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Abstract

While pre-trained language models (PLMs)001
have brought great improvements in many NLP002
tasks, there is increasing attention to explore003
capabilities of PLMs and interpret their predic-004
tions. However, existing works usually focus005
only on a certain capability of PLMs by test-006
ing them with some downstream tasks. There007
is a lack of datasets for directly evaluating the008
masked word prediction performance and the009
interpretability of PLMs. To fill in the gap, we010
propose a novel evaluation benchmark provid-011
ing with both English and Chinese annotated012
data. In order to comprehensively evaluate the013
capabilities of PLMs, it provides evaluation014
data in five dimensions, i.e., grammar, seman-015
tics, factual knowledge, reasoning and compu-016
tation. In addition, it provides carefully an-017
notated token-level rationales to evaluate the018
interpretability of PLM predictions. We con-019
duct experiments on several widely-used PLMs.020
The results show that they perform very poorly021
in the dimensions of knowledge and compu-022
tation. And the rationales provided by them023
to support predictions are less plausible, espe-024
cially when they are short. We will release this025
benchmark at http://xyz, hoping it can fa-026
cilitate the research progress of PLMs.027

1 Introduction028

Since PLMs such as BERT (Devlin et al., 2019)029

and RoBERTa (Liu et al., 2019) have achieved sig-030

nificant gains in predictive accuracy on a variety of031

NLP tasks (Wang et al., 2018), many studies focus032

on exploring their capabilities (Tenney et al., 2019;033

Petroni et al., 2019; Brown et al., 2020) and their034

decision-making mechanisms (Ding and Koehn,035

2021; Rethmeier et al., 2020).036

Many works have proved that PLMs have037

learned amounts of knowledge from the massive038

text corpora (i.e., their training data), such as lin-039

guistic knowledge (Tenney et al., 2019; Jawahar040

et al., 2019) and factual knowledge (Petroni et al.,041

2019; Pörner et al., 2019). Such learned knowl- 042

edge has enhanced some capabilities of PLMs, e.g., 043

reasoning (Brown et al., 2020) and computation 044

(Polu and Sutskever, 2020). However, some stud- 045

ies show that PLMs have not captured adequate 046

knowledge and are insufficient in some aspects, 047

e.g., having not learned enough syntactic structures 048

(Wang et al., 2019; Min et al., 2020), having a 049

poor grasp of reasoning over factual knowledge 050

and commonsense (Pörner et al., 2019; Marcus and 051

Davis, 2020), as well as having a poor performance 052

on mathematical problem solving (Hendrycks et al., 053

2021; Cobbe et al., 2021). 054

On the other hand, some researchers aim to un- 055

veil the decision-mechanism of a PLM, which can 056

help us understand the reasons behind its success 057

and its limitations (Rethmeier et al., 2020; Meng 058

et al., 2022; Mor Geva, 2022). Some works study 059

the inner workings of transformer-based PLMs ac- 060

cording to hidden states and their evolutions be- 061

tween layers (Voita et al., 2019; Singh et al., 2019). 062

Other works develop toolkits to capture, analyze 063

and visualize inner mechanisms of PLMs at the 064

level of individual neurons (Rethmeier et al., 2020; 065

Dai et al., 2021; Alammar, 2021; Mor Geva, 2022). 066

Although lots of studies have been done, it is still 067

unclear what capabilities a PLM has mastered and 068

how much it has mastered. Meanwhile, there lacks 069

quantitative evaluations on PLM’s interpretabil- 070

ity. To address these problems, we propose a 071

novel evaluation benchmark for PLMs, containing 072

instances with masked words and corresponding 073

human-annotated rationales for masked word pre- 074

dictions. As shown in Table 1, the masked words 075

are used to evaluate model prediction performance, 076

and the rationales are used to evaluate model inter- 077

pretability. Overall, our contributions include: 078

1. To our best knowledge, this is the first bench- 079

mark that can be used to evaluate both prediction 080

performance and interpretability of PLMs. And 081

it provides both English and Chinese data. 082
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Dimensions Instances Collected for Evaluation Instances in Our Evaluation Benchmark
Inputs with Masked Words Answers

Grammar Aeroflot ’s international fleet of 285 planes is being
repainted and refurbished at Shannon Airport.

Aeroflot ’s international fleet of 285 [MASK] is being
repainted and refurbished at Shannon Airport. planes

Semantics The city of Austin has a total area of 703.95
square kilometres.

The city of Austin has a total [MASK] of 703.95
square kilometres. area

Knowledge The country Germany is located directly to the east
of Belgium.

The country [MASK] is located directly to the east
of Belgium. Germany

Reasoning The man’s eyes were stabbed by broken glass,
then he went blind.

The man’s eyes were stabbed by broken glass,
then he went [MASK]. blind

Computation Tony planted a 4 foot tree. The tree grows at a rate of
5 feet every year. It takes 5 years to be 29 feet.

Tony planted a 4 foot tree. The tree grows at a rate of
5 feet every year. It takes [MASK] years to be 29 feet. 5

Table 1: Examples for five evaluation dimensions. The words in the red color are taken as the ground-truth rationale
for masked word predictions, and the words in Answers column are the golden answers for the masked words.

2. Our evaluation benchmark covers five evalua-083

tion dimensions, i.e., grammar, semantics, fac-084

tual knowledge, reasoning and computation, to085

comprehensively evaluate the capability of a086

PLM from multiple perspectives.087

3. We conduct experiments on several widely-used088

PLMs, and the results show that current PLMs089

have very poor prediction performance in the di-090

mensions of knowledge, reasoning and computa-091

tion. And the rationales that support predictions092

are less plausible. We believe this benchmark093

can help evaluate and improve PLMs.094

2 Related Work095

In this section, we review studies on exploring096

PLMs’ capabilities and interpretability.097

2.1 Capability Analyses of PLMs098

While PLMs have been developed rapidly, a large099

number of studies attempt to explore capabilities of100

PLMs (Jawahar et al., 2019; Hewitt and Manning,101

2019; Pörner et al., 2019).102

Grammar and semantics. Some studies prove103

that PLMs have captured linguistic structures in104

their representations, with lexical features at low105

layers, syntactic features at middle layers and se-106

mantic features at high layers (Jawahar et al., 2019;107

Kim et al., 2020; Tenney et al., 2019). Also, some108

works find that BERT has not learned some syntac-109

tic structures and can not perform well on syntax-110

aware data (Wang et al., 2019; Min et al., 2020).111

Knowledge. According to BERT’s good perfor-112

mance on answering cloze-style questions about re-113

lational facts between entities, Petroni et al. (2019)114

state that BERT memorizes factual knowledge dur-115

ing pre-training. But Pörner et al. (2019) prove that116

BERT’s impressive performance is partly due to117

reasoning about the surface form of entity names.118

Reasoning. GPT-3 is proved to have a powerful 119

reasoning ability and can generate news articles 120

which are difficult to be distinguished from human- 121

written articles by humans (Brown et al., 2020). 122

However, Marcus and Davis (2020) state that GPT- 123

3 has no idea what it’s talking about, and show that 124

it has a poor grasp of reasoning over commonsense. 125

Computation. Some studies aim to make PLMs 126

solve theorem proving and quantitative reason- 127

ing problems, such as GPT-f (Polu and Sutskever, 128

2020) and Minerva (Lewkowycz et al., 2022). 129

Other studies release corresponding datasets to 130

measure model capabilities on mathematical prob- 131

lem solving, and find that these enormous PLMs 132

fail to achieve high test performance, while a bright 133

middle school student could solve every problem 134

(Hendrycks et al., 2021; Cobbe et al., 2021). 135

2.2 Interpretability of PLMs 136

Interpretation Methods Recent studies to in- 137

terpret PLM’s predictions are mainly classified 138

into three categories. First, some works use input 139

saliency methods (Simonyan et al., 2014; Smilkov 140

et al., 2017; Sundararajan et al., 2017) to assign an 141

importance score for each input token, represent- 142

ing the token’s impact on model predictions (Ding 143

and Koehn, 2021). Second, hidden states and their 144

evolutions between layers are always used to glean 145

information about the inner workings of a PLM 146

(Singh et al., 2019; Voita et al., 2019). Third, ex- 147

amination of neuron activations is used to trace and 148

analyze model processes in quantifying knowledge 149

changes by extracting underlying patterns of neu- 150

ron firings (Rethmeier et al., 2020; Dai et al., 2021). 151

Meanwhile, several tools are released to capture, 152

analyze, visualize, and interactively explore inner 153

mechanisms of PLMs (Dalvi et al., 2019; Alammar, 154

2021; Mor Geva, 2022). 155
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Dimensions English Chinese
Grammar Penn Treebank 3.0 Chinese Treebank 8.0, Chinese Dependency Treebank 1.0
Semantics Wikipedia, WebNLG (Moryossef 2019), WSC (Levesque 2012) Baidu Baike, DuIE (Li 2019), CLUEWSC2020 (Xu 2020)
Knowledge FreebaseQA (Jiang 2019) CKBQA
Reasoning COPA (Roemmele 2011) XCOPA (Ponti 2020)
Computation Alg514 (Kushman 2014), Dolphin18K (Huang 2016) Math23K (Wang 2017)

Table 2: Datasets used to create our datasets. Please see Appendix A for details.

Evaluation Datasets While attention to con-156

struct interpretability evaluation datasets for spe-157

cific NLP tasks keeps increasing (DeYoung et al.,158

2020; Wang et al., 2021; Camburu et al., 2018),159

there is a lack of evaluation datasets for PLMs.160

Ding and Koehn (2021) create four datasets with161

token-level rationales for two grammar tasks,162

i.e., subject-verb number agreement and pronoun-163

antecedent gender agreement. Ekin Akyürek164

(2022) propose a fact tracing dataset with instance-165

level rationales to evaluate model capability on fact166

learning. He et al. (2022) provide a simile property167

probing dataset to evaluate a PLM’s performance168

on interpreting similes.169

Evaluation Metrics Plausibility and faithfulness170

are often used to evaluate interpretability (Doshi-171

Velez and Kim, 2017; Jacovi and Goldberg, 2020;172

Adebayo et al., 2020), where the former measures173

how much the rationales provided by models align174

with human-annotated ones, and the latter measures175

the degree to which the rationales in fact influence176

the corresponding predictions. With token-level177

rationales, token F1-score is often used to evalu-178

ate plausibility (Mathew et al., 2021; Wang et al.,179

2022); sufficiency and comprehensiveness (DeY-180

oung et al., 2020), consistency under perturbations181

(Ding and Koehn, 2021; Wang et al., 2022), as well182

as sensitivity and stability (Yin et al., 2022) are183

used to evaluate faithfulness.184

In this work, we provide a novel benchmark to185

evaluate both predictive accuracy and interpretabil-186

ity of PLMs. This benchmark provides evaluation187

data in multiple dimensions and provides human-188

annotated token-level rationales.189

3 Evaluation Dataset Construction190

Our evaluation dataset is constructed in three steps:191

1) data collection; 2) perturbed data construction; 3)192

iterative rationale annotation and checking. We first193

introduce the five evaluation dimensions in Section194

3.1. Then we describe the annotation process in195

Section 3.2-3.4. Finally, we give our data statistics.196

3.1 Evaluation Dimensions 197

According to the abilities that a PLM should have 198

for predicting the right answer, we define five eval- 199

uation dimensions, as described below. The corre- 200

sponding examples are shown in Table 1. 201

• Grammar. The instances in this dimension 202

are designed to evaluate what lexical linguistic 203

knowledge a PLM has learned, such as the tense 204

of a verb, the gender of a pronoun, and the num- 205

ber of a noun. As shown by the first example in 206

Table 1, the noun right after the number “285” 207

must be plural if it is countable. 208

• Semantics. This dimension aims to test whether 209

a PLM has learned syntactic and semantic fea- 210

tures or not, such as entity types and semantic 211

co-reference rules. The second example in Table 212

1 requires the model to master the concept of 213

“city” and the corresponding property “area”. 214

• Knowledge. The instances in this type are used 215

to evaluate the extent to which a PLM has learned 216

real-world factual knowledge. As shown by the 217

third example in Table 1, the prediction of “Ger- 218

many” requires the model to learn and memorize 219

related knowledge. 220

• Reasoning. This dimension measures the infer- 221

ential capability of a PLM over open-domain 222

commonsense. The forth example in Table 1 223

states that the model should deduce “blind” ac- 224

cording to the premise that the eye was hurt. 225

• Computation. These instances test the quanti- 226

tative reasoning ability of a PLM on handling 227

mathematical problems, as illustrated by the last 228

example in Table 1. 229

3.2 Data Collection 230

In order to create high-quality evaluation datasets, 231

we construct our datasets on the basis of some ex- 232

isting human-annotated datasets, as shown in Table 233

2. Please see Appendix A for details. Our collec- 234

tion process consists of the following two steps: 235

instance construction and masked word selection. 236
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Instance Construction Each input in our evalua-237

tion datasets is a sentence or a paragraph consisting238

of multiple sentences, as shown in Table 1. Since239

the input forms of some existing datasets in Table240

2 are not as we want them to be in our datasets, we241

have them manually modified. Specially, we create242

inputs for the following three dimensions.243

For knowledge, the original input consists of a244

question and an answer. We replace the wh-phrase245

in the question with the answer to form a new input.246

For example, the third example in Table 1 was247

originally “Which country is located directly to the248

east of Belgium?” with the answer “Germany”.249

For reasoning, each original input contains a250

given premise and two plausible alternatives for251

either the cause or the effect of the premise. We252

concatenate the premise and its cause with some253

appropriate conjunctions such as “since” and “as”254

to build a new instance. Similarly, we use con-255

junctions such as “then” and “so” to connect the256

premise and the proper effect to create a new input.257

For computation, the original instance consists258

of a question, an equation and answer. We use the259

answer to replace the wh-phrase in the question to260

construct a new input. The original question for the261

fifth example in Table 1 is “Tony planted a 4 foot ...262

How many years will it take to be 29 feet?”.263

Masked Word Selection For each created input,264

we select an appropriate word or phrase to mask,265

denoted as wm. Then the masked sentence is input266

to a PLM, which will output a prediction for the267

masked position. And wm is the golden answer for268

the masked position. To precisely evaluate model269

prediction performance, the golden answer for the270

masked position should be as unique as possible.271

We take the uniqueness of answer as one criteria272

for selecting masked words. In the dimensions of273

“knowledge” and “computation”, the question’s an-274

swer is selected as wm. For the other three dimen-275

sions, annotators need to select appropriate masked276

words according to the uniqueness principle.277

Besides, we make some rules to ensure the di-278

versity of masked words. For example, the masked279

words in grammar dimension cover all parts-of-280

speech, and those in semantics dimension cover281

different entity types and relations.282

Then for each masked position and the corre-283

sponding golden answer, three annotators rate their284

confidences on a 4-point scale by judging whether285

the golden answer is unique (4), among the top 3286

predictions (3), among the top 5 predictions (2), or287

none of the above (1). The masked position is con- 288

sidered to be appropriate if the confidence of each 289

annotator is no less than 3, i.e., its golden answer 290

is unique or among the top 3 predictions. 291

3.3 Perturbed Data Creation 292

Recent studies (Ding and Koehn, 2021; Wang et al., 293

2022) propose to evaluate the model faithfulness 294

using the consistency of rationales under pertur- 295

bations that are not supposed to change the model 296

decision mechanism. Following them, we construct 297

perturbed examples for each original input. 298

Perturbation Criteria In our work, perturba- 299

tions should not change the model prediction and 300

the internal decision mechanism. Please note that 301

the influence of perturbations on model’s predic- 302

tion and decision mechanism comes from human’s 303

basic intuition. Based on the literature (Jia and 304

Liang, 2017; McCoy et al., 2019; Ribeiro et al., 305

2020), we define three perturbation types. 306

• Alteration of dispensable words (Dispens.). In- 307

sert, delete or replace words that should have no 308

effect on model predictions, e.g., inserting the 309

word “unfortunately” at the beginning of the sen- 310

tence “the man’s eyes were stabbed by broken 311

glass, then he went blind”. 312

• Alteration of important words (Import.). Re- 313

place important words which could affect model 314

predictions with their synonyms or related words, 315

e.g., replacing “stabbed” with “pierced”. In this 316

situation, the rationale will change, but the pre- 317

diction may not change. 318

• Syntactic transformation (Trans.). Transform 319

the syntactic structure of an instance without 320

changing its meaning, e.g., “the man’s eyes were 321

stabbed by broken glass” is transformed into “the 322

broken glass stabbed the man’s eyes”. 323

We create at least one perturbed example for 324

each original input. We ask two annotators to create 325

perturbed examples, and ask other annotators to 326

review and modify the created examples. 327

3.4 Iterative Rationale Annotation 328

Given an input with a mask and the golden answer 329

for the mask, the annotators highlight important 330

input tokens that support the mask prediction as 331

the rationale. Then we introduce the criteria and 332

annotation process of rationales. 333
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Rationale Criteria As discussed in recent stud-334

ies of natural language understanding tasks, a ra-335

tionale should satisfy sufficiency, compactness and336

comprehensiveness (Lei et al., 2016; Yu et al.,337

2019). As the comprehensiveness is not suitable338

for the rationales of PLMs’ predictions, we use339

sufficiency and compactness as the criteria.340

• Sufficiency. A rationale is sufficient if it con-341

tains enough information for humans to make the342

correct prediction. In other words, humans can343

make the correct prediction only based on tokens344

in the rationale.345

• Compactness. A rationale is compact if all of its346

tokens are indeed required in making a correct347

prediction. That is to say, when any token is348

removed from the rationale, the prediction will349

change or become difficult to make.350

Annotation Process To ensure data quality, fol-351

lowing Wang et al. (2022), we also adopt an itera-352

tive annotation workflow, including three steps.353

Step 1: rationale annotation. Given the input354

and the corresponding golden answer, the anno-355

tators label all critical tokens that are needed for356

the prediction of the golden answer based on their357

intuition on the model decision mechanism.358

Step 2: rationale scoring. The checkers double-359

check the annotations according to the annotation360

criteria. For each rationale, the checkers rate their361

confidences for sufficiency by judging whether they362

are unable (1), probably able (2), or definitely able363

(3) to make the correct prediction only based on364

it, and rate their confidences for compactness by365

judging whether it contains redundant tokens (1),366

contains disturbances (2), is probably concise (3),367

or is very concise (4).368

A rationale is of high-quality if its average score369

on sufficiency and compactness is equal to or370

greater than 3 and 3.6 respectively. All unqualified371

data whose average score on a property is lower372

than the corresponding threshold goes to step 3.373

Step 3: rationale modification. Low-quality374

rationales are given to the annotators for correction.375

Then the corrected rationales are scored by376

checkers again. This iterative annotation-scoring377

process runs for three iterations and the unqualified378

data is discarded after that.379

3.5 Data Statistics380

Table 3 shows the detailed statistics of our bench-381

mark. We can see that the number of pairs and382

Dimensions
English Chinese

Size RRL(%) Size RRL(%)
Grammar 1,365 29.8 701 20.7
Semantics 793 31.6 1,210 27.1
Knowledge 295 45.8 300 51.5
Reasoning 300 48.5 300 43.4
Computation 307 59.7 400 54.5

Table 3: Statistics of our benchmark. “Size” means the
number of original/perturbed pairs. “RRL” represents
the ratio of rationale length to its input length.

the length ratio of rationale vary with evaluation 383

dimensions. As discussed in “masked word selec- 384

tion”, the instances in grammar dimension cover as 385

much lexical knowledge as possible. The English 386

grammar dataset is larger than the Chinese one as 387

there are less agreement rules in Chinese gram- 388

mar. The Chinese dataset for semantics is larger 389

than the English one as there are more available 390

data in Chinese. The rationale length ratio affects 391

interpretability results, as discussed in Section 5.3. 392

4 Metrics 393

Following previous works (Jacovi and Goldberg, 394

2020; DeYoung et al., 2020; Wang et al., 2022), we 395

evaluate interpretability from the aspects of plausi- 396

bility and faithfulness. 397

Plausibility Plausibility measures how well the 398

rationale provided by the model aligns with the 399

human-annotated rationale (Jacovi and Goldberg, 400

2020; DeYoung et al., 2020; Ding and Koehn, 401

2021). We use token F1-score for plausibility evalu- 402

ation, as shown in Equation 1. For each prediction, 403

we select the top K important tokens as its ratio- 404

nale, where the token importance score is assigned 405

by a specific saliency method. 406

Token-F1 =
1

N

N∑
i=1

(2× Pi ×Ri

Pi +Ri
)

where Pi =
|Sp

i ∩ Sg
i |

|Sp
i |

and Ri =
|Sp

i ∩ Sg
i |

|Sg
i |

(1) 407

where Sp
i and Sg

i represent the predicted rationale 408

and human-annotated rationale of the i-th instance 409

respectively; N represents the number of instances. 410

Faithfulness Faithfulness evaluates to what ex- 411

tent the rationale provided by the model truly af- 412

fects the model prediction (Jacovi and Goldberg, 413

2020; Ding and Koehn, 2021). A variety of met- 414

rics have been proposed to evaluate faithfulness, 415
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e.g. sufficiency and comprehensiveness (DeYoung416

et al., 2020), consistency under perturbations (Ding417

and Koehn, 2021; Wang et al., 2022), sensitivity418

and stability (Yin et al., 2022). Most of these met-419

rics are only applicable to classification models.420

Considering the characteristics of PLMs, we use421

the consistency of rationales under perturbations to422

evaluate faithfulness. Specifically, we adopt Mean423

Average Precision (MAP) (Wang et al., 2022) and424

Pearson Correlation Coefficient (PCC) (Ding and425

Koehn, 2021) as evaluation metrics.426

MAP, as defined in Equation 2, evaluates the427

consistency of two rationales by calculating the or-428

der consistency of their corresponding sorted token429

lists. The higher the MAP is, the more faithful the430

rationale is.431

MAP =

∑|Xp|
i=1 (

∑i
j=1 G(xp

j , X
o
1:i))/i

|Xp| (2)432

where Xo and Xp are the sorted token lists of the433

original and perturbed inputs respectively. |Xp|434

represents the token number of Xp. Xo
1:i contains435

the top-i important tokens of Xo. The function436

G(x, Y ) determines whether the token x belongs437

to the list Y , i.e., G(x, Y ) = 1iffx ∈ Y .438

PCC, as shown in Equation 3, measures the lin-439

ear correlation between token importance scores of440

the original instance and the perturbed one. Based441

on perturbation types defined in Section 3.3, we442

first align the two importance score lists. Specif-443

ically, the unaligned tokens, such as the deleted444

ones and inserted ones, will be aligned to a virtual445

token with importance score 0. As it is difficult446

to align the perturbed instance with its original in-447

stance under the perturbation type of Trans., we do448

not perform PCC calculation on pairs of this type.449

A high PCC score1 represents a faithful rationale.450

PCC =

∑n
i=1(v

o
i − v̄o)(vpi − v̄p)√∑n

i=1(v
o
i − v̄o)2

√∑n
i=1(v

p
i − v̄p)2

(3)451

where voi and vpi represent the i-th elements in the452

importance score vectors of the original and per-453

turbed instance, respectively. v̄o and v̄p are the454

mean of two score vectors respectively.455

From the definitions of MAP and PCC, it can456

be seen that MAP measures the association of two457

token lists based on importance order, and PCC458

assesses the association of two token lists according459

to their importance values.460

1In our experiments, our reported PCC values are computed on
pairs with p-value < 0.05, where p-value represents the signifi-
cance level of the linear correlation.

5 Experiments 461

5.1 Experimental Setting 462

In order to evaluate model performance on our 463

benchmark, we adopt several widely-used PLMs 464

and interpretation methods as our baseline mod- 465

els and methods respectively. We only provide 466

high-level descriptions for them and refer to the 467

respective papers and source codes for details. 468

Evaluated PLMs We take BERT (Devlin et al., 469

2019) and RoBERTa (Liu et al., 2019) as base- 470

line models for English. And we adopt BERT- 471

base-chinese (BERT-base) (Devlin et al., 2019), 472

RoBERTa-wwm-ext (RoBERTa-base) (Cui et al., 473

2021) and ERNIE (Sun et al., 2019) as baseline 474

models for Chinese2. 475

Interpretation Methods We use attention (ATT) 476

based (Jain and Wallace, 2019) and integrated gra- 477

dient (IG) based saliency methods (Sundararajan 478

et al., 2017) to assign an importance score for each 479

input token. For the prediction of each input, we 480

select the top-K important tokens to compose the 481

rationale. In our experiments, K is the product of 482

the average length ratio (i.e., RRL in Table 3) and 483

the current input length. 484

In ATT based method, the attention weights in 485

the last layer are taken as token importance scores 486

for predictions, where the attention weight of token 487

i on token j is denoted as si,j . Then we use si,m = 488∑
j∈m si,j to represent the impact of token i on the 489

prediction of the masked segment m which may 490

contain multiple tokens. 491

In IG based method, token importance is deter- 492

mined by integrating the gradient along the path 493

from a defined baseline x0 to the original input, 494

where x0 is set as a sequence of “[CLS] [PAD] 495

... [SEP]” and has the same token number as the 496

original input. The step size is set to 100. 497

Evaluation Metrics We evaluate model predic- 498

tion performance on the first (Top1) and the first 499

three (Top3) predicted answers, using the predic- 500

tive accuracy, i.e., the percentage of inputs whose 501

predictions exactly match the golden answers. And 502

we use the metrics described in Section 4 to evalu- 503

ate PLM’s interpretability. 504

2Since the parameters in the masked-LM layers of BERT-large
and RoBERTa-large are not released with models, which are required
in our experiments, we do not conduct experiments on large versions
of Chinese BERT and RoBERTa.
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Model + TopN
Grammar Semantics Knowledge Reasoning Computation

All Original Perturb All Original Perturb All Original Perturb All Original Perturb All Original Perturb
BERT-base + Top1 61.3 61.3 61.2 43.9 45.3 42.4 7.2 8.3 6.0 20.5 21.7 19.3 1.1 1.5 0.8
RoBERTa-base + Top1 67.6 68.8 66.3 51.0 53.1 48.9 5.0 5.3 4.7 23.8 25.0 22.7 1.0 0.8 1.3
ERNIE-base + Top1 64.3 65.5 63.1 50.6 51.6 49.7 4.5 4.0 5.0 25.0 26.7 23.3 0.3 0.3 0.3
ERNIE-large + Top1 67.7 68.5 66.9 53.0 54.4 51.6 4.3 4.0 4.7 30.5 32.0 29.0 0.5 0.3 0.8
BERT-base + Top3 79.2 80.3 78.2 61.7 63.2 60.2 12.2 13.0 11.3 32.8 35.0 30.7 3.3 4.0 2.5
RoBERTa-base + Top3 81.7 82.2 81.2 71.9 72.4 71.4 10.0 8.7 11.3 43.5 43.0 44.0 2.9 3.3 2.5
ERNIE-base + Top3 81.7 82.6 80.9 71.7 72.3 71.1 12.3 12.0 12.7 45.5 47.0 44.0 1.6 1.5 1.8
ERNIE-large + Top3 84.0 84.9 83.0 73.6 74.6 72.6 11.2 10.3 12.0 50.2 52.7 47.7 2.8 2.5 3.0

Table 4: Masked word prediction performance of base PLMs on original inputs, perturbed inputs and all inputs.

Model + Method
Grammar Semantics Knowledge Reasoning Computation

F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗

BERT-base + ATT 0.35 0.85 0.93 / 0.90 0.39 0.82 0.94 / 0.91 0.68 0.73 0.92 / 0.90 0.53 0.73 0.88 / 0.84 0.64 0.83 0.87 / 0.89
BERT-base + IG 0.35 0.70 0.88 / 0.74 0.30 0.67 0.89 / 0.75 0.61 0.59 0.83 / 0.71 0.49 0.55 0.80 / 0.62 0.59 0.76 0.88 / 0.78
RoBERTa-base + ATT 0.38 0.86 0.93 / 0.91 0.37 0.84 0.94 / 0.92 0.65 0.71 0.92 / 0.90 0.50 0.76 0.90 / 0.86 0.64 0.85 0.89 / 0.90
RoBERTa-base + IG 0.30 0.72 0.88 / 0.80 0.31 0.68 0.87 / 0.81 0.63 0.63 0.82 / 0.86 0.50 0.65 0.82 / 0.81 0.60 0.80 0.86 / 0.87
ERNIE-base + ATT 0.50 0.86 0.95 / 0.91 0.49 0.82 0.96 / 0.91 0.71 0.74 0.96 / 0.92 0.66 0.78 0.95 / 0.88 0.69 0.86 0.94 / 0.91
ERNIE-base + IG 0.38 0.66 0.89 / 0.71 0.36 0.61 0.88 / 0.69 0.64 0.54 0.84 / 0.68 0.54 0.53 0.82 / 0.59 0.61 0.76 0.91 / 0.77
ERNIE-large + ATT 0.40 0.83 0.92 / 0.88 0.41 0.80 0.90 / 0.89 0.71 0.76 0.87 / 0.88 0.54 0.69 0.87 / 0.81 0.66 0.83 0.86 / 0.89
ERNIE-large + IG 0.33 0.56 0.70 / 0.64 0.33 0.51 0.69 / 0.64 0.62 0.51 0.76 / 0.70 0.50 0.47 0.67 / 0.61 0.60 0.68 0.72 / 0.73

Table 5: Interpretability evaluation of base PLMs with two interpretation methods. As illustrated in Section 4, the
metric PCC is not performed on all inputs. For inputs suitable for PCC calculation, we compute MAP∗ on them.

Figure 1: Plausibility (F1) and faithfulness (MAP) of
RoBERTa-base with ATT based interpretation method
over different rationale length ratios.

5.2 Main Results505

Model Prediction Performance Table 4 shows506

model performance on masked word predictions.507

It can be seen that all models perform well on508

instances of grammar and semantics dimensions,509

which proves that these PLMs have learned enough510

linguistic knowledge from the large-scale corpus511

(Hewitt and Manning, 2019; Jawahar et al., 2019;512

Tenney et al., 2019). However, in the other three513

dimensions, all models show a poor prediction per-514

formance, especially on knowledge and computa-515

tion. Existing studies also show that PLMs have no516

such abilities (Pörner et al., 2019; Hendrycks et al.,517

2021; Cobbe et al., 2021).518

From the comparisons between evaluated519

PLMs, we get two interesting findings. First,520

RoBERTa and ERNIE perform better than BERT in521

dimensions of grammar, semantics and reasoning. 522

Furthermore, ERNIE large outperforms ERNIE 523

base in these three dimensions. We think there 524

are two reasons, i.e., the larger size of training 525

corpus and the larger size of parameters. Second, 526

BERT and ERNIE base have better performance in 527

knowledge and computation. As discussed above, 528

the abilities in these two dimensions have not been 529

learned by PLMs from the current training cor- 530

pus and learning objectives. We think the relevant 531

learning objectives need to be designed and the 532

corresponding training data needs to be created. 533

Model Interpretability Table 5 gives results on 534

interpretability of different models and methods. 535

There are three main findings. Firstly, with ATT in- 536

terpretation methods, all the evaluated PLMs have 537

a relatively strong faithfulness, indicating that they 538

are robust under perturbations. As shown in Table 539

4, compared with predictive accuracy on the origi- 540

nal data, the predictive accuracy on the perturbed 541

data has not decreased too much. For example, in 542

the dimension of grammar, the accuracies of most 543

PLMs are reduced by about 2%. Secondly, across 544

all evaluated PLMs, ATT method outperforms IG 545

both in plausibility and faithfulness. We think this 546

is because the interactions between words are more 547

important for word generation based on the con- 548

text. Thirdly, token F1-score (plausibility) and 549

MAP (faithfulness) are positively correlated with 550

the length ratio of extracted rationale. Compared 551
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Data
Grammar Semantics Knowledge Reasoning Computation

Dispens. Import. Trans. Dispens. Import. Trans. Dispens. Import. Trans. Dispens. Import. Trans. Dispens. Import. Trans.
Original 67.7 72.0 63.9 57.5 51.5 47.0 8.4 1.7 4.8 15.7 30.3 26.1 0.0 0.0 1.7

Perturbed
66.4
(-1.3)

70.3
(-1.7)

60.1
(-3.8)

55.8
(-1.7)

51.8
(+0.3)

31.7
(-15.3)

6.3
(-2.1)

1.7
(0.0)

4.8
(0.0)

15.7
(0.0)

30.3
(0.0)

15.9
(-10.2)

1.6
(+1.6)

1.7
(+1.7)

0.0
(-1.7)

Table 6: Predictive accuracy of RoBERTa-base over different perturbation types.

Dimension Dispens. Import. Trans.
F1∆ MAP F1∆ MAP F1∆ MAP

Grammar 0.003 0.906 0.011 0.834 0.001 0.810
Semantics 0.008 0.881 0.004 0.868 0.014 0.700
Knowledge 0.003 0.769 0.007 0.775 0.002 0.648
Reasoning 0.012 0.809 0.026 0.786 0.020 0.663
Computation 0.003 0.912 0.009 0.897 0.012 0.833

Table 7: Interpretability results under different pertur-
bation types. F1∆ represents the F1-score difference
between original input and perturbed input, where bold
values indicate large differences.

with performance on rationales, the performance on552

predictions is much poor. How to improve model553

prediction on plausible rationale is the future work.554

Comparing PLMs with different training data555

size, ERNIE which is trained on a larger corpus556

performs better in plausibility with two interpreta-557

tion methods, and RoBERTa has a higher MAP in558

the dimensions of grammar and semantics. Com-559

paring PLMs with different parameter size, we find560

that ERNIE base is superior to ERNIE large on561

both faithfulness and plausibility in all dimensions562

except for knowledge. This shows that larger pa-563

rameter size may not lead to higher interpretability.564

Finally, we compare two metrics for faithfulness,565

i.e., MAP and PCC, where MAP relies on token im-566

portance order and PCC relies on token importance567

values, as discussed in Section 4. From Table 5, we568

can see that the two metrics of the same model have569

the similar trend over different interpretation meth-570

ods. But the gap Between PCC values is smaller571

than that between MAP values.572

5.3 Analysis573

We give an in-depth analysis about the impacts of574

extracted rationale length and perturbation type on575

model interpretability. Due to space limitation, we576

take the results of RoBERTa-base with ATT based577

method for example, and results of other PLMs and578

methods have the similar trend.579

Impacts of Rationale Length As shown in Fig-580

ure 1, in the dimensions of knowledge, reasoning581

and computation, where the length ratio of ratio-582

nale is about 0.5, both plausibility and faithfulness583

increase with the increase of rationale length ratio.584

This states that the most important words provided 585

by the model and the interpretation method perform 586

poorly on interpretability in these three evaluation 587

dimensions. In the dimensions of grammar and 588

semantics, where the rationale length ratio is about 589

0.3, plausibility achieves the highest F1 score when 590

the extracted rationale length ratio is about 0.5; and 591

MAP increases much slowly with the increase of 592

rationale length. This shows that PLMs perform 593

well in these two dimensions. 594

Impacts of Perturbation Types In Table 6, we 595

give model prediction accuracy over three pertur- 596

bation types. It can be seen that the prediction 597

accuracy alters significantly on syntactically trans- 598

formed perturbations (Trans.). And the model is rel- 599

atively robust on the other two perturbation types. 600

Meanwhile, we further analyze interpretability 601

results over different perturbation types, as shown 602

in Table 7. It can be seen that faithfulness under 603

Trans. type is significantly lower than those under 604

the other two perturbation types. Meanwhile, the 605

perturbation types of Trans. and Import. have a 606

larger influence on plausibility in the dimensions 607

of semantics, reasoning and computation. Corre- 608

spondingly, Dispens. has little influence on model 609

interpretability, just as it has little effect on model 610

predictions. 611

6 Conclusion 612

To comprehensively evaluate PLMs, we construct a 613

novel evaluation benchmark to evaluate both model 614

prediction performance and interpretability from 615

five dimensions, i.e., grammar, semantics, knowl- 616

edge, reasoning and computation. We conduct ex- 617

periments on several popular PLMs, and the results 618

show that they perform very poorly in some dimen- 619

sions, such as knowledge and computation. Mean- 620

while, the results show that the rationales they pro- 621

vided for predictions are less plausible, especially 622

with a short rationale. Finally, the evaluated PLMs 623

have a strong robustness under perturbations, but 624

they are less robust on syntax-aware data. We will 625

release this evaluation benchmark, and hope it will 626

facilitate the research progress of PLMs. 627
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A Datasets for Building Our Benchmark985

In order to construct a high-quality evaluation986

benchmark, we build our datasets based on some987

existing human-annotated datasets. As shown in988

Table 2, for each evaluation dimension, we select989

several datasets to build our evaluation dataset.990

To test the grammatical competence of PLMs,991

we collect instances from some linguistic datasets992

which show both lexical and syntactic knowledge.993

Specifically, we adopt Penn Treebank 3.03 to build994

English dataset, as well as Chinese Treebank 8.04995

and Chinese Dependency Treebank 1.05 to build996

Chinese dataset. All of these three datasets are997

from LDC, and we have been authorized.998

To evaluate the performance of PLMs on se-999

mantic understanding, our dataset covers multiple1000

types of conceptual knowledge, such as conceptual1001

senses of words, concept properties, relationships1002

between concepts and semantic co-reference rules.1003

For concept properties and relationships, we adopt1004

Wikipedia6 and WebNLG (Moryossef et al., 2019)1005

for English dataset, as well as Baidu Baike7 and1006

DuIE (Li et al., 2019) for Chinese dataset. For se-1007

mantic co-reference, we task WSC (Levesque et al.,1008

2012) and CLUEWSC2020 (Xu et al., 2020) for1009

English and Chinese respectively.1010

To test the capability of PLMs on grasping1011

factual knowledge, we take the datasets for the1012

knowledge based question answering task as base1013

datasets, i.e., Freebase QA dataset (Jiang et al.,1014

2019) for English, and CKBQA8 for Chinese. Our1015

questions cover single-hop and multi-hop questions.1016

Meanwhile, we filter out questions with multiple1017

answers to ensure the uniqueness of the prediction.1018

To evaluate the reasoning ability of PLMs on1019

real-world commonsense, we utilize the COPA1020

dataset (Roemmele et al., 2011) and the XCOPA1021

dataset (Ponti et al., 2020) to build our English and1022

Chinese datasets respectively.1023

For testing the ability of PLMs on solving math-1024

ematical word problems, we use Alg514 (Kushman1025

et al., 2014) and Dolphin18K (Huang et al., 2016)1026

for English, and Math23K (Wang et al., 2017) for1027

Chinese. And we only select simple questions1028

whose equations have no more than two operators.1029

3https://catalog.ldc.upenn.edu/LDC99T42
4https://catalog.ldc.upenn.edu/LDC2013T21
5https://catalog.ldc.upenn.edu/LDC2012T05
6https://huggingface.co/datasets/wikipedia
7https://baike.baidu.com
8https://github.com/pkumod/CKBQA, the dataset for

knowledge-based question answering task in CCKS 2019.

Data cleaning. In the process of collection, we 1030

ask annotators to discard instances that contain: 1) 1031

offensive content, 2) information that names or 1032

uniquely identifies individual people, 3) discus- 1033

sions about politics, guns, drug abuse, violence 1034

or pornography. 1035

B Other Annotation Details 1036

We give more details about annotator information, 1037

annotation training and payment, and instructions 1038

for data usage. 1039

Annotator information. We have two annota- 1040

tors for each dimension, and three checkers for all 1041

dimensions. The annotators annotate the rationales 1042

and modify the rationales according to the scores 1043

from the checkers. They are college students ma- 1044

joring in languages. Our checkers are full-time 1045

employees, and perform quality control. Before 1046

this work, they have lots of experience in annotat- 1047

ing data for NLP tasks. 1048

Annotation training and payment. Before real 1049

annotation, we train all annotators for several times 1050

so that they understand the annotation task, ratio- 1051

nale criteria, etc. During real annotation, we have 1052

also held several meetings to discuss common mis- 1053

takes and settle disputes. All annotators were paid 1054

for their work based on the quality and quantity 1055

of their annotations. According to their annotation 1056

time, the average salary per hour is 31.25 RMB. 1057

Instructions of data annotation and usage. Be- 1058

fore annotation, we provide a full instruction to all 1059

annotators, including the responsibility for leaking 1060

data, disclaimers of any risks, and screenshots of 1061

annotation discussions. Meanwhile, our datasets 1062

are only used for interpretability evaluation. And 1063

we will release a license with the release of our 1064

benchmark. 1065

C Limitation Discussion 1066

We provide an evaluation benchmark to evaluate 1067

capabilities and interpretability of PLMs. There 1068

are three limitations in our work. 1069

• How to automatically and effectively evaluate 1070

the quality of human-annotated rationales is still 1071

open. We have three annotators to perform qual- 1072

ity control. However, this manner heavily relies 1073

on human intuitions and experiences. 1074

• Due to resource limitation, we do not conduct 1075

experiments on capability-specific PLMs, such 1076
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Model + TopN
Grammar Semantics Knowledge Reasoning Computation

All Original Perturb All Original Perturb All Original Perturb All Original Perturb All Original Perturb
BERT-base + Top1 52.2 52.5 51.9 64.7 65.6 63.8 0.7 0.7 0.7 24.0 23.7 24.3 0.5 0.3 0.7
BERT-large + Top1 58.8 58.9 58.8 67.9 69.1 66.7 0.7 1.0 0.3 28.7 28.0 29.3 1.3 1.0 1.6
RoBERTa-base + Top1 59.5 59.3 59.6 62.7 62.9 62.4 2.9 3.1 2.7 29.7 29.3 30.0 1.1 1.0 1.3
RoBERTa-large + Top1 72.0 71.5 72.5 73.6 74.0 73.1 5.1 6.4 3.7 40.5 40.0 41.0 2.0 2.0 2.0
BERT-base + Top3 69.0 69.1 68.9 80.5 81.3 79.7 1.0 1.4 0.7 36.5 35.7 37.3 2.8 2.3 3.3
BERT-large + Top3 73.2 73.4 73.0 83.9 84.9 83.0 1.2 2.0 0.3 42.0 41.3 42.7 4.4 4.2 4.6
RoBERTa-base + Top3 73.2 73.6 72.9 79.7 80.3 79.1 5.4 6.8 4.1 46.5 46.3 46.7 5.1 4.6 5.5
RoBERTa-large + Top3 83.3 83.3 83.4 89.0 89.5 88.4 8.8 11.2 6.4 57.8 59.7 56.0 6.7 7.2 6.2

Table 8: Masked word prediction performance of baseline PLMs on English dataset, where performance is evaluated
on all inputs, original inputs and perturbed inputs respectively.

Model + Method
Grammar Semantics Knowledge Reasoning Computation

F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗ F1 MAP PCC/MAP∗

BERT-base + ATT 0.47 0.91 0.99 / 0.93 0.44 0.84 0.97 / 0.90 0.59 0.73 0.99 / 0.85 0.53 0.87 0.99 / 0.89 0.57 0.90 0.95 / 0.92
BERT-base + IG 0.34 0.73 0.89 / 0.75 0.42 0.67 0.87 / 0.71 0.66 0.51 0.83 / 0.63 0.56 0.64 0.83 / 0.68 0.62 0.79 0.85 / 0.80
BERT-large + ATT 0.47 0.87 0.95 / 0.91 0.40 0.83 0.94 / 0.89 0.58 0.64 0.94 / 0.85 0.59 0.84 0.96 / 0.87 0.60 0.90 0.94 / 0.90
BERT-large + IG 0.37 0.42 0.45 / 0.48 0.41 0.38 0.44 / 0.46 0.64 0.40 0.54 / 0.61 0.57 0.41 0.39 / 0.51 0.66 0.56 0.48 / 0.60
RoBERTa-base + ATT 0.55 0.88 0.95 / 0.91 0.44 0.83 0.94 / 0.89 0.58 0.63 0.90 / 0.85 0.63 0.83 0.92 / 0.88 0.62 0.87 0.91 / 0.90
RoBERTa-base + IG 0.39 0.66 0.78 / 0.73 0.37 0.56 0.72 / 0.68 0.56 0.41 0.73 / 0.67 0.56 0.59 0.79 / 0.69 0.63 0.73 0.81 / 0.78
RoBERTa-large + ATT 0.53 0.90 0.96 / 0.93 0.43 0.82 0.94 / 0.91 0.55 0.63 0.90 / 0.86 0.56 0.83 0.90 / 0.88 0.58 0.87 0.92 / 0.90
RoBERTa-large + IG 0.37 0.57 0.74 / 0.67 0.37 0.50 0.73 / 0.65 0.56 0.45 0.67 / 0.60 0.54 0.54 0.74 / 0.67 0.63 0.67 0.74 / 0.75

Table 9: Interpretability results of base PLMs with two interpretation methods on English dataset. As illustrated in
Section 4, the metric PCC is not performed on all inputs. For inputs suitable for PCC calculation, we also compute
MAP on them, denoted as MAP∗.

Dimension Dispens. Import. Trans.
F1∆ MAP F1∆ MAP F1∆ MAP

Grammar 0.000 0.913 0.002 0.821 0.001 0.837
Semantics 0.001 0.854 0.001 0.856 0.016 0.644
Knowledge 0.016 0.783 0.017 0.750 0.057 0.512
Reasoning 0.002 0.874 0.002 0.821 0.013 0.753
Computation 0.001 0.921 0.004 0.877 0.019 0.888

Table 10: Interpretability results of RoBERTa-base with
ATT based method under different perturbation types.
F1∆ represents the F1-score difference between original
input and perturbed input, where bold values indicate
large differences.

as GPT-f for computation, and those PLMs with1077

enormous parameter size, such as GPT-3.1078

• What is the relationship between linguistic1079

knowledge learned by PLMs and their interpreta-1080

tions for masked word predictions? Such analysis1081

is as the future work.1082

D English results1083

In this section, we show results on English dataset,1084

as shown in Table 8 - Table 10. Similarly, we give1085

analyses from the perspectives of model prediction1086

performance and interpretability.1087

Model Prediction Performance Table 8 shows1088

the predictive accuracy of evaluated PLMs on En-1089

glish dataset. Generally, the performance in dif-1090

ferent dimensions has the similar trend with that1091

on Chinese dataset. Firstly, all evaluated PLMs 1092

perform very poorly in the dimensions of knowl- 1093

edge and computation. Secondly, both for BERT 1094

and RoBERTa, the large-size model outperforms 1095

the base-size one. Thirdly, comparing models with 1096

the same size of parameters, RoBERTa which is 1097

trained on a larger corpus outperforms BERT on 1098

most of dimensions. 1099

Impacts of perturbation types. As shown in 1100

Table 11, in most of dimensions, RoBERTa-base 1101

is less robust under perturbation types of Trans. 1102

and Impor.. Meanwhile, RoBERTa-base is less 1103

robust under the perturbation type of Dispens. in 1104

some dimensions, such as semantics, knowledge 1105

and reasoning, while Chinese RoBERTa-base is 1106

robust under Dispens. type in all dimensions. 1107

Model Interpretability Table 9 shows the in- 1108

terpretation results of the evaluated PLMs on the 1109

English dataset. Most of the conclusions on the 1110

Chinese dataset (illustrated in Section 5.2) are ap- 1111

plicable to the English dataset. One difference is 1112

that ATT based method not always performs better 1113

than IG based method on plausibility evaluation 1114

in the dimensions of knowledge and computation. 1115

But model prediction performance is very poor in 1116

these two dimensions, which may affect the inter- 1117

pretability performance of PLMs. 1118

Impacts of perturbation types. Table 10 shows 1119
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Data
Grammar Semantics Knowledge Reasoning Computation

Dispens. Import. Trans. Dispens. Import. Trans. Dispens. Import. Trans. Dispens. Import. Trans. Dispens. Import. Trans.
Original 59.8 58.6 54.3 60.2 73.9 63.2 4.3 1.6 3.1 25.6 30.0 35.5 2.6 1.1 0.0

Perturbed
60.4

(+0.6)
59.0

(+0.4)
51.2
(-3.1)

59.2
(-1.0)

71.8
(-2.1)

64.6
(+1.4)

2.9
(-1.4)

4.9
(+3.3)

1.8
(-1.3)

28.1
(+2.5)

30.5
(+0.5)

32.3
(-3.2)

2.6
(0.0)

0.0
(-1.1)

0.0
(0.0)

Table 11: Predictive accuracy of RoBERTa-base over different perturbation types on English dataset.

interpretability results of RoBERTa-base under dif-1120

ferent perturbation types. It can be seen that in the1121

dimensions of semantic, knowledge and reasoning,1122

the perturbation type of syntactical transformation1123

(Trans.) brings a significant drop on faithfulness1124

(MAP). Meanwhile, in most dimensions, Trans.1125

causes a large F1-score difference between the orig-1126

inal intput and the perturbed input. This proves that1127

the evaluated PLMs are less robust to perturbations1128

in Trans. type.1129
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