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ABSTRACT

Training deep neural networks typically relies on backpropagating high-
dimensional error signals—a computationally intensive process with little evi-
dence supporting its implementation in the brain. However, since most tasks
involve low-dimensional outputs, we propose that low-dimensional error signals
may suffice for effective learning. To test this hypothesis, we introduce a novel
local learning rule based on Feedback Alignment that leverages indirect, low-
dimensional error feedback to train large networks. Our method decouples the
backward pass from the forward pass, enabling precise control over error signal di-
mensionality while maintaining high-dimensional representations. We begin with
a detailed theoretical derivation for linear networks, which forms the foundation of
our learning framework, and extend our approach to nonlinear and convolutional
architectures. Remarkably, we demonstrate that even minimal error dimensional-
ity—on the order of the task dimensionality—can achieve performance matching
that of traditional backpropagation. Furthermore, our rule enables efficient train-
ing of convolutional networks, which have previously been resistant to Feedback
Alignment methods, with minimal error. This breakthrough not only paves the
way towards more biologically accurate models of learning but also challenges
the conventional reliance on high-dimensional gradient signals in neural network
training. Our findings suggest that low-dimensional error signals can be as effec-
tive as high-dimensional ones, prompting a reevaluation of gradient-based learn-
ing in high-dimensional systems. Ultimately, our work offers a fresh perspective
on neural network optimization and contributes to understanding learning mecha-
nisms in both artificial and biological systems.

1 INTRODUCTION

Neural networks, like the mind of a child, learn through whispers of correction—a subtle feed-
back that shapes their understanding of the world. Yet, while the world often communicates in
the simplest of terms, our neural networks, with all their magnificent complexity, respond with an
overabundance of noise.

Consider a typical real-world problem addressed by deep networks. Although the inputs to the
networks are high-dimensional and the networks are overparameterized, the underlying structure
of many real-world tasks is often far simpler—a low-dimensional core. Consequently, the error
feedback received from the world, represented by the loss gradient, is also low-dimensional. Yet, as
this error signal propagates backward through the network, it gains dimensionality, raising important
questions about the efficiency and necessity of this approach.

The increase in error dimensionality occurs as the error signals propagate through the over-
parameterized layers, a consequence of the inherent coupling between the feedforward and feedback
processes. This coupling ensures that detailed error information is made available at each layer of the
network, solving the credit-assignment problem. However, such high-dimensional error propagation
is not strictly required for effective learning. In biological systems, particularly in the brain, error
signals often travel through indirect and constrained pathways, hinting that lower-dimensional error
feedback could suffice for learning. Despite this intriguing possibility, our understanding of how
error signal dimensionality impacts learning—and whether similar principles operate in biological
systems—remains limited.
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Beyond the enigma of whether low-dimensional error signals suffice for effective training lies a
deeper question: how do these signals shape the neural representations that emerge during learning?
Specifically, we do not yet understand how the properties of error feedback influence neural tuning
curves and receptive fields or how to connect these emergent features to their underlying learning
mechanisms. Unraveling such connections could not only illuminate the processes by which the
brain learns but also pave the way for more efficient learning strategies in artificial networks.

In this study, we investigate whether low-dimensional error pathways can serve as an effective al-
ternative to training deep networks. We explore the hypothesis that low-dimensional error signals
can drive efficient learning, thereby aligning artificial network training with the constraints seen in
real-world tasks and biological systems. By extending current Feedback Alignment methods that
decouple error feedback from the forward pass, we systematically manipulate the dimensionality
of error signals, probing whether these constrained pathways can still support the rich and complex
representations characteristic of deep learning.

2 BACKGROUND AND RELATED WORK

We consider a multilayerd perceptron with L layers, each layer [ computes its output as h; =
f(Wih,_1), where W is the weight matrix, and f is an element-wise activation function. The input
to the network is hy = @, and the final network output is §y = f1,(Wrh_1), which approximates
the target y. The rask dimensionality, denoted d, is at most the number of components in y and y.

Training the network involves minimizing a loss function £(y, §) by adjusting the weights {1V, }.
The error signal at the output layer, 67, = g—g, is a d-dimensional vector, typically much smaller than
the number of neurons in the hidden layers.

Backpropagation (BP) (Rumelhart et al., |1986) is the standard approach for training neural net-
works. It propagates the error backward through the network using 6; = W/, 8,11 © f'(Wihi_1),
and updates the weights using AW, = —nd,h! |, where 1 is the learning rate. However, this method
requires the exact transpose of the forward weights, V[/l:’_;l, which is biologically implausible (Gross-
berg, |1987; Crickl [1989). Moreover, BP tightly couples the error propagation with the forward pass,
limiting the ability to explore how different properties of the error signal affect learning dynamics.

Feedback Alignment (FA) (Lillicrap et al.,|2016) was proposed to address the biological limitations
of BP by replacing Wz£1 with a fixed random matrix ;. The error is computed as:

o = Bidi11 © f'(Wihi—1), (D

decoupling the forward and backward weights and providing a more biologically plausible mecha-
nism. However, FA struggles to scale effectively in deep architectures, such as convolutional neural
networks (CNNs), where it often fails to achieve competitive performance (Bartunov et al., [2018).

An extension of FA involves adapting B; by updating it alongside the forward weights W; to improve
their alignment (Kolen & Pollack,|1994;|Akrout et al.,[2019):

AB; = —nhi_16] = AB;, AW, = —n§hi; — \W, 2)

where ) is a regularization parameter. Although this adaptive approach improves performance by
better aligning forward and backward weights, it still requires high-dimensional error signals and
struggles to match BP performance in complex architectures like CNNs. Furthermore, in Section 3]
we show that this approach fails when the matrix B is low-rank and the dimensionality of the error
is constrained.

Other studies have explored the use of fixed sparse feedback matrices to reduce the dimensionality
of error propagation (Crafton et al., |2019). However, these approaches result in significantly lower
performance and do not provide a systematic framework for studying how error constraints affect
learning and representation formation.

Beyond FA-based methods, several studies have shown that weight updates using backpropagation
can result in a low-dimensional weight update [Liao et al.| (2016)); (Gunasekar et al.| (2018); |Caro
et al.| (2024) and favor low-rank solutions [Patel & Shwartz-Ziv| (2024). These findings support
our hypothesis that a low-dimensional feedback is sufficient to train deep networks. However, no
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Figure 1: [llustration of different approaches for propagating error to hidden layers. From left
to right: BP uses the transpose of the forward weights. In FA, error propagates through a fixed
random matrix, aligning {W;} and { B, } over time to approximate BP. RAF uses low-rank feedback
matrices, restricting error dimensionality and preventing a full mirroring of BP. dRAF extends RAF
by allowing error propagation between non-consecutive layers or directly from the output layer.

previous work has considered training with a constrained error pathway, and the effects of error
dimensionality and training have not been systematically studied.

In this work, our aim is to systematically investigate how constraining the dimensionality of the
error signal affects the training and performance of neural networks. To this end, we introduce a
novel learning scheme, Restricted Adaptive Feedback (RAF), that allows flexible control over the
dimensionality of the errors (Fig. [T).

Our main contributions are:

1. We present a novel learning rule, Restricted Adaptive Feedback (RAF), which matches BP
performance while requiring minimal error signals. We provide a detailed derivation of
the learning dynamics in a simple linear case, establishing a foundational understanding of
how RAF operates.

2. We demonstrate that nonlinear networks can efficiently learn nontrivial datasets using low-
dimensional error signals, highlighting the versatility of RAF in practical scenarios.

3. We show that convolutional networks can also be effectively trained with low-dimensional
feedback, addressing long-standing challenges in scaling learning biologically-inspired
models.

4. We reveal that error dimensionality shapes the receptive fields in a model of the ventral
visual system, offering new insights into the relationship between learning mechanisms
and biological neural representations.

In the final section of this report, we discuss the broader implications of our results for both neuro-
science and machine learning.

3 RESTRICTED ADAPTIVE FEEDBACK IN LINEAR NETWORKS

We begin our analysis by studying learning dynamics in multilayered linear networks. Although
linear models may seem overly simplistic, they can exhibit rich learning dynamics due to the non-
linearity introduced by the loss function (Saxe et al.| [2013). Additionally, imposing dimensional
constraints on linear networks yields insightful results that extend beyond the linear case.

A linear problem We consider a simple linear transformation problem with a low-dimensional
structure, y = Ax. Here, x € R represents the n-dimensional input, and y € R™ represents the

target. The matrix A is a rank-d matrix defined as A = Z?:l u;v], where u; € R" and v; € R™
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are random Gaussian vectors, and we assume d < n. Our data set consists of p training samples
{zH, y“}/’:zl, with each input vector x* being i.i.d. according to the standard normal distribution
" ~ N(0,1). The labels are given by y* = Ax* + £*, where £€# is additive Gaussian noise with
zero mean and unit variance.

The goal is to learn the low-dimensional structure of A from the p samples using a linear neural
network. For simplicity, we assume that p is sufficiently large to allow the network to fully recover
the structure of A.

A linear network model. To study the effects of restricted error pathways, we consider a simple
linear network with three layers: an input layer € R”, a hidden layer h € R*, and an output
layer y € R™. The input and hidden layers are connected by the weight matrix W; € R**", and
the hidden and output layers are connected by the weight matrix W5 € R™>*_ The output of the
network can be expressed as y = WoWix (Fig. 2).

The network is trained to minimize the quadratic empirical loss function:

1
L= 5 > lly(@H) — WaWya ||, 3)
I

We apply Feedback Alignment (FA) to update 1, which does not have direct access to the loss
gradient. Instead of backpropagating the error through Wy, we use a fixed low-rank feedback
matrix B. This provides an alternative pathway for propagating the error signal to 7.

For a given data point {x*, y*}, the weight updates, derived from the FA framework, are given by:
AW} =BT (y* — WoWizM)zh T, AWY = n(y" — WoWizM)x" T W 4)

Here, 1 represents the learning rate, and the update for W; is computed using the indirect error
feedback provided by B, while W5 receives the full error signal directly from the output.

Constraining error dimensionality with low-rank feedback To control the dimensionality of the
error feedback, we impose a low-rank constraint on the feedback matrix B. Rather than allowing
full-dimensional feedback, we decompose B as B = QP, where Q € R**" and P € R"*™. When
r < min(k,m), B is low rank, which means that it can project the error signal onto at most r
independent directions.

This low-rank structure introduces an ’r-bottleneck,” which limits the flow of error information
[ﬂ By controlling the value of r, we can systematically study how reducing the dimensionality of
the error signal impacts learning. Initially, we follow the original Feedback Alignment framework,
keeping @) and P as random matrices. However, as we will demonstrate, allowing () and P to learn
is crucial to high performance.

3.1 LEARNING DYNAMICS

Our analysis extends the framework established by |Saxe et al.|(2013) to incorporate indirect feed-
back with constrained dimensionality. We begin by characterizing the task across the p data points

through the input-output covariance matrix, ;, = % Zzl y*(z*)T, which captures the corre-

lation between input vectors & and output vectors y. Performing Singular Value Decomposition
(SVD), we obtain 3;, = USVT, where U € R™*™ and V' € R™*™ contain the left and right sin-
gular vectors, respectively, and S € R™*"™ is a rectangular diagonal matrix of singular values. For
sufficiently large p, the first d singular values in S correspond to the prominent directions in the data
(i.e., the singular values of A), while the remaining singular values are O(1/,/p) and dominated by
noise.

To track how training aligns the network weights with these prominent directions, we rotate the
weight matrices Wy, W5, and B using the singular vectors of X;,. This transformation simplifies

'In linear settings, the problem is solvable using a single weight matrix, rendering the training of W,
unnecessary. However, this does not affect the learning dynamics. Furthermore, we can constrain the hidden
layer size to be small (k < dlog(n)), rendering the learning the shallow weight ncessesary Johnson| (1984).
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Figure 2: Analysis of learning dynamics and component overlap in linear neural networks. (a)
Network architecture: n = 128, k = 64, m = 64, with backward matrices constrained to rank r.
(b,c) Theoretical (dashed) vs. numerical (solid) dynamics for low-rank FA, training only @ (r = 64
and r = 8, respectively). The y-axis shows the singular vectors overlap between W5W; and %;,.
(d,e) Same as (b,c), but with RAF, training both @ and P. (f) For » < d , without training P the
singular modes are learned on average (bold), but the top r do not. (g) In RAF, simlar average
behavior (bold) but the top r components are fully recovered.

the analysis by aligning the network’s weight dynamics with the key data directions:
Wy =wivt, W,=UW,, B=BUT,
where Wy, W», and B represent the transformed weight matrices. This rotation aligns the weight

dynamics with the dominant singular vectors, allowing us to focus on how the network captures the
important features of the data.

Since the inputs are uncorrelated, we can apply these transformations to the iterative weight-update
equations derived from the FA learning rule. Assuming a small learning rate n < 1 with full-batch
updates, we express the weight updates in continuous time:
dW. _ - dW. =

Tidtl = BT(S — W), TTtQ = (S — WoaWi)W{, (5)
where 17 = dt /7. This continuous form captures the dynamics of the learning process, allowing us to
study it from a dynamical systems perspective. By analyzing these equations, we can identify fixed
points and evaluate their stability, providing insight into how the network converges and learns under
constrained feedback. Fig. [2] shows how the singular vectors of W>W; align to the corresponding
singular vectors of 3, .

Stationary solutions for the training. Training halts when the right-hand side of the weight up-
date equations (3)) vanishes, indicating that the dynamics have reached a stable fixed point. At this
fixed point, the update equation for W, leads to the condition:

B(S—WyW1) =0 = S;;B.; = > B.,(WaW);; Vj, ()
i=1
where B. ; € R* is the j-th column of B, and S;j is the j—th_singular value of X;,. This equation
indicates that, at the stationary point, the weight products W, W7 must align with the singular modes
of the data.

However, since B is of rank , the feedback matrix B can only span at most r independent directions.
If » = m, the system has enough feedback dimensionality to align perfectly with the singular values
in S, recovering the full structure of ¥;, as demonstrated in [Saxe et al.| (2013). In this case, the
training successfully converges to a unique solution where WolWW; = S (Fig. ).

Crucially, when < m, the feedback matrix B lacks the sufficient rank to fully capture the m
independent directions in S. As a result, eq. (6) becomes under-determined, leading to potentially
infinite solutions. This means that the trained weights W5W; may not align with the true data
structure encoded in X;, (Fig. 2k)

These findings reveal that, in the case of low-rank feedback, Feedback Alignment (FA) is insufficient
to ensure convergence to the correct solution. This necessitates training the feedback matrix to align
properly with the data, ensuring that the network learns the correct representations.
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3.2 TRAINING THE FEEDBACK WEIGHTS

From the previous analysis, it is apparent that the feedback matrix B must be trained for the learning
dynamics to converge to the correct solution of eq. (€). When B is low-rank and fixed, the network
lacks sufficient capacity to transmit the full error information, which can impede learning.

One approach is to adopt a learning rule inspired by Kolen-Pollack, as in eq. (Z). When B = QP,
the updates are given by

AW = ot T W — AW, and  AQM = nWix's"T PT — \Q, (7

where 6" = %;’y“) = y* — WoWizx# is the error gradient for the yu-th data point, 7 is the
learning rate, and ) is the regularization parameter. Importantly, in this framework only the column

space of B, or in our case () are updated.

However, adopting this learning framework is insufficient when P remains fixed and randomly ini-
tialized (Fig. 2k). Since P can project onto at most r unique directions of the error, it may not align
with the relevant error subspace. In this case, the network may converge to an incorrect solution, as
indicated by the non-uniqueness of solutions to (€) when m > 7.

Ideally, we want P to be an orthogonal matrix whose r columns span the top 7 principal direc-
tions of the output-output correlation matrix >%Y. This alignment ensures that the most significant
components of the error are propagated back through the network.

In cases where the output correlations are unknown, we can update P using a modified Oja learning
rule|Ojal (1982):

APH = nPy*y"T(I — PTP) — AP, ®)
where [ is the identity matrix. This rule adjusts P incrementally so that its columns converge to the
top r principal components of the outputs {y*}.

By training both @ and P, we allow the feedback matrix B = QP to adaptively align with the
relevant error directions, enabling the network to learn the correct mappings even under constrained
feedback dimensionality.

Repeating the linear analysis that led to (3)), we extend the derivation to our case with adaptive
feedback weights. We define the transformed feedback matrix as P = PU?. This transformation
aligns the feedback matrix P with the principal components of the data, simplifying the analysis.

Taking the continuous-time limit (with 7 — 0 and np = 7), we obtain a set of differential equations
that describe the learning dynamics of the forward and backward weights:

dW dq

T dt :BT(S—W2W1), TE :Wl(S—Wgwl)TpT—AQ,
v and _ )]
o _ dP _ o _
rd?f = (S — WoaW)W — AWy, T = PSST(r — PTP) — \P.

Here, B = QP and )\ is the regularization parameter. Note that () is not affected by rotation, as it
does not come in contact with either the input or the output. The full derivation can be found in the
Appendix.

Notably, the updates to the feedback weights are local and follow learning rules that were well-
studied in theoretical neuroscience |Ojal (1982); (Clopath et al.[ (2010); [Turrigiano| (2008)); |Pehlevan
et al.[(2015). Local plasticity makes our framework an attractive alternative for backpropagation in
models of brain circuits.

We refer to this learning framework as Restricted Adaptive Feedback (RAF). Fig. 2] compares the
learning dynamics of RAF with those of BP and FA where only the ) matrix is learned. The results
demonstrate that RAF effectively aligns the feedback weights, enabling the network to converge to
the correct solution despite the constrained error dimensionality. Furthermore, RAF will learn the
top r components of X, even if r < d (Fig. 2p).

3.3 RESTRICTED ADAPTIVE FEEDBACK IN DEEP ARCHITECTURES

Our weight-update equations can be naturally extended to deeper networks. In the single hidden
layer model above, the backward weights P were updated using the true labels y*. However, in
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deeper models, hidden layers do not have ground-truth representations. Instead, each layer relies
on the local error signal, which propagates through the network according to §;" = Q; P,d;’, ;. This
error signal ;" provides the necessary information for learning at layer /.

To update the feedback weights P in the absence of ground-truth representations, we use local error
signals 55;1. As in the single-layer model, we use Oja’s rule to adjust P, to span the principal
components of the error at the next layer, 8} - 1» ensuring efficient error propagation.

The complete update rules for layer [ are given by

AQY = h Bl — AQ,
AW/ = nQ,Pél  hiT — AW, and l o

o AP} =nPel 8T (1 — PTP) — AP,

(10)

where 7) is the learning rate, \ is the regularization parameter, b} is the activation of layer [, and

El‘fH is the error signal from the next layer.

By updating P; using the error signals, we ensure that the feedback weights of each layer are adapted
to capture the most relevant directions in the error space, facilitating effective learning throughout
the network. Notably, while we use the same learning rate  and weight decay A for all components
{W1}, {Q:}, and { P}, it can potentially differ.

In the interest of brevity, we omit simulations of deep linear networks, as the extension from the
single-layer case is straightforward. Instead, we proceed directly to deep nonlinear networks, where
the impact of constrained error feedback presents more complex and interesting dynamics.

4  MINIMAL ERROR IS SUFFICIENT TO TRAIN NONLINEAR NETWORKS

Adapting our Restricted Adaptive Feedback (RAF) framework to nonlinear networks is straightfor-
ward because the core principles of local learning and constrained error feedback remain applicable.
The local update rules in eq. (I0) remain the same; the primary difference lies in the introduction of
nonlinear activation functions during the propagation of signals and errors. Specifically, the forward
and backward passes are modified as follows:

hi = f(Wihi—1), 61 = QP41 © f'(l), (11)
where f is the nonlinear activation function applied element-wise, and f’ is its derivative.

To test whether our learning rule extends effectively from linear to nonlinear models, we trained deep
networks on the CIFAR-10 dataset. We used a simple nonlinear model with four fully connected
layers of 512 ReLU neurons each. While not state-of-the-art, this model provides a suitable testbed
for evaluating our theory’s applicability to nonlinear architectures and complex data.

To isolate the impact of feedback dimensionality, we applied the Restricted Adaptive Feedback
(RAF) rule in eq. (I0), constraining the rank of feedback matrices in one specific layer at a time
while leaving the others unrestricted. We then measured the network’s test accuracy and compared
it to backpropagation (BP) as a baseline. Fig. [3p shows the accuracy as a function of the feedback
rank r;, with each curve representing a different constrained layer.

Consistent with our findings for the linear model, constraining the feedback rank to r = d = 10,
in any layer, match BP performance (Fig. [Bh), where d is the number of classes. Interestingly, the
shallower layers performed well even under tighter rank constraints (r; < d), suggesting that the
deeper layers compensate for the limited feedback in the earlier layers by effectively adjusting their
weights.

This compensatory effect is possible because no information is lost during the feedforward pass,
unlike in a bottlenecked network. To demonstrate that the network still utilizes high-dimensional
representations, we compared the performance of RAF-trained networks with constrained feedback
to narrower networks without rank restrictions (Fig. [3p). The results confirm that RAF-trained
networks leverage their width to maintain high performance despite feedback constraints.

Moreover, as shown in Fig. Eb nonlinear networks trained with low-rank feedback in all layers
using RAF can still match BP performance, demonstrating RAF’s robustness even with dimensional
constraints across the entire network.
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Figure 3: Restricted Adaptive Feedback (RAF) efficiently trains nonlinear networks on CIFAR-10.
(a) Restricting feedback in any layer to » = d = 10 matches full BP performance. (b) Restricting
feedback does not significantly reduce performance, while reducing network width does, indicating
the use of high-dimensional representations. (¢) Minimal error dimensionality matches task dimen-
sionality, shown by subsampling classes from CIFAR-100. All feedback matrices constrained to
r. (d) Direct RAF: all layers receive error from the output (solid) or penultimate layer (dashed),
converging to BP performance.

Task Dimensionality Determines the Minimal Rank Our linear analysis suggests that the error
signal dimensionality needed for effective learning is tied to the loss gradient dimensionality, which
depends on the number of classes in the data. To test this, we trained networks on subsets of CIFAR-
100 with 50, 75, and 100 classes, constraining the ranks of all feedback matrices to r (Fig. ).

The results show that network performance matches BP when the feedback rank equals the number
of classes (r = d). This indicates that the minimal rank required for effective learning aligns with
the task’s complexity, as defined by the number of output classes.

Direct Restricted Adaptive Feedback (ARAF) Our theory shows how to propagate error signals
from deeper layers to shallower ones using restricted adaptive feedback. However, error projections
can also bypass intermediate layers entirely, leading to different variants of Direct Restricted Adap-
tive Feedback (ARAF), analogous to Direct Feedback Alignment (Ngkland,|[2016). For example, we
can make direct connections from the output or the penultimate layer to earlier layers, training these
connections using our algorithm (Fig. [3d). As with RAF, this direct projection method matches the
performance of BP when the rank of the feedback matrices satisfies > d. This model is particu-
larly important because it is more flexible and has greater potential to explain learning in the brain,
where error signals may arrive from different pathways.

4.1 CONVOLUTIONAL NEURAL NETWORKS

Our previous results demonstrate that fully connected networks can learn effectively from minimal
error signals, even on complex datasets, matching backpropagation (BP) performance. Here, we
extend this investigation to convolutional architectures.

Training convolutional networks with Feedback Alignment (FA) is notoriously difficult (Bartunov
et al., [2018; [Launay et al.| [2019). Recent work has made progress by learning feedback weights
within the FA framework (Bacho & Chul 2024)), but our approach differs by restricting the error
signal’s dimensionality using Restricted Adaptive Feedback (RAF). We aim to determine whether
convolutional networks can also benefit from low-dimensional error feedback.

We trained a VGG-like convolutional network with four blocks and batch normalization on the
CIFAR-10 dataset (see Appendix for details). Using RAF, we decoupled the error propagation from
the feedforward pass in all layers. Initially, we constrained the feedback error only in the blocks
containing 512 (Fig. @h). Consistent with our findings in fully connected networks, the convolutional
networks learn well with a feedback matrix with a rank similar to the number of classes, d = 10.

To test whether convolutional networks can train when constraining all feedback paths, we further
constrained each block to have feedback matrices with ranks equal to 1/2, 1/4, or 1/8 of the block
width (Fig. @b). Our results indicate that reducing the error dimensionality has minimal impact on
performance, except in the most extreme case. Specifically, constraining the feedback rank to 1/8 of
the block width resulted in a noticeable drop in performance. This finding aligns with our previous
results, as the layer with 64 channels received feedback with a rank of » = 8. Overall, our results
demonstrate that convolutional networks can be efficiently trained using a minimal error signal.
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Figure 4: Convolutional networks and receptive fields. (a) Performance of a 4-block VGG-like
network trained with RAF, constraining the layers with 512 channels. (b) Training the same network
as in (a), with all layers constrained to a fraction of their size; the smallest layer has 64 channels.
(c) Model of the early ventral visual stream, adapted from |Lindsey et al.|(2019). (d) Top receptive
fields of (c). Constrained feedback to the retina result in more center-surround fields.

5 ERROR DIMENSIONALITY SHAPES NEURAL RECEPTIVE FIELDS

We have shown that neural networks can be efficiently trained using minimal error signals compa-
rable to task dimensionality. Here, we investigate how error dimensionality affects neural represen-
tations, providing insights into receptive fields observed in the brain.

Lindsey et al.|(2019) found that in convolutional models of the visual system, narrow feedforward
bottlenecks between the retina and the brain led to center-surround receptive fields in the retinal
layer, similar to mammals. Wider bottlenecks resulted in orientation-selective receptive fields, as
seen in salamanders. We hypothesize that these effects are due to constraints on the error signal
reaching the retina, rather than the feedforward bottlenecks themselves.

To test this hypothesis, we trained a model similar to that of Lindsey et al.|(2019) but with full-width
layers throughout. Instead of constraining the feedforward pathway, we constrained only the error
signal using a low-rank feedback matrix trained with RAF (Fig. ), thereby isolating the impact of
error dimensionality on neural representations. We extracted the receptive fields of neurons in the
retinal layer using visualization techniques (Erhan et al} [2009) (Fig. ).

Consistent with our hypothesis, constraining the feedback rank led to the emergence of center-
surround receptive fields in the retinal layer. To further validate our hypothesis, we trained a model
that included the feedforward bottleneck, similar to |Lindsey et al.| (2019) but used dRAF to train
the retinal layer without restricting the backward pathway. In line with our expectations, the retinal
receptive fields exhibited orientation selectivity (see Appendix).

This experiment demonstrates that error dimensionality influences neuronal tuning and neural rep-
resentations. Specifically, lower-dimensional error signals promote higher symmetries in emergent
receptive fields. Our findings underscore the importance of considering the dimensionality and path-
ways of error signals when studying neural computations in the brain.

6 DISCUSSION

Our work demonstrates that neural networks can be trained effectively using minimal error signals
constrained to the task’s intrinsic dimensionality, rather than the higher dimensionality of the net-
work’s representations. By adopting a factorized version of Feedback Alignment with low-rank
matrices and training both left and right spaces of the feedback matrix we showed that deep net-
works—Iinear, nonlinear, and convolutional—can achieve performance comparable to full back-
propagation even under stringent error-dimensionality constraints. This finding highlights that the
essential information required for learning is tied to the complexity of the task, as measured by the
number of output classes. Additionally, we revealed that constraining error dimensionality influ-
ences neural representations, providing a potential explanation for biological phenomena, such as
center-surround receptive fields in the retina.
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The main goal of this work is to explore potential mechanisms for implementing gradient descent
in the brain. Recognizing that high-dimensional feedback is not necessary for effective learning
is a significant step toward developing more flexible and biologically realistic models of learning.
This insight suggests that the brain might utilize low-dimensional error signals to drive learning
processes, aligning with the anatomical and physiological constraints.

While our novel learning rule bears superficial similarity to previous Feedback Alignment (FA)
schemes, it is conceptually different. In traditional FA, learning the feedback weights aims to align
them with the feedforward weights Lillicrap et al.[|(2016);|Akrout et al.[(2019), mirroring full back-
propagation. In contrast, by factorizing the feedback matrix as B = @ P we also align the feedback’s
row space with the source of the error, thereby improving the quality of the error signal itself. This
approach not only enhances learning efficiency but may also act as a form of regularization, a pos-
sibility that warrants further investigation.

Our findings invite a rethinking of gradient descent dynamics in overparameterized networks. Typi-
cally, the weight dynamics during training are high-dimensional. However, when the error signal is
low-dimensional, the weight updates in each layer are confined to a much lower-dimensional sub-
space. This constraint could have implications for understanding the generalization capabilities of
neural networks, as it suggests that effective learning does not require exploring the full parame-
ter space. Exploring this connection could open new avenues for understanding the dynamics of
gradient descent in high-dimensional loss spaces.

In summary, our work highlights the critical role of error signal dimensionality in learning and repre-
sentation formation within neural networks. By demonstrating that low-dimensional error feedback
is sufficient for effective training, we bridge a gap between artificial neural network training and
biological limitations. This alignment advances our understanding of how the brain implements
supervised learning and provides a foundation for extending current learning frameworks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided detailed derivations of all theoret-
ical results in the Appendix, along with comprehensive descriptions of the network architectures,
datasets, and training algorithms used in our experiments. Additionally, upon publication, we will
make the complete codebase available on GitHub, including the exact scripts used to generate all
figures presented in this paper.

ETHICS STATEMENT

This work is purely theoretical, focusing on the development of new learning algorithms and their
implications for artificial and biological learning systems. No human or animal subjects were in-
volved in this research. We used only freely available datasets (such as CIFAR-10 and CIFAR-100)
that are standard in the machine learning community and do not contain personally identifiable in-
formation. We do not foresee any direct ethical concerns related to the outcomes or applications of
this work.
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APPENDIX

A LINEAR THEORY FOR FEEDBACK ALIGNMENT

From eq. (@) in the main text, the weight updates for a single sample y are given by:

AW} =B (y" — WolWizH) z'T,

(12)
AWS = (y" — WoWiz") T W,
where:
* 7 is the learning rate,
o xt € R" is the input vector for sample y,
* y* € R™ is the corresponding target output,
o Wy € REX™ and W, € R™** are the weight matrices,
» B € RF¥*™ is a predefined matrix (e.g., a feedback or scaling matrix).
We introduce the empirical covariance matrices:
1
Sio=— ) y'atT, (13)
n=
T
Soo == Y y'y"T, (14)
p e
1 p
==Y atzh =1, (15)
P>

where >;; = I assumes that the input vectors are whitened (i.e., have unit covariance). Summing
over all p training examples, we obtain the average weight updates:

p
n
AW, = > > awy
(16)

p=1

p
Z B (y" — WoWzH) 2T,
p=1

13

Using these definitions, the update for W; simplifies to:
AWy = nB (X, — WalW134;) (17)
=B (Zip — WaW1). (18)

Under the limit as n — 0 with n = % (where 7 is a time constant), we transition from discrete
updates to continuous-time dynamics:

dw,
-
dt
which matches the weight dynamics presented in eq. (3)) of the main text.

— B (i, — WolW), (19)

Similarly, the update for W5 becomes:

p
AW, = 13" Awy (20)
[t
p
- g >y — WalWizt) 2 W 1)
p=1

=1 (Zio — WaW1) W7, (22)
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which simplifies under the same limit to:

dw’
T = (Sio = WaW) W (23)
Eq. (I9) and eq. (23) describe the continuous-time dynamics of the weights W5 and W5 under the

given learning rule.

We consider the singular value decomposition (SVD) of the covariance matrix X;,:
Yio =USVT, (24)

where:

o U e R™ 4 and V e R™* are matrices with orthonormal columns,
+ S € R%*4 is a diagonal matrix containing the singular values,
¢ d is the rank of X;,.

We perform a rotation of the weight matrices and B as follows:

Wy =WVT,
Wo = UWs, (25)
B=DBU".

Substituting these into the previous weight dynamics, we have for W7 :
PO = B (2, - Wa) 26)
=BUT (USVT —UW.W V). (27)

Since U U = I (due to orthonormal columns of U/), we can simplify:
PO BT (5 - Wam) VT (28)
=B (S-W,W) V' (29)
Recognizing that W, = W1V T, we can write dgitll =4 d_tl VT, Thus, multiplying both sides on the

right by V (since V'V = I):

Td?tfl = B (S —WaW). (30)
Similarly, for W:

ngz = (S — WaW1) W (31
— (USVT —UW, W VT (W vT)" (32)
(33)

Using the fact that VTV = I we simplify:
PO (s —umaw) Wy (34)
(35

Since Wy = UWs, we have dg‘f =U dZTt/z . Multiplying both sides on the left by U ':

dW. s
T = (S = Waly) W (36)
Egs. and describe the dynamics of the rotated weights W, and W:
dwy o -
T+ =B (S - WaWW1),
dt
dW- G7)
2 T\ T
— = (S —-WoWy) Wy .
el 1) W,

13
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B LINEAR THEORY FOR RAF

We consider an alternative algorithm where the matrix B is replaced by B = QP, with Q € RF*"
and P € R™™,

The updates for () and P for a single sample p are given by:
AQY = nWha! P (y* — WolWizh) |

38
AP =qnPy'y"T (I-P'P). %)
Summing over all p training examples, we obtain the average updates:
AQ =" Z AQH = Wy ( Za:" — WyWhat) PT> :
u 1 pn=1
, 1 (39)
=IN AP =P | - Z y'y"T | (I-PTP).
p e p o
We simplify the update for ):
1 /4
AQ =W, (( Z xt (y" — Wngzv“)T> PT> (40)
p
p=1
= Wi (S, — Wy Wy S5) PT) 1)
— W1 ((Zi = WaWa) " PT) (42)

Similarly, the update for P simplifies to:
AP =nPS,, (I-P'P). (43)
Thus, the updates for () and P become:
AQ = Wi (i — WoWy) ' PT, (ad)
AP =nP%,, (1 - P'pP).

Under the continuous-time assumption, where n — 0 with n = %, the updates for (Q and P become
differential equations:
d
TcT? = W (B — Walh) " P, 43)

and JP
T PY,, (I-P'P). (46)

Finally, substituting B = QP into the update for W; from eq. [T9] we find that the dynamics for W;
become:

d
T Zl = QP (Zip — WaW1) 47)
We perform rotations similar to before:
Wy =WV,
Wy = UWs, (48)
P=pU".
Substituting for () we get:
d - -
d? =WV (USVT —uwa i vT) T (PUT)T 49)
— WV (S — W) UTUPT (50)
=W (S W) ' PT (51)

14
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Substituting these rotations into the previous derivations, we update the dynamics.

For W7, the update equation is:

AW,
Tt

= B (X%, — WaW7).

Since B=QP =QPU"T, W, =WV, Wy =UWs,, and %;, = USV T, we have:

1 T
AANV) QPUT (USVT —UW,W V")

dt
=QP (SVT —WoW V).
Since V' T is constant, we can write:

dW,
dt

T—=VT =QP (SV' —WaWh V).

Multiplying both sides on the right by V' (using V'V = I):
dWy
dt

T

— QP (S~ Wall).

Substituting P = PU T and ¥,, = US?U " in (46), we get:

d(PUT)_—T 277 T BT prrT
T=—— =PUT (US*UT) (I-UPTPU")

=PS*(I-P'P)U".
Multiplying both sides on the right by U (since U U = I):
— =PS*(I-P"P).
T ( )

In summary, under the rotations, the updated dynamics are:

awy,

T = QP (S = W),
AW, I

T = (S = W) W
@_ D Q2 _ pTp

i = PS*(I-PTP).
L ACR AT

C LAYER IMPLEMENTATION

(52)

(53)
(54)

(55)

(56)

(57
(58)

(59)

(60)

Our implementation and optimization were conducted entirely using PyTorch. For the RAF layers,
we initialized all weights using Kaiming uniform initialization. We modified the backward pass by
adjusting the gradients with respect to the input, ensuring they align with our proposed update rule.
In the output layer, we learn the projection matrix P to capture the principal directions of the target
labels y. In the hidden layers, P is learned to project onto the principal directions of the error signal
from the subsequent layer, represented as ;1. Specifically, for a layer [ with input dimension n,

output dimension m, and rank constraint r, we proceed as follows:

15
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Algorithm 1: Modified Backward Pass for RAF Layer

Input: Error signal §;; € R®*™ activations h; € R®*", matrices Q; € R"*", P, € R"™™,
weight matrix W; € R"™*"
Output: Gradient w.r.t. input grad_input, updates AQ;, AP, AW;

Compute covariance matrix:
if use_targets then
| C (-9 (y—9):
else
| C <« (8141 — b141) " (Gug1 — O1y1):
v + max (diag (C));
Compute ’gradient’ w.r.t. input:

grad_input <+ (QIPZ(SZTH)T € Rb*7;

Compute updates for ); and P;:
AQi + h[ (Po),) "

141

AP « P C) (I- P R):;
g

Compute update for 17/;:

AW[ — 51—:_1’11;

dRAF follows the same procedure, with the key difference being that the error signal § does not
necessarily originate from the next layer; instead, it can come from any subsequent layer.

D FuLLY CONECTED EXPIREMENTS:

D.1 LAYER-WISE CONSTRAINTS

In Figure [3]a], we present the results of training a network with four hidden layers, each containing
512 neurons, and an output layer with 10 neurons on the CIFAR-10 dataset. The network was
trained using RAF, as described earlier, without rank constraints, except for one layer at a time.
For comparison, we also trained the network using standard backpropagation as a baseline. All
networks were trained with a batch size of 32, a learning rate of 6 x 10~%, and weight decay of
4 x 10~*. The Adam optimizer with AMSGrad was used, with training conducted for 160 epochs
and an exponential learning rate decay factor of 0.975. Each experiment was repeated 10 times.

D.2 CONSTRAINING ALL LAYERS

For the results shown in Figure [3]b], we trained the same network with four hidden layers, each
containing 512 neurons. This time, we applied rank constraints to all layers simultaneously, with
rank values r = 64, 32, 16, 10.

To further demonstrate that the network still utilizes high-rank representations, we also trained a
variant of the network with 64 neurons in each hidden layer, without applying any rank constraints.
All training was conducted with a batch size of 32, a learning rate of 6 x 10~%, and weight decay of
4 x 10~*. The Adam optimizer with AMSGrad was used, with training carried out for 160 epochs
and an exponential learning rate decay factor of 0.975. Each experiment was repeated 10 times.

D.3 CIFAR-100 SUB-SAMPLING

For the results shown in Figure [3|c], we trained the same model on the CIFAR-100 dataset, sam-
pling different numbers of classes d, with d = 50,75,100. For each sub-sample, we trained the
model while applying rank constraints to all layers, using various rank values. This was done to
demonstrate that the dimensionality of the error signal depends on the task dimensionality d. All
optimizations were performed with a batch size of 32, a learning rate of 6 x 10~%, and weight decay
of 4 x 10~%. The Adam optimizer with AMSGrad was used, with training conducted for 160 epochs
and an exponential learning rate decay factor of 0.975. Each training run was repeated 5 times.

16
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D.4 DRAF

For the results shown in Figure [3]d], we trained the same model using dRAF. In one experiment,
we propagated the error signal from the last layer to all preceding layers. In a separate experiment,
we propagated the error signal directly from the penultimate layer to all earlier layers, applying
rank constraints to these layers while keeping the last layer at full rank. All optimizations were
performed with a batch size of 32, a learning rate of 6 x 10~%, and weight decay of 4 x 10~*. The
Adam optimizer with AMSGrad was used, training for 160 epochs with an exponential learning rate
decay factor of 0.975. Each training run was repeated 5 times

E CONVOLUTIONAL NEURAL NETWORKS

To extend our RAF algorithm to convolutional layers, we apply the rank constraint to the number of
channels in the error signal. This effectively constrains the dimensionality of the error signal across
the spatial dimensions. Similar to the implementation for fully connected layers in Algorithm [T} we
modify the backward pass in the same way for convolutional layers.

The key difference in the convolutional context is how the projection matrix P operates on the error
signals. In convolutional layers, P functions as a 1 x 1 convolutional filter, projecting the error
signal at each spatial location from m channels down to r channels. This reduces the error signal’s
dimensionality to r per pixel, adhering to the rank constraint.

As in the fully connected case, the matrix P is learned using Oja’s rule. However, the covariance
matrix C' is computed over both the batch and spatial dimensions—that is, across all pixels in all
images within the batch. This approach captures the covariance structure of pixel representations
more effectively, enabling P to project the error signals appropriately in the convolutional setting.

E.1 VGG-LIKE ARCHITECTURE

We trained a VGG-like architecture with four convolutional blocks, as detailed in Table [E.2} For
the results shown in Figure ] (a), we applied a rank constraint only to the final convolutional block,
which has 512 channels. For the results shown in Figure 4| (b), we constrained all layers, applying
rank constraints of 1/2, 1/4, and 1/8 of the original channel dimensions. Each network was trained
with the Adam optimizer, using a learning rate of 5 x 10, weight decay of 5 x 1075, and an
exponential learning rate decay factor of 0.98. We trained each model for 250 epochs, repeating
each experiment five times.

E.2 NEURAL RECEPTIVE FIELDS

For the results shown in Figure[z_f]d, we trained the same network as used in|Lindsey et al.|(2019). The
network consists of two convolutional layers with ReLU activations, modeling the retina, followed
by three convolutional layers with ReLU activations, modeling the ventral visual stream (VVS), and
fully connected layers for classification (full architecture is detailed in Table [E.2). A bottleneck
is introduced between the retina and the VVS. We trained the network using Restricted Adaptive
Feedback (RAF), applying rank constraints to the feedback sent to the retina with ranks r = 2,4, 32.
The model was trained with parameters similar to those in|Lindsey et al.[{(2019), using the RMSProp
optimizer with a learning rate of 1 x 10~4, weight decay of 1 x 10~°, and an exponential learning rate
decay factor of 0.985. Each model was trained for 120 epochs, and all experiments were repeated 5
times.

We also conducted experiments using dynamic Restricted Adaptive Feedback (dRAF), where the
feedback to the retina originated from higher visual layers while bottlenecking the feedforward
weights of the retina to 4 channels, as illustrated in Figure 5] Under these conditions, we observed
that the receptive fields shifted from the typical center-surround pattern expected in models with
constrained forward weights to more complex patterns, as shown in Figure[5
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retina

Figure 5: Receptive Fields. (a, b) Model of the early ventral visual stream, adapted from
(2019), trained with BP (a) and dRAF (b). (c) Top receptive fields from (a) without a forward
pathway bottleneck. (d) Top receptive fields from (a) with a forward pathway bottleneck. Constrain-
ing the retina results in more center-surround receptive fields. (e) Top receptive fields from (b) with
a forward pathway bottleneck but without feedback constraints to the retina.

(C]
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Table 1: CNN Architecture

Layer(s) Output Size Details
Input 32x32x3
Convolutional Block 1
Conv2D + ReL.U 32 x 32 x64 3 x 3conv, 64 filters, padding=1
BatchNorm2D 32 x 32 x 64
Conv2D + ReLU 32 x 32 x64 3 x 3conv, 64 filters, padding=1
BatchNorm2D 32 x 32 x 64
MaxPool2D 16 x 16 x 64 2 x 2 max pool, stride=2
Convolutional Block 2
Conv2D + ReLL.U 16 x 16 x 128 3 x 3 conv, 128 filters, padding=1
BatchNorm2D 16 x 16 x 128
Conv2D + ReLLU 16 x 16 x 128 3 x 3 conv, 128 filters, padding=1
BatchNorm2D 16 x 16 x 128
MaxPool2D 8 x 8 x 128 2 x 2 max pool, stride=2
Convolutional Block 3
Conv2D + ReLU 8 x 8 X 256 3 x 3 conv, 256 filters, padding=1
BatchNorm2D 8 X 8 x 256
Conv2D + ReLL.U 8 x 8x 266 3 x 3cony, 256 filters, padding=1
BatchNorm2D 8 x 8 x 256
MaxPool2D 4 x4 x256 2 x 2max pool, stride=2
Convolutional Block 4
Conv2D + ReLLU 4 x4 x 512 3 x 3 conv, 512 filters, padding=1
BatchNorm2D 4 x4 x 512
Conv2D + ReLU 4 x 4 x 512 3 x 3 conv, 512 filters, padding=1
BatchNorm2D 4 x 4 x 512
AdaptiveAvgPool2D 1x1x512  Outputsize (1,1)
Flatten 512 Flatten to vector
Classifier
Fully Connected + ReLU 256 Linear layer, 512 — 256
Dropout 256 Dropout probability p = 0.4
Fully Connected c Linear layer, 256 — C
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Table 2: Retina model Architecture

Layer(s) Output Size  Details
Input 32 x32x1  Grayscale input
Retina
Conv2D + ReLU 32 x 32 x32 9 x9cony, 32 filters, padding=4
Conv2D + ReLLU 32 x 32 x 32 9 x9convy, 32 filters, padding=4
VVS
Conv2D + ReLU 32 x 32 %32 9 x9convy, 32 filters, padding=4
Conv2D + ReLU 32 x 32 x 32 9 x9cony, 32 filters, padding=4
Conv2D + ReLU 32 x 32 x32 9 x9cony, 32 filters, padding=4
Flatten 32,768 Flatten to vector
Classifier
Fully Connected + ReLU 1,024 Linear layer, 32, 768 — 1,024
Dropout 1,024 Dropout probability p = 0.5
Fully Connected C Linear layer, 1,024 — C
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