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Abstract
In this Show-and-Tell Demos paper, progresses
on mathematical theories for adversarial deep
learning will be reported. Firstly, achieving ro-
bust memorization for certain neural networks is
shown to be an NP-hard problem. Furthermore,
neural networks with O(Nn) parameters are con-
structed for optimal robust memorization of any
dataset with dimension n and size N in polyno-
mial time. Secondly, adversarial training is for-
mulated as a Stackelberg game and is shown to
result in a network with optimal adversarial ac-
curacy when the Carlini-Wagner’s margin loss is
used. Finally, the bias classifier is introduced and
is shown to be information-theoretically secure
against the original-model gradient-based attack.

1. Introduction
In this paper, partial answers to three basic problems about
adversarial deep learning are summarized.

Problem 1. What is the computational complexity for
robust memorization with neural networks?

First, to compute robust neural networks with two layers and
width 2 is shown to be NP-hard. Second, neural networks
are explicitly constructed with O(Nn) parameters for opti-
mal robust memorization of any dataset with dimension n
and sizeN in polynomial time. A lower bound for the width
of networks to achieve optimal robust memorization is also
given. Finally, neural networks are explicitly constructed
with O(Nn log n) parameters for optimal robust memoriza-
tion of any binary classification dataset by controlling the
Lipschitz constant of the network.

To summarize, finding certain “small” robust networks is
NP-hard and optimal robust networks with O(Nn) param-
eters can be computed in polynomial time. But, O(Nn)
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is too big to be practical and this leads to the following
problem.

Problem 2. For a given hypothesis space of networks,
how to obtain an optimal robust network against adver-
sarial attacks?

Game theory has been used to answer Problem 2. In (Pinot
et al., 2020; Meunier et al., 2021), adversarial deep learning
was treated as a simultaneous game, assuming that the strat-
egy spaces are certain probability distributions to ensure the
existence of Nash equilibrium. However, this assumption is
not always applicable in practical scenarios. In (Gao et al.,
2022), an answer to this problem was given by formulating
adversarial deep learning as a Stackelberg game. It was
shown that the Stackelberg equilibrium for the game exists
and the equilibrium DNN exhibits the highest adversarial ac-
curacy among all DNNs with the same structure, when using
Carlini-Wagner’s margin loss (Carlini & Wagner, 2017).

To summarize, employing adversarial training with Carlini-
Wagner loss yields optimal robust DNNs. However, the
trade-off between accuracy and robustness presents a chal-
lenge as the robust accuracy achieved by the optimal DNN
is still not sufficiently high. This motivates the following
problem:

Problem 3. Can provably safe classifiers be built against
adversarial attacks?

In (Yu & Gao, 2021), the bias classifier was introduced,
that is, the bias part of a DNN with Relu as the activation
function is used as a classifier. The existence of the bias
classifier is proved and an effective training method for the
bias classifier is given based on adversarial training. The
bias classifier is shown to have comparable accuracies and
robustness with DNNs of similar sizes against major attacks
in many cases. Furthermore, the bias classifier can be made
provably safe against the original-model gradient attack
in the sense that the attack will generate a totally random
search direction to generate adversarial examples for any
input sample.

2. Related works
Computational complexity. The first NP-hardness result
was given in (Blum & Rivest, 1992), which showed that it
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is NP-complete to train certain networks with three nodes.
It was proved that even training a single ReLU node is NP-
hard (Manurangsi & Reichman, 2018; Dey et al., 2020; Goel
et al., 2020) .

Robust networks. Existence of robust networks was proved
based on the uninversal approximation theory (Yang et al.,
2020; Bastounis et al., 2021). In (Li et al., 2022), a ro-
bust interpolation network with for robust budget λD/4
and O(Nn log( n

λD
)+Npolylog( N

λD
)) parameters was con-

structed and it was shown that exponential number of param-
eters were needed for robust interpolation of infinite sets. To
obtain robust networks by controlling the Lipschitz constant
was studied in (Bubeck & Sellke, 2021; Zhang et al., 2022).

Certified robust radius. There exist lots of works to give
lower bounds for the robust radius or certain security bound-
aries (Hein & Andriushchenko, 2017; Raghunathan et al.,
2018; Shafahi et al., 2019). In (Cohen et al., 2019), random
smoothing was proposed and security boundaries of adver-
saries were given. However, these safety bounds are usually
very small when the depth of the DNN is large.

3. Robust memorization with neural networks
3.1. Notations

For L ∈ N+, denote [L] = {1, . . . , L}. For a matrix W
and a vector b, denote W j,k to be the element of W at the
j-th row and k-th column and b(j) the j-th element of b.
For µ ∈ R+ and x ∈ Rn, denote B∞(x, µ) = {x̃ ∈ Rn :
||x̃− x||∞ ≤ µ}.

Consider feedforward neural networks F : Rn → R with D
hidden layers and with σ = Relu as the activation function.
The l-th hidden layer of F can be written as

Xl = σ(WlXl−1 + bl) ∈ Rnl , l ∈ [D],

and the output is XD+1 = WD+1XD + bD+1 ∈ RnD+1 ,
where n0 = n, X0 ∈ Rn is the input, Wl ∈ Rnl×nl−1 , bl ∈
Rnl , nD+1 = 1, and XD+1 ∈ R is the output. F is said
to have depth depth(F) = D + 1 and width width(F) =
maxD+1

i=1 ni. Denote Fl(X0) = Xl to be the output of the
l-th hidden layer of F(X0) and F j

l (X0) the j-th element of
Fl(X0). The classification result of the network is

F̂(x) = argminl∈[L]|F(x)− l|.

We will explicitly construct networks from certain hypothe-
sis space of networks defined below.

Definition 3.1. Denote the set of networks with depth d,
width w, and p parameters by Hn,d,w,p = {F : Rn →
R : depth(F) = d,width(F) = w, para(F) = p}, where
para(F) = pmeans that there exists a fixed set I ⊂ N4 with
p elements such that W i,j

l ̸= 0 and b(s)l ̸= 0 for (l, i, j, s) ∈

I, and all other parameters are zero. We use ∗ to denote
an arbitrary number in N. For instance, Hn,d,∗,∗ = {F :
Rn → R : depth(F) = d} is the set of networks with depth
d.
Definition 3.2. LetN,n, L ∈ N+, and D be a dataset in Rn

with size N and label set [L]; that is D = {(xi, yi)}Ni=1 ⊂
Rn × [L]. Denote Dn,N,L to be the set of all such dataset.
The separation bound for a dataset D is defined to be

λD = min{||xi − xj ||∞ : (xi, yi), (xj , yj) ∈ D, yi ̸= yj}.

The robust accuracy of a network F on D with respect to a
given robust budget µ ∈ R+ is

RAD(F , µ) = P(x,y)∈D(∀x̃ ∈ B∞(x, µ), F̂(x̃) = y).

The problem of memorization for a dataset D ∈ Dn,N,L

is to construct a neural network F : Rn → R, such that
F(x) = y, ∀(x, y) ∈ D.
Definition 3.3. The problem of robust memorization for
a given dataset D ∈ Dn,N,L with budget µ is to construct
a network F : Rn → R satisfying RAD(F , µ) = 1. A net-
work hypothesis space H is said to be an optimal general
robust memorization for D, if for any µ < 0.5λD, there
exists an F ∈ H such that F is a robust memorization of D
with budget µ.

3.2. Robust memorization is NP-hard

We prove a NP-hard results for computation of robust mem-
orization networks with certain structures.

For α ∈ R+ and a binary classification dataset D ⊂ Dn,N,2,
denote RobM(D, α) to be the decision problem for the exis-
tence of an F ∈ Hn,2,2,∗, which is a robust memorization
of D with budget α. We have
Theorem 3.4. RobM(D, α) is NP-hard. As a consequence,
it is NP-hard to compute an F ∈ Hn,2,2,∗, which is a robust
memorization of D with budget α.

The proof is given in Appendix A.1.
Remark 3.5. Note that, NP-hardness of computing robust
memorization cannot be deduced from NP-hardness of com-
puting memorization. This is because, for a given dataset
D and a network hypothesis space H, it may happen that
there exists a memorization network F ∈ H for D, but there
exists no robust memorization network F ∈ H for D.

3.3. Construction of optimal robust networks

In this section, we explicitly construct a robust memoriza-
tion network for a given dataset. We first give a necessary
condition for robust memorization.
Proposition 3.6. If H = {F : Rn → R,width(F) = w} is
an optimal robust memorization of any dataset D ∈ Dn,N,L

with N > n, then width(F) = w ≥ n.
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The proof is given in Appendix A.2.
Remark 3.7. In (Vardi et al., 2021), it was shown that width
12 networks are enough for memorization. Proposition 3.6
indicates that robust memorization needs essentially larger
width.

The following theorem gives an optimal robust memoriza-
tion for any given dataset.
Theorem 3.8. For any dataset D ∈ Dn,N,L, the hypothesis
space Hn,2N+1,3n+1,O(Nn) is an optimal robust memoriza-
tion for D. Furthermore, the optimal robust network can be
explicitly constructed in polynomial-time.

The proof is given in Appendix A.3.

3.4. Optimal robust memorization via Lipschitz

Controlling the Lipschitz constant is widely used to achieve
robustness (Bubeck & Sellke, 2021; Zhang et al., 2022). In
this section, we give a robust network based on Lipschitz
constraint.

We consider a binary classification dataset D ∈ Dn,N,2.
There exist (xi, 1), (xj , 2) ∈ D such that ||xi−xj ||∞ = λD.
Thus, if F memorizes D, then Lip∞(F) ≥ |F(xi) −
F(xj)|/||xi − xj ||∞ = 1/λD, which motivates the fol-
lowing definition.
Definition 3.9. A network F is called a robust memoriza-
tion of a dataset D via Lipschitz with budget µ < 0.5λD,
if F is a memorization of D and Lip∞(F) ≤ 0.5/µ. F is
called an optimal robust memorization of D via Lipschitz, if
F is a memorization of D and Lip∞(F) = 1/λD.

We now construct an optimal robust network for any binary
classification dataset via Lipschitz.
Theorem 3.10. For any dataset D ∈ Dn,N,2, the hypoth-
esis space Hn,O(N log(n)),O(n),O(Nn log(n)) contains a net-
work F which is an optimal robust memorization of D via
Lipschitz. Furthermore, the network can be explicitly con-
structed in polynomial-time.

Proof is in appendix A.4.

4. Achieve optimal robustness with
Stackelberg game

In this section, we consider Problem 2, that is, for a given hy-
pothesis space of networks, how to obtain an optimal robust
network against adversarial attacks? Proofs for theorems in
this section can be found in (Gao et al., 2022).

4.1. Adversarial training and robustness of DNN

Let C : In → Rm be a classification DNN with m labels
in Y = [m] = {1, . . . ,m} and I = [0, 1]. For x ∈ In, the
classification result of C is Ĉ(x) = argmaxl∈Y Cl(x).

Let the parameter set of C be Θ ∈ RK . Then C can be
written as CΘ. We assume the data to be classified satisfy
a distribution D over In × Y . Given a loss function Loss :
Rm × Y → R, the expected loss for the dataset is

φ0(Θ) = E(x,y)∼D Loss(CΘ(x), y). (1)

Training CΘ is to solve the following optimization problem:

argminΘ∈RK φ0(Θ). (2)

In order to increase the robustness of a trained DNN, the
adversarial training (Madry et al., 2017) was introduced by
solving the following robust optimization problem:

argminΘ∈RK E(x,y)∼D maxx̃∈B(x,ε) Loss(CΘ(x̃), y). (3)

Given a DNN C and an attack radius ε, we define the
adversarial robustness measure of C with respect to ε as

ARD(C, ε) := E(x,y)∼D maxx̃∈B(x,ε)Loss(C(x̃), y), (4)

which is the expected loss of C at the most-adversarial
samples.

4.2. Adversarial training as a Stackelberg game

We formulate adversarial deep learning as a two-player
zero-sum Stackelberg game Gs, called adversarial learning
game.

The leader of the game Gs is the Classifier, whose goal is
to train a robust DNN CΘ : In → Rm, where the parameters
Θ are in

Sc = [−E,E]K for E ∈ R+. (5)

In other words, the strategy space for the Classifier is Sc.

The follower of the game Gs is the Adversary, whose goal
is to create the best adversary within a given attack radius
ε ∈ R+. The strategy space for the Adversary is

Sa = {A : In → Bε}, (6)

where Bε = {δ ∈ Rn : ||δ|| ≤ ε}.

The payoff function. Given Θ ∈ Sc and A ∈ Sa, the
payoff function is the expected adversarial loss

φs(Θ, A) = E(x,y)∼D Loss(CΘ(x+A(x)), y). (7)

For game Gs, the best response set of the adversary is

γs(Θ) = {argmaxA∈Sa
φs(Θ, A)} for Θ ∈ Sc (8)

And (Θ∗
s, A

∗
s) is called a Stackelberg equilibrium of Gs if

Θ∗
s ∈ argminΘ∈Sc,A(Θ)∈γs(Θ) φs(Θ, A(Θ))

A∗
s ∈ argmaxA∈Sa

φs(Θ
∗
s, A).

(9)

We now have:
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Theorem 4.1. Game Gs has a Stackelberg equilibrium
(Θ∗

s, A
∗
s), meanwhile the equilibrium DNN with parameters

Θ∗
s minimizes the adversarial robustness measure in (4).

Furthermore, Θ∗
s is the solution to the adversarial training

in (3).

4.3. Achieve maximal robust accuracy

Comparing with the robustness measurement ARD in (4),
the robust accuracy

RAD(C, ϵ) := P(x,y)∼D (∀x̃ ∈ B(x, ε) (Ĉ(x̃) = y))

does not depend on the choice of loss functions, indicating
its intrinsic nature.

Denote the game Gs as Gcw, when the payoff function is

φcw(Θ, A) = E(x,y)∼D Losscw(CΘ(x+A(x)), y) (10)

and Losscw(z, y) = maxl∈[m],l ̸=y zl − zy is the Carlini-
Wagner loss. Then we have
Theorem 4.2. Let (Θ∗

cw, A
∗
cw) be a Stackelberg equilibrium

of game Gcw. Then CΘ∗
cw has the largest adversarial ac-

curacy for all DNNs whose parameters are in Sc; that is,
RAD(CΘ∗

cw , ε) ≥ RAD(CΘ, ε) for any Θ ∈ Sc.

4.4. Trade-off between robustness and accuracy

Theorem 4.2 allows us to formulate the trade-off problem
as the following bi-level optimization problem, that is, to
increase the accuracy of the DNN and still keep the maximal
robust accuracy.

Θ∗
o = argminΘ∗

s
φ0(Θ

∗
s)

subject to
Θ∗

s = argminΘ∈Sc
maxA∈Saφcw(Θ, A),

(11)

where φ0 and φcw are defined in (1) and (10), respectively.

The bi-level optimization problem (11) is, in general, dif-
ficult to solve. A natural way to train a robust and more
accurate DNN is to do adversarial training with the follow-
ing objective function:

φt(Θ, A) = φs(Θ, A) + λφ0(Θ). (12)

Then we have the following trade-off result:
Proposition 4.3. Let (Θ∗

s, A
∗
s) and (Θ∗

t , A
∗
t ) be the Stack-

elberg equilibria of the adversarial learning games with
φs and φt as the payoff functions respectively. Then the
network CΘ∗

s
is more robust but less accurate than CΘ∗

t
mea-

sured by φ0.

5. Information-theoretically safe bias classifier
against adversarial attacks

In this section, we introduce the bias classifier and show
that it can be made information-theoretically safe against the
original-model gradient-based attack. Proofs for theorems
in this Section can be found in (Yu & Gao, 2021).

5.1. Existence and training of bias classifier

Let F : In → Rm be a classification DNN. For x ∈ In, let
JF (x) =Wx = ∇F(t)

∇t |x be the Jacobian of F at x. Then

F(x) =WF (x) + BF (x) = JF (x)x+Bx. (13)

The bias part BF : In → Rm will be used as a classifier and
is called the bias classifier, which can be computed from F
as follows:

BF (x) = F(x)−WF (x) = F(x)− JF (x) · x. (14)

Due to the property of the Relu function, F is a piecewise
linear function and BF (x) is a piecewise constant function.

Existence of bias classifier We will prove that for any
decision function G : In → [m], there exists a bias classifier
B(x) : In → Rm, such that B̂(x) can be arbitrarily close to
G, where B̂(x) represents the classification results of B(x).
The decision function is defined as below:

Definition 5.1. G : In → [m] is a decision function, if
P1, . . . , Pm are a partition of In into m measurable disjoint
subsets, and G(x) = i if and only if x ∈ Pi.

We have the existence theorem.

Theorem 5.2. Let G : In → [m] be a decision function.
Then for ϵ ∈ R+, there exist a bias classifier B : In → Rm

and an open set D ⊂ In with volume V (D) < ϵ, such that
B̂(x) = G(x) for x ∈ I \D.

Training the bias classifier In order to increase the power of
the bias part BF and to keep the training procedure efficient
to update the parameters, we train the bias classifier by
solving the following optimization problem

min
Θ

∑
(x,y)∼D

[ max
||ζ||<ε

Lce(BF (x + ζ), y) + γ max
||ζ||<ε

Lce(F(x + ζ), y)]

(15)

where γ ∈ R+ is a hyperparameter. Notice that the training
(15) is a combination of adversarial training for B and F .

A simple numerical experiment is used to show that the
adversarial training and the training in (15) can increase the
classification power of BF .

Table 1. Accuracies of network Lenet-5 for MNIST on the test
set. Standard training (2) does not give classification power to
BF . Adversarial training (3) increases the power of the bias part.
Adversarial training for bias classifier (15) further decreases the
power of the first-degree part to avoid attacks based on it.

Training WF BF F
(2) 98.80% 15.62% 99.09%
(3) 90.61% 98.77% 99.19%
(15) 0.28% 99.09 % 99.43%
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5.2. Information-theoretically safe (ITS) bias classifier

Original-model gradient based attack The most popular
methods to generate adversaries, such as FGSM (Goodfel-
low et al., 2014) or PGD (Madry et al., 2017), use ∇F(x)

∇x to
make the loss function bigger. More precisely, adversaries
are generated as follows:

x→ x+ εSgn(
∇Lce(F(x), y)

∇x
) (16)

for a small parameter ε ∈ R+. It is easy to see that,
∇Lce(F(x),y)

∇x can be obtained from ∇F(x)
∇x . In the above

attack, only the values of F(x) and ∇F(x)
∇x are needed and

the detailed structure of F is not needed. Motivated by this
fact, we introduce the concept of gradient-based attack.

Definition 5.3. A gradient-based attack for a DNN F :
In → Rm is a map AF,ρ : Rn → Rn defined as

AF,ρ(x) = x+ ρDF (x) (17)

where DF (x) ∈ {−1, 1}n is the attack direction for x and
DF (x) only depends on F(x) and ∇F(x)

∇x .

Since the gradient of BF is zero, we cannot use the gradient
based attack for BF . An obvious attack to the bias classifier
is to create adversaries of BF using the gradients of F ,
which is called original-model gradient based attack.

Information-theoretically safety First train a DNN F :
In → Rm with the method in Section 5.1. LetWR ∈ Rm×n

satisfy a given distribution M of random matrices in Rm×n

and let

F̃(x) = F(x) +WRx = (Wx +WR)x+Bx

BF̃ (x) = F̃(x)− ∇F̃(x)
∇x · x = F̃(x)− JF̃ · x.

(18)

It is easy to see that BF̃ = BF , that is, the bias classifiers for

F and F̃ are the same. On the other hand, JF̃ = ∇F̃(x)
∇x =

∇F(x)
∇x +WR is random as shown below.

The safety of BF̃ against the attack AF̃,ρ(x) can be mea-
sured by the following adversary creation rate:

C(BF̃ ,A,M, ρ) = EWR∼M[Ex∼D [I(B̂F̃ (AF̃,ρ
(x)) ̸= B̂F̃ (x))]]. (19)

Definition 5.4. The bias classifier BF̃ in (18) is called
information-theoretically safe (ITS) against the gradient-
based attack AF̃,ρ defined in (17), if the attack direction
DF̃ (x) = (AF̃,ρ(x)−x)/ρ is a random vector in {−1, 1}n
for any input x ∈ In.

If BF̃ is ITS against AF̃,ρ, then C(BF̃ ,A,M, ρ) equals

C(F, ρ) = 1
2n Ex∼D

∑
V ∈{−1,1}n [I(B̂F (x + ρ V ) ̸= B̂F (x))] (20)

which depends only on F and ρ and will be used as a ro-
bustness measurement of the bias classifier.

Remark 5.5. The notion of information-theoretically safe,
also called perfectly safe, is borrowed from cryptogra-
phy (Goldreich, 2004)[p.476], which means that the cipher-
text yields no information regarding the plaintext for cyphers
which are perfectly random.

5.3. ITS against signed margin attack

We first show that BF̃ defined in (18) is safe against the
following signed margin attack (Carlini & Wagner, 2017)

AF̃,ρ,1(x) = x+ ρSgn(
∇F̃nx

(x)

∇x
− ∇F̃y(x)

∇x
) (21)

where ρ ∈ R+, y is the label of x, and nx =
argmaxi ̸=y{Fi(x)}.

We consider two types of random matrices for WR in (18).

Definition 5.6. Let U(a, b) be the uniform distribution in
[a, b] ⊂ R. For λ ∈ R+, denote Um,n(λ) to be the ran-
dom matrices whose entries are in U(−λ, λ) and denote
Mm,n(λ) to be the random matrices such that the entries
of their i-row are in (U(−2iλ,−(2i − 1)λ) ∪ U((2i −
1)λ, 2iλ))m×n.

Theorem 5.7. Let ||JF ||∞ < λ/2 and WR ∈ Mm,n(λ)
for λ ∈ R+. Then BF̃ is ITS against the attack AF̃,ρ,1 given
in (21); that is, attacking BF̃ using AF̃,ρ,1 will generate a
random attack direction (AF̃,ρ,1(x)− x)/ρ for any x ∈ In.

Theorem 5.8. If ||JF ||∞ < µ/2 and WR ∼
Um,n(λ), then C(BF̃ ,AF̃,ρ,1,Um,n(λ), ρ) ≤ C(F , ρ) +

µn/λ. Furthermore, if λ > µn/(ϵC(F , ρ)), then
C(BF̃ ,AF̃,ρ,1,Um,n(λ), ρ) ≤ (1 + ϵ)C(F , ρ).

For the simpler distribution Um,n, Theorem 5.8 implies that
BF̃ is close to ITS under attack AF̃,ρ,1 if λ is sufficiently
large.

5.4. ITS against FGSM attack

In this section, we show that BF̃ in (18) is safe against the
FGSM attack (Goodfellow et al., 2014) for binary classifi-
cation problems. Here is the FGSM attack:

AF̃,ρ,2(x) = x+ ρSgn(
∇L(F̃(x), y)

∇x
). (22)

Theorem 5.9. For λ ∈ R+, if ||JF ||∞ < λ/2, WR ∼
Mm,n(λ), and m = 2, then BF̃ is ITS against the attack
AF̃,ρ,2.

Theorem 5.10. If ||JF ||∞ < µ/2, WR ∼ Um,n(λ),
and m = 2, then C(BF̃ ,AF̃,ρ,2,Um,n(λ), ρ) ≤
enµ/λC(F , ρ). Furthermore, if λ > nµ/ ln(1 + ϵ), then
C(BF̃ ,AF̃,ρ,2,Um,n(λ), ρ) ≤ (1 + ϵ)C(F , ρ).

Theorem 5.10 shows that BF̃ is close to ITS against FGSM
under distribution Um,n(λ) for a sufficiently large λ.
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6. Conclusion and problems for further studies
In this paper, we provide a summary of partial solutions to
three fundamental challenges in adversarial deep learning:
computationally complexity for robust memorization, the
search for the optimal robust network, and building prov-
ably safe classifiers. While these methods are currently in
their early stages and may not yet attain state-of-the-art per-
formance for practical applications, further advancements
in addressing these problems will pave the way for more
reliable techniques in adversarial deep learning. Conse-
quently, we propose the following research questions for
future investigation.

On the computationally complexity for robust memoriza-
tion, can we construct robust networks that achieve the
lower bound of parameters O(

√
Nn) or have generalization

power? On the training of optimal robust networks, can we
train a robust network with optimal generalization power?
On the provably safe classifiers, can we build a provably
safe classifier with SOTA performance?
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A. Appendix to Paper: Mathematical Theory of Adversarial Deep Learning
This appendix contains proofs for theorems in Section 3.

A.1. Proof of Theorem 3.4

We will show that RobM(D, α) is computationally equivalent to the following NPC problem.
Definition A.1 (Reversible 6-SAT). Let φ be a Boolean formula and let φ denote the formula obtained from φ by negating
each variable. The Boolean formula φ is called reversible if either both φ and φ are satisfiable or both are not satisfiable.
The reversible satisfiability problem is to recognize the satisfiability of reversible formulae in conjunctive normal form
(CNF). By the reversible 6-SAT, we mean the reversible satisfiability problem for CNF formulae with six variables per
clause. In (Megiddo, 1988), it was shown that the reversible 6-SAT is NPC.

Denote Hn,2 = Hn,2,2,∗. Let F(x) ∈ Hn,2. Then F(x) can be written as

F = s1σ(U1x+ b1) + s2σ(U2x+ b2) + c (23)

where Ui ∈ R1×n, bi ∈ R, si ∈ {−1, 1}, c ∈ R. To simplify the proof, we assume that F̃(x) = ψ(F(x)), where ψ is the
sign function. Also, let 1i ∈ Rk, whose i-th element is 1 and all other entries are 0.

We first prove a lemma.
Lemma A.2. Let F ∈ Hn,2 and zi = i11 ∈ Rn. If F̃(z1) = F̃(z−1) = −1 and F̃(z2) = F̃(z−2) = 1, then s1s2 < 0
when c ≥ 0 and s1s2 > 0 when c < 0.

Proof. Let F be of form (23). We just need to prove the lemma for n = 1. Consider two cases.

(c1): Assume c ≥ 0. Since −1 = F̃(z1) = ψ(s1σ(U1z1+b1)+s2σ(U2z1+b2)+c) ≥ ψ(s1σ(U1z1+b1)+s2σ(U2z1+b2)),
at least one of s1 = −1 and s2 = −1 holds. Assume that s2 = −1. We will show that s1 = 1. If this is not true, then
s1 = s2 = −1. Because −σ(a)/4− 3/4σ(b) ≤ −σ(a/4 + 3b/4), we have that

0

< (−σ(U1z2 + b1)− σ(U2z2 + b2) + c)/4 + 3(−σ(U1z−2 + b1)− σ(U2z−2 + b2) + c)/4

= (−σ(U1z2 + b1)− 3σ(U1z−2 + b1))/4 + (−σ(U2z2 + b2)− 3σ(U2z−2 + b2))/4 + c

≤ −σ(U1z−1 + b1)− σ(U2z−1 + b2) + c

< 0

which is a contradiction.

(c2): Assume c < 0. Since 1 = F̃(z2) = ψ(s1σ(U1z2+b1)+s2σ(U2z2+b2)+c) ≤ ψ(s1σ(U1z2+b1)+s2σ(U2z2+b2)),
at least one of s1 = 1 and s2 = 1 holds. Assume s1 = 1. We will show that s2 = 1. If this is not true, then s2 = −1. Then

1 = F(z2) = ψ(σ(U1z2 + b1)− σ(U2z2 + b2) + c) ≤ ψ(σ(U1z2 + b1) + c),

so σ(U1z2 + b1) + c > 0. Similarly, we have σ(U1z−2 + b1) + c > 0. It is easy to know that U1z1 + b1 ≥ min{U1z2 +
b1, U1z−2 + b1}, so σ(U1z1 + b1) + c > 0. Similarly, we have σ(U1z−1 + b1) + c > 0. From F(z1) = −1 and
σ(U1z1 + b1) + c > 0, we have

0 > σ(U1z1 + b1)− σ(U2z1 + b2) + c > −σ(U2z1 + b2).

So 0 < σ(U2z1 + b2), which means U2z1 + b2 > 0. Similarly, we have U2z−1 + b2 > 0. Now consider the linear function
L(x) = (U1z2 + b1)− (U2z2 + b2) + c.

Since c < 0, σ(U1z1 + b1) + c > 0, U2z1 + b2 > 0, and F(z1) = −1, we have L(z1) = (U1z1 + b1)− (U2z1 + b2) + c =
σ(U1z1 + b1)− σ(U2z1 + b2) + c < 0. Similarly, L(z−1) < 0.

Since c < 0, σ(U1z2 + b1) + c > 0, and F(z2) = 1, we have L(z2) = (U1z2 + b1)− (U2z2 + b2) + c = σ(U1z2 + b1)−
(U2z2 + b2) + c ≥ σ(U1z2 + b1)− σ(U2z2 + b2) + c > 0. Similarly, we have L(z−2) > 0.

Hence L(0) = (L(z1) + L(z−1))/2 < 0 and L(0) = (L(z2) + L(z−2))/2 > 0, a contradiction, so s2 = 1.
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We restate Theorem 3.4 here for convenience.

Theorem A.3. RobM(D, α) is NP-hard; that is, for α ∈ R+ and a dataset D ⊂ Dn,N,2, it is NP-hard to decide whether
there exists a robust network in Hn,2 for D with budget α.

Proof. Let φ(k,m) = ∧m
i=1φi(k,m) be a 6-SAT for k variables, where φi(k,m) = ∨6

j=1x̃i,j and x̃i,j is either xs or ¬xs
for s ∈ [k] (refer to Definition A.1).

For i ∈ [k], define Qφ
i ∈ Rk as follows: Qφ

i [j] = 1 if xj occurs in φi(k,m); Qφ
i [j] = −1 if ¬xj occurs in φi(k,m);

Qφ
i [j] = 0 otherwise. Then six entries of Qφ

i are 1 or −1 and all other entries are zero.

We define a binary classification dataset D(φ) = {(xi, yi)}m+4k
i=1 ⊂ Rk × {−1, 1} as follows

(1) For i ∈ [k], xi = k1i, yi = 1.

(2) For i ∈ {k + 1, k + 2, . . . , 2k}, xi = −k1i−k, yi = 1.

(3) For i ∈ {2k + 1, 2k + 2, . . . , 3k}, xi = 2k1i−2k, yi = 2.

(4) For i ∈ {3k + 1, 3k + 2, . . . , 4k}, xi = −2k1i−3k, yi = 2.

(5) For i ∈ {4k + 1, 3k + 2, . . . , 4k +m}, xi = k/4 ·Qφ
i−4k, yi = 1.

The size of D(φ) is O((m+ k) log k) and D(φ) has separation bound k/4.1 > 1, because k ≥ 6 for 6-SAT problem. Let
the robustness radius be α = 0.5− γ, where γ < 1

10k .

We claim that RobM(D(φ), 0.5 − γ) has a solution F if and only if the reversible 6-SAT φ(k,m) has a solu-
tion J = {xj = vj}kj=1. Furthermore, F and J can be deduced from each other in polynomial time; that is,
RobM(D(φ), 0.5− γ) is computationally equivalent to φ(k,m). Since reversible 6-SAT is NPC (Megiddo, 1988), by the
claim, RobM(D(φ), 0.5− γ) is NPC, which implies that RobM(D(φ), α) is NP-hard. This proves the theorem.

Before proving the claim, we first introduce a notation. Let J = {xj = vj}kj=1 be a solution to the reversible 6-SAT problem
φ and φi(k,m) = ∨6

j=1x̃i,j a clause of φ, where vi ∈ {−1, 1}. Then denote q(J, φi) to be the number of x̃i,j which has
value 1 on the solution J . If q(J, φi) = 0, then φi is not true. If q(J, φi) = 6, then ¬φi is not true. Since J is a solution to
the reversible 6-SAT problem φ, we have 1 ≤ q(J, φi) ≤ 5. It is easy to see that q(J, φi) = |{j ∈ [k] :Qφ

i [j] = vj}|.

The claim will be proved in two steps.

Step 1. We prove that if φ(k,m) has a solution J = {xj = vj}kj=1, then RobM(D(φ), 0.5− γ) has a solution F , where
vi ∈ {−1, 1}. Let U1 = (v1, v2, . . . , vk), U2 = −(v1, v2, . . . , vk). Define F ∈ Hk,2 to be F(x) = σ(U1x − 1.5k) +
σ(U2x − 1.5k) + 1.5 − γ. It is clear that F can be obtained from J in Poly(k). We will show that F(x) is a robust
memorization of D(φ) with budget α = 0.5− γ. The proof will be given in three steps: (c1) - (c3).

(c1). For i ∈ [2k] and any ϵ ∈ [−0.5+γ, 0.5−γ]k, we have U1(xi+ϵ)−1.5k ≤ k|vi|−1.5k+(0.5−γ)||U1||1 = −γk < 0.
Similarly, we have U2(xi + ϵ)− 1.5k < 0. Then, for any ||ϵ||∞ ≤ 0.5− γ, we have

F(xi + ϵ) = σ(U1(xi + ϵ)− 1.5k) + σ(U2(xi + ϵ)− 1.5k) + 1.5− γ < 0 + 0 + 1.5 = 1.5.

Thus |F(x)− 1| < |F(x)− 2|, so F is robust at xi with budget 0.5− γ.

(c2). For i ∈ {2k + 1, 2k + 2, . . . , 4k}, since U1 = −U2, at least one of the following two equations U1xi − 1.5k =
−1.5k + |U1||xi| = 0.5k and U2xi − 1.5k = −1.5k + |U2||xi| = 0.5k is true, say the first one is true. Then, for any
||ϵ||∞ ≤ 0.5− γ, we have

F(xi + ϵ) = σ(U1(xi + ϵ)− 1.5k) + σ(U2(xi + ϵ)− 1.5k)− γ + 1.5 ≥ σ(U1(xi + ϵ)− 1.5k)− γ + 1.5.

We have U1(xi + ϵ)− 1.5k = 0.5k + U1ϵ ≥ 0.5k − (0.5− γ)k = γk. So F(xi + ϵ) ≥ γk − γ + 1.5 > 1.5, since k > 1.

Thus |F(x)− 1| > |F(x)− 2|, so F is robust at xi with budget 0.5− γ.

(c3). Let i ∈ {4k + 1, 4k + 2, . . . , 4k +m}. It is clear that q(J, φi−4k) + q(J, φi−4k) = 6.
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Then

k
4U1Q

φ
i−4k

=
∑

j : xj ∈ φi−4k

k
4vjQ

φ
i−4k[j]

=
∑

j : xj ∈ φi−4k,Sgn(Qφ
i−4k[j])=Sgn(vj)

k/4−
∑

j : xj ∈ φi−4k,Sgn(Qφ
i−4k[j]) ̸=Sgn(vj)

k/4

= q(J, φi−4k)k/4− q(J, φi−4k)k/4

∈ {0, k/2, k,−k/2− k}

which means |k4U1Q
φ
i−4k| ≤ k. Similarly, we also have |k4U2Q

φ
i−4k| ≤ k. As a consequence, U1xi − 1.5k = −1.5k +

U1Q
φ
i−4k ·k/4 ≤ −0.5k, Since ||U1||1 = k, for any ||ϵ||∞ ≤ 0.5−γ, we haveU1(xi+ϵ)−1.5k ≤ −0.5k+||U ||1(0.5−γ) =

−γk < 0. Similarly, for U2 we have that

F(xi + ϵ) = σ(U1(xi + ϵ)− 1.5k) + σ(U2(xi + ϵ)− 1.5k)− γ + 1.5 ≤ 0 + 0− γ + 1.5 < 1.5.

Thus F is robust at xi with budget 0.5.

From (c1) to (c3), F is a robustness memorization of D(φ) with budget 0.5− γ, and Step 1 is proved.

Step 2. We prove that if RobM(D(φ), 0.5 − γ) has a solution F(x) = s1σ(U1x + b1) + s2σ(U2x + b2) + C ∈ Hk,2

which is a robust memorization of D(φ) with budget α = 0.5− γ, then φ(k,m) has a solution.

Since aσ(b) = Sgn(a)σ(|a|b), we can assume that s1, s2 ∈ {−1, 1}. Moreover, if F(x) − 1.5 < 0, then we have
that |F(x) − 1| < |F(x) − 2|. Similarly, if F(x) − 1.5 > 0, then we have that |F(x) − 1| > |F(x) − 2|. So
F(x)− 1.5 > 0 when F̂(x) = 2, and F(x)− 1.5 < 0 when F̂(x) = 1. Let c = −1.5 + C, which means F(x)− 1.5 =
s1σ(U1x+ b1) + s2σ(U2x+ b2) + c.

Step 2.1. Assuming c ≥ 0, we will show that J = {xi = Sgn(U (i)
1 )}ki=1 is the solution to the reversible 6-SAT problem

φ(k,m). We will prove Step 2.1 by proving six properties: (d1) - (d6).

(d1): We have s1s2 = −1. Without loss of generality, we let s1 = 1 and s2 = −1. (d1) can be proved by using Lemma A.2.

(d2): −k|U (q)
2 |+ b2 + p||U2||1 > 0 for any p ∈ [−0.5 + γ, 0.5− γ] and q ∈ [k].

We just need to prove the case q = 1. Without loss of generality, we assume U (1)
2 ≤ 0. We know that F(x1 + pSgn(U2)) <

1.5, so

0

> σ(U1(x1 + pSgn(U2)) + b1)− σ(U2(x1 + pSgn(U2)) + b2) + c

≥ −σ(U2(x1 + pSgn(U2)) + b2) + c

= −σ(−k|U (1)
2 |+ p||U2||1 + b2) + c

≥ −σ(−k|U (1)
2 |+ p||U2||1 + b2) (by c ≥ 0)

which means σ(−k|U (1)
2 |+ p||U2||1 + b2) > 0. Then we have −k|U (1)

2 |+ p||U2||1 + b2 > 0. For U (1)
2 ≥ 0, we just need

to consider xk+1. So (d2) is proved.

(d3): U (q)
1 U

(q)
2 > 0 and |U (q)

1 | > |U (q)
2 | for any q ∈ [k].

We just need to prove it for q = 1. Firstly, we show that U (1)
2 ̸= 0. If U (1)

2 = 0. Without loss of generality, let U (1)
1 ≤ 0.

Since F(x1) < 1.5 and F(x2k+1) > 1.5, we have
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0 > F(x1)− 1.5

= σ(U1x1 + b1)− σ(U2x1 + b2) + c

= σ(kU
(1)
1 + b1)− σ(b2) + c (by U

(1)
2 = 0)

≥ σ(2kU
(1)
1 + b1)− σ(b2) + c (by U

(1)
1 ≤ 0)

= σ(2kU
(1)
1 + b1)− σ(2kU

(1)
2 + b2) + c (by U

(1)
2 = 0)

= σ(U1x2k+1 + b1)− σ(U2x2k+1 + b2) + c

= F(x2k+1)− 1.5

> 0

which means 0 > 0, so the assumption incorrect, and thus U (1)
2 ̸= 0. When U (1)

1 ≥ 0, just need to consider xk+1 and x3k+1.

Now we prove (d3). Let h = 1 if U (1)
2 > 0, h = k + 1 if U (1)

2 < 0. Because xh+2k = 2xh and F(xh+2k) − 1.5 > 0 >
F(xh)− 1.5, we have that:

F(xh+2k)− 1.5

= σ(U1xh+2k + b1)− σ(U2xh+2k + b2) + c

= σ(2U1xh + b1)− σ(2U2xh + b2) + c

= σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(2k|U (1)
2 |+ b2) + c

> 0 (by F(xh+2k)− 1.5 > 0)

> σ(U1xh + b1)− σ(U2xh + b2) + c (by F(xh)− 1.5 < 0)

= σ(kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(k|U (1)
2 |+ b2) + c

which means σ(2kU (1)
1 Sgn(U (1)

2 ) + b1)− σ(2k|U (1)
2 |+ b2) > σ(kU

(1)
1 Sgn(U (1)

2 ) + b1)− σ(k|U (1)
2 |+ b2), so we have

0 < σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(2k|U (1)
2 |+ b2)− (σ(kU

(1)
1 Sgn(U (1)

2 ) + b1)− σ(k|U (1)
2 |+ b2))

= (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− (σ(2k|U (1)
2 |+ b2)− σ(k|U (1)

2 |+ b2))

= (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− ((2k|U (1)
2 |+ b2)− (k|U (1)

2 |+ b2)) (by (d2))

= (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− kU
(1)
2 .

Then σ(2kU (1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1) > kU
(1)
2 ≥ 0, which means 2kU (1)

1 Sgn(U (1)
2 ) + b1 > 0. And

according to that, we have:

0 < (σ(2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− k|U (1)
2 |

= ((2kU
(1)
1 Sgn(U (1)

2 ) + b1)− σ(kU
(1)
1 Sgn(U (1)

2 ) + b1))− k|U (1)
2 |

≤ ((2kU
(1)
1 Sgn(U (1)

2 ) + b1)− (kU
(1)
1 Sgn(U (1)

2 ) + b1))− k|U (1)
2 |

= kU
(1)
1 Sgn(U (1)

2 )− k|U (1)
2 |.

So we get U (1)
1 Sgn(U (1)

2 ) > |U (1)
2 | > 0, which means Sgn(U (1)

1 ) = Sgn(U (1)
2 ), and |U (1)

1 | > |U (1)
2 |. (d3) is proved.

(d4): 2k|U (q)
1 |+ b1 + p||U1||1 > 0 for any p ∈ [−0.5 + γ, 0.5− γ] and q ∈ [k].

We just need to prove it for q = 1. Let h = 1 if U (1)
1 > 0, h = k + 1 if U (1)

1 < 0. Because F(xh+2k + pSgn(U1))− 1.5 >
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0 > F(xh + pSgn(U1))− 1.5, we have that:

F(xh+2k + pSgn(U1))− 1.5

= σ(U1(xh+2k + pSgn(U1)) + b1)− σ(U2(2xh+2k + pSgn(U1)) + b2) + c

= σ(2k|U (1)
1 |+ b1 + p||U1||1)− σ(2k|U (1)

2 |+ b2 + p||U2||1) + c (by (d3))

= σ(2k|U (1)
1 |+ b1 + p||U1||1)− (2k|U (1)

2 |+ b2 + p||U2||1) + c (by (d2))

> 0 (by F(xh+2k + pSgn(U1))− 1.5 > 0)

> σ(U1(xh + pSgn(U1)) + b1)− σ(U2(xh + pSgn(U1)) + b2) + c (by 0 > F(xh + pSgn(U1))− 1.5)

= σ(k|U (1)
1 |+ b1 + p||U1||1)− σ(k|U (1)

2 |+ b2 + p||U2||1) + c (by (d3))

= σ(k|U (1)
1 |+ b1 + p||U1||1)− (k|U (1)

2 |+ b2 + p||U2||1) + c (by (d2))

which means σ(2k|U (1)
1 | + b1 + p||U1||1) − (2k|U (1)

2 | + b2 + p||U2||1) + c > σ(k|U (1)
1 | + b1 + p||U1||1) − (k|U (1)

2 | +
b2 + p||U2||1) + c, so we have that:

σ(2k|U (1)
1 |+ b1 + p||U1||1) > σ(k|U (1)

1 |+ b1 + p||U1||1) + k|U (1)
2 | > 0.

(d4) is proved.

(d5): maxz∈[k](|U
(z)
1 | − |U (z)

2 |) < 2(1− 2γ)(||U1||1 − ||U2||1).

For any z ∈ [k], let h = z if U (z)
1 > 0, or h = z + k if U (z)

1 < 0. We have F(xh + (0.5− γ)Sgn(U1))− 1.5 < 0, which
means

0

> σ(U1(xh + (0.5− γ)Sgn(U1)) + b1)− σ(U2(xh + (0.5− γ)Sgn(U1)) + b2) + c

= σ(k|U (z)
1 |+ (0.5− γ)||U1||1 + b1)− σ(k|U (z)

2 |+ (0.5− γ)||U2||1 + b2) + c (by (d3))

= σ(k|U (z)
1 |+ (0.5− γ)||U1||1 + b1)− (k|U (z)

2 |+ (0.5− γ)||U2||1 + b2) + c (by (d2))

≥ (k|U (z)
1 |+ (0.5− γ)||U1||1 + b1)− (k|U (z)

2 |+ (0.5− γ)||U2||1 + b2) + c

= k|U (z)
1 | − k|U (z)

2 |+ (0.5− γ)(||U1||1 − ||U2||1) + b1 − b2 + c.

We thus have k|U (z)
1 |−k|U (z)

2 | < −b1+b2−c−(0.5−γ)(||U1||1−||U2||1). Then we have F(xh+2k−(0.5−γ)Sgn(U1))−
1.5 > 0, which means

0

< σ(U1(x2k+h − (0.5− γ)Sgn(U1)) + b1)− σ(U2(x2k+h − (0.5− γ)Sgn(U1)) + b2) + c

= σ(2k|U (z)
1 | − (0.5− γ)||U1||1 + b1)− σ(2k|U (z)

2 | − (0.5− γ)||U2||1 + b2) + c (by (d3))

= (2k|U (z)
1 | − (0.5− γ)||U1||1 + b1)− σ(2k|U (z)

2 | − (0.5− γ)||U2||1 + b2) + c (by (d4))

≤ (2k|U (z)
1 | − (0.5− γ)||U1||1 + b1)− (2k|U (z)

2 | − (0.5− γ)||U2||1 + b2) + c

= 2k|U (z)
1 | − 2k|U (z)

2 | − (0.5− γ)(||U1||1 − ||U2||1) + b1 − b2 + c.

So, we have k|U (z)
1 | − k|U (z)

2 | > −b1+b2−c+(0.5−γ)(||U1||1−||U2||1)
2 , and thus

k|U (z)
1 | − k|U (z)

2 |
< −b1 + b2 − c− (0.5− γ)(||U1||1 − ||U2||1)
= 2−b1+b2−c+(0.5−γ)(||U1||1−||U2||1)

2 − (1− 2γ)(||U1||1 − ||U2||1)
< 2k|U (z)

1 | − 2k|U (z)
2 | − (1− 2γ)(||U1||1 − ||U2||1)
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which means k|U (z)
1 | − k|U (z)

2 | > (1− 2γ)(||U1||1 − ||U2||1) for any z ∈ [k]. Using this inequality, we have

k|U (z)
1 | − k|U (z)

2 |
= k(||U1||1 − ||U2||1)−

∑
z′ ̸=z(k|Uz′

1 | − k|Uz′

2 |)
< (k − (1− 2γ)(k − 1))(||U1||1 − ||U2||1)
< 1.1(||U1||1 − ||U2||1) (by (d3) and γ < 1/(10k))

< 2 ∗ (1− 2γ)(||U1||1 − ||U2||1) (by (d3))

which proves (d5).

(d6): {xi = Sgn(U (i)
1 )}ki=1 is the solution to the reversible 6-SAT problem φ(k,m).

If this not valid, there exists an i ∈ [m] such that q({Sgn(U (w)
1 )}kw=1, ϕi) = 6 or q({Sgn(U (w)

1 )}kw=1, ϕi) = 0. We just
need to consider the first case, because when q({Sgn(U (w)

1 )}kw=1, ϕi) = 0, there exists a j ∈ [m] such that ϕj = ϕi, so
q({Sgn(U (w)

1 )}kw=1, ϕj) = 6.

Without loss of generality, we assume that the index of the six entries in ϕi are 1, 2, 3, 4, 5, 6. By the definition of x4k+i, we
know that U1x4k+i =

k
4

∑6
z=1 |U

(z)
1 |, and by (d3), we know that U2x4k+i =

k
4

∑6
z=1 |U

(z)
2 |.

Using (d2), we know that

0 < −k|U (1)
2 |+ b2 + (0.5− γ)||U2||1 < k

4

∑6
z=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1. (24)

Without loss of generality, we assume U (1)
1 > 0. Since F(x2k+1 − (0.5− γ)Sgn(U1))− 1.5 > 0, we have

0

< σ(U1(x2k+1 − (0.5− γ)Sgn(U1)) + b1)− σ(U2(2x2k+1 − (0.5− γ)Sgn(U1)) + b2) + c

= σ(2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− σ(2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c (by (d3))

≤ σ(2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− (2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c

= (2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− (2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c (by (d4)).

(25)

So 0 < (2k|U (1)
1 |+ b1 − (0.5− γ)||U1||1)− (2k|U (1)

2 |+ b2 − (0.5− γ)||U2||1) + c. If U (1)
1 < 0. We just need to consider

x3k+1, and others are the same. For U2
1 , . . . , U

6
1 , the conclusion is the same.

Then because F(x4k+i + (0.5− γ)Sgn(U1))− 1.5 < 0, we have that:

0

> σ(U1(x4k+i + (0.5− γ)Sgn(U1)) + b1)− σ(U2(x4k+i + (0.5− γ)Sgn(U1)) + b2) + c

= σ(U1x4k+i + b1 + (0.5− γ)||U1||1)− σ(U2x4k+i + b2 + (0.5− γ)||U2||1) + c (by (d3))

= σ(k4
∑6

z=1 |U
(z)
1 |+ b1 + (0.5− γ)||U1||1)− σ(k4

∑6
z=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1) + c

= σ(k4
∑6

z=1 |U
(z)
1 |+ b1 + (0.5− γ)||U1||1)− (k4

∑6
z=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1) + c (by (24))

≥ k
4

∑6
z=1 |U

(z)
1 |+ b1 + (0.5− γ)||U1||1 − (k4

∑6
z=1 |U

(z)
2 |+ b2 + (0.5− γ)||U2||1) + c

= 1
6

∑6
z=1(2k|U

(z)
1 |+ b1 − (0.5− γ)||U1||1 − 2k|U (z)

2 | − b2 + (0.5− γ)||U2||1 + c)

− k
12

∑6
k=1(|U

(z)
1 | − |U (z)

2 |) + (1− 2γ)(||U1||1 − ||U2||1)
≥ − k

12

∑6
k=1(|Uk

1 | − |Uk
2 |) + (1− 2γ)(||U1||1 − ||U2||1) (by (25))

> 0 (by (d5))

Which means 0 > 0, a contradiction and Step 2.1 is proved.
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Step 2.2. Assuming c < 0, we will show that J = {xi = Sgn(U (i)
1 )}ki=1 is the solution to the reversible 6-SAT problem

φ(k,m). The proof is divided into six steps: (e1) - (e6).

(e1): There must be s1 = s2 = 1.

Just use Lemma A.2.

(e2): U (q)
1 U

(q)
2 < 0 for any q ∈ [k].

We just need to prove it for q = 1. First we prove that U (1)
1 ̸= 0. If not, that is U (1)

1 = 0. Without loss of generality, let
U

(1)
2 ≤ 0. Since F(x1)− 1.5 < 0 and F(x2k+1)− 1.5 > 0, we have

0

> F(x1)− 1.5

= σ(U1x1 + b1) + σ(U2x1 + b2) + c

= σ(b1) + σ(kU
(1)
2 + b2) + c (by U

(1)
1 = 0)

≥ σ(b1) + σ(2kU
(1)
2 + b2) + c (by U

(1)
2 ≤ 0)

= σ(2kU
(1)
1 + b1) + σ(2kU

(1)
2 + b2) + c (by U

(1)
1 = 0)

= σ(U1x2k+1 + b1)− σ(U2x2k+1 + b2) + c

= F(x2k+1)− 1.5

> 0

which means 0 > 0, a contradiction, and hence U (1)
1 ̸= 0. When U (1)

2 ≥ 0, we just need to consider xk+1 and x3k+1.

Now we prove (e2), let h = 1 + k if U (1)
1 > 0, or h = 1 if U (1)

1 < 0. Then, we have that F(xh+2k) − 1.5 > 0 and
F(xh)− 1.5 < 0, which means

σ(U1xh+2k + b1) + σ(U2xh+2k + b2)− c

= σ(−2k|U (1)
1 |+ b1) + σ(−2kU

(1)
2 Sgn(U (1)

1 ) + b2)− c

> 0

(26)

and

σ(U1xh + b1) + σ(U2xh + b2)− c

= σ(−k|U (1)
1 |+ b1) + σ(−kU (1)

2 Sgn(U (1)
1 ) + b2)− c

< 0.

(27)

These two inequalities illustrate that σ(−k|U (1)
1 | + b1) + σ(−kU (1)

2 Sgn(U (1)
1 ) + b2) < σ(−2k|U (1)

1 | + b1) +

σ(−2kU
(1)
2 Sgn(U (1)

1 ) + b2). Furthermore, since σ(−k|U (1)
1 |+ b1) ≥ σ(−2k|U (1)

1 |+ b1), we have σ(−kU (1)
2 Sgn(U (1)

1 ) +

b2) < σ(−2kU
(1)
2 Sgn(U (1)

1 ) + b2), which means (−kU (1)
2 Sgn(U (1)

1 ) + b2) < (−2kU
(1)
2 Sgn(U (1)

1 ) + b2). Then
U

(1)
2 Sgn(U (1)

1 ) < 0, that is U (1)
1 U

(1)
2 < 0, which is what we want.

(e3): k|U (q)
2 | > (1− 2γ)||U2||1 for any q ∈ [k].

We just need to prove it for q = 1. Let h = 1 if U (1)
2 > 0, or h = k + 1 if U (1)

2 < 0. We have F(xh+2k − (0.5 −
γ)Sgn(U2))− 1.5 > 0 and F(xh + (0.5− γ)Sgn(U2))− 1.5 < 0, which means

σ(U1(xh+2k − (0.5− γ)Sgn(U2)) + b1) + σ(U2(xh+2k − (0.5− γ)Sgn(U2)) + b2)− c

= σ(−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c (by (e2))

> 0

(28)
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and
σ(U1(xh + (0.5− γ)Sgn(U2)) + b1) + σ(U2(xh + (0.5− γ)Sgn(U2)) + b2)− c

= σ(−k|U (1)
1 | − (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)− c (by (e2))

< 0.

(29)

Next, consider two situations:
(e3.1): If −2k|U (1)

1 |+ (0.5− γ)||U1||1 + b1 ≤ 0, then we can prove that k|U (1)
2 | > (1− 2γ)||U2||1.

By (28) and −2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1 ≤ 0, we have σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c > 0.

By (29), we have σ(k|U (1)
2 |+ (0.5− γ)||U2||1 + b2)− c ≤ σ(−k|U (1)

1 | − (0.5− γ)||U1||1 + b1) + σ(k|U (1)
2 |+ (0.5−

γ)||U2||1 + b2)− c < 0.

So σ(k|U (1)
2 |+(0.5−γ)||U2||1+b2) < c < σ(2k|U (1)

2 |−(0.5−γ)||U2||1+b2), which means (k|U (1)
2 |+(0.5−γ)||U2||1+

b2) < (2k|U (1)
2 | − (0.5− γ)||U2||1 + b2). Then we get that: (1− 2γ)||U2||1 < k|U (1)

2 |. This is what we want.
(e3.2): If −2k|U (1)

1 | + (0.5 − γ)||U1||1 + b1 > 0, then we can prove −2k|U (1)
2 | + (0.5 − γ)||U2||1 + b2 ≤ 0 and

k|U (1)
2 | > (1− 2γ)||U2||1.

Since F(xh − (0.5− γ)Sgn(U2)) = −1 < 0, we have that

σ(U1(xh − (0.5− γ)Sgn(U2)) + b1) + σ(U2(xh − (0.5− γ)Sgn(U2)) + b2)− c

= σ(−k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c (by (e2))

< 0.

(30)

Since −2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1 > 0, it holds −k|U (1)

1 |+ (0.5− γ)||U1||1 + b1 > 0. Then by (28) and (30) and
−2k|U (1)

1 |+ (0.5− γ)||U1||1 + b1 > 0, we have that

σ(−k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

= (−k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

< 0

< σ(−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

= (−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

(31)

which means k|U (1)
1 | < σ(2k|U (1)

2 | − (0.5 − γ)||U2||1 + b2) − σ(k|U (1)
2 | − (0.5 − γ)||U2||1 + b2) ≤ k|U (1)

2 | (Use
σ(x)− σ(y) ≤ |x− y| here). So |U (1)

1 | < |U (1)
2 |.

Similarly, if −2k|U (1)
2 |+(0.5−γ)||U2||1+ b2 > 0, then we have |U (1)

1 | > |U (1)
2 |. But |U (1)

1 | < |U (1)
2 | and |U (1)

1 | > |U (1)
2 |

cannot stand simultaneously, so −2k|U (1)
2 |+ (0.5− γ)||U2||1 + b2 > 0 can not stand. Then we have −2k|U (1)

2 |+ (0.5−
γ)||U2||1 + b2 ≤ 0.

Now using (28) and (29), we have

σ(−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

= (−2k|U (1)
1 |+ (0.5− γ)||U1||1 + b1) + σ(2k|U (1)

2 | − (0.5− γ)||U2||1 + b2)− c

> 0

> σ(−k|U (1)
1 | − (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)− c

≥ (−k|U (1)
1 | − (0.5− γ)||U1||1 + b1) + σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)− c

which means (−k|U (1)
1 |− (0.5−γ)||U1||1+ b1)− (−2k|U (1)

1 |+(0.5−γ)||U1||1+ b1) < σ(2k|U (1)
2 |− (0.5−γ)||U2||1+

b2) − σ(k|U (1)
2 | + (0.5 − γ)||U2||1 + b2). Since −2k|U (1)

2 | + (0.5 − γ)||U2||1 + b2 ≤ 0, similar to (e3.1), we have
(1− 2γ)||U1||1 < k|U (1)

1 |.
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So we can obtain

0

< −(1− 2γ)||U1||1 + k|U (1)
1 | (by equc3)

= (−k|U (1)
1 | − (0.5− γ)||U1||1 + b1)− (−2k|U (1)

1 |+ (0.5− γ)||U1||1 + b1)

< σ(2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

which implies σ(2k|U (1)
2 | − (0.5− γ)||U2||1 + b2) > 0. Then we have

0

< σ(2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

= (2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− σ(k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

≤ (2k|U (1)
2 | − (0.5− γ)||U2||1 + b2)− (k|U (1)

2 |+ (0.5− γ)||U2||1 + b2)

= k|U (1)
2 | − (1− 2γ)||U2||1.

This is what we want.

(e4): k|U (q)
1 | > (1− 2γ)||U1||1 for any q ∈ [k].

Similar to (e3).

(e5): J = {xi = Sgn(U (i)
1 )}ki=1 is the solution to the reversible 6-SAT problem φ(k,m).

If not, as said in (d6), there is an i ∈ [m] such that q({Sgn(U (w)
1 )}kw=1, ϕi) = 6. And there is a j ∈ [k] such that ϕj = ϕi.

Without loss of generality, we assume that the index of the six entries in ϕi are 1, 2, 3, 4, 5, 6. By the definition of x4k+i, we
know that U1x4k+i =

k
4

∑6
z=1 |U

(z)
1 |, and by (e2), we know that U2x4k+i = −k

4

∑6
z=1 |U

(z)
2 |. By the definition of x4k+j ,

we know that U1x4k+j = −k
4

∑6
z=1 |U

(z)
1 |, and by (e2), we know that U2x4k+j =

k
4

∑6
z=1 |U

(z)
2 |.

As said in (e3.2), we have −2k|Uz
1 | + (0.5 − γ)||U1||1 + b1 < 0 or −2k|Uz

2 | + (0.5 − γ)||U2||1 + b2 < 0 stand for any
z ∈ [k]. Let the last one stands for z = 7. (If the first one stands, it is similar.)

Now we will show that

σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1)

< σ(k4
∑6

z=1 |U
(z)
1 |+ (0.5− γ)||U1||1 + b1) + σ(−

∑6
z=1 |U

(z)
2 |+ (0.5− γ)||U1||1 + b1)

< σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1),

(32)

which lead to a contradiction.

(e5.1): We prove that σ(k4
∑6

z=1 |U
(z)
1 | + (0.5 − γ)||U1||1 + b1) + σ(−k

4

∑6
z=1 |U

(z)
2 | + (0.5 − γ)||U1||1 + b1) <

σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1).

Let h = 7 if U (7)
1 > 0, and h = k + 7 if U (7)

1 < 0. Because F(x2k+h − (0.5− γ)Sgn(U1))− 1.5 > 0 and −2k|U (7)
2 |+

(0.5− γ)||U2||1 + b2 − 1.5 < 0, we have

σ(U1(xh+2k − (0.5− γ)Sgn(U1)) + b1) + σ(U2(xh+2k − (0.5− γ)Sgn(U1)) + b2) + c

= σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1) + σ(−2k|U (7)

2 |+ (0.5− γ)||U2||1 + b2) + c (by (e2))

= σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1) + c

> 0.

(33)
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Because F(x4k+i + (0.5− γ)Sgn(U1))− 1.5 < 0, we have that:

σ(U1(x4k+i + (0.5− γ)Sgn(U1)) + b1) + σ(U2(x4k+i + (0.5− γ)Sgn(U1)) + b2) + c

= σ(k4
∑6

z=1 |U
(z)
1 |+ (0.5− γ)||U1||1 + b1) + σ(−

∑6
z=1 |U

(z)
2 |+ (0.5− γ)||U1||1 + b1) + c (by (e2))

< 0.

(34)

By (33) and (34), it holds σ(k4
∑6

z=1 |U
(z)
1 | + (0.5 − γ)||U1||1 + b1) + σ(−

∑6
z=1 |U

(z)
2 | + (0.5 − γ)||U1||1 + b1) <

σ(2k|U (7)
1 | − (0.5− γ)||U1||1 + b1). This is what we want.

(e5.2) We prove that σ(k4
∑6

z=1 |U
(z)
1 |+(0.5−γ)||U1||1+b1)+σ(−

∑6
z=1 |U

(z)
2 |+(0.5−γ)||U1||1+b1) > σ(2k|U (7)

1 |−
(0.5− γ)||U1||1 + b1).

By (e4), we have that:

2k|U (7)
1 | − (0.5− γ)||U1||1

= 2k(||U1||1 −
∑

z ̸=7 |U
(z)
1 |)− (0.5− γ)||U1||1

< 2k(||U1||1 − (k − 1)(1− 2γ)||U1||1/k)− (0.5− γ)||U1||1 (by (e4))

= (1.5 + 4γk − 3γ)||U1||1
< (1.5(1− 2γ) + (0.5− γ))||U1||1 (by γ < 1/(10k))

< k
4

∑6
z=1 |U

(z)
1 |+ (0.5− γ)||U1||1 (by (e4)).

So σ(k4
∑6

z=1 |U
(z)
1 | + (0.5 − γ)||U1||1 + b1) > σ(2k|U (7)

1 | − (0.5 − γ)||U1||1 + b1). Then σ(k4
∑6

z=1 |U
(z)
1 | + (0.5 −

γ)||U1||1 + b1) + σ(−
∑6

z=1 |U
(z)
2 |+ (0.5− γ)||U1||1 + b1) > σ(2k|U (7)

1 | − (0.5− γ)||U1||1 + b1). (e5.2) is proved.

From (e5.1) and (e5.2), the assumption is wrong and (e5) is proved.

A.2. Proof of Proposition 3.6

We restate Proposition 3.6 for convenience.

Proposition A.4. If H = {F : Rn → R,width(F) = w} is an optimal robust memorization of any dataset D ∈ Dn,N,L

with N > n, then width(F) = w ≥ n.

Proof. It suffices to show that there exists a dataset D such that, if F has width less than n and memorizes D, then
RAD(F , 0.4λD) ≤ 1− 1

n+1 ; that is, F is not a robust memorization of D with budget 0.4λD.

Denote 1 to be the vector all of whose weights are 1 and 1k the vector whose k-th weight is 1 and all other weights are
0. Without loss of generality, let N satisfy (n + 1)|N . We define a dataset D = {xi, yi}Ni=1 with separation bound 1 as
follows:

(1) x1 = 0 and y1 = 0; xi = 1i−1 and yi = 1 for i = 2, 3, . . . , n+ 1;

(2) for i = k(n+1)+1, . . . , k(n+1)+n+1 and k = 1, . . . , N
n+1 −1, xi = xi+1 and yi = yi, where i = i mod (n+1)

if (n+ 1) ̸ |i and i = n+ 1 otherwise.
It is easy to see that λD = 1.

Let F : Rn → R be a network which memorizes D defined above. Let W1 be the weight matrix of the first layer of F . Then
W1 ∈ RK×n. We will show that, there exists an s in [n] such that

∃δ1, δs ∈ Rn, satisfying ||δ1||∞ < 0.4, ||δs||∞ < 0.4,W1(x1 + δ1) =W1(xs + δs).

Firstly, since n > K, W1 ∈ RK×n is not of full row rank, and hence there exists a vector v ∈ Rn such that W1v = 0 and
||v||∞ = 1. For such a v, let |v(s)| = 1 for some s ∈ [n]. We define δ1, δs ∈ Rn as follows:

δ
(s)
1 = 1/3 and δ(k)1 = −v(s)v(k)/3 for k ̸= s; δ

(s)
s = 0 and δ(k)s = v(s)v(k)/3 for k ̸= s.
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It is clearly that ||δ1||∞ = 1
3 < 0.4 and ||δs||∞ = 1

3 < 0.4. Also, xs + δs − x1 − δ1 = 2
3v

(s)v. Thus, W1(x1 + δ1) −
W1(xs + δs) =W1(x1 + δ1 − xs − δs) =W1(

2
3v

(s)v) = 0.

It is easy to see that, for any x, z ∈ Rn, W1x =W1z implies F(x) = F(z). Since W1(x1 + δ1) =W1(xs + δs), we have
F(x1 + δ1) = F(xs + δs), and either F(x1 + δ1) ̸= 0 or F(xs + δs) ̸= 1 must be valid. In other words, F cannot be
robust at x1 or xs for the robust budget 0.4. Similarly, F cannot be robust for at least one point in {xi}(k+1)(n+1)

i=k(n+1)+1 for
k ∈ {1, . . . , N

n+1 − 1}. In summary, F cannot be robust for at least N
n+1 points, so RAD(F , 0.4) ≤ 1− 1

n+1 .

A.3. Proof of Theorem 3.8

We restate Theorem 3.8 for convenience.

Theorem A.5. For any dataset D ∈ Dn,N,L, the hypothesis space Hn,2N+1,3n+1,O(Nn) is an optimal robust memorization
for D.

Proof. It suffices to show that for any µ < 0.5λD, there exists a network with depth 2N + 1, width 3n+ 1, and O(Nn)
nonzero parameters, which can robustly memorize D with robust budget µ.

Let D = {(xi, yi)}Ni=1 ⊂ Rn × [L]. Let C ∈ R+ satisfy C > |x(j)i |+ µ > 0 for all i ∈ [N ] and j ∈ [n].

F will be defined in three steps for an input x.

Step 1. The first layer is used to check whether x ∈ B(x1, µ). The second layer is used to compute E1(x) in Property 2
given below. The two layers are given below.

(1-1.1) F0
1 (x) = 0;

(1-1.2) F j
1 (x) = σ(x

(j)
1 − x(j) − µ), Fn+j

1 (x) = σ(x(j) − x
(j)
1 − µ), where j ∈ [n];

(1-1.3) F2n+j
1 (x) = σ(x(j) + C), where j ∈ [n];

(1-2.1) F0
2 (x) = 0;

(1-2.2) F1
2 (x) = σ(y1 − y1

λD−2µ

∑2n
k=1Fk

1 (x));

(1-2.3) F j+1
2 (x) = σ(F2n+j

1 (x)), where j ∈ [n].

Step 2. For i = 2, 3, . . . , N , the (2i− 1)-th layer has width 3n+1 and is used to check whether x ∈ B(xi, µ). The 2i layer
has width n+ 2 and is used to compute Ei(x) in Property 2 given below. These layers are given below.

(i-1.1) F0
2i−1(x) = σ(F0

2i−2(x) + F1
2i−2(x));

(i-1.2) F j
2i−1(x) = σ((x

(j)
i +C)−F j+1

2i−2(x)− µ) and Fn+j
2i−1(x) = σ(F j+1

2i−2(x)− (x
(j)
i +C)− µ), where j ∈ [n];

(i-1.3) F2n+j
2i−1 (x) = σ(F j+1

2i−2(x)), where j ∈ [n];

(i-2.1) F0
2i(x) = σ(F0

2i−1(x));

(i-2.2) F1
2i(x) = σ(yi − yi

λD−2µ

∑2n
k=1Fk

2i−1(x)−F0
2i−1(x));

(i-2.3) F j+1
2i (x) = σ(F2n+j

2i−1 (x)), where j ∈ [n].

Step 3. The output layer of F is F(x) = F0
2N (x) + F1

2N (x).

Next, we will show that F has the following properties.

Property 1. F j+1
2i (x) = x(j) + C for i ∈ [N ], j ∈ [n], and x ∈ Rn.

From (1-1.3) and (1-2.3), since C + x
(j)
i > µ > 0 for all i ∈ [N ] and j ∈ [n], we have that F j+1

2 (x) = F2n+j
1 (x) =

σ(xj + C) = xj + C.

From (i-2.3) and (i-1.3), we have that F j+1
2i (x) = σ(F2n+j

2i−1 (x)) = σ(F j+1
2i−2(x)) = · · · = σ(F j+1

2 (x)) = x(j) + C, for all
i ∈ [N ] and j ∈ [n]. Property 1 is proved.
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Property 2. Let Ei(x) = yi − yi

λD−2µ

∑2n
j=1F

j
2i−1(x) for i ∈ [N ]. Then Ei(x) = yi for x ∈ B∞(xi, µ), and Ei(x) < yi

for x /∈ B∞(xi, µ).

Due to Property 1, for j ∈ [n], step (i-1.2) becomes

F j
2i−1(x) = σ((x

(j)
i + C)−F j+1

2i−2(x)− µ)

= σ(x
(j)
i − x(j) − µ)

Fn+j
2i−1(x) = σ(F j+1

2i−2(x)− (x
(j)
i + C)− µ)

= σ(x(j) − x
(j)
i − µ).

If x ∈ B∞(xi, µ), then σ(xi−x−µ) = σ(x−xi−µ) = 0, which means F j
2i−1(x) = 0 for j ∈ [2n]. Thus Ei(x) = yi. If

x ̸∈ B∞(xi, µ), then ||xi − x− µ||∞ > 0 or ||x− xi − µ||∞ > 0 which means that F j
2i−1(x) > 0 for at least one j ∈ [2n].

Since F j
i (x) ≥ 0 for all i and j, we have that Ei(x) < yi.

Property 3. If x ∈ B∞(xk, µ) for yk ̸= yi, then Ei(x) ≤ 0.

Since x ∈ B∞(xk, µ) and yk ̸= yi, we have that ||xi−x−µ||∞ ≥ λD − 2µ > 0 or ||x−xi−µ||∞ ≥ λD − 2µ > 0, since
the separation bound is λ. Then F j

2i−1(x) ≥ λD−2µ for at least one j ∈ [2n] and thusEi(x) ≤ yi− yi

λD−2µ (λD−2µ) = 0.

Property 4. F(x) = maxi∈[N ]{Ei(x), 0} for x ∈ Rn.

Since max{x, y} = x+ σ(y − x) for x, y ∈ R and F j
i (x) ≥ 0 for all i and j, we have that

σ(F0
2i(x) + F1

2i(x)) = F0
2i(x) + F1

2i(x)

= σ(F0
2i−1(x)) + σ(Ei−1(x)−F0

2i−1(x))

= max{F0
2i−1(x), Ei(x)}

= max{σ(F0
2i−2(x) + F1

2i−2(x)), Ei(x)}.

Using the above equation repeatedly, we have that F(x) = σ(F0
2N (x) + F1

2N (x)) = maxNi=1{Ei(x), F0
2 (x)} =

maxNi=1{Ei(x), 0}.

We now show that F satisfies the conditions of the theorem. Let x ∈ B∞(xs, µ) for s ∈ [N ]. By Property 2, Es(x) = ys;
and if i ̸= s and yi = ys, then Ei(x) < ys. By Property 3, if yi ̸= ys, then Ei(x) ≤ 0. By Property 4, F(x) =
maxi∈[N ]{Ei(x)} = Es(x) = ys; that is, F is robust at xs with budget µ.

We now estimate the number of nonzero parameters. For i ∈ [N ], constructions (i-1.1) and (i-2.1) need 3 parameters; (i-1.2)
needs 8n parameters; (i-1.3) and (i-2.3) need 2n parameters; (i-2.2) need 2n+2 parameters. Totally, (N − 1)(12n+5)+ 2
parameters are needed.

A.4. Proofs for Theorem 3.10

We give a lemma below.

Lemma A.6. There exists a network F ∈ Hn,O(logn),O(n),O(n) such that F(x) = ||x||∞; that is, there exists a network
F : Rn → R with depth O(log n), width O(n), and O(n) nonzero parameters such that F(x) = ||x||∞.

Proof. Let e = ⌈log2 n⌉. Without loss of generality, we assume that n = 2e. Then F has depth 2e and for i ∈ [e+ 1], the
(2i− 1)-th layer has width 2e−i+2, and the 2i-th layer has width 2e−i+1.

Denote Wi and bi to be the weight matrix and the bias of the i-th layer of F . The first and second layers will change x to |x|.
The first layer has width 2e+1 and the second layer has width 2e, which are defined below.

W 2i,i
1 = 1 and W 2i+1,i

1 = −1; other entries of W1 are 0. b1 = 0.

W i,2i
2 = 1 and W i,2i+1

2 = 1; other entries of W2 are 0. b2 = 0.

Since σ(x) + σ(−x) = |x| for any x ∈ R, it is easy to check that F2(x) = σ(W2σ(W1x)) = |x|.
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For i ∈ [e], the (2i+ 1)-th and the (2i+ 2)-th layers are defined below.

F2m
2i+1(x) = σ(F2m

2i (x)), where m = 0, 1, . . . , 2e−i − 1.

F2m+1
2i+1 (x) = σ(F2m+1

2i (x)−F2m
2i (x)), where m = 0, 1, . . . , 2e−i − 1.

Fm
2i+2(x) = σ(F2m

2i+1(x) + F2m+1
2i+1 (x)), where m = 0, 1, . . . , 2e−i − 1.

For i ∈ [e+ 1], using σ(x− y) + y = max{x, y} for any x, y ∈ R, we have that

Fm
2i+2(x)

= σ(F2m
2i+1(x) + F2m+1

2i+1 (x))

= F2m
2i+1(x) + F2m+1

2i+1 (x)

= σ(F2m
2i (x)) + σ(F2m+1

2i (x)−F2m
2i (x))

= F2m
2i (x) + σ(F2m+1

2i (x)−F2m
2i (x))

= max{F2m
2i (x),F2m+1

2i (x)}.

The (2e+ 2)-th layer has width 1 and is the output

F(x) = F1
2e+2(x)

= max{F2
2e(x),F1

2e(x)}
= max{F4

2e−2(x),F3
2e−2(x),F2

2e−2(x), ,F1
2e−2(x)}

= . . .

= max{F2e

2 (x),F2e−1
2 (x), . . . ,F2

2 (x), ,F1
2 (x)}

= ||x||∞.

We now estimate the number of parameters. The first two layers need 4d nonzero parameters. For i ∈ [e], the (2i+ 1)-th
layer and (2i+ 2)-th layer need 5 · 2e−i parameters. So, we need

∑e
i=1 5 · 2e−i = O(2e) = O(n) parameters. Then the

lemma is proved.

We restate the theorem for convenience.

Theorem A.7. For any dataset D ∈ Dn,N,2, the hypothesis space Hn,O(N log(n)),O(n),O(Nn log(n)) contains a network F
which is an optimal robust memorization of D via Lipschitz; that is, F is a memorization of D and Lip∞(F) = 1/λD.

Proof. Let D = {(xi, lxi
)}Ni=1 ∈ Dn,N,2 and C ∈ R+ satisfy C + x

(k)
i − 0.5λD > 0 for all i ∈ [N ], k ∈ [n]. Let

yi = 2(lxi
− 1.5) for any i ∈ [N ], that is yi = −1 if lxi

= 1 and yi = 1 if lxi
= 2. The network has N(2⌈log(n)⌉+ 5) + 1

hidden layers which will be defined below.

Step 1. The first layer has width n+ 1: F0
1 (x) = 2 and F j

1 (x) = σ(x(j) + C) = x(j) + C, where j ∈ [n].

Step 2. Let sk = (2⌈log(n)⌉+5)(k− 1)+ 2. For k ∈ [N ], we will use the sk-th layer to the (sk +2⌈log(n)⌉+4)-th layer
to check if ||x− xk||∞ < 0.5λD. Step 2 consists of three sub-steps.

Step 2a. We use the sk-th layer and the (sk + 1)-th layer to calculate |x− xk|. The sk-th layer has width 3n+ 1 and is
defined below.

F0
sk
(x) = σ(F0

sk−1(x));

F j
sk
(x) = σ(F j

sk−1(x)− x
(j)
k − C), where j ∈ [n];

Fn+j
sk

(x) = σ(−F j
sk−1(x) + x

(j)
k + C), where j ∈ [n];

F2n+j
sk

(x) = σ(F j
sk−1(x)), where j ∈ [n].
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The (sk + 1)-th layer has width 2n+ 1 and is defined below.

F0
sk+1(x) = σ(F0

sk
(x));

F j
sk+1(x) = σ(F j

sk
(x) + Fn+j

sk
(x)), where j ∈ [n];

Fn+j
sk+1(x) = σ(F2n+j

sk
(x)), where j ∈ [n].

The sk-th layer needs 5n+ 1 nonzeros parameters and (sk + 1)-th layer needs 3n+ 1 nonzeros parameters.

Step 2b. Lemma A.6 is used to calculate ||x− xk||∞. By Lemma A.6, there exists a network H : Rn → R with 2⌈log(n)⌉
hidden layers, width O(n), and O(n) nonzero parameters to compute H(x) = ||x||∞ for x ∈ Rn. Since H has 2⌈log(n)⌉
hidden layers, we set the output of the (sk + 2⌈log(n)⌉+ 1)-th layer to be

F0
sk+2⌈log(n)⌉+1(x) = σ(F0

sk+1(x));

F1
sk+2⌈log(n)⌉+1(x) = H(F1

sk+1(x), . . . ,Fn
sk+1(x)) = ||Fsk+1(x)||∞;

F j+1
sk+2⌈log(n)⌉+1(x) = σ(Fn+j

sk+1(x)), where j ∈ [n].

Step 2c. Use the (sk + 2⌈log(n)⌉ + 2)-th to the (sk + 2⌈log(n)⌉ + 4)-th layers to check if ||x − xk||∞ < 0.5λD. The
(sk + 2⌈log(n)⌉+ 2)-th layer has width n+ 4 and is defined below

F0
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x));

F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1);

F2
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x)− 2);

F3
sk+2⌈log(n)⌉+2(x) = σ(−F0

sk+2⌈log(n)⌉+1(x) + 2);

F j+3
sk+2⌈log(n)⌉+2(x) = σ(F j+1

sk+2⌈log(n)⌉+1(x)), where j ∈ [n].

The (sk + 2⌈log(n)⌉+ 3)-th layer has width n+ 3 and is defined below

F0
sk+2⌈log(n)⌉+3(x) = σ(F0

sk+2⌈log(n)⌉+2(x) + ykF1
sk+2⌈log(n)⌉+2(x));

F1
sk+2⌈log(n)⌉+3(x) = σ(F1

sk+2⌈log(n)⌉+2);

F2
sk+2⌈log(n)⌉+3(x) = σ(F1

sk+2⌈log(n)⌉+2 − (F2
sk+2⌈log(n)⌉+2(x) + F3

sk+2⌈log(n)⌉+2(x)));

F j+2
sk+2⌈log(n)⌉+3(x) = σ(F j+3

sk+2⌈log(n)⌉+2(x)), where j ∈ [n].

The (sk + 2⌈log(n)⌉+ 4)-th layer has width n+ 1 and is defined as

F0
sk+2⌈log(n)⌉+4(x) = σ(F0

sk+2⌈log(n)⌉+3(x)− yk(F1
sk+2⌈log(n)⌉+3(x)−F2

sk+2⌈log(n)⌉+3(x)));

F j
sk+2⌈log(n)⌉+4(x) = σ(F j+2

sk+2⌈log(n)⌉+3(x)), where j ∈ [n].

It is easy to check that if F j
sk+1(x) = |x(j) − x

(j)
k |. Then

F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1) > 0

if and only if ||x− xk||∞ < 0.5λD. These three layers need 3n+ 16 nonzeros parameters.

Step 3. The output is F(x) = 0.5(F0
sN+2⌈log(n)⌉+4(x)− 2) + 1.5. The network F has width O(n), depth O(N log(n)),

and O(Nn log(n)) nonzeros parameters.

We now show that F satisfies the condition of the theorem; that is F memorizes D and satisfies Lip∞(F) = 2/λD.

Property 1. F j
sk−1(x) = x(j) + C for j ∈ [n] and k ∈ [N ]. When k = 1, sk − 1 = 1. By Step 1, we have that
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F j
s1−1(x) = F j

1 (x) = x(j) + C. When k > 1, we have that

F j
sk+1−1(x)

= σ(F j
sk+2⌈log(n)⌉+4(x)) = σ(F j+2

sk+2⌈log(n)⌉+3(x))

= σ(F j+3
sk+2⌈log(n)⌉+2(x)) = σ(F j+1

sk+2⌈log(n)⌉+1(x))

= σ(Fn+j
sk+1(x)) = σ(F2n+j

sk
(x)) = σ(F j

sk−1(x))

= F j
sk−1(x).

Then, F j
sk+1−1(x) = F j

sk−1(x) = · · · = F j
s1−1(x) = F j

1 (x) = x(j) + C.

Property 2. F j
sk+1(x) = |x(j) − x

(j)
k | and F1

sk+2⌈log(n)⌉+1(x) = ||x− xk||∞ for j ∈ [n].

Since σ(x) + σ(−x) = |x| for any x ∈ R, from Step 2a, F j
sk+1(x) = |F j

sk−1(x) − x
(j)
k − C| for j ∈ [n]. By Property

1, F j
sk−1(x) = x(j) + C for j ∈ [n]. Then, F j

sk+1(x) = |x(j) − x
(j)
k | for j ∈ [n]. From Step 2b, we have that

F1
sk+2⌈log(n)⌉+1(x) = ||x− xk||∞ for j ∈ [n].

Property 3. F0
sk+2⌈log(n)⌉+4(x) = 2 + ywk

σ(1− 2/λD||x− xwk
||∞), where wk = argmini∈[k]||x− xi||∞.

We prove the property by induction on k. We first show that the statement is valid for k = 1. We have that wk = 1 and
F0

s1+2⌈log(n)⌉+2(x) = F0
s1+2⌈log(n)⌉+1(x) = F0

s1+1(x) = F0
s1(x) = F0

s1−1(x) = 2. From Step 2c and Property 2,

F0
s1+2⌈log(n)⌉+3(x)

= σ(F0
s1+2⌈log(n)⌉+2(x) + y0F1

s1+2⌈log(n)⌉+2(x))

= σ(2 + y0σ(1− 2/λDF1
s1+2⌈log(n)⌉+1(x)))

= 2 + y0σ(−2/λDF1
s1+2⌈log(n)⌉+1(x) + 1)

= 2 + y0σ(1− 2/λD||x− x0||∞).

Since F2
s1+2⌈log(n)⌉+2(x) = σ(F0

s1+2⌈log(n)⌉+1(x) − 2) = σ(2 − 2) = 0 and F3
s1+2⌈log(n)⌉+2(x) =

σ(−F0
s1+2⌈log(n)⌉+1(x) + 2) = σ(2 − 2) = 0, we have that F2

s1+2⌈log(n)⌉+3(x) = σ(F1
s1+2⌈log(n)⌉+2 −

(F2
s1+2⌈log(n)⌉+2(x) + F3

s1+2⌈log(n)⌉+2(x))) = σ(F1
s1+2⌈log(n)⌉+2) = F1

s1+2⌈log(n)⌉+3. Then

F0
s1+2⌈log(n)⌉+4(x)

= σ(F0
s1+2⌈log(n)⌉+3(x)− y0(F1

s1+2⌈log(n)⌉+3(x)

−F2
s1+2⌈log(n)⌉+3(x)))

= F0
s1+2⌈log(n)⌉+3(x)

= 2 + y0σ(1− 2/λD||x− x0||∞).

We have proved the statement for k = 1.

Assume that the statement is valid for k − 1; that is, F0
sk−1+2⌈log(n)⌉+4(x) = 2 + ywk−1

σ(1− 2/λD||x− xwk−1
||∞). We

have that F0
sk+2⌈log(n)⌉+2(x) = F0

sk+2⌈log(n)⌉+1(x) = F0
sk+1(x) = F0

sk
(x) = F0

sk−1(x) = 2 + ywk−1
σ(1 − 2/λD||x −
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xwk−1
||∞) ≥ 1, and we also have that F1

sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1
sk+2⌈log(n)⌉+1(x) + 1) ≤ 1. Then

F0
sk+2⌈log(n)⌉+3(x)

= σ(F0
sk+2⌈log(n)⌉+2(x) + ykF1

sk+2⌈log(n)⌉+2(x))

= σ(F0
sk+2⌈log(n)⌉+2(x)

+ykσ(1− 2/λDF1
sk+2⌈log(n)⌉+1(x)))

= F0
sk+2⌈log(n)⌉+2(x)

+ykσ(1− 2/λDF1
sk+2⌈log(n)⌉+1(x))

= F0
sk−1(x) + ykσ(1− 2/λDF1

sk+2⌈log(n)⌉+1(x))

= F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

(35)

Since F2
sk+2⌈log(n)⌉+2(x) = σ(F0

sk+2⌈log(n)⌉+1(x)− 2) and F3
sk+2⌈log(n)⌉+2(x) = σ(−F0

sk+2⌈log(n)⌉+1(x)+ 2), we have
that F2

sk+2⌈log(n)⌉+3(x) = σ(F1
sk+2⌈log(n)⌉+2 − (F2

sk+2⌈log(n)⌉+2(x) + F3
sk+2⌈log(n)⌉+2(x))) = σ(F1

sk+2⌈log(n)⌉+2 −
|F0

sk+2⌈log(n)⌉+1(x)− 2|). Then

F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk+2⌈log(n)⌉+3(x)− yk(F1

sk+2⌈log(n)⌉+3(x)−F2
sk+2⌈log(n)⌉+3(x)))

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)− yk(F1
sk+2⌈log(n)⌉+2(x)

−σ(F1
sk+2⌈log(n)⌉+2(x)− |F0

sk−1(x)− 2|))).

We divide the proof into two cases.

Case 1. If x /∈ B∞(xk, 0.5λD), then F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1) = σ(1 − 2/λD||x −
xk||∞) = 0 and

F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)−

σ(F1
sk+2⌈log(n)⌉+2(x)− |F0

sk−1(x)− 2|)))
= F0

sk−1(x)

= F0
sk−1+2⌈log(n)⌉+4(x)

= 2 + ywk−1
σ(1− 2/λD||x− xwk−1

||∞)

= 2 + ywk
σ(1− 2/λD||x− xwk

||∞).

Case 2. If x ∈ B∞(xk, 0.5λD), then F1
sk+2⌈log(n)⌉+2(x) = σ(−2/λDF1

sk+2⌈log(n)⌉+1(x) + 1) = σ(1 − 2/λD||x −
xk||∞) ≥ 0 and using equation 35:
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F0
sk+2⌈log(n)⌉+4(x)

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(F1
sk+2⌈log(n)⌉+2(x)− σ(F1

sk+2⌈log(n)⌉+2(x)

−|F0
sk−1(x)− 2|)))

= σ(F0
sk−1(x) + ykF1

sk+2⌈log(n)⌉+2(x)

−yk(min{F1
sk+2⌈log(n)⌉+2(x), |2−F0

sk−1(x)|}))
= σ(2 + ywk−1

σ(1− 2/λD||x− xwk−1
||∞)+

yk(1− 2/λD||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
σ(1− 2/λD||x− xwk−1

||∞)})).

Consider two sub-cases:

Case 2.1. If ||x− xwk−1
||∞ > 0.5λD, then wk = k and hence

F0
sk+2⌈log(n)⌉+4(x)

= σ(2 + ywk−1
σ(1− 2/λD||x− xwk−1

||∞)+

yk(1− 2/λD||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
σ(1− 2/λD||x− xwk−1

||∞)}))
= σ(2 + yk(1− 2/λD||x− xk||∞))

= 2 + yk(1− 2/λD||x− xk||∞)

= 2 + ywk
(1− 2/λD||x− xwk

||∞).

Case 2.2. If ||x− xwk−1
||∞ ≤ 0.5λD, then ywk−1

= yk and hence

F0
sk+2⌈log(n)⌉+4(x)

= σ(2 + ywk−1
σ(1− 2/λD||x− xwk−1

||∞)+

yk(1− 2/λD||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
σ(1− 2/λD||x− xwk−1

||∞)}))
= σ(2 + ywk−1

(1− 2/λD||x− xwk−1
||∞)

+yk(1− 2/λ||x− xk||∞)

−yk(min{1− 2/λD||x− xk||∞,
1− 2/λD||x− xwk−1

||∞}))
= 2 + yk max{1− 2/λD||x− xk||∞,

1− 2/λD||x− xwk−1
||∞}

= 2 + ywk
σ(1− 2/λD||x− xwk

||∞).

The property is proved.

Property 4. F is a memorization D and has Lip∞(F) = 1/λD.
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By Property 3, the output is

F(x) = 0.5(F1
sN+2⌈log(n)⌉+4(x)− 2) + 1.5 = 0.5ywN

σ(1− 2/λD||x− xwN
||∞) + 1.5

where wN = argmini∈[N ]||x− xi||∞.

If x = xs, then wN = s and F(x) = 0.5ys + 1.5 = lxs ; that is, F memorizes D. If x ∈ B(xs, 0.5λD) for some
s ∈ [N ], then wN ∈ [N ] and F(x) = 0.5ywN

(1 − 2/λD||x − xwN
||∞) + 1.5 such that the local Lip∞(F) = 1/λD

over B(xwN
, 0.5λD). If x is not in ∪N

i=1B(xs, 0.5λD), then ||x − xwN
||∞ > 0.5λD. Hence F(x) = 0 and the local

Lip∞(F) = 0. The theorem is proved.


