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Abstract

Capsule-based network has currently identi-
fied its effectiveness in analyzing the hetero-
geneity issue of multimodal sentiment analy-
sis. However, existing manners could only
exploit the spatial relation between represen-
tation and output layer via down-top atten-
tion, which fails to effectively explore both
inter-modality and intra-modality context. In
this paper, during the preprocess period, we
first present the multimodal dynamic enhanced
module to facilitate the intra-modality con-
text, which significantly boost the learning effi-
ciency in dealing with multimodal heterogene-
ity issue. Furthermore, the bi-direction atten-
tion capsule-based network (BACN) is pro-
posed to capture dynamic inter-modality con-
text via the novel bi-direction dynamic routing
mechanism. Specifically, BACN firstly high-
lights the static and low-level inter-modality
context based on top-down attention. Then,
the static multimodal context is transmitted to
dynamic routing procedure, naturally allowing
us to investigate dynamic and high-level inter-
modality context. This indeed unleash the ex-
pressive power and provides the superior ca-
pability to bridge the modality gap among all
the modalities. The experiments demonstrate
that BACN can achieve state-of-the-art perfor-
mance.

1 Introduction

Multimodal sentiment analysis has raised increas-
ing interests in the artificial intelligence systems,
where text, acoustic and visual modalities are
popularly utilized to analyze the related research
task(Ain et al., 2017; Rahman et al., 2020). The
primary concern of multimodal analysis task is to
learn a rich representation that better encapsulates
two types of context: intra-modal and inter-modal
context from multiple heterogeneous modalities.
Indeed, the above context provide us the benefit to
decrease the intra-modality and inter-modality re-
dundancy simultaneously, allowing for effectively

bridging the modality gaps of the heterogeneous
modalities (Hazarika et al., 2020).

Recently, capsule-based networks have gained
widespread attention for their significant perfor-
mance in capturing the part-whole relationships
among various modalities in computer vision and
NLP(Lin et al., 2020), with the help of train-
able viewpoint-invariant transformations. EF-Net
(Wang et al., 2021) employed the standard cap-
sule network to deal with the image presentation
for exploring the spatial relation among distinct
receptive areas of the image. In addition, McIntosh
(Mclntosh et al., 2020) proposed a capsule-based
approach that introduced the novel visual-text rout-
ing mechanism for the integration of video and
text modality. Nevertheless, the aforementioned
techniques only attend to the spatial relation be-
tween representation layer and output layer via
down-top attention. They indeed totally ignore the
intra-modality context, and fail to effectively ex-
ploit the inter-modality context, leading to the great
deterioration of task performance.

In this paper, during the preprocess period, the
multimodal dynamic enhanced block is first pro-
posed to explicitly facilitate the intra-modality con-
text. This indeed effectively decrease the intra-
modality redundancy of unimodality, and then sig-
nificantly boost the learning efficiency in deal-
ing with the multimodality heterogeneity issue.
Furthermore, BACN is presented to exploit dy-
namic inter-modality context, using the novel bi-
direction dynamic routing mechanism. Specifi-
cally, BACN firstly captures the static and low-level
inter-modality context based on top-down atten-
tion. Then, the above static multimodal context is
transmitted to the carefully designed multimodal
dynamic routing process. This naturally gives
learning model the strong ability to investigate dy-
namic and relatively high-level inter-modality con-
text among multiple modalities. To the best of our
knowledge, our model is the first dynamic multi-
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Figure 1: The overall architecture: Initially, during the preprocess period, the multimodal dynamic enhanced block
is utilized to facilitate the intra-modality context of X, (X,), which significantly boost the learning efficiency in
dealing with multimodality heterogeneity issue. Furthermore, BACN is proposed to exploit dynamic and high-level
inter-modality context, allowing for effectively bridging the modality gaps of the heterogeneous modalities.

modal learning framework that supports the investi-
gation of both the intra-modality and inter-modality
task-related context. In addition, BACN has demon-
strated the superiority on two multimodal learning
benchmarks.

2 Related Work

The existing multimodal sentiment learning model
consists of the following two leading lines:

Non Shared-Private Multimodal Learning
Recently, LSTM and RNN based techniques have
drawn a surge of interest in multimodal sentiment
analysis for their excellence in exploiting the tem-
poral correlation from the sequence data. For in-
stance, BC-LSTM (Poria et al., 2017) proposed the
bi-directional LSTM to highlight the contextual re-
lationship among utterances. RMFN (Liang et al.,
2018) utilized RNN to decompose the complex
fusion process into several fusion sub-stages. Com-
pared to the above models, attention-based frame-
works have demonstrated the superiority in the long
sequence presentation. RAVEN (Wang et al., 2019)
applied the attention gating mechanism to compute
the nonverbal shift vector. MAG (Rahman et al.,
2020) introduced an attention gated memory to in-
tegrate the multimodal cues into the fusion context.
Additionally, MFN (Zadeh et al., 2018a) leveraged
the Delta-memory attention network to model the
multimodal interactions. In addition, tensor-based
models have raised increasing interests due to the
high-dimension properties. TFN (Zadeh et al.,
2017) employed the tensor manner to explicitly
account for the unimodal, bimodal, and trimodal
interactions. LMF (Liu et al., 2018) is the exten-
sion of TFN, which performs multimodal fusion

process with designed modality-specific low-rank
factors, significantly decreasing the computational
complexity. However, the lack of minimizing the
modality gap may limit their ability to effectively
decrease the redundancy among modalities.

Shared-Private = Multimodal = Learning
Broadly, the works of shared-private multimodal
sentiment analysis could be categorized into the
following three groups: 1) LSTM-based models:
MV-LSTM (Rajagopalan et al., 2016) presented
the multi-view LSTM block to explicitly model
the view-private and view-shared interaction.
Similarly, MARN (Zadeh et al., 2018b) applied
the hybrid LSTM to store view-private and view-
shared dynamics; 2) TopDown Attention based
models: MulT (Tsai et al., 2019) proposed the
cross-modal transformer to capture the static and
low-level shared-representation. Similarly, MCTN
(Pham et al., 2019) assigned the cyclic consistency
loss to the standard Transformer, allowing for the
joint representations. Different from MulT and
MCTN, MFM (Tsai et al., 2018) factorized the joint
distribution into shared information and modality-
private message; 3) Correlation-based models
focus on exploiting the modality-shared cues via
Canonical Correlation Analysis (CCA) mechanism.
ICCN (Sun et al., 2020) applied the deep CCA to
retrieve the non-linear correlations among various
modalities. Different from these models, MISA
(Hazarika et al., 2020) employed the distribution
similarity block to calculate similar portion across
all modalities, and leveraged both shared and
private information for sentiment prediction
task. And, Self-MM (Yu et al., 2021) introduced
unimodal subtasks to aid the modality-private



representation learning. However, existing works
have mainly focus on investigating the part-whole
relation between low-level representation layer and
high-level output layer. Indeed, they totally neglect
the intra-modality context, and fail to effectively
explore the inter-modality context, which raises
a question on providing a deeper reasoning about
multimodality heterogeneity issue.
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Figure 2: Multimodal dynamic enhanced block. Ini-
tially, X, and X, are leveraged to compute the bi-linear
space via dot-product. Subsequently, the softmax func-
tion is utilized to exploit the context coefficients of
X,. Then, the coefficients are applied to measure the
original X,, leading to the more discriminative intra-
modality context X,.

3 Methodology

As shown in Figure 1, the overall network consists
of two essential components: 1) multimodal dy-
namic enhanced module that leveraged to facilitate
the intra-modality context, and 2) BACN is further
proposed to explore the inter-modality context.

3.1 Preliminaries

The two public sentiment benchmarks are com-
posed of three modalities, audio, video and tex-
tual modality. The modality representation are
represented as X, € RTaxde X € RTv*d and
X, € RTtxdt respectively. T;(i € {a,v,t}) refers
to the number of utterances, and the feature dimen-
sion is denoted as d;(i € {a,v,t}). Note that, all
modalities of original benchmarks have the same
temporal dimension, i.e., T, = T, = T;. Due to
the properties of dot product, we adopt the linear
function to analyze { X,, X, X;} for retrieving the
same feature dimension d;, i.e., d, = d,, = d;.

3.2 Multimodal dynamic enhanced block

The multimodal dynamic enhanced block (Fig-
ure 2) is proposed to explicitly facilitate the intra-
modality context of X, € RT«*xd (X, €
RTv*dv) " with the help of text modality(X; €
RTexdey - Specifically, the presented block consists
of M process heads, where each head comprises

N adaptive iterations. Intuitively, the multi-head
mechanism allows for extracting the intra-modality
context with the multi-spect view, yields the com-
prehensive context. For the single-head case, the
intra-modality context XQ%V m] of m-th head that
associated with [NV, iterations is formulated as fol-

lows:

XNl = f(Xa - Xe)Xa,New = 1
Npp—1

X =3 Xall X Xa N NG > 2, (1)
=1

where ‘f” refers to the softmax function. Dur-
ing the first period of iteration, the dot-product
operation is adopted to explicitly map the distinct
modality into the bi-linear feature space X, - X4.
Subsequently, the softmax function is introduced to
figure out how the utterances of the audio modality
is influenced by the utterances in the text modality.
Then, the context coefficients are applied to deal
with the original audio modality, contributing to
the more discriminative intra-modality context of
audio. Due to the incorporation of the guidance
from the more discriminative modality (text), the
above process indeed provides us the strong ability
to effectively investigate the intra-modality task-
related context from auxiliary modality (audio and
video).

On the basis of the first period of iteration, the
next period of iteration attends to dynamically up-
date the bi-linear space based on the output of the
previous iteration. That is, the output data of pre-
vious iteration is leveraged to explore the new bi-
linear space of next iteration, leading to the much
more compact and robust bilinear space. Note that
the process of X,, is similar to X,. Taking the
single-head enhanced block as basis, the multi-
head enhanced network is further established to
collect the multiway intra-modality context mes-
sage. Additionally, the convolution operation is
introduced to analyze the multiway intra-modality
context, which is able to further explore the latent
interaction among distinct X m[ﬁf m] , leading to the
much more compact task-related context X,.

Xa = Conv(concat(Xa[lNl], - ,XQEQTM])) 2)

Note that, during the preprocess period, we utilize
the simple operation to analyze the more discrimi-
native intra-modality context of auxiliary modality
(audio and video). This indeed effectively decrease
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Figure 3: BACN: The u; and v; refers to the representation and modality-shared capsules, respectively. The static
and low-level inter-modality context is firstly exploited based on top-down attention, and latently is transmitted to
the carefully designed multimodal dynamic routing process. This naturally gives learning model the strong ability
to investigate dynamic and relatively high-level inter-modality context among multiple heterogeneous modalities.

the intra-modality redundancy of unimodality, and
then significantly boost the learning efficiency in
dealing with the heterogeneity issue among multi-
ple distinct modalities.

3.3 Bi-direction Attention Capsule-based
Network

When the enhanced procedure is finished, BACN
is further proposed to explore the inter-modality
context. This indeed significantly boosts the learn-
ing efficiency and provides the superior capability
to effectively investigate the inter-modality context
among multiple more discriminative modalities.

As shown in Figure 3, BACN is mainly
comprised of multimodal representation capsules
{u; }Y* and task-related capsules {v;}2\" iy, where
N, and N, refer to the number of representation
and task-related capsules respectively. Note that,
{u;} are captured based on {X,, X,, X;} (Lin
et al., 2020). In the conventional capsule network,
each u; is multiplied by a trainable transforma-
tion matrix W;;, leading to the vote matrix a;;
which stands for the projection of the represen-
tation u; with respect to task-related capsule v;,
where ﬁjli = u;Wi;.

Compared to the conventional capsule network,
we replace the linear W;; with the proposed con-
volution projection, resulting in new ; consists
of the desirable convolutional nonlinear properties.
This allows for the more fine-grained projection
procedure of representation capsule u; with respect
to task-related capsule v;:

Uj); =Conv(us, kernel;)

:sigmoid(z u; * kernel; + bias;). 3)

In addition, we extend the above single-head con-
volution projection design to the multi-head case
associated with varying convolution kernels. Actu-
ally, the multi-head mechanism indeed allows for
the multiway and comprehensive information flow
between the representation capsule u; and the task-
related capsule v;, where s refers to the specific
convolution projection head:

~[s]

g, = Conv'™ (us, kernel!™)
[s]

= sigmoid Z U; * kernel + bias;™) “)

Note that, the down-top attention of capsule net-
work could only analyze the part-whole (spatial)
relation between representation capsules {ul}f\f:”1
and task-related capsules {v;}>" 21, with the help
of dynamic routing coefficients ¢;;. Actually, dur-
ing the dynamic multimodal learning procedure,
this fails to explicitly highlight the inter-modality
context among distinct modality representations
u;, which shows its limitation in effectively reduc-
ing the inter-modality redundancy. Therefore, in
this work, we first exploit the static and low-level
inter-modality context among multiple modality
representations u;, based on top-down attention.
Formally, the static inter-modality context attenls!
of the s-th head is defined as follows:

atten!®! :TopDownAttention([ﬂPS]. s ﬁgs‘]w )
= f(VVq[{th}z 1 k[{ ]\z}

IWET ], o)
where ‘[]” refers to the concatenation operation, ‘f’
indicates the softmax function, and {W,, Wy, W, }
are the transformation matrixes. Subsequently, the
dynamic routing procedure with NV, iterations were



conducted to explore the dynamic inter-modality

context among multiple modalities. At each it-
[s]
(]
to analyze the information flow between {ul}f\gl

and {v; };V:”l which is calculated based on the tem-

eration, the dynamic coefficients c;; is leveraged

porary cumulant variable bgj.] that initialized as 0.
That is to say, CESJ could be utilized to measure how
each task-related v; is influenced by modality rep-
resentations {u;};*. To reiterate, we attempt to
leverage our BACN to exploit the modality-shared
message among multiple modalities, thus the task-
related v; refers to the modality-shared message.
The detailed procedure is formulated as follows:

{ci} ) =Softmax({bl)}1)
exp(bly)

S exp(dl)
Then, task-related capsule U][;]
[s]
Jle’
and the aforementioned static inter-

©

is represented as

the weighted sum of @
s
ij
modality context atten!!. It is important to note
that, different from the conventional capsule-based
network where U][-S] only depends on CE;J A%,
our model further transmit the static and low-level
inter-modality context attenl?! to the carefully
designed multimodal dynamic routing procedure.
This indeed gives the learning model the strong
ability to explore the dynamic and relatively high-
level inter-modality context among multiple modal-
ities. Essentially, the top-down attention mecha-
nism simply investigate the static inter-modality
context at once, leading to the relatively low-level
context. On the contrast, we attempt to add the
static inter-modality context attenl! to the corre-
sponding dynamic coefficients CE»], allowing for the
dynamic process of capturing the inter-modality
context. Intuitively, the novel bi-direction dynamic
coefficient (cgj-] + atten!®!) naturally allows us to
dynamically modify inter-modality context during
the novel bi-direction dynamic process that associ-
ated with multiple dynamic iterations, leading to
the high-level inter-modality context.

with the help of corre-

sponding ¢

U][-S] = Z(CE] + atten[s])ﬁg.s‘]i @)

When the head is set to 2, each modality
could compute two corresponding modality-

(M o Then, the

shared messages E

above modality-shared messages could be
further integrated into the wunit modality-
shared messages {shared,,shared,,shared;}
via convolution operation. For instance,
shared, = conv(concat(v}i}a,Uj[-z_}a),kernela).
Then, all the modality-shared messages are further
merged into the output modality — shared via
convolution operation : modality — shared =
conu(concat(sharedy,shared,shared;)kernel).

As mentioned before, the convolution projection
is leveraged to analyze the u;, which allows for the
convolutional nonlinear representation. Accord-
ingly, we introduce the HingeLoss (Bailer et al.,
2017) that attends to the analysis of nonlinear mes-
sage for reducing the discrepancy among modality-
shared messages:

SimilarityLoss = Z HingeLoss(shared;, shared;)

:Zmam(o,l —||D(shared;)— D(shared;)||2), (8)

where i,j € {a,v,t}, and i # j. Additionally,
in our work, each modality-private message
private_t is captured by the individual BACN, i.e.,
private_i = BACN (modality_i). Then, follow-
ing the constraint design of MISA, the difference
loss is formulated as: Dif ferenceLoss =
Yiclawt} |shared? private;||% +

i
Zi,jE{a,v,t} Hprwatei p?“watej”%_
4 Experiments Setups

4.1 Datasets

CMU-MOSI dataset (Zadeh et al., 2016) is com-
prised of 2199 utterance-video segments collected
from 93 movie review videos of Youtube. Each
utterance is manually annotated with the continu-
ous sentimental label in the range of [-3, 3] from
strong negative to strong positive. Additionally,
the above dataset consists of 1284 training, 229
validation, and 686 testing samples. CMU-MOSEI
dataset (Zadeh et al., 2018¢) is the extension of
CMU-MOSI associated with much more utterance
segments. This version is composed of 22856 an-
notated utterances, and is split into the training,
validation, and testing sets (16326, 1871, 4659).

4.2 Features and Evaluation Metrics

For CMU-MOSI and CMU-MOSEI, we adopt the
same manner of MAG and MISA to extract the
features of the specific modality. Specifically, the
pre-trained BERT and XLNet are utilized to exploit



the corresponding textual representations. Addi-
tionally, the following evaluation metrics are intro-
duced to analyze the performance of the proposed
model: mean absolute error (MAE), pearson cor-
relation (Corr), binary accuracy (Acc-2), F-Score
(F1). Essentially, two distinct manners are pro-
posed to measure Acc-2 and F1. 1) In the work of
(Zadeh et al., 2018b), the negative class is anno-
tated with the label in the range of [-3, 0), while the
range of non-negative class is [0, 3]. 2) On the con-
trast, in the work of (Tsai et al., 2019), the range
of negative and positive class are [-3, 0) and (0, 3],
respectively. The marker -/- is employed to dis-
tinguish the distinct strategies, where the left-side
value refers to 1) and the right-side value stands for
2).

4.3 Comparisons

We introduced the non shared-private and shared-
private multimodal learning models as the base-
lines. Non shared-private based: Bi-directional
LSTM (BC-LSTM), RNN-based multistage fu-
sion network (RMFN), Recurrent Attended Varia-
tion Embedding Network (RAVEN), Multimodal
Adaptation Gate (MAG), Memory Fusion Network
(MEN), Tensor Fusion Network (TFN), Low-rank
Multimodal Fusion (LMF). Shared-private based:
Multi-view LSTM (MV-LSTM), Multi-attention
Recurrent Network (MARN), Multimodal Trans-
former (MulT), Multimodal Cyclic Translation Net-
work (MCTN), Multimodal Factorization Model
(MFM), Interaction Canonical Correlation Net-
work (ICCN), Modality-Invariant and -Specific
Representations for Multimodal Sentiment Analy-
sis(MISA), Self-Supervised Multi-task Multimodal
model (Self-MM).

4.4 Training Details

We perform the grid-search over the hyper-
parameters to select the model with the best val-
idation task loss. The range of essential hyper-
parameters are summarized as follows: head [1, 6],
iteration [1, 7], convolution kernel {3, 5, 7}.

5 Experiments results and analysis

5.1 Performance comparison with
state-of-the-art models.

The performance of baselines, our proposed BACN
and the ablation case BACN (Non-Enhanced) are
illustrated in following tables. Note that, BACN
(Non-Enhanced) refers to the case that BACN per-

forms the multimodal learning task on the origi-
nal modality data rather than the outputs of the
enhanced block. The bottom rows in Table 1,
Table 2 and Table 3 demonstrate the superiority
and effectiveness of BACN. Particularly, on CMU-
MOSEI benchmark, BACN exceeds the previous
best Self-MM (bert) on the metric *Corr’ by a
margin of 5.0%. Additionally, on CMU-MOSI
dataset, BACN outperforms MISA (bert) on the
metric *Acc-7’ with an improvement of 6.9%. The
observations signify the necessity of exploiting the
both the intra-modality and inter-modality task-
related context. Essentially, we can observe that
BACN obtains better results than the ablation case
BACN (Non-Enhanced). This indicates that the en-
hanced block indeed effectively decrease the intra-
modality redundancy of unimodality, which signifi-
cantly boosts the learning efficiency in dealing with
the multimodality heterogeneity issue.

Models | CMU-MOSI
| MAE() | Corr(1) | Acc-2(t) | FI(H) | Acc-7(1)

BC-LSTM 1079  0.581 73.9/- 73.9/- 28.7
MV-LSTM 1019 0.601 739/ 74.0/- 332
RMFN® 0922 0.681 78.4/- 78.0/- 383
RAVEN® 0915 0.691 78.0/- 76.6/- 332
MFN 0965  0.632 77.4/- 77.3/- 34.1
MARN 0.968  0.625 77.1/- 77.0/- 347
TFN 0970 0.633 739/ 73.4/- 321
LMF 0912 0.668 76.4/- 75.7/- 3238
MulT 0.871  0.698 -183.0 -182.8 40.0
MCTN® 0909  0.676 79.3/- 79.1/- 35.6
MFM® 0951  0.662 78.1/- 78.1/- 36.2
Capsule Network (Bert) 0.762 0.778 83/86 83.4/86.1 39.5
TFN(Bert)® 0901 0.698 -180.8 -/80.7 349
LMF(Bert)® 0917 0.695 -182.5 -182.4 332
ICCN (Bert) 0.860  0.710 -183.0 -/83.0 39.0
MISA (Bert) 0.783 0761  81.8/83.4  81.7/83.6 23

MAG (Bert) 0712 0796  84.2/86.1  84.1/86.0

Self-MM (Bert) 0713 0.798  84.0/85.98 84.42/85.95
ABCN (Non-Enhanced) (Bert) | 0.684  0.824  86.0/88.4  85.9/88.4 47.8
ABCN (Bert) 0.669  0.833  86.5/89.1  86.5/89.1 49.2

Table 1: Performances of baselines and BACN based
on BERT in CMU-MOSI benchmark. Note that (Bert)
means the textual presentation is explored via BERT; ®
from (Tsai et al., 2019); A from (Sun et al., 2020)

5.2 Effect of head and convolution kernel of
BACN.

Note that, compared to the conventional capsule
network, our proposed capsule-based framework
(BACN) replace the linear transformation matrix
with the presented multi-head convolution compo-
nent. Therefore, we are interested to measure how
varying heads and convolution kernel size affect the
architecture performance. The head varies from 2
to 6, and each head is associated with a correspond-
ing convolution kernel is of the same size (3 %3,
5x5 or 7x7). In Figure 4, BACN is capable of
receiving good results with respect to the head and
kernel. Notably, kernel_3x3 based setting reaches



Models | CMU-MOSI

| MAE() | Corr(t) | Ace-2(t) | FI(1)

TFN 0.970 0.633 73.9/- 73.4/-

MARN 0.968 0.625 77.1/- 71.0/-

MFN 0.965 0.632 77.4/- 71.3/-

RMFN 0.922 0.681 78.4/- 78.0/-

MulT 0.871 0.698 -/83.0 -/82.8
Capsule Network (X) 0.75 0.799  83.7/85.9 83.8/85.9
TFN(X)® 0.914 0.713  78.2/80.1 78.2/78.8
MARN(X)® 0.921 0.707  78.3/79.5 78.8/79.6
MFN(X)® 0.898 0.713  78.3/79.9 78.4/79.1
RMFN(X)® 0.901 0.703  79.1/81.0 78.6/80.0
MulT(X)® 0.849 0.738  87.9/84.4 80.4/83.1
MAG (X) 0.675 0.821  85.7/87.9 85.6/87.9
ABCN (Non-Enhanced) (X) | 0.672 0.827  85.2/87.4 85.1/87.4
ABCN (X) 0.661 0.836  86.6/83.8 86.5/88.8

Table 2: Performances of baselines and BACN based
on XLNet in CMU-MOSI benchmark. Note that (X)
means the textual presentation is explored via XLNet;
¢ from (Rahman et al., 2020).

Models | CMU-MOSEI
| MAE(]) | Corr(1) | Acc2(t) | FI(D) | Acc-7(1)
MFN® - - 76.0/- 76.0/- -
MV — LSTM® - 76.4/- 76.4/- -
RAVEN 0614 0.662 79.1/- 79.5/- 50.0
MCTN 0609  0.670 79.8/- 80.6/- 49.6
MulT 0580  0.703 -/82.5 -/82.3 518
Capsule Network (Bert) 0581 080  83.8/86.4  84/86.3 48.6
TFN(Bert)® 0593 0.700 -/82.5 -/82.1 502
LMF(Bert)® 0623 0.677 -/82.0 -/82.1 48.0
MFM(Bert)® 0568  0.717 -/84.4 -/84.3 513
ICCN (Bert) 0565 0713 -/84.2 -/84.2 516
MISA (Bert) 0555 0756  83.6/85.5 838853 522
Self-MM (Bert) 0530 0765 83.79/85.23 83.74/85.3
ABCN (Non-Enhanced) (Bert) | 0.563 0806  85.3/869  85.2/868  49.9
ABCN (Bert) 0551 0815  86.3/87.1  86.187.1 513

Table 3: Performances of baselines and BACN based
on BERT in CMU-MOSEI benchmark. Note that (Bert)
means the textual presentation is explored via BERT; ®
from (Zadeh et al., 2018c); A from (Sun et al., 2020).

the peak value at head 4, and kernel_5 x5 based set-
ting maximizes prediction performance at head 3.
This implies that multi-head strategy is able to give
each head the strong ability to exploit the essential
and comprehensive sentimental polarity, allowing
for the multi-level multimodal message. Moreover,
the setting which consists of too many heads may
contribute to similar multimodal presentation pat-
tern within the same feature map, leading to large
information redundancy. On the contrast, the set-
ting which is comprised of too few heads may fail
to effectively explore the sufficient multimodal in-
teractions. It is interesting to find that, compared
to the kernel_3x3 and kernel_5 x5 based setting,
kernel_7x7 based setting receives the best perfor-
mance at head 5. Actually, kernel_7x7 attempts
to process the multimodal fusion procedure within
the large receptive field, which may lead to the lack
of fine-grained and local intercorrelations among
multiple modalities to some extend.

CMU-MOSI CMU-MOSI
7 8
I kemel 343
kernel_5x5
75 I kemel 77 8225
# t
0
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Figure 4: Results of effect of head and convolution kernel on
CMU-MOSL.

5.3 Effect of top-down attention of BACN.

In this work, compared to the conventional cap-
sule network, BACN first exploit the static and
low-level inter-modality context via the top-down
attention. Therefore, we attempt to investigate how
top-down attention affects the classification task.
Specifically, t-SNE method is utilized to provide
the corresponding visualization of the multimodal
fusion representations learned by BACN. For the
binary classification task, the red points refer to the
positive sentiment, and the green points indicate
the negative sentiment. For the multi-classification
task, the color of the points depends on the corre-
sponding annotated sentimental labels. In Figure 5,
we can observe that the multimodal fusion message
becomes increasingly separable when BACN is as-
sociated with the top-down attention mechanism.
Actually, the top-down attention mechanism is able
to naturally benefit the down-top attention based
network to explicitly explore the dynamic and rel-
atively high-level inter-modality context message,
leading to the significant improvement of discrimi-
native efficiency and expressive capability.

5.4 Effect of the head of multimodal dynamic
enhanced block.

In this work, the multimodal dynamic enhanced
block is proposed to explicitly facilitate the intra-
modality context. Specifically, the proposed en-
hanced block is comprised of M process heads.
Therefore, we are interested to investigate how dis-
tinct heads affect the task performance. The head
varies from 1 to 6. As shown in Figure 6, our pro-
posed model is capable of obtaining fairly good
performance with respect to the enhanced heads.
It is important to observe that, our model reaches
the peak value at the head 2 for the case of CMU-
MOSI (Bert). As to the CMU-MOSEI (Bert), we



(a) BACN (without top-down (b) BACN (with top-down at-
attention) in Binary classifica- tention) in Binary classifica-
tion task tion task

U AT LTI

M,
P ot

(©) BACN (without (d) BACN (with top-
top-down  attention) in down attention) in Multi-
Multi-classification task classification task

Figure 5: t-SNE visualization of the multimodal fusion pre-
sentation learned by BACN on CMU-MOSI.
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Figure 6: Effect of the head of multimodal dynamic enhanced
block on CMU-MOSI and MOSEIL

can observe that the relatively higher performance
is received at head 4. Indeed, the multi-head mech-
anism allows for exploiting the intra-modality con-
text with the multi-spect view, yields comprehen-
sive context. Accordingly, the proposed multi-head
enhanced strategy provides us the benefit of further
boosting the expressive efficiency and capability.
Additionally, the too-simple enhanced bock which
is comprised of too few heads (e.g., 1 head) may
fail to effectively discover the comprehensive intra-
modality context. And, the too complex enhanced
block that consists of too many heads may pro-
vide large similar intra-modality context, leading
to the information redundancy and the greater per-
formance drop.

5.5 Effect of the dynamic iteration of
multimodal dynamic enhanced block.

As mentioned before, the proposed multimodal dy-
namic enhanced block is comprised of M process

heads, and each head consists of N adaptive iter-
ations. In this part, we attempt to analyze how
various adaptive iterations affect the model perfor-
mance. The number of adaptive iterations ranges
from 1 to 7. For simplicity, we only perform the
relative ablation study on the 1-head setting. As
shown in Figure 7, our proposed model can ob-
tain fairly good performance with respect to the
adaptive iterations. It is interesting to find that,
our model maximizes the task performance at the
adaptive iteration 4 for the case of CMU-MOSI
(bert). For CMU-MOSI (XLNet), we can observe
that the relatively better performance is received
at the adaptive iteration 3. Intuitively, each adap-
tive iteration attends to exploit the intra-modality
context based on the more discriminative modality
(text). On the basis of single adaptive iteration, the
stacked iterations focus on dynamically update or
modify the intra-modality context. This indeed ef-
fectively reduces the intra-modality redundancy of
unimodality, and then significantly boost the learn-
ing efficiency in dealing with the heterogeneity
issue among multiple distinct modalities.
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Figure 7: Effect of the dynamic iteration of multimodal dy-
namic enhanced block on CMU-MOSL

6 Conclusion

In this paper, we first propose a simple multimodal
enhanced module to facilitate the intra-modality
context, which indeed effectively decrease the intra-
modality redundancy of unimodality. Then, a novel
bi-direction multimodal dynamic routing mecha-
nism is presented to explicitly exploit dynamic and
high-level inter-modality context. This indeed pro-
vides us the benefit to significantly boost the learn-
ing efficiency in dealing with the heterogeneity
issue among multiple distinct modalities. To the
best of our knowledge, our model is the first dy-
namic multimodal learning network that supports
the investigation of both the intra-modality and
inter-modality task-related context.
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