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Abstract

While pre-trained language models (PLMs)
have brought great improvements in many NLP
tasks, there is increasing attention to explore
capabilities of PLMs and interpret their predic-
tions. However, existing works usually focus
only on a certain capability of PLMs by test-
ing them with some downstream tasks. There
is a lack of datasets for directly evaluating the
masked word prediction performance and the
interpretability of PLMs. To fill in the gap, we
propose a novel evaluation benchmark provid-
ing with both English and Chinese annotated
data. In order to comprehensively evaluate the
capabilities of PLMs, it provides evaluation
data in five dimensions, i.e., grammar, seman-
tics, factual knowledge, reasoning and compu-
tation. In addition, it provides carefully an-
notated token-level rationales to evaluate the
interpretability of PLM predictions. We con-
duct experiments on several widely-used PLMs.
The results show that they perform very poorly
in the dimensions of knowledge and compu-
tation. And the rationales provided by them
to support predictions are less plausible, espe-
cially when they are short. We will release this
benchmark at http://xyz, hoping it can fa-
cilitate the research progress of PLMs.

1 Introduction

Since PLMs such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) have achieved sig-
nificant gains in predictive accuracy on a variety of
NLP tasks (Wang et al., 2018), many studies focus
on exploring their capabilities (Tenney et al., 2019;
Petroni et al., 2019; Brown et al., 2020) and their
decision-making mechanisms (Ding and Koehn,
2021; Rethmeier et al., 2020).

Many works have proved that PLMs have
learned amounts of knowledge from the massive
text corpora (i.e., their training data), such as lin-
guistic knowledge (Tenney et al., 2019; Jawahar
et al., 2019) and factual knowledge (Petroni et al.,

2019; Porner et al., 2019). Such learned knowl-
edge has enhanced some capabilities of PLMs, e.g.,
reasoning (Brown et al., 2020) and computation
(Polu and Sutskever, 2020). However, some stud-
ies show that PLMs have not captured adequate
knowledge and are insufficient in some aspects,
e.g., having not learned enough syntactic structures
(Wang et al., 2019; Min et al., 2020), having a
poor grasp of reasoning over factual knowledge
and commonsense (Porner et al., 2019; Marcus and
Davis, 2020), as well as having a poor performance
on mathematical problem solving (Hendrycks et al.,
2021; Cobbe et al., 2021).

On the other hand, some researchers aim to un-
veil the decision-mechanism of a PLM, which can
help us understand the reasons behind its success
and its limitations (Rethmeier et al., 2020; Meng
et al., 2022; Mor Geva, 2022). Some works study
the inner workings of transformer-based PLMs ac-
cording to hidden states and their evolutions be-
tween layers (Voita et al., 2019; Singh et al., 2019).
Other works develop toolkits to capture, analyze
and visualize inner mechanisms of PLMs at the
level of individual neurons (Rethmeier et al., 2020;
Dai et al., 2021; Alammar, 2021; Mor Geva, 2022).

Although lots of studies have been done, it is still
unclear what capabilities a PLM has mastered and
how much it has mastered. Meanwhile, there lacks
quantitative evaluations on PLM’s interpretabil-
ity. To address these problems, we propose a
novel evaluation benchmark for PLMs, containing
instances with masked words and corresponding
human-annotated rationales for masked word pre-
dictions. As shown in Table 1, the masked words
are used to evaluate model prediction performance,
and the rationales are used to evaluate model inter-
pretability. Overall, our contributions include:

1. To our best knowledge, this is the first bench-
mark that can be used to evaluate both prediction
performance and interpretability of PLMs. And
it provides both English and Chinese data.
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Instances in Our Evaluation Benchmark

Dimensions Instances Collected for Evaluation Tnputs with Masked Words AnSWers
G Aeroflot ’s international fleet of 285 planes is being | Aeroflot ’s international fleet of 285 [MASK] is being 1
rammar repainted and refurbished at Shannon Airport. repainted and refurbished at Shannon Airport. planes
. The city of Austin has a total area of 703.95 The city of Austin has a total [MASK] of 703.95
Semantics . ° o ) area
square kilometres. square kilometres.
Knowledge The country Germany is located directly to the east |The country [MASK] is located directly to the east Germany
of Belgium. of Belgium.
R . The man’s eyes were stabbed by broken glass, The man’s eyes were stabbed by broken glass, blind
CaSONNE | then he went blind. then he went [MASK]. n
C tati Tony planted a 4 foot tree. The tree grows at a rate of | Tony planted a 4 foot tree. The tree grows at a rate of 5
Omputation | 5 e every year. It takes 5 years to be 29 feet. 5 feet every year. It takes [MASK] years to be 29 feet.

Table 1: Examples for five evaluation dimensions. The words in the red color are taken as the ground-truth rationale
for masked word predictions, and the words in Answers column are the golden answers for the masked words.

2. Our evaluation benchmark covers five evalua-
tion dimensions, i.e., grammar, semantics, fac-
tual knowledge, reasoning and computation, to
comprehensively evaluate the capability of a
PLM from multiple perspectives.

3. We conduct experiments on several widely-used
PLMs, and the results show that current PLMs
have very poor prediction performance in the di-
mensions of knowledge, reasoning and computa-
tion. And the rationales that support predictions
are less plausible. We believe this benchmark
can help evaluate and improve PLMs.

2 Related Work

In this section, we review studies on exploring
PLMs’ capabilities and interpretability.

2.1 Capability Analyses of PLMs

While PLMs have been developed rapidly, a large
number of studies attempt to explore capabilities of
PLMs (Jawahar et al., 2019; Hewitt and Manning,
2019; Porner et al., 2019).

Grammar and semantics. Some studies prove
that PLMs have captured linguistic structures in
their representations, with lexical features at low
layers, syntactic features at middle layers and se-
mantic features at high layers (Jawahar et al., 2019;
Kim et al., 2020; Tenney et al., 2019). Also, some
works find that BERT has not learned some syntac-
tic structures and can not perform well on syntax-
aware data (Wang et al., 2019; Min et al., 2020).

Knowledge. According to BERT’s good perfor-
mance on answering cloze-style questions about re-
lational facts between entities, Petroni et al. (2019)
state that BERT memorizes factual knowledge dur-
ing pre-training. But Porner et al. (2019) prove that
BERT’s impressive performance is partly due to
reasoning about the surface form of entity names.

Reasoning. GPT-3 is proved to have a powerful
reasoning ability and can generate news articles
which are difficult to be distinguished from human-
written articles by humans (Brown et al., 2020).
However, Marcus and Davis (2020) state that GPT-
3 has no idea what it’s talking about, and show that
it has a poor grasp of reasoning over commonsense.

Computation. Some studies aim to make PLMs
solve theorem proving and quantitative reason-
ing problems, such as GPT-f (Polu and Sutskever,
2020) and Minerva (Lewkowycz et al., 2022).
Other studies release corresponding datasets to
measure model capabilities on mathematical prob-
lem solving, and find that these enormous PLMs
fail to achieve high test performance, while a bright
middle school student could solve every problem
(Hendrycks et al., 2021; Cobbe et al., 2021).

2.2 Interpretability of PLMs

Interpretation Methods Recent studies to in-
terpret PLM’s predictions are mainly classified
into three categories. First, some works use input
saliency methods (Simonyan et al., 2014; Smilkov
et al., 2017; Sundararajan et al., 2017) to assign an
importance score for each input token, represent-
ing the token’s impact on model predictions (Ding
and Koehn, 2021). Second, hidden states and their
evolutions between layers are always used to glean
information about the inner workings of a PLM
(Singh et al., 2019; Voita et al., 2019). Third, ex-
amination of neuron activations is used to trace and
analyze model processes in quantifying knowledge
changes by extracting underlying patterns of neu-
ron firings (Rethmeier et al., 2020; Dai et al., 2021).
Meanwhile, several tools are released to capture,
analyze, visualize, and interactively explore inner
mechanisms of PLMs (Dalvi et al., 2019; Alammar,
2021; Mor Geva, 2022).



Dimensions English

‘ Chinese

Grammar Penn Treebank 3.0
Semantics

Knowledge FreebaseQA (Jiang 2019)
Reasoning COPA (Roemmele 2011)

Computation

Alg514 (Kushman 2014), Dolphin18K (Huang 2016)

Chinese Treebank 8.0, Chinese Dependency Treebank 1.0

Wikipedia, WebNLG (Moryossef 2019), WSC (Levesque 2012) | Baidu Baike, DulE (Li 2019), CLUEWSC2020 (Xu 2020)

CKBQA
XCOPA (Ponti 2020)
Math23K (Wang 2017)

Table 2: Datasets used to create our datasets. Please see Appendix A for details.

Evaluation Datasets While attention to con-
struct interpretability evaluation datasets for spe-
cific NLP tasks keeps increasing (DeYoung et al.,
2020; Wang et al., 2021; Camburu et al., 2018),
there is a lack of evaluation datasets for PLMs.
Ding and Koehn (2021) create four datasets with
token-level rationales for two grammar tasks,
i.e., subject-verb number agreement and pronoun-
antecedent gender agreement. Ekin Akyiirek
(2022) propose a fact tracing dataset with instance-
level rationales to evaluate model capability on fact
learning. He et al. (2022) provide a simile property
probing dataset to evaluate a PLM’s performance
on interpreting similes.

Evaluation Metrics Plausibility and faithfulness
are often used to evaluate interpretability (Doshi-
Velez and Kim, 2017; Jacovi and Goldberg, 2020;
Adebayo et al., 2020), where the former measures
how much the rationales provided by models align
with human-annotated ones, and the latter measures
the degree to which the rationales in fact influence
the corresponding predictions. With token-level
rationales, token F1-score is often used to evalu-
ate plausibility (Mathew et al., 2021; Wang et al.,
2022); sufficiency and comprehensiveness (DeY-
oung et al., 2020), consistency under perturbations
(Ding and Koehn, 2021; Wang et al., 2022), as well
as sensitivity and stability (Yin et al., 2022) are
used to evaluate faithfulness.

In this work, we provide a novel benchmark to
evaluate both predictive accuracy and interpretabil-
ity of PLMs. This benchmark provides evaluation
data in multiple dimensions and provides human-
annotated token-level rationales.

3 Evaluation Dataset Construction

Our evaluation dataset is constructed in three steps:
1) data collection; 2) perturbed data construction; 3)
iterative rationale annotation and checking. We first
introduce the five evaluation dimensions in Section
3.1. Then we describe the annotation process in
Section 3.2-3.4. Finally, we give our data statistics.

3.1 Evaluation Dimensions

According to the abilities that a PLM should have
for predicting the right answer, we define five eval-
uation dimensions, as described below. The corre-
sponding examples are shown in Table 1.

e Grammar. The instances in this dimension
are designed to evaluate what lexical linguistic
knowledge a PLM has learned, such as the tense
of a verb, the gender of a pronoun, and the num-
ber of a noun. As shown by the first example in
Table 1, the noun right after the number “285”
must be plural if it is countable.

* Semantics. This dimension aims to test whether
a PLM has learned syntactic and semantic fea-
tures or not, such as entity types and semantic
co-reference rules. The second example in Table
1 requires the model to master the concept of
“city” and the corresponding property “area”.

Knowledge. The instances in this type are used
to evaluate the extent to which a PLM has learned
real-world factual knowledge. As shown by the
third example in Table 1, the prediction of “Ger-
many” requires the model to learn and memorize
related knowledge.

¢ Reasoning. This dimension measures the infer-
ential capability of a PLM over open-domain
commonsense. The forth example in Table 1
states that the model should deduce “blind” ac-
cording to the premise that the eye was hurt.

* Computation. These instances test the quanti-
tative reasoning ability of a PLM on handling
mathematical problems, as illustrated by the last
example in Table 1.

3.2 Data Collection

In order to create high-quality evaluation datasets,
we construct our datasets on the basis of some ex-
isting human-annotated datasets, as shown in Table
2. Please see Appendix A for details. Our collec-
tion process consists of the following two steps:
instance construction and masked word selection.



Instance Construction Each input in our evalua-
tion datasets is a sentence or a paragraph consisting
of multiple sentences, as shown in Table 1. Since
the input forms of some existing datasets in Table
2 are not as we want them to be in our datasets, we
have them manually modified. Specially, we create
inputs for the following three dimensions.

For knowledge, the original input consists of a
question and an answer. We replace the wh-phrase
in the question with the answer to form a new input.
For example, the third example in Table 1 was
originally “Which country is located directly to the
east of Belgium?” with the answer “Germany”.

For reasoning, each original input contains a
given premise and two plausible alternatives for
either the cause or the effect of the premise. We
concatenate the premise and its cause with some
appropriate conjunctions such as “since” and “as”
to build a new instance. Similarly, we use con-
junctions such as “then” and “so” to connect the
premise and the proper effect to create a new input.

For computation, the original instance consists
of a question, an equation and answer. We use the
answer to replace the wh-phrase in the question to
construct a new input. The original question for the
fifth example in Table 1 is “Tony planted a 4 foot ...
How many years will it take to be 29 feet?”.

Masked Word Selection For each created input,
we select an appropriate word or phrase to mask,
denoted as w,,. Then the masked sentence is input
to a PLM, which will output a prediction for the
masked position. And w,, is the golden answer for
the masked position. To precisely evaluate model
prediction performance, the golden answer for the
masked position should be as unique as possible.
We take the uniqueness of answer as one criteria
for selecting masked words. In the dimensions of
“knowledge” and “computation”, the question’s an-
swer is selected as w,,. For the other three dimen-
sions, annotators need to select appropriate masked
words according to the uniqueness principle.

Besides, we make some rules to ensure the di-
versity of masked words. For example, the masked
words in grammar dimension cover all parts-of-
speech, and those in semantics dimension cover
different entity types and relations.

Then for each masked position and the corre-
sponding golden answer, three annotators rate their
confidences on a 4-point scale by judging whether
the golden answer is unique (4), among the top 3
predictions (3), among the top 5 predictions (2), or

none of the above (1). The masked position is con-
sidered to be appropriate if the confidence of each
annotator is no less than 3, i.e., its golden answer
is unique or among the top 3 predictions.

3.3 Perturbed Data Creation

Recent studies (Ding and Koehn, 2021; Wang et al.,
2022) propose to evaluate the model faithfulness
using the consistency of rationales under pertur-
bations that are not supposed to change the model
decision mechanism. Following them, we construct
perturbed examples for each original input.

Perturbation Criteria In our work, perturba-
tions should not change the model prediction and
the internal decision mechanism. Please note that
the influence of perturbations on model’s predic-
tion and decision mechanism comes from human’s
basic intuition. Based on the literature (Jia and
Liang, 2017; McCoy et al., 2019; Ribeiro et al.,
2020), we define three perturbation types.

¢ Alteration of dispensable words (Dispens.). In-
sert, delete or replace words that should have no
effect on model predictions, e.g., inserting the
word “unfortunately” at the beginning of the sen-
tence “the man’s eyes were stabbed by broken
glass, then he went blind”.

¢ Alteration of important words (Import.). Re-
place important words which could affect model
predictions with their synonyms or related words,
e.g., replacing “stabbed” with “pierced”. In this
situation, the rationale will change, but the pre-
diction may not change.

¢ Syntactic transformation (7rans.). Transform
the syntactic structure of an instance without
changing its meaning, e.g., “the man’s eyes were
stabbed by broken glass™ is transformed into “the
broken glass stabbed the man’s eyes”.

We create at least one perturbed example for
each original input. We ask two annotators to create
perturbed examples, and ask other annotators to
review and modify the created examples.

3.4 Iterative Rationale Annotation

Given an input with a mask and the golden answer
for the mask, the annotators highlight important
input tokens that support the mask prediction as
the rationale. Then we introduce the criteria and
annotation process of rationales.



Rationale Criteria As discussed in recent stud-
ies of natural language understanding tasks, a ra-
tionale should satisfy sufficiency, compactness and
comprehensiveness (Lei et al., 2016; Yu et al,,
2019). As the comprehensiveness is not suitable
for the rationales of PLMs’ predictions, we use
sufficiency and compactness as the criteria.

 Sufficiency. A rationale is sufficient if it con-
tains enough information for humans to make the
correct prediction. In other words, humans can
make the correct prediction only based on tokens
in the rationale.

* Compactness. A rationale is compact if all of its
tokens are indeed required in making a correct
prediction. That is to say, when any token is
removed from the rationale, the prediction will
change or become difficult to make.

Annotation Process To ensure data quality, fol-
lowing Wang et al. (2022), we also adopt an itera-
tive annotation workflow, including three steps.

Step 1: rationale annotation. Given the input
and the corresponding golden answer, the anno-
tators label all critical tokens that are needed for
the prediction of the golden answer based on their
intuition on the model decision mechanism.

Step 2: rationale scoring. The checkers double-
check the annotations according to the annotation
criteria. For each rationale, the checkers rate their
confidences for sufficiency by judging whether they
are unable (1), probably able (2), or definitely able
(3) to make the correct prediction only based on
it, and rate their confidences for compactness by
judging whether it contains redundant tokens (1),
contains disturbances (2), is probably concise (3),
or is very concise (4).

A rationale is of high-quality if its average score
on sufficiency and compactness is equal to or
greater than 3 and 3.6 respectively. All unqualified
data whose average score on a property is lower
than the corresponding threshold goes to step 3.

Step 3: rationale modification. Low-quality
rationales are given to the annotators for correction.

Then the corrected rationales are scored by
checkers again. This iterative annotation-scoring
process runs for three iterations and the unqualified
data is discarded after that.

3.5 Data Statistics

Table 3 shows the detailed statistics of our bench-
mark. We can see that the number of pairs and

Dimensions English Chinese
Size RRL(%)| Size RRL(%)
Grammar 1,365 29.8| 701 20.7
Semantics 793 31.6]1,210 27.1
Knowledge 295 45.8| 300 51.5
Reasoning 300 48.5| 300 43.4
Computation| 307 59.7| 400 54.5

Table 3: Statistics of our benchmark. “Size” means the
number of original/perturbed pairs. “RRL” represents
the ratio of rationale length to its input length.

the length ratio of rationale vary with evaluation
dimensions. As discussed in “masked word selec-
tion”, the instances in grammar dimension cover as
much lexical knowledge as possible. The English
grammar dataset is larger than the Chinese one as
there are less agreement rules in Chinese gram-
mar. The Chinese dataset for semantics is larger
than the English one as there are more available
data in Chinese. The rationale length ratio affects
interpretability results, as discussed in Section 5.3.

4 Metrics

Following previous works (Jacovi and Goldberg,
2020; DeYoung et al., 2020; Wang et al., 2022), we
evaluate interpretability from the aspects of plausi-
bility and faithfulness.

Plausibility Plausibility measures how well the
rationale provided by the model aligns with the
human-annotated rationale (Jacovi and Goldberg,
2020; DeYoung et al., 2020; Ding and Koehn,
2021). We use token F1-score for plausibility evalu-
ation, as shown in Equation 1. For each prediction,
we select the top K important tokens as its ratio-
nale, where the token importance score is assigned
by a specific saliency method.

N
1 P»; X Ri
Token-Fl = — E 2
o Ni:l( XH+Ri) (D
|7 N SY| ISt N Y|
where P, = 57| and R; = 57|

where S? and SY represent the predicted rationale
and human-annotated rationale of the -th instance
respectively; IV represents the number of instances.

Faithfulness Faithfulness evaluates to what ex-
tent the rationale provided by the model truly af-
fects the model prediction (Jacovi and Goldberg,
2020; Ding and Koehn, 2021). A variety of met-
rics have been proposed to evaluate faithfulness,



e.g. sufficiency and comprehensiveness (DeYoung
et al., 2020), consistency under perturbations (Ding
and Koehn, 2021; Wang et al., 2022), sensitivity
and stability (Yin et al., 2022). Most of these met-
rics are only applicable to classification models.

Considering the characteristics of PLMs, we use
the consistency of rationales under perturbations to
evaluate faithfulness. Specifically, we adopt Mean
Average Precision (MAP) (Wang et al., 2022) and
Pearson Correlation Coefficient (PCC) (Ding and
Koehn, 2021) as evaluation metrics.

MAP, as defined in Equation 2, evaluates the
consistency of two rationales by calculating the or-
der consistency of their corresponding sorted token
lists. The higher the MAP is, the more faithful the
rationale is.

KT, Gt XT)) /i

MAP =
| X7

@3

where X ° and X? are the sorted token lists of the
original and perturbed inputs respectively. |XP|
represents the token number of X?. X7 contains
the top-: important tokens of X°. The function
G(z,Y) determines whether the token x belongs
tothelistY,ie,G(z,Y)=11iffx €Y.

PCC, as shown in Equation 3, measures the lin-
ear correlation between token importance scores of
the original instance and the perturbed one. Based
on perturbation types defined in Section 3.3, we
first align the two importance score lists. Specif-
ically, the unaligned tokens, such as the deleted
ones and inserted ones, will be aligned to a virtual
token with importance score 0. As it is difficult
to align the perturbed instance with its original in-
stance under the perturbation type of Trans., we do
not perform PCC calculation on pairs of this type.
A high PCC score! represents a faithful rationale.

Dio (v — %) (v — ")
VI (W7 =002V (0] — o7)?

where v¢ and v? represent the i-th elements in the
importance score vectors of the original and per-
turbed instance, respectively. v° and vP are the
mean of two score vectors respectively.

From the definitions of MAP and PCC, it can
be seen that MAP measures the association of two
token lists based on importance order, and PCC
assesses the association of two token lists according
to their importance values.

PCC = 3)

In our experiments, our reported PCC values are computed on
pairs with p-value < 0.05, where p-value represents the signifi-
cance level of the linear correlation.

S Experiments

5.1 Experimental Setting

In order to evaluate model performance on our
benchmark, we adopt several widely-used PLMs
and interpretation methods as our baseline mod-
els and methods respectively. We only provide
high-level descriptions for them and refer to the
respective papers and source codes for details.

Evaluated PLMs We take BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) as base-
line models for English. And we adopt BERT-
base-chinese (BERT-base) (Devlin et al., 2019),
RoBERTa-wwm-ext (RoBERTa-base) (Cui et al.,
2021) and ERNIE (Sun et al., 2019) as baseline
models for Chinese?.

Interpretation Methods We use attention (ATT)
based (Jain and Wallace, 2019) and integrated gra-
dient (IG) based saliency methods (Sundararajan
et al., 2017) to assign an importance score for each
input token. For the prediction of each input, we
select the top- K important tokens to compose the
rationale. In our experiments, K is the product of
the average length ratio (i.e., RRL in Table 3) and
the current input length.

In ATT based method, the attention weights in
the last layer are taken as token importance scores
for predictions, where the attention weight of token
¢ on token j is denoted as s; j. Then we use s; ,, =
> jem Siyj to represent the impact of token ¢ on the
prediction of the masked segment m which may
contain multiple tokens.

In IG based method, token importance is deter-
mined by integrating the gradient along the path
from a defined baseline x( to the original input,
where xg is set as a sequence of “[CLS] [PAD]
... [SEP]” and has the same token number as the
original input. The step size is set to 100.

Evaluation Metrics We evaluate model predic-
tion performance on the first (Topl) and the first
three (Top3) predicted answers, using the predic-
tive accuracy, i.e., the percentage of inputs whose
predictions exactly match the golden answers. And
we use the metrics described in Section 4 to evalu-
ate PLM’s interpretability.

2Since the parameters in the masked-LM layers of BERT-large
and RoBERTa-large are not released with models, which are required
in our experiments, we do not conduct experiments on large versions
of Chinese BERT and RoBERTa.



Model + TopN Grammar Semantics Knowledge Reasoning Computation
All Original Perturb| All Original Perturb| All Original Perturb| All Original Perturb|All Original Perturb

BERT-base + Topl 613 613 61.2 (439 453 424 |72 83 6.0 205 217 193 |11 1.5 0.8
RoBERTa-base + Topl |67.6  68.8 66.3 |51.0 53.1 489 |50 53 47 123.8 250 2277 |1.0 0.8 1.3
ERNIE-base + Topl  |64.3 65.5 63.1 |50.6 51.6 497 |45 40 50 (250 26.7 233 |03 03 0.3
ERNIE-large + Topl |67.7 68.5 66.9 (53.0 544 51.6 |43 40 4.7 (305 32.0 29.0 |05 03 0.8
BERT-base + Top3 79.2 803 782 |61.7 632 60.2 (122 13.0 11.3 |32.8 35.0 30.7 3.3 4.0 2.5
RoBERTa-base + Top3 |81.7 82.2 81.2 |71.9 724 71.4 |10.0 8.7 11.3 (435 43.0 440 |29 33 2.5
ERNIE-base + Top3 |81.7 82.6 80.9 |71.7 723 71.1 (123 120 12.7 (455 470 440 (16 15 1.8
ERNIE-large + Top3 [84.0 84.9 83.0 |73.6 74.6 72.6 [11.2 103 12.0 |50.2 52.7 47.7 |28 25 3.0

Table 4: Masked word prediction performance of base PLMs on original inputs, perturbed inputs and all inputs.

Model + Method Grammar Semantics Knowledge Reasoning Computation

F1 MAP PCC/MAP*| F1 MAP PCC/MAP*| F1 MAP PCC/MAP*| FI MAP PCC/MAP*| F1 MAP PCC/MAP*
BERT-base + ATT 0.35 0.85 0.93/0.90 |0.39 0.82 0.94/0.91 |0.68 0.73 0.92/0.90 |0.53 0.73 0.88/0.84 |0.64 0.83 0.87/0.89
BERT-base + IG 0.35 0.70 0.88/0.74 |0.30 0.67 0.89/0.75 |0.61 0.59 0.83/0.71 |0.49 0.55 0.80/0.62 {0.59 0.76 0.88/0.78
RoBERTa-base + ATT [0.38 0.86 0.93/0.91 |0.37 0.84 0.94/0.92 [0.65 0.71 0.92/0.90 |0.50 0.76 0.90/0.86 |0.64 0.85 0.89/0.90
RoBERTa-base + IG {0.30 0.72 0.88/0.80 |0.31 0.68 0.87/0.81 {0.63 0.63 0.82/0.86 [0.50 0.65 0.82/0.81 |0.60 0.80 0.86/0.87
ERNIE-base + ATT {0.50 0.86 0.95/0.91 |0.49 0.82 0.96/0.91 [0.71 0.74 0.96/0.92 |0.66 0.78 0.95/0.88 |0.69 0.86 0.94/0.91
ERNIE-base + IG 0.38 0.66 0.89/0.71 |0.36 0.61 0.88/0.69 |0.64 0.54 0.84/0.68 |0.54 0.53 0.82/0.59 {0.61 0.76 0.91/0.77
ERNIE-large + ATT |0.40 0.83 0.92/0.88 |0.41 0.80 0.90/0.89 {0.71 0.76 0.87/0.88 [0.54 0.69 0.87/0.81 |0.66 0.83 0.86/0.89
ERNIE-large + IG 0.33 0.56 0.70/0.64 |0.33 0.51 0.69/0.64 |0.62 0.51 0.76/0.70 |0.50 0.47 0.67/0.61 {0.60 0.68 0.72/0.73

Table 5: Interpretability evaluation of base PLMs with two interpretation methods. As illustrated in Section 4, the
metric PCC is not performed on all inputs. For inputs suitable for PCC calculation, we compute MAP* on them.

85

80

75

&
MAP (%)

Token-F1 (%)

70

Grammar
Semantics
Knowledge
Reasoning
Computation

65

60

20 40 60 80

Rationale length ratio (%)

100 20 40 60 80

Rationale length ratio (%)

100

Figure 1: Plausibility (F1) and faithfulness (MAP) of
RoBERTa-base with ATT based interpretation method
over different rationale length ratios.

5.2 Main Results

Model Prediction Performance Table 4 shows
model performance on masked word predictions.
It can be seen that all models perform well on
instances of grammar and semantics dimensions,
which proves that these PLMs have learned enough
linguistic knowledge from the large-scale corpus
(Hewitt and Manning, 2019; Jawahar et al., 2019;
Tenney et al., 2019). However, in the other three
dimensions, all models show a poor prediction per-
formance, especially on knowledge and computa-
tion. Existing studies also show that PLMs have no
such abilities (Porner et al., 2019; Hendrycks et al.,
2021; Cobbe et al., 2021).

From the comparisons between evaluated
PLMs, we get two interesting findings. First,
RoBERTa and ERNIE perform better than BERT in

dimensions of grammar, semantics and reasoning.
Furthermore, ERNIE large outperforms ERNIE
base in these three dimensions. We think there
are two reasons, i.e., the larger size of training
corpus and the larger size of parameters. Second,
BERT and ERNIE base have better performance in
knowledge and computation. As discussed above,
the abilities in these two dimensions have not been
learned by PLMs from the current training cor-
pus and learning objectives. We think the relevant
learning objectives need to be designed and the
corresponding training data needs to be created.

Model Interpretability Table 5 gives results on
interpretability of different models and methods.
There are three main findings. Firstly, with ATT in-
terpretation methods, all the evaluated PLMs have
a relatively strong faithfulness, indicating that they
are robust under perturbations. As shown in Table
4, compared with predictive accuracy on the origi-
nal data, the predictive accuracy on the perturbed
data has not decreased too much. For example, in
the dimension of grammar, the accuracies of most
PLMs are reduced by about 2%. Secondly, across
all evaluated PLMs, ATT method outperforms IG
both in plausibility and faithfulness. We think this
is because the interactions between words are more
important for word generation based on the con-
text. Thirdly, token F1-score (plausibility) and
MAP (faithfulness) are positively correlated with
the length ratio of extracted rationale. Compared



Dat Grammar Semantics Knowledge Reasoning Computation
ata Dispens. Import. Trans. |Dispens. Import. Trans. | Dispens. Import. Trans. |Dispens. Import. Trans. | Dispens. Import. Trans.
Original | 677 720 639 | 575 515 470 | 84 17 48 | 157 303 261 | 00 00 17
Perturbed| 064 703 60.1 | 558 518 317 | 63 17 48 | 157 303 159 | 16 1.7 00
13) (17) (:38)| -17) (+03) (-153)| (-=21) (0.0) (0.0)| (0.0) (0.0) (-102)| (+1.6) (+1.7) (-1.7)
Table 6: Predictive accuracy of RoBERTa-base over different perturbation types.
Dimension Dispens. Tmport. Trans. This states that the most important words provided
JAY JAY
Fl MAP | FI MAP | FI MAP . .
Grammar 00035 0,906 T 0.0l 0834 0001 0870 by the model and the interpretation method perform
Semantics 0.008 0.881 | 0.004 0.868 | 0.014 0.700 ; Titv i ;
rly on interpretability in th hr luation
Knowledge | 0.003 0.769 | 0.007 0.775 | 0.002 0.648 p90 yQ terpretab 'ty t ese three evaluatio
Reasoning | 0.012  0.809 | 0.026 0.786 | 0.020 0.663 dimensions. In the dimensions of grammar and
Computation | 0.003 0912 | 0.009 0.897 | 0.012 0.833

Table 7: Interpretability results under different pertur-
bation types. F1 represents the Fl-score difference
between original input and perturbed input, where bold
values indicate large differences.

with performance on rationales, the performance on
predictions is much poor. How to improve model
prediction on plausible rationale is the future work.

Comparing PLMs with different training data
size, ERNIE which is trained on a larger corpus
performs better in plausibility with two interpreta-
tion methods, and RoBERTa has a higher MAP in
the dimensions of grammar and semantics. Com-
paring PLMs with different parameter size, we find
that ERNIE base is superior to ERNIE large on
both faithfulness and plausibility in all dimensions
except for knowledge. This shows that larger pa-
rameter size may not lead to higher interpretability.

Finally, we compare two metrics for faithfulness,
i.e., MAP and PCC, where MAP relies on token im-
portance order and PCC relies on token importance
values, as discussed in Section 4. From Table 5, we
can see that the two metrics of the same model have
the similar trend over different interpretation meth-
ods. But the gap Between PCC values is smaller
than that between MAP values.

5.3 Analysis

We give an in-depth analysis about the impacts of
extracted rationale length and perturbation type on
model interpretability. Due to space limitation, we
take the results of ROBERTa-base with ATT based
method for example, and results of other PLMs and
methods have the similar trend.

Impacts of Rationale Length As shown in Fig-
ure 1, in the dimensions of knowledge, reasoning
and computation, where the length ratio of ratio-
nale is about 0.5, both plausibility and faithfulness
increase with the increase of rationale length ratio.

semantics, where the rationale length ratio is about
0.3, plausibility achieves the highest F1 score when
the extracted rationale length ratio is about 0.5; and
MAP increases much slowly with the increase of
rationale length. This shows that PLMs perform
well in these two dimensions.

Impacts of Perturbation Types In Table 6, we
give model prediction accuracy over three pertur-
bation types. It can be seen that the prediction
accuracy alters significantly on syntactically trans-
formed perturbations (7rans.). And the model is rel-
atively robust on the other two perturbation types.

Meanwhile, we further analyze interpretability
results over different perturbation types, as shown
in Table 7. It can be seen that faithfulness under
Trans. type is significantly lower than those under
the other two perturbation types. Meanwhile, the
perturbation types of Trans. and Import. have a
larger influence on plausibility in the dimensions
of semantics, reasoning and computation. Corre-
spondingly, Dispens. has little influence on model
interpretability, just as it has little effect on model
predictions.

6 Conclusion

To comprehensively evaluate PLMs, we construct a
novel evaluation benchmark to evaluate both model
prediction performance and interpretability from
five dimensions, i.e., grammar, semantics, knowl-
edge, reasoning and computation. We conduct ex-
periments on several popular PLMs, and the results
show that they perform very poorly in some dimen-
sions, such as knowledge and computation. Mean-
while, the results show that the rationales they pro-
vided for predictions are less plausible, especially
with a short rationale. Finally, the evaluated PLMs
have a strong robustness under perturbations, but
they are less robust on syntax-aware data. We will
release this evaluation benchmark, and hope it will
facilitate the research progress of PLMs.
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A Datasets for Building Our Benchmark

In order to construct a high-quality evaluation
benchmark, we build our datasets based on some
existing human-annotated datasets. As shown in
Table 2, for each evaluation dimension, we select
several datasets to build our evaluation dataset.

To test the grammatical competence of PLMs,
we collect instances from some linguistic datasets
which show both lexical and syntactic knowledge.
Specifically, we adopt Penn Treebank 3.0° to build
English dataset, as well as Chinese Treebank 8.0*
and Chinese Dependency Treebank 1.0° to build
Chinese dataset. All of these three datasets are
from LDC, and we have been authorized.

To evaluate the performance of PLMs on se-
mantic understanding, our dataset covers multiple
types of conceptual knowledge, such as conceptual
senses of words, concept properties, relationships
between concepts and semantic co-reference rules.
For concept properties and relationships, we adopt
Wikipedia6 and WebNLG (Moryossef et al., 2019)
for English dataset, as well as Baidu Baike’ and
DulE (Li et al., 2019) for Chinese dataset. For se-
mantic co-reference, we task WSC (Levesque et al.,
2012) and CLUEWSC2020 (Xu et al., 2020) for
English and Chinese respectively.

To test the capability of PLMs on grasping
factual knowledge, we take the datasets for the
knowledge based question answering task as base
datasets, i.e., Freebase QA dataset (Jiang et al.,
2019) for English, and CKBQA? for Chinese. Our
questions cover single-hop and multi-hop questions.
Meanwhile, we filter out questions with multiple
answers to ensure the uniqueness of the prediction.

To evaluate the reasoning ability of PLMs on
real-world commonsense, we utilize the COPA
dataset (Roemmele et al., 2011) and the XCOPA
dataset (Ponti et al., 2020) to build our English and
Chinese datasets respectively.

For testing the ability of PLMs on solving math-
ematical word problems, we use Alg514 (Kushman
et al., 2014) and Dolphin18K (Huang et al., 2016)
for English, and Math23K (Wang et al., 2017) for
Chinese. And we only select simple questions
whose equations have no more than two operators.

3https:
4https:
5https:
6https:

//catalog.ldc.
//catalog.ldc.
//catalog.ldc.

upenn.edu/LDC99T42
upenn.edu/LDC2013T21
upenn.edu/LDC2012T05
//huggingface.co/datasets/wikipedia
"https://baike.baidu.com
8https://github.com/pkumod/CKBQA, the dataset for
knowledge-based question answering task in CCKS 2019.
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Data cleaning. In the process of collection, we
ask annotators to discard instances that contain: 1)
offensive content, 2) information that names or
uniquely identifies individual people, 3) discus-
sions about politics, guns, drug abuse, violence
or pornography.

B Other Annotation Details

We give more details about annotator information,
annotation training and payment, and instructions
for data usage.

Annotator information. We have two annota-
tors for each dimension, and three checkers for all
dimensions. The annotators annotate the rationales
and modify the rationales according to the scores
from the checkers. They are college students ma-
joring in languages. Our checkers are full-time
employees, and perform quality control. Before
this work, they have lots of experience in annotat-
ing data for NLP tasks.

Annotation training and payment. Before real
annotation, we train all annotators for several times
so that they understand the annotation task, ratio-
nale criteria, etc. During real annotation, we have
also held several meetings to discuss common mis-
takes and settle disputes. All annotators were paid
for their work based on the quality and quantity
of their annotations. According to their annotation
time, the average salary per hour is 31.25 RMB.

Instructions of data annotation and usage. Be-
fore annotation, we provide a full instruction to all
annotators, including the responsibility for leaking
data, disclaimers of any risks, and screenshots of
annotation discussions. Meanwhile, our datasets
are only used for interpretability evaluation. And
we will release a license with the release of our
benchmark.

C Limitation Discussion

We provide an evaluation benchmark to evaluate
capabilities and interpretability of PLMs. There
are three limitations in our work.

How to automatically and effectively evaluate
the quality of human-annotated rationales is still
open. We have three annotators to perform qual-
ity control. However, this manner heavily relies
on human intuitions and experiences.

Due to resource limitation, we do not conduct
experiments on capability-specific PLMs, such


https://catalog.ldc.upenn.edu/LDC99T42
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Model + TopN Grammar Semantics Knowledge Reasoning Computation
All Original Perturb| All Original Perturb|All Original Perturb| All Original Perturb|All Original Perturb

BERT-base + Topl 522 525 519 |64.7 65.6 638 0.7 07 0.7 (240 237 243 |05 03 0.7
BERT-large + Top1 58.8 589 58.8 1679 69.1 66.7 10.7 1.0 03 |28.7 280 293 |13 1.0 1.6
RoBERTa-base + Topl [59.5 59.3 59.6 |62.7 629 624 |29 3.1 27 1297 293 300 |1.1 1.0 1.3
RoBERTa-large + Topl|72.0 71.5 725 |73.6 74.0 73.1 (51 64 3.7 |40.5 40.0 41.0 (20 2.0 2.0
BERT-base + Top3 69.0 69.1 68.9 |80.5 81.3 79.7 (1.0 14 0.7 |36.5 357 373 |28 23 33
BERT-large + Top3 732 734 73.0 |83.9 849 83.0 |12 20 03 (420 413 427 |44 42 4.6
RoBERTa-base + Top3 [73.2  73.6 729 |79.7 80.3 79.1 |54 638 4.1 |465 463 46.7 (5.1 4.6 5.5
RoBERTa-large + Top3|83.3 83.3 834 |89.0 89.5 884 (88 11.2 64 |57.8 59.7 56.0 (6.7 7.2 6.2

Table 8: Masked word prediction performance of baseline PLMs on English dataset, where performance is evaluated

on all inputs, original inputs and perturbed inputs respectively.

Model + Method Grammar Semantics Knowledge Reasoning Computation

F1 MAP PCC/MAP*| F1 MAP PCC/MAP*| F1 MAP PCC/MAP*| FI MAP PCC/MAP*| F1 MAP PCC/MAP*
BERT-base + ATT 0.47 0.91 0.99/0.93 |0.44 0.84 0.97/0.90 |0.59 0.73 0.99/0.85 |0.53 0.87 0.99/0.89 |0.57 0.90 0.95/0.92
BERT-base + IG 0.34 0.73 0.89/0.75 |0.42 0.67 0.87/0.71 |{0.66 0.51 0.83/0.63 |0.56 0.64 0.83/0.68 |0.62 0.79 0.85/0.80
BERT-large + ATT 0.47 0.87 0.95/0.91 |0.40 0.83 0.94/0.89 |0.58 0.64 0.94/0.85|0.59 0.84 0.96/0.87 |{0.60 0.90 0.94/0.90
BERT-large + IG 0.37 042 0.45/0.48 |0.41 038 0.44/0.46 |0.64 0.40 0.54/0.61 |0.57 0.41 0.39/0.51 |{0.66 0.56 0.48/0.60
RoBERTa-base + ATT |0.55 0.88 0.95/0.91 [0.44 0.83 0.94/0.89 |0.58 0.63 0.90/0.85 {0.63 0.83 0.92/0.88 |0.62 0.87 0.91/0.90
RoBERTa-base + IG  [0.39 0.66 0.78/0.73 |0.37 0.56 0.72/0.68 |0.56 0.41 0.73/0.67 |0.56 0.59 0.79/0.69 |0.63 0.73 0.81/0.78
RoBERTa-large + ATT |0.53 0.90 0.96/0.93 [0.43 0.82 0.94/0.91 |0.55 0.63 0.90/0.86 {0.56 0.83 0.90/0.88 |0.58 0.87 0.92/0.90
RoBERTa-large + IG  [0.37 0.57 0.74/0.67 |0.37 0.50 0.73/0.65 [0.56 0.45 0.67/0.60 |0.54 0.54 0.74/0.67 |0.63 0.67 0.74/0.75

Table 9: Interpretability results of base PLMs with two interpretation methods on English dataset. As illustrated in
Section 4, the metric PCC is not performed on all inputs. For inputs suitable for PCC calculation, we also compute

MAP on them, denoted as MAP*.

Dimension Dispens. Import. Trans.

; Fl MAP | FI® MAP | FI® MAP
Grammar 0.000 0913 | 0.002 0.821 | 0.00I 0.837
Semantics 0.001 0.854 | 0.001 0.856 | 0.016 0.644
Knowledge | 0.016 0.783 | 0.017 0.750 | 0.057 0.512
Reasoning 0.002 0.874 | 0.002 0.821 | 0.013 0.753
Computation | 0.001 0.921 | 0.004 0.877 | 0.019 0.888

Table 10: Interpretability results of RoOBERTa-base with
ATT based method under different perturbation types.
F14 represents the Fl-score difference between original
input and perturbed input, where bold values indicate
large differences.

as GPT-f for computation, and those PLMs with
enormous parameter size, such as GPT-3.

* What is the relationship between linguistic
knowledge learned by PLMs and their interpreta-
tions for masked word predictions? Such analysis
is as the future work.

D English results

In this section, we show results on English dataset,
as shown in Table 8 - Table 10. Similarly, we give
analyses from the perspectives of model prediction
performance and interpretability.

Model Prediction Performance Table 8 shows
the predictive accuracy of evaluated PLMs on En-
glish dataset. Generally, the performance in dif-
ferent dimensions has the similar trend with that

on Chinese dataset. Firstly, all evaluated PLMs
perform very poorly in the dimensions of knowl-
edge and computation. Secondly, both for BERT
and RoBERTa, the large-size model outperforms
the base-size one. Thirdly, comparing models with
the same size of parameters, ROBERTa which is
trained on a larger corpus outperforms BERT on
most of dimensions.

Impacts of perturbation types. As shown in
Table 11, in most of dimensions, RoOBERTa-base
is less robust under perturbation types of Trans.
and Impor.. Meanwhile, RoOBERTa-base is less
robust under the perturbation type of Dispens. in
some dimensions, such as semantics, knowledge
and reasoning, while Chinese RoBERTa-base is
robust under Dispens. type in all dimensions.

Model Interpretability Table 9 shows the in-
terpretation results of the evaluated PLMs on the
English dataset. Most of the conclusions on the
Chinese dataset (illustrated in Section 5.2) are ap-
plicable to the English dataset. One difference is
that ATT based method not always performs better
than IG based method on plausibility evaluation
in the dimensions of knowledge and computation.
But model prediction performance is very poor in
these two dimensions, which may affect the inter-
pretability performance of PLMs.

Impacts of perturbation types. Table 10 shows
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Data Grammar Semantics Knowledge Reasoning Computation
Dispens. Import. Trans. |Dispens. Import. Trans.|Dispens. Import. Trans.|Dispens. Import. Trans. | Dispens. Import. Trans.

Original 59.8 58.6 543 | 60.2 739 632 43 1.6 3.1 25.6 30.0 355 2.6 1.1 0.0

Perturbed 60.4 59.0 512 | 592 71.8  64.6 29 4.9 1.8 28.1 30,5 323 2.6 0.0 0.0
(+0.6) (+04) (-3.1)| (-1.0) (2.1) (+1.4)| (-1.4) (+#3.3) (-1.3)| (+2.5) (+0.5) (-3.2)| (0.0)0 (-L.1) (0.0

Table 11: Predictive accuracy of RoBERTa-base over different perturbation types on English dataset.

interpretability results of RoOBERTa-base under dif-
ferent perturbation types. It can be seen that in the
dimensions of semantic, knowledge and reasoning,
the perturbation type of syntactical transformation
(Trans.) brings a significant drop on faithfulness
(MAP). Meanwhile, in most dimensions, Trans.
causes a large F1-score difference between the orig-
inal intput and the perturbed input. This proves that
the evaluated PLMs are less robust to perturbations
in Trans. type.
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