLP(Lin et al., 2020), with the help of train- 049

able viewpoint-invariant transformations. EF-Net 050

(Wang et al., 2021) employed the standard cap- 051

sule network to deal with the image presentation 052

for exploring the spatial relation among distinct 053

receptive areas of the image. In addition, McIntosh 054

(McIntosh et al., 2020) proposed a capsule-based 055

approach that introduced the novel visual-text rout- 056

ing mechanism for the integration of video and 057

text modality. Nevertheless, the aforementioned 058

techniques only attend to the spatial relation be- 059

tween representation layer and output layer via 060

down-top attention. They indeed totally ignore the 061

intra-modality context, and fail to effectively ex- 062

ploit the inter-modality context, leading to the great 063

deterioration of task performance. 064

In this paper, during the preprocess period, the 065

multimodal dynamic enhanced block is first pro- 066

posed to explicitly facilitate the intra-modality con- 067

text. This indeed effectively decrease the intra- 068

modality redundancy of unimodality, and then sig- 069

nificantly boost the learning efficiency in deal- 070

ing with the multimodality heterogeneity issue. 071

Furthermore, BACN is presented to exploit dy- 072

namic inter-modality context, using the novel bi- 073

direction dynamic routing mechanism. Specifi- 074

cally, BACN firstly captures the static and low-level 075

inter-modality context based on top-down atten- 076

tion. Then, the above static multimodal context is 077

transmitted to the carefully designed multimodal 078

dynamic routing process. This naturally gives 079

learning model the strong ability to investigate dy- 080

namic and relatively high-level inter-modality con- 081

text among multiple modalities. To the best of our 082

knowledge, our model is the first dynamic multi- 083
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Figure 1: The overall architecture: Initially, during the preprocess period, the multimodal dynamic enhanced block
is utilized to facilitate the intra-modality context of Xa (Xv), which significantly boost the learning efficiency in
dealing with multimodality heterogeneity issue. Furthermore, BACN is proposed to exploit dynamic and high-level
inter-modality context, allowing for effectively bridging the modality gaps of the heterogeneous modalities.

modal learning framework that supports the investi-084

gation of both the intra-modality and inter-modality085

task-related context. In addition, BACN has demon-086

strated the superiority on two multimodal learning087

benchmarks.088

2 Related Work089

The existing multimodal sentiment learning model090

consists of the following two leading lines:091

Non Shared-Private Multimodal Learning092

Recently, LSTM and RNN based techniques have093

drawn a surge of interest in multimodal sentiment094

analysis for their excellence in exploiting the tem-095

poral correlation from the sequence data. For in-096

stance, BC-LSTM (Poria et al., 2017) proposed the097

bi-directional LSTM to highlight the contextual re-098

lationship among utterances. RMFN (Liang et al.,099

2018) utilized RNN to decompose the complex100

fusion process into several fusion sub-stages. Com-101

pared to the above models, attention-based frame-102

works have demonstrated the superiority in the long103

sequence presentation. RAVEN (Wang et al., 2019)104

applied the attention gating mechanism to compute105

the nonverbal shift vector. MAG (Rahman et al.,106

2020) introduced an attention gated memory to in-107

tegrate the multimodal cues into the fusion context.108

Additionally, MFN (Zadeh et al., 2018a) leveraged109

the Delta-memory attention network to model the110

multimodal interactions. In addition, tensor-based111

models have raised increasing interests due to the112

high-dimension properties. TFN (Zadeh et al.,113

2017) employed the tensor manner to explicitly114

account for the unimodal, bimodal, and trimodal115

interactions. LMF (Liu et al., 2018) is the exten-116

sion of TFN, which performs multimodal fusion117

process with designed modality-specific low-rank 118

factors, significantly decreasing the computational 119

complexity. However, the lack of minimizing the 120

modality gap may limit their ability to effectively 121

decrease the redundancy among modalities. 122

Shared-Private Multimodal Learning 123

Broadly, the works of shared-private multimodal 124

sentiment analysis could be categorized into the 125

following three groups: 1) LSTM-based models: 126

MV-LSTM (Rajagopalan et al., 2016) presented 127

the multi-view LSTM block to explicitly model 128

the view-private and view-shared interaction. 129

Similarly, MARN (Zadeh et al., 2018b) applied 130

the hybrid LSTM to store view-private and view- 131

shared dynamics; 2) TopDown Attention based 132

models: MulT (Tsai et al., 2019) proposed the 133

cross-modal transformer to capture the static and 134

low-level shared-representation. Similarly, MCTN 135

(Pham et al., 2019) assigned the cyclic consistency 136

loss to the standard Transformer, allowing for the 137

joint representations. Different from MulT and 138

MCTN, MFM (Tsai et al., 2018) factorized the joint 139

distribution into shared information and modality- 140

private message; 3) Correlation-based models 141

focus on exploiting the modality-shared cues via 142

Canonical Correlation Analysis (CCA) mechanism. 143

ICCN (Sun et al., 2020) applied the deep CCA to 144

retrieve the non-linear correlations among various 145

modalities. Different from these models, MISA 146

(Hazarika et al., 2020) employed the distribution 147

similarity block to calculate similar portion across 148

all modalities, and leveraged both shared and 149

private information for sentiment prediction 150

task. And, Self-MM (Yu et al., 2021) introduced 151

unimodal subtasks to aid the modality-private 152
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representation learning. However, existing works153

have mainly focus on investigating the part-whole154

relation between low-level representation layer and155

high-level output layer. Indeed, they totally neglect156

the intra-modality context, and fail to effectively157

explore the inter-modality context, which raises158

a question on providing a deeper reasoning about159

multimodality heterogeneity issue.160
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Figure 2: Multimodal dynamic enhanced block. Ini-
tially, Xa and Xt are leveraged to compute the bi-linear
space via dot-product. Subsequently, the softmax func-
tion is utilized to exploit the context coefficients of
Xa. Then, the coefficients are applied to measure the
original Xa, leading to the more discriminative intra-
modality context X̂a.

3 Methodology161

As shown in Figure 1, the overall network consists162

of two essential components: 1) multimodal dy-163

namic enhanced module that leveraged to facilitate164

the intra-modality context, and 2) BACN is further165

proposed to explore the inter-modality context.166

3.1 Preliminaries167

The two public sentiment benchmarks are com-168

posed of three modalities, audio, video and tex-169

tual modality. The modality representation are170

represented as Xa ∈ RTa×da , Xv ∈ RTv×dv and171

Xt ∈ RTt×dt , respectively. Ti(i ∈ {a, v, t}) refers172

to the number of utterances, and the feature dimen-173

sion is denoted as di(i ∈ {a, v, t}). Note that, all174

modalities of original benchmarks have the same175

temporal dimension, i.e., Ta = Tv = Tt. Due to176

the properties of dot product, we adopt the linear177

function to analyze {Xa, Xv, Xt} for retrieving the178

same feature dimension di, i.e., da = dv = dt.179

3.2 Multimodal dynamic enhanced block180

The multimodal dynamic enhanced block (Fig-181

ure 2) is proposed to explicitly facilitate the intra-182

modality context of Xa ∈ RTa×da (Xv ∈183

RTv×dv ), with the help of text modality(Xt ∈184

RTt×dt). Specifically, the presented block consists185

of M process heads, where each head comprises186

N adaptive iterations. Intuitively, the multi-head 187

mechanism allows for extracting the intra-modality 188

context with the multi-spect view, yields the com- 189

prehensive context. For the single-head case, the 190

intra-modality context Xa
[Nm]
m of m-th head that 191

associated with Nm iterations is formulated as fol- 192

lows: 193

Xa
[Nm]
m =f(Xa ·Xt)Xa, Nm = 1 194

Xa
[Nm]
m =f(

Nm−1∑
i=1

Xa
[i]
m ·Xt)Xa

[Nm−1]
m ,Nm ≥ 2, (1) 195

where ‘f’ refers to the softmax function. Dur- 196

ing the first period of iteration, the dot-product 197

operation is adopted to explicitly map the distinct 198

modality into the bi-linear feature space Xa ·Xt. 199

Subsequently, the softmax function is introduced to 200

figure out how the utterances of the audio modality 201

is influenced by the utterances in the text modality. 202

Then, the context coefficients are applied to deal 203

with the original audio modality, contributing to 204

the more discriminative intra-modality context of 205

audio. Due to the incorporation of the guidance 206

from the more discriminative modality (text), the 207

above process indeed provides us the strong ability 208

to effectively investigate the intra-modality task- 209

related context from auxiliary modality (audio and 210

video). 211

On the basis of the first period of iteration, the 212

next period of iteration attends to dynamically up- 213

date the bi-linear space based on the output of the 214

previous iteration. That is, the output data of pre- 215

vious iteration is leveraged to explore the new bi- 216

linear space of next iteration, leading to the much 217

more compact and robust bilinear space. Note that 218

the process of Xv is similar to Xa. Taking the 219

single-head enhanced block as basis, the multi- 220

head enhanced network is further established to 221

collect the multiway intra-modality context mes- 222

sage. Additionally, the convolution operation is 223

introduced to analyze the multiway intra-modality 224

context, which is able to further explore the latent 225

interaction among distinct Xa
[Nm]
m , leading to the 226

much more compact task-related context X̂a. 227

X̂a = Conv(concat(Xa
[N1]
1 , · · · ,Xa

[NM ]
M )) (2) 228

Note that, during the preprocess period, we utilize 229

the simple operation to analyze the more discrimi- 230

native intra-modality context of auxiliary modality 231

(audio and video). This indeed effectively decrease 232
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Figure 3: BACN: The ui and vj refers to the representation and modality-shared capsules, respectively. The static
and low-level inter-modality context is firstly exploited based on top-down attention, and latently is transmitted to
the carefully designed multimodal dynamic routing process. This naturally gives learning model the strong ability
to investigate dynamic and relatively high-level inter-modality context among multiple heterogeneous modalities.

the intra-modality redundancy of unimodality, and233

then significantly boost the learning efficiency in234

dealing with the heterogeneity issue among multi-235

ple distinct modalities.236

3.3 Bi-direction Attention Capsule-based237

Network238

When the enhanced procedure is finished, BACN239

is further proposed to explore the inter-modality240

context. This indeed significantly boosts the learn-241

ing efficiency and provides the superior capability242

to effectively investigate the inter-modality context243

among multiple more discriminative modalities.244

As shown in Figure 3, BACN is mainly245

comprised of multimodal representation capsules246

{ui}Nu
i=1 and task-related capsules {vj}Nv

j=1, where247

Nu and Nv refer to the number of representation248

and task-related capsules respectively. Note that,249

{ui} are captured based on {Xa, Xv, Xt} (Lin250

et al., 2020). In the conventional capsule network,251

each ui is multiplied by a trainable transforma-252

tion matrix Wij , leading to the vote matrix ûj|i253

which stands for the projection of the represen-254

tation ui with respect to task-related capsule vj ,255

where ûj|i = uiWij .256

Compared to the conventional capsule network,257

we replace the linear Wij with the proposed con-258

volution projection, resulting in new ûj|i consists259

of the desirable convolutional nonlinear properties.260

This allows for the more fine-grained projection261

procedure of representation capsule ui with respect262

to task-related capsule vj :263

ûj|i =Conv(ui, kerneli)264

=sigmoid(
∑

ui ∗ kerneli + biasi). (3)265

In addition, we extend the above single-head con- 266

volution projection design to the multi-head case 267

associated with varying convolution kernels. Actu- 268

ally, the multi-head mechanism indeed allows for 269

the multiway and comprehensive information flow 270

between the representation capsule ui and the task- 271

related capsule vj , where s refers to the specific 272

convolution projection head: 273

û
[s]

j|i = Conv[s](ui, kernel
[s]
i ) 274

= sigmoid(
∑

ui ∗ kernel[s]i + bias
[s]
i ) (4) 275

Note that, the down-top attention of capsule net- 276

work could only analyze the part-whole (spatial) 277

relation between representation capsules {ui}Nu
i=1 278

and task-related capsules {vj}Nv
j=1, with the help 279

of dynamic routing coefficients cij . Actually, dur- 280

ing the dynamic multimodal learning procedure, 281

this fails to explicitly highlight the inter-modality 282

context among distinct modality representations 283

ui, which shows its limitation in effectively reduc- 284

ing the inter-modality redundancy. Therefore, in 285

this work, we first exploit the static and low-level 286

inter-modality context among multiple modality 287

representations ui, based on top-down attention. 288

Formally, the static inter-modality context atten[s] 289

of the s-th head is defined as follows: 290

atten[s]=TopDownAttention([û
[s]

j|i1 , ..., û
[s]

j|iNu
]) 291

= f(Wq[{û[s]

j|i}
Nu
i=1]W

T
k [{û

[s]

j|i}
Nu
i=1]

T )Wv[{û[s]

j|i}
Nu
i=1], (5) 292

where ‘[]’ refers to the concatenation operation, ‘f’ 293

indicates the softmax function, and {Wq,Wk,Wv} 294

are the transformation matrixes. Subsequently, the 295

dynamic routing procedure with Nv iterations were 296
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conducted to explore the dynamic inter-modality297

context among multiple modalities. At each it-298

eration, the dynamic coefficients c[s]ij is leveraged299

to analyze the information flow between {ui}Nu
i=1300

and {vj}Nv
j=1, which is calculated based on the tem-301

porary cumulant variable b
[s]
ij that initialized as 0.302

That is to say, c[s]ij could be utilized to measure how303

each task-related vj is influenced by modality rep-304

resentations {ui}Nu
i=1. To reiterate, we attempt to305

leverage our BACN to exploit the modality-shared306

message among multiple modalities, thus the task-307

related vj refers to the modality-shared message.308

The detailed procedure is formulated as follows:309

{c[s]ij }
Nv
j=1 =Softmax({b[s]ij }

Nv
j=1)310

=
exp(b

[s]
ij )∑Nv

j=1 exp(b
[s]
ij )

(6)311

Then, task-related capsule v
[s]
j is represented as312

the weighted sum of û[s]j|i, with the help of corre-313

sponding c
[s]
ij and the aforementioned static inter-314

modality context atten[s]. It is important to note315

that, different from the conventional capsule-based316

network where v
[s]
j only depends on c

[s]
ij and û

[s]
j|i,317

our model further transmit the static and low-level318

inter-modality context atten[s] to the carefully319

designed multimodal dynamic routing procedure.320

This indeed gives the learning model the strong321

ability to explore the dynamic and relatively high-322

level inter-modality context among multiple modal-323

ities. Essentially, the top-down attention mecha-324

nism simply investigate the static inter-modality325

context at once, leading to the relatively low-level326

context. On the contrast, we attempt to add the327

static inter-modality context atten[s] to the corre-328

sponding dynamic coefficients c[s]ij , allowing for the329

dynamic process of capturing the inter-modality330

context. Intuitively, the novel bi-direction dynamic331

coefficient (c[s]ij + atten[s]) naturally allows us to332

dynamically modify inter-modality context during333

the novel bi-direction dynamic process that associ-334

ated with multiple dynamic iterations, leading to335

the high-level inter-modality context.336

v
[s]
j =

∑
i

(c
[s]
ij + atten[s])û

[s]

j|i (7)337

When the head is set to 2, each modality338

could compute two corresponding modality-339

shared messages {v[1]j , v
[2]
j }. Then, the340

above modality-shared messages could be 341

further integrated into the unit modality- 342

shared messages {shareda, sharedv, sharedt} 343

via convolution operation. For instance, 344

shareda = conv(concat(v
[1]
j_a, v

[2]
j_a), kernela). 345

Then, all the modality-shared messages are further 346

merged into the output modality − shared via 347

convolution operation : modality − shared = 348

conv(concat(shareda,sharedv,sharedt),kernel). 349

As mentioned before, the convolution projection 350

is leveraged to analyze the ui, which allows for the 351

convolutional nonlinear representation. Accord- 352

ingly, we introduce the HingeLoss (Bailer et al., 353

2017) that attends to the analysis of nonlinear mes- 354

sage for reducing the discrepancy among modality- 355

shared messages: 356

SimilarityLoss =
∑

HingeLoss(sharedi, sharedj) 357

=
∑

max(0,1−‖D(sharedi)−D(sharedj)‖2), (8) 358

where i, j ∈ {a, v, t}, and i 6= j. Additionally, 359

in our work, each modality-private message 360

private_i is captured by the individual BACN, i.e., 361

private_i = BACN(modality_i). Then, follow- 362

ing the constraint design of MISA, the difference 363

loss is formulated as: DifferenceLoss = 364∑
i∈{a,v,t} ‖sharedTi privatei‖2F + 365∑
i,j∈{a,v,t} ‖privateTi privatej‖2F . 366

4 Experiments Setups 367

4.1 Datasets 368

CMU-MOSI dataset (Zadeh et al., 2016) is com- 369

prised of 2199 utterance-video segments collected 370

from 93 movie review videos of Youtube. Each 371

utterance is manually annotated with the continu- 372

ous sentimental label in the range of [-3, 3] from 373

strong negative to strong positive. Additionally, 374

the above dataset consists of 1284 training, 229 375

validation, and 686 testing samples. CMU-MOSEI 376

dataset (Zadeh et al., 2018c) is the extension of 377

CMU-MOSI associated with much more utterance 378

segments. This version is composed of 22856 an- 379

notated utterances, and is split into the training, 380

validation, and testing sets (16326, 1871, 4659). 381

4.2 Features and Evaluation Metrics 382

For CMU-MOSI and CMU-MOSEI, we adopt the 383

same manner of MAG and MISA to extract the 384

features of the specific modality. Specifically, the 385

pre-trained BERT and XLNet are utilized to exploit 386
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the corresponding textual representations. Addi-387

tionally, the following evaluation metrics are intro-388

duced to analyze the performance of the proposed389

model: mean absolute error (MAE), pearson cor-390

relation (Corr), binary accuracy (Acc-2), F-Score391

(F1). Essentially, two distinct manners are pro-392

posed to measure Acc-2 and F1. 1) In the work of393

(Zadeh et al., 2018b), the negative class is anno-394

tated with the label in the range of [-3, 0), while the395

range of non-negative class is [0, 3]. 2) On the con-396

trast, in the work of (Tsai et al., 2019), the range397

of negative and positive class are [-3, 0) and (0, 3],398

respectively. The marker -/- is employed to dis-399

tinguish the distinct strategies, where the left-side400

value refers to 1) and the right-side value stands for401

2).402

4.3 Comparisons403

We introduced the non shared-private and shared-404

private multimodal learning models as the base-405

lines. Non shared-private based: Bi-directional406

LSTM (BC-LSTM), RNN-based multistage fu-407

sion network (RMFN), Recurrent Attended Varia-408

tion Embedding Network (RAVEN), Multimodal409

Adaptation Gate (MAG), Memory Fusion Network410

(MFN), Tensor Fusion Network (TFN), Low-rank411

Multimodal Fusion (LMF). Shared-private based:412

Multi-view LSTM (MV-LSTM), Multi-attention413

Recurrent Network (MARN), Multimodal Trans-414

former (MulT), Multimodal Cyclic Translation Net-415

work (MCTN), Multimodal Factorization Model416

(MFM), Interaction Canonical Correlation Net-417

work (ICCN), Modality-Invariant and -Specific418

Representations for Multimodal Sentiment Analy-419

sis(MISA), Self-Supervised Multi-task Multimodal420

model (Self-MM).421

4.4 Training Details422

We perform the grid-search over the hyper-423

parameters to select the model with the best val-424

idation task loss. The range of essential hyper-425

parameters are summarized as follows: head [1, 6],426

iteration [1, 7], convolution kernel {3, 5, 7}.427

5 Experiments results and analysis428

5.1 Performance comparison with429

state-of-the-art models.430

The performance of baselines, our proposed BACN431

and the ablation case BACN (Non-Enhanced) are432

illustrated in following tables. Note that, BACN433

(Non-Enhanced) refers to the case that BACN per-434

forms the multimodal learning task on the origi- 435

nal modality data rather than the outputs of the 436

enhanced block. The bottom rows in Table 1, 437

Table 2 and Table 3 demonstrate the superiority 438

and effectiveness of BACN. Particularly, on CMU- 439

MOSEI benchmark, BACN exceeds the previous 440

best Self-MM (bert) on the metric ’Corr’ by a 441

margin of 5.0%. Additionally, on CMU-MOSI 442

dataset, BACN outperforms MISA (bert) on the 443

metric ’Acc-7’ with an improvement of 6.9%. The 444

observations signify the necessity of exploiting the 445

both the intra-modality and inter-modality task- 446

related context. Essentially, we can observe that 447

BACN obtains better results than the ablation case 448

BACN (Non-Enhanced). This indicates that the en- 449

hanced block indeed effectively decrease the intra- 450

modality redundancy of unimodality, which signifi- 451

cantly boosts the learning efficiency in dealing with 452

the multimodality heterogeneity issue. 453

Models
CMU-MOSI

MAE(↓) Corr(↑) Acc-2(↑) F1(↑) Acc-7(↑)

BC-LSTM 1.079 0.581 73.9/- 73.9/- 28.7
MV-LSTM 1.019 0.601 73.9/- 74.0/- 33.2
RMFN⊗ 0.922 0.681 78.4/- 78.0/- 38.3
RAV EN⊗ 0.915 0.691 78.0/- 76.6/- 33.2

MFN 0.965 0.632 77.4/- 77.3/- 34.1
MARN 0.968 0.625 77.1/- 77.0/- 34.7

TFN 0.970 0.633 73.9/- 73.4/- 32.1
LMF 0.912 0.668 76.4/- 75.7/- 32.8
MulT 0.871 0.698 -/83.0 -/82.8 40.0

MCTN⊗ 0.909 0.676 79.3/- 79.1/- 35.6
MFM⊗ 0.951 0.662 78.1/- 78.1/- 36.2

Capsule Network (Bert) 0.762 0.778 83/86 83.4/86.1 39.5
TFN(Bert)4 0.901 0.698 -/80.8 -/80.7 34.9
LMF (Bert)4 0.917 0.695 -/82.5 -/82.4 33.2

ICCN (Bert) 0.860 0.710 -/83.0 -/83.0 39.0
MISA (Bert) 0.783 0.761 81.8/83.4 81.7/83.6 42.3
MAG (Bert) 0.712 0.796 84.2/86.1 84.1/86.0 -

Self-MM (Bert) 0.713 0.798 84.0/85.98 84.42/85.95 -

ABCN (Non-Enhanced) (Bert) 0.684 0.824 86.0/88.4 85.9/88.4 47.8
ABCN (Bert) 0.669 0.833 86.5/89.1 86.5/89.1 49.2

Table 1: Performances of baselines and BACN based
on BERT in CMU-MOSI benchmark. Note that (Bert)
means the textual presentation is explored via BERT;⊗
from (Tsai et al., 2019);4 from (Sun et al., 2020)

5.2 Effect of head and convolution kernel of 454

BACN. 455

Note that, compared to the conventional capsule 456

network, our proposed capsule-based framework 457

(BACN) replace the linear transformation matrix 458

with the presented multi-head convolution compo- 459

nent. Therefore, we are interested to measure how 460

varying heads and convolution kernel size affect the 461

architecture performance. The head varies from 2 462

to 6, and each head is associated with a correspond- 463

ing convolution kernel is of the same size (3×3, 464

5×5 or 7×7). In Figure 4, BACN is capable of 465

receiving good results with respect to the head and 466

kernel. Notably, kernel_3×3 based setting reaches 467
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Models
CMU-MOSI

MAE(↓) Corr(↑) Acc-2(↑) F1(↑)

TFN 0.970 0.633 73.9/- 73.4/-
MARN 0.968 0.625 77.1/- 77.0/-
MFN 0.965 0.632 77.4/- 77.3/-

RMFN 0.922 0.681 78.4/- 78.0/-
MulT 0.871 0.698 -/83.0 -/82.8

Capsule Network (X) 0.75 0.799 83.7/85.9 83.8/85.9
TFN(X)♦ 0.914 0.713 78.2/80.1 78.2/78.8

MARN(X)♦ 0.921 0.707 78.3/79.5 78.8/79.6
MFN(X)♦ 0.898 0.713 78.3/79.9 78.4/79.1
RMFN(X)♦ 0.901 0.703 79.1/81.0 78.6/80.0
MulT (X)♦ 0.849 0.738 87.9/84.4 80.4/83.1

MAG (X) 0.675 0.821 85.7/87.9 85.6/87.9

ABCN (Non-Enhanced) (X) 0.672 0.827 85.2/87.4 85.1/87.4
ABCN (X) 0.661 0.836 86.6/88.8 86.5/88.8

Table 2: Performances of baselines and BACN based
on XLNet in CMU-MOSI benchmark. Note that (X)
means the textual presentation is explored via XLNet;
♦ from (Rahman et al., 2020).

Models
CMU-MOSEI

MAE(↓) Corr(↑) Acc-2(↑) F1(↑) Acc-7(↑)

MFN⊗ - - 76.0/- 76.0/- -
MV − LSTM⊗ - - 76.4/- 76.4/- -

RAVEN 0.614 0.662 79.1/- 79.5/- 50.0
MCTN 0.609 0.670 79.8/- 80.6/- 49.6
MulT 0.580 0.703 -/82.5 -/82.3 51.8

Capsule Network (Bert) 0.581 0.80 83.8/86.4 84/86.3 48.6
TFN(Bert)4 0.593 0.700 -/82.5 -/82.1 50.2
LMF (Bert)4 0.623 0.677 -/82.0 -/82.1 48.0
MFM(Bert)4 0.568 0.717 -/84.4 -/84.3 51.3

ICCN (Bert) 0.565 0.713 -/84.2 -/84.2 51.6
MISA (Bert) 0.555 0.756 83.6/85.5 83.8/85.3 52.2

Self-MM (Bert) 0.530 0.765 83.79/85.23 83.74/85.3 -

ABCN (Non-Enhanced) (Bert) 0.563 0.806 85.3/86.9 85.2/86.8 49.9
ABCN (Bert) 0.551 0.815 86.3/87.1 86.1/87.1 51.3

Table 3: Performances of baselines and BACN based
on BERT in CMU-MOSEI benchmark. Note that (Bert)
means the textual presentation is explored via BERT;⊗
from (Zadeh et al., 2018c);4 from (Sun et al., 2020).

the peak value at head 4, and kernel_5×5 based set-468

ting maximizes prediction performance at head 3.469

This implies that multi-head strategy is able to give470

each head the strong ability to exploit the essential471

and comprehensive sentimental polarity, allowing472

for the multi-level multimodal message. Moreover,473

the setting which consists of too many heads may474

contribute to similar multimodal presentation pat-475

tern within the same feature map, leading to large476

information redundancy. On the contrast, the set-477

ting which is comprised of too few heads may fail478

to effectively explore the sufficient multimodal in-479

teractions. It is interesting to find that, compared480

to the kernel_3×3 and kernel_5×5 based setting,481

kernel_7×7 based setting receives the best perfor-482

mance at head 5. Actually, kernel_7×7 attempts483

to process the multimodal fusion procedure within484

the large receptive field, which may lead to the lack485

of fine-grained and local intercorrelations among486

multiple modalities to some extend.487

CMU-MOSI

M
A

E

67

68.5

70

71.5

73

Head 

kernel_3  3
kernel_5  5
kernel_7  7

2 3 4 5 6

×
×
×

CMU-MOSI

C
o

rr

80

80.75

81.5

82.25

83

Head 
2 3 4 5 6

Figure 4: Results of effect of head and convolution kernel on
CMU-MOSI.

5.3 Effect of top-down attention of BACN. 488

In this work, compared to the conventional cap- 489

sule network, BACN first exploit the static and 490

low-level inter-modality context via the top-down 491

attention. Therefore, we attempt to investigate how 492

top-down attention affects the classification task. 493

Specifically, t-SNE method is utilized to provide 494

the corresponding visualization of the multimodal 495

fusion representations learned by BACN. For the 496

binary classification task, the red points refer to the 497

positive sentiment, and the green points indicate 498

the negative sentiment. For the multi-classification 499

task, the color of the points depends on the corre- 500

sponding annotated sentimental labels. In Figure 5, 501

we can observe that the multimodal fusion message 502

becomes increasingly separable when BACN is as- 503

sociated with the top-down attention mechanism. 504

Actually, the top-down attention mechanism is able 505

to naturally benefit the down-top attention based 506

network to explicitly explore the dynamic and rel- 507

atively high-level inter-modality context message, 508

leading to the significant improvement of discrimi- 509

native efficiency and expressive capability. 510

5.4 Effect of the head of multimodal dynamic 511

enhanced block. 512

In this work, the multimodal dynamic enhanced 513

block is proposed to explicitly facilitate the intra- 514

modality context. Specifically, the proposed en- 515

hanced block is comprised of M process heads. 516

Therefore, we are interested to investigate how dis- 517

tinct heads affect the task performance. The head 518

varies from 1 to 6. As shown in Figure 6, our pro- 519

posed model is capable of obtaining fairly good 520

performance with respect to the enhanced heads. 521

It is important to observe that, our model reaches 522

the peak value at the head 2 for the case of CMU- 523

MOSI (Bert). As to the CMU-MOSEI (Bert), we 524
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(a) BACN (without top-down
attention) in Binary classifica-
tion task

(b) BACN (with top-down at-
tention) in Binary classifica-
tion task

(c) BACN (without
top-down attention) in
Multi-classification task

(d) BACN (with top-
down attention) in Multi-
classification task

Figure 5: t-SNE visualization of the multimodal fusion pre-
sentation learned by BACN on CMU-MOSI.
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Figure 6: Effect of the head of multimodal dynamic enhanced
block on CMU-MOSI and MOSEI.

can observe that the relatively higher performance525

is received at head 4. Indeed, the multi-head mech-526

anism allows for exploiting the intra-modality con-527

text with the multi-spect view, yields comprehen-528

sive context. Accordingly, the proposed multi-head529

enhanced strategy provides us the benefit of further530

boosting the expressive efficiency and capability.531

Additionally, the too-simple enhanced bock which532

is comprised of too few heads (e.g., 1 head) may533

fail to effectively discover the comprehensive intra-534

modality context. And, the too complex enhanced535

block that consists of too many heads may pro-536

vide large similar intra-modality context, leading537

to the information redundancy and the greater per-538

formance drop.539

5.5 Effect of the dynamic iteration of540

multimodal dynamic enhanced block.541

As mentioned before, the proposed multimodal dy-542

namic enhanced block is comprised of M process543

heads, and each head consists of N adaptive iter- 544

ations. In this part, we attempt to analyze how 545

various adaptive iterations affect the model perfor- 546

mance. The number of adaptive iterations ranges 547

from 1 to 7. For simplicity, we only perform the 548

relative ablation study on the 1-head setting. As 549

shown in Figure 7, our proposed model can ob- 550

tain fairly good performance with respect to the 551

adaptive iterations. It is interesting to find that, 552

our model maximizes the task performance at the 553

adaptive iteration 4 for the case of CMU-MOSI 554

(bert). For CMU-MOSI (XLNet), we can observe 555

that the relatively better performance is received 556

at the adaptive iteration 3. Intuitively, each adap- 557

tive iteration attends to exploit the intra-modality 558

context based on the more discriminative modality 559

(text). On the basis of single adaptive iteration, the 560

stacked iterations focus on dynamically update or 561

modify the intra-modality context. This indeed ef- 562

fectively reduces the intra-modality redundancy of 563

unimodality, and then significantly boost the learn- 564

ing efficiency in dealing with the heterogeneity 565

issue among multiple distinct modalities. 566
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Figure 7: Effect of the dynamic iteration of multimodal dy-
namic enhanced block on CMU-MOSI.

6 Conclusion 567

In this paper, we first propose a simple multimodal 568

enhanced module to facilitate the intra-modality 569

context, which indeed effectively decrease the intra- 570

modality redundancy of unimodality. Then, a novel 571

bi-direction multimodal dynamic routing mecha- 572

nism is presented to explicitly exploit dynamic and 573

high-level inter-modality context. This indeed pro- 574

vides us the benefit to significantly boost the learn- 575

ing efficiency in dealing with the heterogeneity 576

issue among multiple distinct modalities. To the 577

best of our knowledge, our model is the first dy- 578

namic multimodal learning network that supports 579

the investigation of both the intra-modality and 580

inter-modality task-related context. 581
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