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ABSTRACT

Protecting the intellectual property of large language models (LLMs) is crucial,
given the substantial resources required for their training. Consequently, there is
an urgent need for both model owners and third parties to determine whether a sus-
pect LLM is trained from scratch or derived from an existing base model. How-
ever, the intensive post-training processes that models typically undergo—such
as supervised fine-tuning, extensive continued pretraining, reinforcement learn-
ing, multi-modal extension, pruning, and upcycling—pose significant challenges
to reliable identification. In this work, we propose a training-free fingerprinting
method based on weight matrices. We leverage the Linear Assignment Problem
(LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize
the effects of parameter manipulations, yielding a highly robust and high-fidelity
similarity metric. On a comprehensive testbed of 60 positive and 90 negative
model pairs, our method demonstrates exceptional robustness against all six afore-
mentioned post-training categories while exhibiting a near-zero risk of false posi-
tives. By achieving perfect scores on all classification metrics, our approach estab-
lishes a strong basis for reliable model lineage verification. Moreover, the entire
computation completes within 30s on an NVIDIA 3090 GPU.

1 INTRODUCTION
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Figure 1: The ROC curve on 150 pairs LLMs. Our
method perfectly distinguishes between related
and unrelated LLMs (pAUC=1.0, AUC=1.0), sig-
nificantly outperforming the baselines.

Large language models (LLMs) have become
foundational to many artificial intelligence ap-
plications. However, training an LLM from
scratch demands substantial computational re-
sources and vast amounts of data. Conse-
quently, most open-source models are released
under specific licenses (Touvron et al., 2023a;
Team et al., 2025; Mesnard et al., 2024; Kamath
et al., 2025) or require an application (Tou-
vron et al., 2023b; Zhang et al., 2022; Penedo
et al., 2023; BaiChuan-Inc, 2023; Team, 2023;
Zheng et al., 2023; Grattafiori et al., 2024) and
approval process to protect intellectual prop-
erty. Despite these measures, some develop-
ers may circumvent such protections by wrap-
ping or post-training existing base LLMs, then
falsely claiming to have trained their own mod-
els. Recent controversies (pzc163 et al., 2024;
Yoon et al., 2025) have underscored the urgent
need to determine whether a suspect model is
genuinely trained from scratch or derived from
an existing base model.

The core challenge lies in extracting a stable
fingerprint to identify the true base model. This
task is complicated by the fact that LLMs often
undergo heavy post-training processes, such as
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supervised fine-tuning (SFT), extensive continued pretraining (Team et al., 2024; Hui et al., 2024),
and reinforcement learning (RL). Furthermore, emerging techniques like extension to multimodal
tasks, architectural pruning (Xia et al.), and upcycling (He et al., 2024) can drastically alter a model’s
parameters, outputs, and even its structure, posing substantial challenges for identification. More-
over, malicious actors might intentionally manipulate weight matrices through operations including
scaling, permutation, pruning, and even rotation to obscure a model’s origin.

Therefore, a practical fingerprinting method needs to satisfy the following critical conditions:

• Robustness against extensive post-training processes.
• Resilience to malicious weight manipulations such as scaling, pruning, permutation, and rotation.
• Performance Preservation, ensuring no degradation of the LLM’s capabilities, as both users and

manufacturers place a high premium on model performance.
• High Fidelity, possessing sufficient discriminative power and an extremely low false-positive rate

to prevent false accusations of model theft.
• Computational Efficiency, remaining lightweight enough for comparisons given the immense

parameter counts of modern LLMs.

A review of previous work reveals that existing methods often fail to meet one or more of these
criteria. Watermarking techniques, for instance, embed identifiable signals via extra training (Peng
et al., 2023; Xu et al., 2024), but this can degrade performance (Russinovich & Salem, 2024), may
not survive aggressive post-training (Fernandez et al., 2024; Gubri et al., 2024), and must be applied
before the model’s release. Other existing fingerprinting methods either suffer from high false-
positive rates (Zhang et al., 2025) or lack robustness against heavy post-training modifications like
continued pretraining (Zeng et al., 2024), a limitation we confirm in our experiments.

In this work, we propose a novel approach that satisfies all the aforementioned requirements. Our
method begins with an analysis of LLM weight manipulations. By leveraging the Linear Assignment
Problem (LAP) and an unbiased Centered Kernel Alignment (CKA), we derive a similarity metric
that is robust to all these manipulations. Our entire similarity computation completes within 30
seconds on a single NVIDIA 3090 GPU. Furthermore, our method is training-free and does not
impair the LLM’s performance.

We validate our approach on a comprehensive test set of 60 positive (base-offspring) and 90 negative
(independent) model pairs. Compared to state-of-the-art methods such as HuRef and REEF, our
approach achieves a much larger separation gap while maintaining a near-zero false-positive risk.
Crucially, our method is the only one to prove robust against all tested forms of post-training: SFT,
extensive continued pretraining (up to 5.5T tokens), reinforcement learning, multi-modal extension,
pruning, and upcycling. On this 150-pair dataset, our method achieves a perfect Area Under the
Curve (AUC), partial AUC (for False Positive Rate < 0.05), and True Positive Rate @ 1% False
Positive Rate of 1.0, establishing a strong basis for reliable and robust model lineage verification.

2 RELATED WORK

Model copyright protection methods fall into two main categories: watermarking and fingerprinting.

Watermarking. Watermarking methods typically involve finetuning models to inject backdoor trig-
gers that prompt the model to generate predefined content, or embedding watermarks directly into
model weights for identification purposes. A substantial body of research has explored watermark-
ing for smaller DNNs such as CNNs and BERT (Devlin et al., 2019), including encoding watermarks
into model weights (Chen et al., 2019a; Wang & Kerschbaum, 2021; Liu et al., 2021; Uchida et al.,
2017) and injecting triggers to produce specific outputs (Adi et al., 2018; Guo & Potkonjak, 2018;
Le Merrer et al., 2020; Chen et al., 2019b). However, these methods are often task-specific and
not well-suited for foundation LLMs. For watermarking LLMs, researchers have proposed various
methods to inject watermarks for identification (Russinovich & Salem, 2024; Xu et al., 2024; Li
et al., 2023; Peng et al., 2023; Kirchenbauer et al., 2023; Zhao et al., 2023). Nevertheless, these
approaches inevitably compromise LLM performance and are not robust to extensive post-training.

Fingerprinting. Fingerprinting methods extract intrinsic model features as signatures for identifi-
cation without requiring additional training, thereby preserving model performance. These methods
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are generally categorized based on the auditor’s access level: white-box (full access) and black-box
(API access).

White-box Fingerprinting. When model parameters are accessible, auditors can derive fingerprints
from static weights or dynamic internal states. For small DNNs, prior works (Zhao et al., 2020;
Pan et al., 2022; Yang et al., 2022; Lukas et al., 2019; Peng et al., 2022) typically analyze model
behaviors on preset test cases. In the context of LLMs, HuRef (Zeng et al., 2024) is a representative
static method that derives invariant terms from weight matrices to compute similarity. However, it
is not robust to extensive training. Similarly, Yoon et al. (2025) utilize the standard deviation dis-
tributions of attention matrices as fingerprints; while stable under training, such statistical measures
may carry a risk of false positives. Moving beyond static weights, other methods investigate dy-
namic signals. For instance, DeepJudge (Chen et al., 2022) and EasyDetector (Zhang et al., 2024)
utilize intermediate activation values to quantify model distance. REEF (Zhang et al., 2025) further
measures the geometric similarity of representation spaces but also suffers from a high false positive
rate. More recently, TensorGuard (Wu et al., 2025) proposes utilizing the statistical features of gradi-
ents generated during backpropagation as a stable signature to characterize the model’s optimization
landscape.

Black-box Fingerprinting. With the proliferation of Model-as-a-Service (MaaS), black-box meth-
ods that rely solely on API input-output interactions have gained traction. These approaches gen-
erally follow two paradigms: analyzing output distributions or constructing specific trigger queries.
The former focuses on identifying unique stylistic idiosyncrasies or probability distributions in-
herent to a model family. For example, LLMmap (Pasquini et al., 2025) and other distributional
approaches (Yang & Wu, 2024; Gao et al., 2025; McGovern et al., 2025) query the model with
general prompts to capture distinct response patterns or logit features. The latter paradigm involves
optimizing specific ”trap” inputs or adversarial queries (Xu et al., 2024; Gubri et al., 2024; Jin et al.,
2024; Xu et al., 2025) designed to force a suspect model to output a predefined unique response.

However, black-box methods face significant robustness challenges. Fundamentally, relying solely
on surface-level outputs results in a loss of critical information regarding the model’s internal mech-
anisms compared to white-box access (Shao et al., 2025). Consequently, these methods are often
fragile to post-training modifications such as instruction tuning or simple system prompt changes,
which can disrupt the fingerprint (Xu et al., 2025; Tsai et al., 2025). To date, there is still a lack of
fingerprinting methods for LLMs that are both robust to extensive training and exhibit a very low
risk of false positives.

3 PRELIMINARY

LLM Architecture Most Large Language Models (LLMs) follows a decoder-only Transformer
architecture (Radford et al., 2018). The details of various LLMs may differ, yet the Transformer
blocks are similar. In particular, a Transformer block in an LLM usually consists of residual connec-
tions (He et al., 2016), Root Mean Square Normalization (RMSNorm, Zhang & Sennrich (2019)),
the self-attention mechanism (Lin et al., 2017), Rotary Position Embedding (RoPE, Su et al. (2024)),
and a feed-forward network (FFN). We denote by WA the set of an L-layered LLM A’s weights, and
WA,partial = {WA,emb}

⋃L
l=1{W

(l)
A,i | i ∈ {Q,K}} the set of word embeddings and Q,K matrices,

where WA,emb is the word embeddings and W (l)
A,Q,W

(l)
A,K are the Q,K matrices at the l-th layer. We

defer the rest of the notations to Appendix D.1.

Central Kernel Alignment (CKA) Proposed in Kornblith et al. (2019), CKA is a similarity detec-
tion method (Zhang et al., 2025) based on Hilbert-Schmidt Independence Criterion (HSIC, Gretton
et al. (2005)). It is invariant to column-wise orthogonal transformations and constant multiplications:

Theorem 3.1 For any input matrices X1 ∈ Rm×n1 , X2 ∈ Rm×n2 , any orthogonal transformations
U1 ∈ Rn1×n1 , U2 ∈ Rn2×n2 , any non-zero constants c1, c2 ∈ R,

CKA(X1, X2) = CKA(c1X1U1, c2X2U2). (1)

Even with semi-orthogonalU1 andU2 whereU1 ∈ Rn1×n′
1 , U2 ∈ Rn2×n′

2 , n1 > n′1, n2 > n′2, CKA
still preserves input similarity to some extent (Kang et al., 2025; Chun et al., 2025). Nevertheless, the
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standard HSIC estimator converges at rate 1/
√
m and shows finite-sample bias (Gretton et al., 2005;

Murphy et al., 2024). To this end, an unbiased version (Song et al., 2007) is proposed and extends
the value of CKA from [0, 1] to [−1, 1]. Additionally, linear kernels are often selected in CKA due to
their computational efficiency and similar performance to other kernels (Kornblith et al., 2019). We
give the formal definition of CKA in Appendix D.2, and the proof of Theorem 3.1 in Appendix E.1.

4 MANIPULATIONS ON AN OPEN-SOURCE LLM

In this part, we investigate which matrix-weight manipulations can remain compatible with pre-
serving a model’s behaviour. We first present the definition of matrix weight manipulation in §4.1.
Then, we examine how key components of an LLM, including residual connections (§4.2), RM-
SNorm (§4.3), and RoPE together with attention scores (§4.4), can constrain and gradually narrow
the space of admissible manipulations when the manipulated model is required to produce outputs
similar to the base model. Finally, we derive potential attacks on matrix weights in §4.5 based on
these constraints, with a focus on the Q, K matrices and the embedding layer.

4.1 PROBLEM DEFINITION

Weights of an open-source LLM are often inherited, but unclaimed inheritance invites manipula-
tions. Although the source code may not explicitly reveal these manipulations, the weights are
vulnerable to modifications that leave no trace in code (e.g., post-hoc matrix multiplications to pro-
duce new weights), and they can even be altered to evade independence tests. To enable detection
on model weights, we first formalize the plausible manipulation forms.

Definition 4.1 (LLM Weight Manipulations) Let A and B be two open-source LLMs with the same
number of layers L, and WA,WB denote the sets of matrix weights for A and B respectively. Then,
if B manipulates A, the manipulations on WA,partial are

W
(l)
B,i = L

(l)
B,iW

(l)
A,iR

(l)
B,i + E

(l)
B,i for all 1 ≤ l ≤ L and i ∈ {Q,K} (2)

WB,emb =WA,embRB,emb + EB,emb (3)

where L and R are row-wise and column-wise transformation matrices, and E is the error term.
The learnable weights in RMSNorm are also changed correspondingly.

We omit the row-wise transform on word embeddings, LB,emb, since each row of WA,emb represents
a token and mixed token representations are hard to be faithfully recovered in the calculation of
attention scores. We further assume that the suspicious and manipulated models produce similar (or
identical) outputs to be consistent with the goal of reusing base model performance. This assumption
induces constraints on the transformation matrices and, in turn, enables detection via weight-matrix
similarity tests. We first develop a fine-grained view of the constraints on WA,partial in what follows.

4.2 RESIDUAL CONNECTIONS: PASSING MANIPULATIONS FORWARD

In what follows, we first analyze how residual connections propagate weight manipulations forward
through the network while preserving the model’s outputs. A Transformer block consists of multiple
components linked by residual connections. If one component takes input X , the next receives
Y = X+f(X), so any manipulation T on X must be recovered within the component to propagate
as the next input (Zeng et al., 2024). This propagation also depends on the constituent functions of
the component, which either commute with the manipulation to recover it or remain invariant and
absorb it. We formalize this in the following:

Proposition 4.2 (Proof in Appendix E.2) Let f = fn ◦· · ·◦f1 be a component in Transformer and
let T be a manipulation in the input. If for every k ∈ {1, . . . , n}, T ◦fk = fk◦T , then f ◦T = T ◦f ,
i.e. the manipulation propagates through constituent functions of a component.

Compared to Zeng et al. (2024), Proposition 4.2 shows that residual connections are more vulnerable
under a component-wise view, since constituent functions can propagate manipulations in various
ways. However, nonlinearities of the functions, especially those within the self-attention mecha-
nism, pose constraints for manipulations on both inputs and weights. We next split the self-attention
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mechanism into two constituent functions, RMSNorm and attention (see Definition D.4), and show
how these effects arise and are constrained these two functions with a focus on RMSNorm, RoPE
and attention scores.

4.3 RMSNORM: A CONSTRAINT ON EMBEDDING MANIPULATIONS

Next, we examine how RMSNorm may allow certain manipulations of word embeddings. Any in-
put to the self-attention mechanism, including word embeddings and hidden states, first go through
RMSNorm. However, RMSNorm can facilitate potential manipulations on inputs, because it com-
mutes with certain transformations RB,emb of the embeddings:

Theorem 4.3 Let models A and B share the same1architecture. Let c ̸= 0 be a scalar, P be a
(partial) permutation matrix, and D be a signature matrix. Then, RB,emb = cPD can be recovered
after RMSNorm in model B if related RMSNorm parameters are adjusted.

Theorem 4.3 indicates that RMSNorm is susceptible to embedding manipulations composed of con-
stant multiplications, permutations and sign flips. On the other hand, other manipulations on word
embeddings are generally neither commutative with RMSNorm nor invariant to it, which potentially
brings a constraint to manipulations. We provide a proof for Theorem 4.3 in Appendix E.3, along
with a discussion on other manipulations on word embeddings.

4.4 ROPE AND ATTENTION SCORES: BOUNDARIES FOR Q/K MANIPULATIONS

Finally, we study RoPE and the attention score computation to characterize which manipulations
on Q,K matrices can preserve attention scores. After RMSNorm, inputs are fed into attention score
calculations. The nonlinearity here, particularly in the softmax and RoPE functions, poses a barrier
for manipulations on inputs to pass through. Hence, we follow Zeng et al. (2024) to assume that input
manipulations does not change the value of attention scores. The manipulations on Q,K matrices
are thus constrained under this assumption.

Theorem 4.4 The manipulations on Q,K matrices at layer l can be categorized into

1. Input-related ones, passed by RMSNorm: W (l)
B,i = c−1W

(l)
A,iPD, for i ∈ {Q,K};

2. RoPE-related ones: W (l)
B,i = U

(l)
B,iW

(l)
A,i, for i ∈ {Q,K};

where U (l)
B,i are special orthogonal matrices that keep RoPE results.

A proof for Theorem 4.4 is provided in Appendix E.4, where we also show how manipulations on
inputs are recovered after V, O matrices to satisfy Proposition 4.2. These manipulations preserve the
attention score values of model A in the suspicious model B. However, they can greatly change the
weights of the original model A, bringing difficulty to the development of detection methods.

4.5 POTENTIAL ATTACKS

Combining Theorem 4.3 and Theorem 4.4, the admissible manipulations on WA,partial (word embed-
dings and Q,K matrices) in Definition 4.1 are restricted to

W
(l)⊤
B,i = c−1D⊤P⊤W

(l)⊤
A,i U

(l)⊤
B,i + E

(l)⊤
B,i , 1 ≤ l ≤ L, i ∈ {Q,K}, (4)

WB,emb = cWA,emb PD + EB,emb. (5)

Here E collects post-training, continual pre-training, pruning, upcycling, multimodal adaptation, or
related adjustments. The nonlinear usage of WA,partial, especially through the Q,K matrices, sub-
stantially limits manipulation complexity. Consequently, checking similarity between WA,partial and
WB,partial is typically sufficient for detection. The remaining avenues targeting WA/WA,partial are de-
ferred to Appendix E.5, where we also discuss how such transformations can recover Transformer
block outputs in light of Proposition 4.2.

1The conclusions generalize to models with different number of layers (possibly a result of pruning).
See Appendix E.3
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5 METHODOLOGY

Building on Theorem 4.3 and Theorem 4.4, we propose a two-stage procedure in Algorithm 1: (i)
extract P and D from the word embeddings; (ii) assess cross-model similarity by comparing the Q
and K matrices. This design achieves fast, reliable discrimination with minimal computation.

Algorithm 1 LAP-Enhanced Unbiased Central Kernel Alignment (UCKA) Similarity Detection

1: Given two L2-layered LLMs A,B and their weight matrices WA,partial,WB,partial.
2: Let I = Vocab(A) ∩ Vocab(B), and m′ = |I|.
3: Let WA,shared-emb =WA,emb[I, :] and WB,shared-emb =WB,emb[I, :].

4: Build the cosine similarity matrix C with Ck,l =
⟨(WA,shared-emb):,k, (WB,shared-emb):,l⟩
∥(WA,shared-emb):,k∥ ∥(WB,shared-emb):,l∥

.

5: Construct the permutation and signature matrices P,D via LAP:
6: Find a permutation π maximizing

∑
k |Ck,π(k)| with the Hungarian algorithm.

7: For each column k, set sk = sign
(
Ck,π(k)

)
.

8: Set Pk,π(k) = 1 for every k, set D = diag(s1, s2, . . . , sk, . . . ).
9: for l = 1, . . . , L do

10: s
(l)
Q = UCKA

(
D⊤P⊤W

(l)⊤
A,Q , W

(l)⊤
B,Q

)
, s(l)K = UCKA

(
D⊤P⊤W

(l)⊤
A,K , W

(l)
B,K

)
11: end for
12: return

∑L
l=1(|s

(l)
Q |+ |s(l)K |)/2L

Extracting the Permutation and Signature from Word Embeddings A key property of RB,emb
is that the permutation and signature matrices may appear in either order: both RB,emb = cPD
and RB,emb = cDP are possible. However, any product DP can be rewritten as P ′D′ for some
permutations P ′ and signature matrices D′. Hence it suffices to recover a canonical PD from the
embeddings. We cast this as a Linear Assignment Problem (LAP; Burkard & Cela (1999)) solved by
the Hungarian algorithm (Kuhn, 1955), which is invariant to any nonzero scalar factor. Specifically,
we first restrict to the shared vocabulary and form the matrix of absolute cosine similarities between
the columns ofWA,emb andWB,emb. Then, LAP is applied to obtain the permutation P . Next, we use
the signs of the cosine similarities at the matched pairs to reconstruct the signature matrix D. This
approach effectively reconstruct corresponding transformations due to its low demand of additional
parameters in the detection process.

Robust Recovery of Weight Similarities Despite accounting for permutation and signature ma-
nipulations, the orthogonal transformations U (l)

B,i remain challenging. They introduce a substantial

nuisance parameter burden: if W (l)
A,i ∈ Rd×n, then orthogonal U (l)

B,i ∈ Rd×d contributes d2 parame-
ters, which is prohibitive when d ≈ n and can undermine robustness by adding parameters to detec-
tions (Simmons et al., 2011). We therefore use Central Kernel Alignment (CKA) as a parameter-free
similarity metric: by Theorem 3.1, CKA is invariant to orthogonal transforms and constant rescal-
ing. While this invariance does not extend to semi-orthogonal U (l)

B,i (e.g., induced by pruning), CKA
remains effective to a meaningful extent in such cases, relieving the need to explicitly reconstruct
U

(l)
B,i. To further mitigate biases (Gretton et al., 2005; Murphy et al., 2024), we adopt the unbiased

variant (Song et al., 2007), termed UCKA (see Appendix D.2).

6 EXPERIMENTS

In this section, we present a series of experiments designed to rigorously evaluate our proposed
model fingerprinting method. We begin in Section 6.1 by verifying its fundamental ability to dis-
tinguish between derived (offspring) and independent models. Next, in Section 6.2, we assess the
critical risk of false positives by comparing its performance on 90 pairs of independent models

2For LLMs with differing layer counts (LA, LB), e.g., from layer pruning, we find the optimal layer pairing
by solving the LAP on an LA × LB matrix of layer-wise similarities before calculating overall similarity.
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Table 1: Similarity (%) of various LLMs to LLaMA2-7B and LLaMA2-13B base models. Offspring
models consistently show high similarity scores (light red), while independent models have negligi-
ble similarity (light green), demonstrating the method’s discriminative power.

Base Model: LLaMA2-7B Base Model: LLaMA2-13B

Offspring Sim Independent Sim Offspring Sim Independent Sim

WizardMath-7b 99.99 Baichuan-7b 0.58 Selfrag llama2 13b 99.99 Baichuan-13b 0.17
Selfrag 7b 99.98 Mistral-7b 0.63 Nous-Hermes-13b 99.98 Baichuan2-13b 0.23
Vicuna-7b 99.95 OLMo-7b 0.46 Llama2-13b-orca 99.98 OLMo2-13b 0.21
Llama2-7b-Chat 99.93 Qwen-7b 0.19 Vicuna-13b 99.93 Qwen-14b 0.20
Finance-7b 99.93 InternLM-7b 0.43 Llama2-13b-Chat 99.92 Qwen3-14b 0.41
Llama2-7b-32K 99.88 MPT-7b 0.04 Firefly-llama2-13b 99.81 Jais-13b 0.03
Guanaco-7b 99.80 LLaMA-7b 0.81 Llama2-koen-13b 97.76 LLaMA-13b 0.74
Llama2-ko-7b 96.79 OpenLlama-7b 0.71 Llama2-13b-Estopia 96.60 OpenLlama-13b 0.51

against two state-of-the-art baselines, HuRef and REEF. In Section 6.3, we test the method’s robust-
ness against a wide array of common post-training modifications using a comprehensive suite of 60
offspring models. Finally, in Section 6.4, we provide an overall performance comparison, leveraging
ROC curves and other metrics to demonstrate our method’s superior discriminative power.

Baselines. We compare our method against two advanced baselines: the weight-based method
HuRef (Zeng et al., 2024), and the representation-based method REEF (Zhang et al., 2025).

6.1 EFFECTIVENESS VERIFICATION

We first established our method’s core effectiveness in identifying model lineage. We collected eight
offspring models for both LLaMA2-7B and LLaMA2-13B, alongside eight independent models for
each size. We then calculated the similarity between the base model and these two groups.

As shown in Table 1, the results demonstrate a clear distinction. Offspring models exhibited ex-
ceptionally high similarity to their respective base models, whereas the similarity scores between
independent models were negligible, forming a strong basis for intellectual property protection.

6.2 FALSE POSITIVE RISK EVALUATION ON 90 UNRELATED PAIRS

A critical requirement for any reliable fingerprinting method is an extremely low false positive rate.
To evaluate this risk, we collected 10 independent 7B LLMs and 10 independent 13B LLMs, forming
45 unique pairs for each size. We then computed the pairwise similarity (%) for all 90 pairs using
our method and compared the results with those from REEF and HuRef.

The heatmaps in Figure 2 illustrate our method’s superior performance in avoiding false positives.
For independent pairs, our method yielded mean similarity scores of just 0.49 (7B) and 0.26 (13B).
These scores are nearly an order of magnitude lower than HuRef (means of 3.56 and 2.17) and two
orders of magnitude lower than REEF (means of 42.47 and 47.44).

Notably, REEF frequently produces dangerously high similarity scores for unrelated models, with
many pairs exceeding 80 and some even surpassing 95. Such high values could easily lead to false
accusations of model theft. In contrast, the maximum similarity scores for our method were merely
1.5 (7B) and 0.8 (13B), reaffirming its significantly lower risk of false positives.

6.3 ROBUSTNESS VERIFICATION ON 60 OFFSPRING MODELS

Base LLMs often undergo substantial post-training modifications, including SFT, continued pre-
training, reinforcement learning (RL), pruning, upcycling, and multi-modal adaptation. These pro-
cesses can significantly alter model parameters, making robustness a critical attribute for any finger-
printing technique. To rigorously evaluate our method’s robustness, we curated a diverse test suite of
60 positive pairs, each consisting of a base model and a derived offspring model. This suite includes
10 pairs for each of the six modification categories listed above.
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Figure 2: Pairwise similarity (%) heatmaps for independent 7B (top row) and 13B (bottom row)
LLMs. The columns compare our proposed method against two baselines, REEF and HuRef. Our
method consistently yields near-zero similarity scores for all independent model pairs, indicating a
significantly lower risk of false positives. In contrast, REEF often produces high similarity scores
(> 80), which could easily lead to false accusations of model theft.

The effectiveness of a fingerprinting method hinges on its ability to distinguish between related (pos-
itive) and unrelated (negative) pairs. However, absolute similarity scores (%) can be misleading. A
method yielding scores of 10 for a positive pair and 0.1 for negative pairs is far more discriminative
than one producing scores of 90 and 40. To accurately measure the discriminative power, we must
quantify how statistically different a positive pair’s similarity is from the distribution of negative
pairs. For this, we use the absolute Z-score (|Z|)3. This metric measures how many standard devi-
ations a positive pair’s similarity is from the mean of the negative pairs’ similarities. A larger |Z|
indicates that the positive pair is more likely to be a statistical outlier relative to the population of
unrelated pairs and thus more highly separable.

The results, presented in Table 2, highlight the superior robustness of our method. HuRef loses
effectiveness under heavy modifications like extensive continued pretraining (e.g., its |Z| drops to
0.57 for Qwen2.5-coder). REEF consistently yields low |Z|, often below 2.0, indicating poor sep-
arability. In stark contrast, our method maintains remarkably high |Z| across all 60 positive pairs,
demonstrating its resilience against a wide array of demanding post-training modifications.

6.4 OVERALL EVALUATION

To synthesize our findings, we conducted a comprehensive evaluation against HuRef (ICS) and
REEF using the full dataset of 60 positive and 90 negative model pairs. Additionally, we incorpo-
rated PCS (from HuRef) and Intrinsic Fingerprint (Yoon et al., 2025) as supplementary baselines to
broaden the comparative analysis.

3In this context, the absolute Z-score is mathematically equivalent to the Mahalanobis distance.
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Table 2: Absolute Z-scores (↑) of positive samples for HuRef, REEF, and our method. The full
names of abbreviations and related model details are provided in Appendix G.

SFT

Base Llama2-7B Llama2-13B

Offspring Vicuna Finance Selfrag 32K Wizard Guanaco Vicuna Hermes Estopia Firefly

HuRef 44.22 44.20 44.47 44.22 44.51 44.12 44.25 44.48 43.09 44.51
REEF 1.95 1.94 1.95 1.88 1.95 1.94 1.94 1.95 1.91 1.95
Ours 355.09 355.02 355.20 354.84 355.23 354.55 355.02 355.20 343.14 354.59

Continual Pretrain

Base Llama2-7B Gemma
-2B

Gemma
-7B

Qwen2.5
-7B

Qwen2
-7B Llama2-70B

Offspring Llemma
(700B)

Code
(520B)

Python
(620B)

Code
(500B)

Code
(500B)

Math
(1T)

Coder
(5.5T)

Math
(700B)

Code
(520B)

Python
(620B)

HuRef 8.15 9.41 9.19 28.97 39.51 0.28 0.57 1.01 3.43 2.78
REEF 1.66 1.31 1.77 0.32 1.52 1.04 1.29 1.09 1.93 1.92
Ours 250.32 250.78 253.28 198.18 268.72 177.57 135.17 183.49 241.12 232.92

Upcycling

Base Mistral
-7B

Llama3
-8B Llama2-7B Qwen

-1.8B
Minicpm

-2B

Offspring Mixtral MoE
v2 MoE4 MoE

3B MoE2 MoE3B
-SFT

MoE2
-SFT

MoE4
-SFT

Qwen1.5
MoE

Minicpm
MoE

HuRef 7.97 42.50 24.58 21.59 24.91 21.59 24.91 24.58 4.03 11.39
REEF 1.47 0.47 0.64 0.64 0.62 0.63 0.63 0.62 0.57 1.49
Ours 239.01 332.12 332.23 326.49 332.12 326.49 332.12 332.23 173.36 150.15

Multi Modal

Base Llama2-7B Qwen2
-7B Qwen-7B Qwen2.5

-7B
Qwen2.5

-3B
Llama3

-8B
Llama2

-13B

Offspring LLaVA Video VL Audio Audio2 VL VL VL Next LLaVA

HuRef 44.06 44.03 39.94 38.79 21.59 37.41 24.28 23.95 44.30 44.09
REEF 0.40 0.36 0.84 0.19 0.45 0.77 0.48 0.61 0.26 0.07
Ours 354.98 354.98 342.72 339.86 317.97 336.55 290.08 298.46 355.05 354.91

RL

Base Open-
llama3B

Qwen2.5
-7B

Qwen2.5
-1.5B Mixtral Mistral-7B Minicpm

-2B
Qwen3

-4B
Chatglm

-6B
Llama3

-8B

Offspring RLHF Reason Zero DPO DPO Dolphin DPO GRPO RLHF DPO

HuRef 44.52 44.58 44.58 44.57 44.53 44.54 44.58 44.58 44.58 44.52
REEF 1.94 1.93 1.94 1.75 1.48 1.21 1.92 1.78 1.96 1.96
Ours 355.23 355.27 355.27 355.23 355.23 355.23 355.27 355.27 355.27 355.23

Pruning

Base Llama-3-8B Llama2-7B

Offspring Minitron
-Depth

Minitron
-Width

Llama3
-1B

Llama3
-3B

Sheared
2.7B-P

Sheared
2.7B-S

Sheared
2.7B

Sheared
1.3B-P

Sheared
1.3B

Sheared
1.3B-S

HuRef 28.29 22.23 0.33 0.73 22.88 16.00 15.86 10.06 7.64 7.64
REEF 0.52 0.53 1.15 0.92 1.75 1.78 1.77 1.80 1.79 1.79
Ours 344.07 343.00 12.14 106.29 328.81 312.44 312.80 317.79 297.50 297.50

As illustrated in Figure 1, our method demonstrates vastly superior performance. The Receiver
Operating Characteristic (ROC) curve (left) shows that our method achieves a perfect Area Under
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Table 3: Detailed performance comparison of fingerprinting methods across various post-training
techniques. Our method consistently achieves perfect scores (1.0) on all classification metrics (AUC,
pAUC, TPR@1%FPR) and maintains a significantly larger separation margin (|Z|) across all sce-
narios. CPT: Continual Pre-Training, UP: Upcycling, MM: Multi-modal, PR: Pruning.

Method Metric SFT CPT UP MM RL PR All

HuRef

|Z| ↑ 43.748 10.331 20.805 36.244 44.559 13.166 28.142
AUC ↑ 1.000 0.879 0.999 1.000 1.000 0.866 0.957
pAUC ↑ 1.000 0.656 0.978 1.000 1.000 0.800 0.906
TPR@1%FPR ↑ 1.000 0.500 0.900 1.000 1.000 0.800 0.867

REEF

|Z| ↑ 1.936 1.384 0.777 0.443 1.788 1.381 1.285
AUC ↑ 1.000 0.857 0.508 0.648 0.963 0.692 0.778
pAUC ↑ 1.000 0.211 0.000 0.000 0.658 0.300 0.362
TPR@1%FPR ↑ 1.000 0.200 0.000 0.000 0.600 0.000 0.300

Intrinsic
Fingerprint

|Z| ↑ 1.535 1.193 1.408 1.532 1.542 1.141 1.392
AUC ↑ 1.000 0.896 0.969 1.000 1.000 0.876 0.957
pAUC ↑ 1.000 0.422 0.800 1.000 1.000 0.400 0.770
TPR@1%FPR ↑ 1.000 0.300 0.800 1.000 1.000 0.400 0.750

PCS

|Z| ↑ 73.786 74.650 0.727 14.950 163.399 17.226 57.457
AUC ↑ 0.958 0.959 0.791 0.802 0.984 0.666 0.860
pAUC ↑ 0.656 0.600 0.078 0.500 0.900 0.100 0.472
TPR@1%FPR ↑ 0.500 0.600 0.000 0.500 0.900 0.100 0.433

Ours

|Z| ↑ 353.788 219.155 287.634 334.556 355.250 267.233 302.936
AUC ↑ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pAUC ↑ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TPR@1%FPR ↑ 1.000 1.000 1.000 1.000 1.000 1.000 1.000

the Curve (AUC) of 1.0, indicating flawless discrimination. This starkly outperforms both HuRef
(AUC = 0.957) and REEF (AUC = 0.778).

In practical applications, preventing false accusations of model theft is paramount, making perfor-
mance at a very low False Positive Rate (FPR) essential. We therefore employ two stricter metrics:
the partial AUC for FPR < 0.05 (pAUC) and the True Positive Rate at a 1% FPR (TPR@1%FPR).

Table 3 details the performance breakdown across post-training techniques. Our method consistently
achieves perfect scores (1.0) on all classification metrics (AUC, pAUC, and TPR@1%FPR) across
all categories. In contrast, the baseline methods show significant limitations. REEF’s performance
collapses in several scenarios, with pAUC and TPR@1%FPR scores falling to 0.0 for Upcycling
and Multi-modal. HuRef also shows vulnerability, with its TPR@1%FPR dropping to 0.500 under
Continual Pre-Training. Our method’s perfect classification scores, combined with its substantially
larger average absolute Z-score (|Z|), underscore its superior robustness and reliability.

7 CONCLUSIONS

In this paper, we propose a training-free fingerprinting method for LLM identification. Our approach
does not impair LLM’s general capability while exhibiting robustness against fine-tuning, extensive
continued pretraining, reinforcement learning, multimodal extension, pruning, and upcycling, and
simultaneously avoids the risk of false positives. Experiments on a testbed comprising 150 pairs of
LLMs demonstrate the effectiveness of our method.
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A ETHICS STATEMENT

The primary motivation for this work is to protect the intellectual property of large language models
(LLMs), thereby promoting fairness and accountability within the AI community. We acknowl-
edge the potential societal impact of such a technology, particularly the risk of false accusations of
model theft. Therefore, a core design principle of our method is to achieve an exceptionally low
false-positive rate, as empirically demonstrated in our experiments. By establishing a high-fidelity
verification system, we aim to foster a more transparent and trustworthy open-source ecosystem. All
models used in this study are publicly available, and our research does not involve any private or
sensitive user data.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included the complete source code in the sup-
plementary material. We also provided a detailed description of our methodology in Section 5, in-
cluding a step-by-step algorithm. All models used for evaluation are publicly available from sources
such as the Hugging Face Hub, and a comprehensive list mapping our model abbreviations to their
full names is included in Appendix G. A public code repository will be made available upon publi-
cation.

C THE USE OF LARGE LANGUAGE MODELS

The core research and analysis presented in this manuscript were conducted without the use of Large
Language Models (LLMs). An LLM was utilized exclusively to improve the language and clarity
of the text.
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D DEFINITIONS AND NOTATIONS

D.1 LLM ARCHITECTURE

Weights Here we provide notations for the rest of model A’s weights. In addition to the notations
in Section 3, we further denote s, WA,lm as the language model head, and W (l)

A,V,W
(l)
A,O,W

(l)
A,ffn the

V,O matrices and FFN at the l-th layer, and

WA,others = WA/WA,partial

= {WA,lm}
L⋃

l=1

W(l)
A,ffn

L⋃
l=1

{W (l)
A,i | i ∈ {V,O}}

as the rest of model A’s weights.

Functions Here we provide definitions for functions in an LLM.

Definition D.1 (RMSNorm) Given the input matrixX ∈ Rm×n of model A, the learnable parame-
ters ω(l)

A = (ω
(l)
A,1, . . . , ω

(l)
A,n) ∈ Rn at the l-th layer, and a constant ϵA ∈ R (this constant is usually

shared across all layers of an LLM), RMSNorm at layer l is a function that

RMSNorm(X,ω
(l)
A , ϵA) = diag− 1

2 (XX⊤1m + ϵA1m) ·X · diag(ω(l)
A ). (6)

Definition D.2 (Self-Attention with RoPE) Given an input X to model A, the self-attention mech-
anism at layer l is a function fattn that

f
(l)
attn(X) = AttnScore(X,W (l)

A,Q,W
(l)
A,K, θ) ·XW

(l)⊤
A,V ·W (l)⊤

A,O (7)

where AttnScore is the attention score function with RoPE, i.e.

AttnScore(X,W (l)
A,Q,W

(l)
A,K, θ) = softmax

( 1√
d

RoPE(XW (l)⊤
A,Q , θ) · RoPE(XW (l)⊤

A,K , θ)
⊤
)
, (8a)

RoPE(XW (l)⊤
A,Q , θ) = [x⊤1 W

(l)⊤
A,Q Rθ(0), . . . , x

⊤
mW

(l)⊤
A,Q Rθ(m− 1)], (8b)

RoPE(XW (l)⊤
A,K , θ) = [x⊤1 W

(l)⊤
A,K Rθ(0), . . . , x

⊤
mW

(l)⊤
A,K Rθ(m− 1)]. (8c)

Here x⊤i ∈ Rn is the i-th row of X , θ is the frequency base for RoPE and Rθ is the rotation
matrix (Su et al., 2024).

RoPE’s definition in Definition D.2 is slightly different from their implementations, but still an
equivalent version to Su et al. (2024).

Definition D.3 (Feed-forward Networks) Given the input X , the feed-forward network which
adopts the SwiGLU MLP is the function f (l)ffn defined by

f
(l)
ffn (X) =

(
SiLU

(
XW

(l)⊤
A,gate

)
⊙
(
XW

(l)⊤
A,up

))
W

(l)⊤
A,down,

where W (l)
A,up, W (l)

A,gate, W (l)
A,down are bias-free weight matrices, ⊙ denotes the Hadamard product,

and SiLU(z) = z σ(z) with σ(z) = 1
1+e−z . We write W(l)

A,ffn =
{
W

(l)
A,up, W

(l)
A,gate, W

(l)
A,down

}
.

We abuse the notations in Definition D.1 by denoting RMSNorm(l)
attn(X) ≜

RMSNorm(X,ω
(l)
A,attn, ϵA) as the attention norm and RMSNorm(l)

ffn (X) ≜ RMSNorm(X,ω
(l)
A,ffn, ϵA)

the ffn norm at layer l of model A. Then, the definition of a Transformer block at layer l of model
A can be summartized as follows.

Definition D.4 (Transformer Block) Combining all the components with residual connections, the
transformer block at the l-th layer of model A is a function f (l)Transformer that

f
(l)
Transformer =

(
I + f

(l)
ffn ◦ RMSNorm(l)

ffn

)
◦
(

I + f
(l)
attn ◦ RMSNorm(l)

attn

)
. (9)
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where I is the identity mapping, f (l)attn and f (l)ffn are the attention and FFN at l-th layer respectively,

RMSNorm(l)
ffn and RMSNorm(l)

attn are RMSNorm functions for these two components.

Definition D.5 (LLM Architecture) Given an word embedding X , the last hidden state Y of an
L-layered LLM A is

Y = f
(L)
Transformer ◦ f

(L−1)
Transformer ◦ · · · ◦ f

(L−1)
Transformer(X) ·W⊤

A,lm. (10)

D.2 CENTRAL KERNEL ALIGNMENT (CKA)

Given two input matrices X1 ∈ Rm×n1 and X2 ∈ Rm×n2 , CKA is a function mapping paired input
matrices to [0, 1], and

CKA(X1, X2) =
HSIC(KX1 ,KX2)√

HSIC(KX1
,KX1

) · HSIC(KX2
,KX2

)
(11)

where HSIC(KX1
,KX2

) = 1
(m−1)2 tr(KX1

HmKX2
Hm), (KX1

)ij = k((X1)i, (X1)j), (KX2
)ij =

k((X2)i, (X2)j) are kernel matrices with the kernel function k(·, ·) : Rm × Rm → R+, and Hm =

Im − 1
m1m1m

⊤ is the centering matrix. The linear kernels give KX = XX⊤ for a matrix X . To
reduce the finite-sample bias of Eq. (6), we use the unbiased HSIC estimator (Song et al., 2007). Let
K̃Xi

be KXi
with its diagonal set to zero, i.e., (K̃Xi

)ii = 0. With 1m the all-ones vector of length
m, the unbiased HSIC is

HSICu(K̃X1 , K̃X2) =
1

m(m−3)

[
tr(K̃X1K̃X2) +

(1⊤mK̃X1
1m)(1⊤mK̃X2

1m)

(m−1)(m−2) − 2
m−2 1

⊤
mK̃X1K̃X21m

]
.

(12)
We then define

UCKA(X1, X2) =
HSICu(K̃X1

, K̃X2
)√

HSICu(K̃X1
, K̃X1

) · HSICu(K̃X2
, K̃X2

)
, (13)

which preserves Theorem 3.1 and yields values in [−1, 1].
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E PROOFS AND DISCUSSIONS

E.1 PROOF FOR THEOREM 3.1

We give the proof based on the definition of CKA with linear kernels in Appendix D.2. Given input
matrices X1, X2, orthogonal matrices U1, U2 and constants c1, c2, the kernel functions yield

Kc1X1U1
= c1X1U1U

⊤
1 X

⊤
1 c1 = c21X1X

⊤
1 = c21KX1

,

Kc2X2U2
= c2X2U2U

⊤
2 X

⊤
2 c2 = c22X2X

⊤
2 = c22KX2

.

Therefore, corresponding HSIC results are

HSIC(Kc1X1U1
,Kc2X2U2

) =
c21c

2
2

(m− 1)2
tr(KX1

HmKX2
Hm) = c21c

2
2HSIC(KX1

,KX2
),

HSIC(Kc1X1U1
,Kc1X1U1

) =
c41

(m− 1)2
tr(KX1

HmKX1
Hm) = c41HSIC(KX1

,KX1
),

HSIC(Kc2X2U2
,Kc2X2U2

) =
c42

(m− 1)2
tr(KX2

HmKX2
Hm) = c42HSIC(KX2

,KX2
).

Hence, it follows that

CKA(c1X1U1, c2X2U2) =
HSIC(Kc1X1U1

,Kc2X2U2
)√

HSIC(Kc1X1U1
,Kc1X1U1

) · HSIC(Kc2X2U2
,Kc2X2U2

)

=
c21c

2
2HSIC(KX1 ,KX2)

c21c
2
2

√
HSIC(KX1 ,KX1) · HSIC(KX2 ,KX2)

=
HSIC(KX1

,KX2
)√

HSIC(KX1
,KX1

) · HSIC(KX2
,KX2

)

= CKA(X1, X2).

E.2 PROOF FOR PROPOSITION 4.2

The goal is to show the manipulation T commutes with f , i.e. f ◦ T = T ◦ f . If f = fn ◦ · · · ◦ f1,
then it suffices to show

fn ◦ · · · ◦ f1 ◦ T = T ◦ fn ◦ . . . f1.

Since
f1 ◦ T = T ◦ f1, f2 ◦ T = T ◦ f2, . . . , fn ◦ T = T ◦ fn,

It is direct that
f ◦ T = T ◦ f.

E.3 PROOF FOR THEOREM 4.3 AND DISCUSSIONS ON OTHER INPUT MANIPULATIONS

We first show a proof for the claims in Theorem 4.3. The core lies in preserving the diagonal
structure of RMSNorm parameters in Definition D.1. Given the inputX to layer l, the manipulations
change it to cXPD and fed the manipulated input into the attention norm of model B. In order to
recover the manipulations on inputs after RMSNorm, i.e. for any manipulation T in the input X (an
example is T (X) = cXPD),

RMSNorm(l)
attn ◦ T = T ◦ RMSNorm(l)

attn, (14)

it suffices to show

∃ω(l)
B,attn and ϵB , s.t. RMSNorm(X,ω

(l)
A,attn, ϵA) · cPD = RMSNorm(cXPD,ω

(l)
B,attn, ϵB)
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since the learnable parameters and norm epsilon can be modified to satisfy Equation 14 and Propo-
sition 4.2. By setting ϵB = c2ϵA and diag(ω(l)

B,attn) = cD⊤P⊤diag(ω(l)
A,attn)PD, one has

RMSNorm(cXPD,ω
(l)
B,attn, ϵB)

= diag− 1
2
(
(cXPD)(cXPD)⊤1m + ϵB1m

)
· cXPD · diag(ω(l)

B,attn)

= diag− 1
2 (c2XX⊤1m + c2ϵA1m) · cXPD · cD⊤P⊤diag(ω(l)

A,attn)PD

= c · diag−
1
2 (XX⊤1m + ϵA1m) ·X · diag(ω(l)

A,attn) · PD

= RMSNorm(X,ω
(l)
A,attn) · cPD.

The proof still holds for partial permutations P , i.e. P is rectangular with number of rows more than
number of columns, since cD⊤P⊤diag(ω(l)

A,attn)PD is still a diagonal matrix. Therefore, RB,emb =
cPD under Proposition 4.2. However, for more general manipulations, Proposition 4.2 does not
hold for RMSNorm. We give two examples for illustration.

First, orthogonal transformations on the input generally fail to pass through RMSNorm. Given
any orthogonal matrices U as the manipulation on X , i.e., T (X) = XU , if one attempts to
keep Equation 14, then it requires

∃ω(l) and ϵ, s.t. RMSNorm(XU,ω(l), ϵ) = RMSNorm(X,ω
(l)
A,attn, ϵA)U.

However,

RMSNorm(XU,ω, ϵ) = diag− 1
2 (XX⊤1m + ϵ1m) ·XU · diag(ω(l)).

Hence, it is required that
U · diag(ω(l)) = diag(ω(l)

A,attn)U

which suggests U⊤diag(ω(l)
A,attn)U is a diagonal matrix. Nevertheless, this property generally does

not hold if U is not a (partial) permutation matrix P or a signature matrix D.

Second, non-orthogonal transformations on inputs generally fail to pass through RMSNorm.
Given an arbitrary (invertible) transformation M , Proposition 4.2 and Equation 14 require that

∃ω(l) and ϵ, s.t. RMSNorm(XM,ω(l), ϵ) = RMSNorm(X,ω
(l)
A,attn, ϵA)M.

However, since

RMSNorm(XM,ω(l), ϵ) = diag−
1
2 (XMM⊤X⊤1m + ϵ1m) ·XM · diag(ω(l)),

any M that do not satisfy MM⊤ = c′I where c′ is a constant and I is the identity matrix can hardly
recover the manipulations due to the nonlinearity in norm functions. Moreover, similar to the case
with orthogonal transformations, M · diag(ω(l)) = diag(ω(l)

A,attn)M also requires M to be (partial)
permutation or signature matrices (or a combination of the both).

Third, we additionally clarify that although the combination of (partial) permutation and
signature matrices can be in any order, it is reasonable to fix it as RB,emb = cPD. To be
specific, we clarify that for any (partial) permutation matrix P ′ and signature matrix D′, there exists
a (partial) permutation matrix P and a signature D such that

D′P ′ = PD

The proof is straightforward. Define P entry-wise by

Pij :=
∣∣(D′P ′)ij

∣∣ ∈ {0, 1}.

Since left-multiplication byD′ only flips signs, each column ofD′P ′ has at most one nonzero entry.
Hence, P is a partial permutation matrix. For each column j, if that column of D′P ′ has its unique
nonzero at row i, set

Djj := sgn
(
(D′P ′)ij

)
∈ {±1}.

If the column is entirely zero, choose Djj ∈ {±1} arbitrarily. Then for all i, j,

(PD)ij = PijDjj =
∣∣(D′P ′)ij

∣∣ · sgn((D′P ′)ij
)
= (D′P ′)ij ,
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where we interpret sgn(0) = 1. Therefore, PD = D′P ′.

Last, we clarify that the conclusions in Theorem 4.3 can generalize to the case where model A
and model B may not share the same architecture. It is a direct result from the fact that the two
LLMs have shared tokens and that the pruning over dimensions of a model’s word embeddings can
be viewed as a partial permutation matrix.

E.4 PROOF FOR THEOREM 4.4 AND RELATED DISCUSSIONS

We first provide the proof for Theorem 4.4 based on Definition D.2.

We denote byX the original input to self-attention, andX ′ the manipulated one. Then, Theorem 4.3
suggests that

X ′ = cXPD

Therefore, the attention score of model B becomes

AttnScore(cXPD,W (l)
B,Q,W

(l)
B,K, θ) = softmax

(
1√
d

RoPE(cXPDW (l)⊤
B,Q , θ) · RoPE(cXPDW (l)⊤

B,K , θ)
⊤
)
.

To keep attention scores of model B identical to that of model A, it is required that

RoPE(cXPDW (l)⊤
B,Q , θ) · RoPE(cXPDW (l)⊤

B,K , θ)
⊤ = RoPE(XW (l)⊤

A,Q , θ) · RoPE(XW (l)⊤
A,K )⊤.

By Equation 8b and Equation 8c, this translates into

c2x⊤i PDW
(l)⊤
B,Q Rθ(i)R

⊤
θ (j)W

(l)
B,KD

⊤P⊤xj = x⊤i W
(l)⊤
A,Q Rθ(i)R

⊤
θ (j)W

(l)
A,Kxj

Therefore, the recovery of model A’s attention score requires column-wise transformations to elim-
inate the input-related manipulations passed by RMSNorm, i.e.

W
(l)
B,Q = c−1W

(l)
A,QPD, W

(l)
B,K = c−1W

(l)
A,KPD (15)

which suggests
R

(l)
B,Q = R

(l)
B,K = c−1PD.

Although Equation 15 recovers attention scores, the Q,K matrices can still be modified without
changing attention scores. An example is, given a rotation matrix R = Rθ(k) with the same fre-
quency base as RoPE, multiplying Q,K matrices with it does not change the attention scores, i.e.

x⊤i W
(l)⊤
B,Q Rθ(k)Rθ(i)R

⊤
θ (j)R

⊤
θ (k)W

(l)
B,Kxj = x⊤i W

(l)⊤
B,Q Rθ(i+ k)R⊤

θ (j + k)W
(l)⊤
B,K xj

= x⊤i W
(l)⊤
B,Q Rθ(i− j)W

(l)
B,Kxj

= x⊤i W
(l)⊤
B,Q Rθ(i)R

⊤
θ (j)W

(l)⊤
B,K xj .

Furthermore, this conclusion can be generalize to any rotation matrix with structures similar to

RoPE rotation matrices. Given R = diag(R(ψ0), R(ψ1), . . . ) with R(ψk) =

[
cosψk − sinψk

sinψk cosψk

]
,

multiplying Q,K matrices by R keeps the attention scores since

RRθ(i)R
⊤
θ (j)R

⊤ = Rθ(i)R
⊤
θ (j). (16)

Hence, there are various rotation matrices to significantly change Q,K matrices but preserve atten-
tion scores. Since these rotation matrices are naturally orthogonal, we reformulate the row-wise
transformations on Q,K matrices LB,Q, LB,K as U (l)

B,Q and U (l)
B,K.

Therefore, we denote RoPE-related manipulations as

W
(l)
B,Q = U

(l)
A,QW

(l)
B,Q, W

(l)
B,K = U

(l)
A,KW

(l)
B,K.

On the other hand, semi-orthogonal U (l)
B,Q, U

(l)
B,K are also possible. This is because of the common

practice in pruning may select different rows of Q,K matrices, which suggests multiplying Q,K
matrices with row-wise partial permutations.
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Next, we show how Proposition 4.2 is satisfied at the self-attention mechanism based on Theo-
rem 4.4. Let W (l)

B,V =W
(l)
A,VPD and W (l)

B,O = D⊤P⊤W
(l)
A,O. Then,

X ′W
(l)⊤
B,V W

(l)⊤
B,O = cXPD ·D⊤P⊤W

(l)⊤
A,V W

(l)⊤
A,O PD

= XW
(l)⊤
A,V W

(l)⊤
A,O · cPD

recovers the manipulation over inputs in Equation 7.

E.5 HOW POTENTIAL ATTACKS IN SECTION 4.5 RECOVERS THE OUTPUT OF
TRANSFORMERS

We provide an illustration based on Definition D.3, Definition D.4 and Definition D.5. Previous parts
have demonstrated how the manipulations on inputs pass through self-attention. Hence, it suffices
to show how the manipulations pass through FFN and yield an output identical to model A after the
language model head.

For layer l, let W (l)
B,gate = c−1W

(l)
A,gatePD,W

(l)
B,gate = c−1W

(l)
A,gatePD,W

(l)
B,down = cD⊤P⊤W

(l)
A,down.

We denote X ′ = cXPD as the manipulated input. Then for model B,

f
(l)
ffn (X

′)

=
(

SiLU
(
X ′W

(l)⊤
B,gate

)
⊙
(
X ′W

(l)⊤
B,up

))
W

(l)⊤
B,down

=
(

SiLU
(
cXPD ·D⊤P⊤W

(l)⊤
A,gate · c

−1
)
⊙

(
cXPD ·D⊤P⊤W

(l)⊤
A,up · c−1

))
W

(l)⊤
B,down · cPD

=
(

SiLU
(
XW

(l)⊤
A,gate

)
⊙
(
XW

(l)⊤
A,up

))
W

(l)⊤
A,down · cPD.

By Definition D.4 and Definition D.5, the manipulation is propagated through transformer layers.
At the language model head, we denote WB,lm = c−1WA,lmPD and abuse X ′ = cXPD as the
manipulated input. Then,

X ′W
(l)⊤
B,lm = cXPD ·D⊤P⊤W

(l)⊤
A,lm · c−1

= XW
(l)⊤
A,lm

recovers the output of model A.
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F ABLATION STUDIES

F.1 NUMBER OF OVERLAPPING VOCABULARY TOKENS

Although Algorithm 1 uses overlapping tokens to recover the signature matrices and permutations,
the detection performance of AWM does not heavily depend on the amount of vocabulary overlap.
In fact, AWM remains effective even when only a small number of tokens ( 100 tokens) are shared
between the two vocabularies. To quantify this, we conduct an ablation study on the number of
overlapping tokens used in Algorithm 1. Specifically, for each scenario in Table 2 (SFT, Continual
Pretraining, Upcycling, Multi-Modal, RL, and Pruning), we compute the average absolute Z-score
under different numbers of overlapping vocabulary tokens and report the results in Figure 3.
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Figure 3: Ablation studies on the number of overlapping vocabulary tokens vs AWM’s average
absolute Z-score in Table 2. AWM remain effective even when there are only 100 overlapping
tokens used in Algorithm 1.

F.2 CKA ABLATIONS

We further conduct an ablation study on the design of CKA in Algorithm 1. In AWM, we use the
unbiased version with linear kernel for computation efficiency and accuracy. Here we investigate
into more variants of CKA, and summarize the results in Table 4. It can be seen that the choice of
unbiasedness is crucial to the robustness of our method. Meanwhile, although RBF kernels show
stronger performance in Table 4, the choice of linear kernel has already yield strong performance,
which we choose for better computational efficiency.

CKA Kernel Linear RBF

CKA Biasedness Unbiased Biased Unbiased Biased

SFT 356.0223 18.3099 527.3949 11.5843
Continual Pretrain 217.5003 11.2954 320.9173 7.0701
Upcycling 291.6191 15.1994 432.1476 9.6776
Multi Modal 336.6757 17.3766 498.8918 11.0056
RL 357.5001 18.3850 529.6448 11.6330
Pruning 268.9175 13.8985 394.8391 8.7331

Table 4: AWM’s average absolute Z-scores under CKA with different kernels and biasedness.
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G MODEL DETAILS

Table 5 details the specifications of the offspring models analyzed in our study, mapping abbrevia-
tions to their base models and training datasets. To facilitate reproducibility, each entry in the ”Full
Model Name” column serves as a direct link to the official model checkpoint hosted on the Hugging
Face Hub.

Table 5: Mapping of model abbreviations to their full model names, corresponding Hugging Face
checkpoints url, base models, and relevant training corpus information.

Abbreviation Base Model Full Model Name Train Corpus

Vicuna Llama2-7B vicuna-7b-v1.5 ShareGPT
Selfrag Llama2-7B selfrag llama2 7b Self-RAG Data
32K Llama2-7B LLaMA-2-7B-32K Book, ArXiv, etc.
Wizard Llama2-7B WizardMath-7B-V1.0 GSM8k
Guanaco Llama2-13B llama-2-7b-guanaco OpenAssistant
Vicuna Llama2-13B vicuna-13b-v1.5 ShareGPT
Hermes Llama2-13B Nous-Hermes-Llama2-13b GPTeacher, WizardLM, etc.
Estopia Llama2-13B LLaMA2-13B-Estopia EstopiaV9/V13, Tiefighter, etc.
Finance Llama2-7B llama-2-7b-finance Financial Dataset
Firefly Llama2-13B firefly-llama2-13b CLUE, ThucNews, etc.

Llemma Llama2-7B llemma 7b ArXiv, OpenWebMath, etc.
Code Llama2-7B CodeLlama-7b-hf Deduped code, Natural language
Python Llama2-7B CodeLlama-7b-Python-hf Python code
Code Gemma-2B codegemma-2b Math, Synthetic code, etc.
Code Gemma-7B codegemma-7b Code, Natural language
Math Qwen2.5-7B Qwen2.5-Math-7B Web, Books, etc.
Coder Qwen2.5-7B Qwen2.5-Coder-7B Source Code, Synthetic data, etc.
Math Qwen2-7B Qwen2-Math-7B Math Data
Code Llama2-70B CodeLlama-70b-hf Deduped code, Natural language
Python Llama2-70B CodeLlama-70b-Python-hf Python code

Mixtral Mistral-7B Nous-Hermes-2-Mixtral-8x7B-
DPO

GPT-4 Data, Open datasets

MoE v2 Llama3-8B LLaMA-MoE-v2-3 8B-2 8-sft SFT Data
MoE4 Llama2-7B LLaMA-MoE-v1-3 5B-4 16 SlimPajama
MoE 3B Llama2-7B LLaMA-MoE-v1-3 0B-2 16 SlimPajama
MoE2 Llama2-7B LLaMA-MoE-v1-3 5B-2 8 SlimPajama
MoE3B-SFT Llama2-7B LLaMA-MoE-v1-3 0B-2 16-sft SlimPajama, SFT Data
MoE2-SFT Llama2-7B LLaMA-MoE-v1-3 5B-2 8-sft SlimPajama, SFT Data
MoE4-SFT Llama2-7B LLaMA-MoE-v1-3 5B-4 16-sft SlimPajama, SFT Data
Qwen1.5 MoE Qwen-1.8B Qwen1.5-MoE-A2.7B Qwen Base Corpus
Minicpm MoE Minicpm-2B MiniCPM-MoE-8x2B MiniCPM Data

LLaVA Llama2-7B llava-v1.5-7b LAION, GPT instructions, etc.
Video Llama2-7B Video-LLaVA-7B-hf Caption, QA
VL Qwen2-7B Qwen2-VL-7B-Instruct Image-text, OCR, etc.
Audio Qwen-7B Qwen-Audio Speech, Sound, etc.
Audio2 Qwen-7B Qwen2-Audio-7B Audio-text, Voice Chat
VL Qwen-7B Qwen-VL Image-text, OCR, etc.
VL Qwen2.5-7B Qwen2.5-VL-7B-Instruct Visual recognition, Document

parsing, etc.
VL Qwen2.5-3B Qwen2.5-VL-3B-Instruct Visual recognition, Document

parsing, etc.
Next Llama3-8B llama3-llava-next-8b-hf LLaVA-NeXT Data
LLaVA Llama2-13B llava-v1.5-13b LAION, GPT instructions, etc.

RLHF Open-llama3B hh rlhf rm open llama 3b Anthropic HH-RLHF
Reason Qwen2.5-7B Nemotron-Research-Reasoning-

Qwen-1.5B
Math, Code, etc.

Zero Qwen2.5-1.5B Open-Reasoner-Zero-1.5B AIME 2024, MATH500, etc.
DPO Mixtral Nous-Hermes-2-Mixtral-8x7B-

DPO
GPT-4 Data, Preference pairs

DPO Mistral-7B Nous-Hermes-2-Mistral-7B-DPO GPT-4 Data, Preference pairs
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https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/selfrag/selfrag_llama2_7b
https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
https://huggingface.co/WizardLMTeam/WizardMath-7B-V1.0
https://huggingface.co/mlabonne/llama-2-7b-guanaco
https://huggingface.co/lmsys/vicuna-13b-v1.5
https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b
https://huggingface.co/KoboldAI/LLaMA2-13B-Estopia
https://huggingface.co/Abira1/llama-2-7b-finance
https://huggingface.co/YeungNLP/firefly-llama2-13b
https://huggingface.co/EleutherAI/llemma_7b
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/meta-llama/CodeLlama-7b-Python-hf
https://huggingface.co/google/codegemma-2b
https://huggingface.co/google/codegemma-7b
https://huggingface.co/Qwen/Qwen2.5-Math-7B
https://huggingface.co/Qwen/Qwen2.5-Coder-7B
https://huggingface.co/Qwen/Qwen2-Math-7B
https://huggingface.co/meta-llama/CodeLlama-70b-hf
https://huggingface.co/meta-llama/CodeLlama-70b-Python-hf
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
https://huggingface.co/llama-moe/LLaMA-MoE-v2-3_8B-2_8-sft
https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-4_16
https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_0B-2_16
https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-2_8
https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_0B-2_16-sft
https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-2_8-sft
https://huggingface.co/llama-moe/LLaMA-MoE-v1-3_5B-4_16-sft
https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B
https://huggingface.co/openbmb/MiniCPM-MoE-8x2B
https://huggingface.co/liuhaotian/llava-v1.5-7b
https://huggingface.co/LanguageBind/Video-LLaVA-7B-hf
https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen-Audio
https://huggingface.co/Qwen/Qwen2-Audio-7B
https://huggingface.co/Qwen/Qwen-VL
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct
https://huggingface.co/llava-hf/llama3-llava-next-8b-hf
https://huggingface.co/liuhaotian/llava-v1.5-13b
https://huggingface.co/weqweasdas/hh_rlhf_rm_open_llama_3b
https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
https://huggingface.co/Open-Reasoner-Zero/Open-Reasoner-Zero-1.5B
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO
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Table 5 – continued from previous page
Abbreviation Base Model Full Model Name Train Corpus

Dolphin Mistral-7B dolphin-2.6-mistral-7b-dpo UltraFeedback, Magicoder, etc.
DPO Minicpm-2B MiniCPM-2B-dpo-bf16 ShareGPT, UltraChat, etc.
GRPO Qwen3-4B Qwen3 Medical GRPO Medical dataset
RLHF Chatglm-6B chatglm-fitness-RLHF SFT, Reward Model, etc.
DPO Llama3-8B LLaMA3-iterative-DPO-final UltraFeedback, Preference sets

Minitron-Depth Llama-3-8B Llama-3.1-Minitron-4B-Depth-
Base

Nemotron-4 15B corpus

Minitron-Width Llama-3-8B Llama-3.1-Minitron-4B-Width-
Base

Nemotron-4 15B corpus

Sheared 2.7B-P Llama2-7B Sheared-LLaMA-2.7B-Pruned RedPajama
Sheared 2.7B-S Llama2-7B Sheared-LLaMA-2.7B-ShareGPT ShareGPT
Sheared 2.7B Llama2-7B Sheared-LLaMA-2.7B RedPajama
Sheared 1.3B-P Llama2-7B Sheared-LLaMA-1.3B-Pruned RedPajama
Sheared 1.3B Llama2-7B Sheared-LLaMA-1.3B RedPajama
Sheared 1.3B-S Llama2-7B Sheared-LLaMA-1.3B-ShareGPT ShareGPT
Llama3-1B Llama3-8B Llama-3.2-1B Llama3-8B logits, Safety data
Llama3-3B Llama3-8B Llama-3.2-3B Llama3-8B logits, Safety data

H IMPLEMENTATION DETAILS

We employ the Linear Kernel (k(X,Y ) = XY ⊤) for Centered Kernel Alignment (CKA) due to its
computational efficiency. To mitigate the finite-sample bias inherent in standard HSIC estimations,
we utilize the Unbiased CKA (UCKA) estimator. As for module selection, our method operates
on two specific sets of weights: first, we utilize the intersection of the word embeddings (Wemb)
to solve the Linear Assignment Problem (LAP), allowing us to accurately recover the permutation
(P ) and signature (D) matrices; second, we compute the final fingerprinting scores using the Query
(WQ) and Key (WK) weights, as their transformations are strictly constrained.

To address structural discrepancies such as differing layer counts, we identify the optimal layer
correspondence by maximizing the total similarity; specifically, we solve the assignment problem
on a cost matrix constructed from the pairwise UCKA scores of WQ and WK between all source
and target layers.

I EMPIRICAL VALIDATION OF ROBUSTNESS AGAINST WEIGHT
MANIPULATIONS

In Section 4, we theoretically analyze potential weight manipulations, including constant scaling,
signature matrix multiplication, permutations, and orthogonal transformations. We now provide
empirical evidence to support the analysis. Specifically, we apply these manipulations to five repre-
sentative models, Llama-2-7B, Qwen2-7B, Mistral-7B, Llama-3-8B, and Gemma-7B, and evaluate
AWM’s robustness under each setting.

As shown in Table 6, AWM achieves a 100% detection rate across all tested model–manipulation
pairs. These results not only align with our theoretical derivations, but also validate the design of
AWM, including LAP and UCKA.

Table 6: AWM-detected similarity scores under the weight manipulations in Section 4.

Manipulation / Model Llama-2-7B Qwen2-7B Mistral-7B Llama-3-8B Gemma-7B

Permutation 100% 100% 100% 100% 100%
Signature 100% 100% 100% 100% 100%
Constant Scaling 100% 100% 100% 100% 100%
Orthogonal Trans. 100% 100% 100% 100% 100%
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