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Abstract

The delivery of free viewpoint videos (FVVs) is gaining popularity because of their1

ability to provide freely switchable perspectives to remote users as immersive expe-2

riences. While smooth view switching is crucial for enhancing user’s experiences,3

FVV delivery faces a significant challenge in balancing traffic and decoding latency.4

The typical approach sends limited viewpoints and synthesizes the remainings on5

the user, reducing traffic, but increasing decoding delays. Alternatively, sending6

more viewpoints reduces the delay, but requires more bandwidth for transmission.7

In this paper, we propose a novel FVV representation format, FV-NeRV (Free8

Viewpoint-Neural Representation for Videos), to address this dilemma in FVV9

delivery. FV-NeRV reduces both traffic and decoding delay even for content with10

a large number of virtual viewpoints by overfitting compact neural networks to11

all viewpoints and pruning and quantizing the trained model. Experiments using12

FVVs show that FV-NeRV achieves a comparable or even superior traffic reduction13

with faster decoding speed compared to existing FVV codecs and NeRV formats.14

1 Introduction15

Free-viewpoint video (FVV) [1, 2] is an emerging technique that allows freely switchable viewing16

experience even with the limited number of physical cameras. For this purpose, FVV generates video17

frames from any desired viewpoint utilizing a limited set of texture and depth frames of multiple18

cameras and their positions [3, 4]. This technique enables us to create a new type of immersive19

experience in the field of, for example, entertainment [5], digital archive, medical imaging [6].20

Ensuring seamless view-switching between viewpoints is vital for enhancing user experiences; thus,21

users naturally demand as many viewpoints as possible. However, it is not necessarily the case that all22

viewpoints desired by users are pre-recorded, so there arises a need to synthesize and transmit frames23

from viewpoints other than those actually recorded, using the frames from the recorded perspectives.24

Although many existing solutions focus on the generation of high quality free viewpoints [3, 7] from25

the limited number of physical views, we are still faced with a dilemma regarding the practical use of26

FVV: balancing traffic and decoding speed.27

Depending on who actually handles the rendering of frames for the necessary viewpoints, we can28

consider sender-side rendering and user-side rendering. In the sender-side rendering, a content sender29

with rich computational resources synthesizes the video frames from all the viewpoints on demand30

in advance. We can conceal decoding time from the users, but sending pre-rendered video frames31

of all the viewpoints increases traffic proportionally. In contrast, in user-side rendering, the sender32

encodes video frames only from the physical viewpoints into a bitstream, distributes them to users,33

and commits the users to synthesize desired viewpoints locally as they want. In this way, we can avoid34

a rapid increase in traffic with an increase in the number of viewpoints. However, a long decoding35

delay caused by complex rendering operations, such as 3D warping and hole filling, prevents real-time36
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Figure 1: Overview of FV-NeRV

playback, that is, limited frame per second (fps), especially with the limited computational power on37

the user device.38

In this paper, we propose FV-NeRV, a novel FVV format designed to effectively address the39

drawbacks of both the sender- and user-side rendering. This approach is heavily inspired by recent40

developments in frame-based implicit neural representation (INR) [8–16]. FV-NeRV operates on41

the principle of sender-side rendering while allowing all viewpoints to be transmitted to the user in42

an extremely lightweight manner, and this lightweight characteristic is achieved by leveraging INR43

techniques to overfit the transmitted content to a compact neural network. The technical contribution44

of FV-NeRV is that, unlike all frame-based INR derivatives, we make the compact neural network take45

viewpoint indices in addition to frame indices and overfit the video frames of the desired viewpoints46

to a single network at once. The network is capable of leveraging both multiview and temporal47

coherences during encoding, thereby effectively representing FVV across multiple viewpoints without48

a corresponding increase in model size, i.e., traffic. Moreover, the compact network benefits the user49

in terms of real-time FVV decoding by skipping compute-intensive rendering operations. Experiments50

on the FVV dataset show that the proposed FV-NeRV simultaneously outperforms existing FVV51

schemes in terms of traffic and decoding speed.52

Related Work and Contributions53

Recent INR architectures have been designed for image and video compression. Specifically, they54

send the overfitted weights of the INR architecture to the user side, and the user reconstructs video55

frames by feeding the coordinates and corresponding features. Existing studies have proposed the56

frame-wise INR architectures. Specifically, they feed the frame index and/or corresponding features57

to the INR architecture to generate a video frame. NeRV [8] is the first work of the INR architecture58

for frame-wise video reconstruction, and there are many extensions of NeRV architectures [9–18] for59

quality improvement.60

Our FV-NeRV is the first study on the frame-wise INR architecture for low-delay and low-traffic FVV.61

Although some studies [19, 20] have designed the frame-wise INR architecture for multiview texture62

and depth videos, they considered user-side rendering and needed view synthesis operations for the63

reconstruction of the desired viewpoints. The proposed FV-NeRV is a novel approach for sender-side64

rendering, effectively averts traffic increase by overfitting single and compact neural networks to65

various viewpoints.66

2 FV-NeRV67

Fig. 1 shows the overview of the proposed FV-NeRV architecture. Let {I(t, v)}T,V
t=1,v=1 be an FVV68

sequence consisting of an RGB video frame I(t, v) ∈ RH×W×3 with T frames and V physical and69

virtual viewpoints. Here, t, v ∈ [0, 1] are normalized frame and viewpoint indices, and H and W70
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are the height and width of the video frame. The proposed FV-NeRV architecture can be defined by71

a mapping function f with learnable parameters θ from the frame and viewpoint indices t, v to the72

corresponding video frame I(t, v) as follows:73

f : R2 −→ RH×W×3. (1)

The goal of the proposed FV-NeRV architecture is to obtain the indices-to-frame mapping for the74

video frame of each desired viewpoint. For this purpose, we obtain the optimal function f(t, v;θ) ≈ f75

via network training with learnable parameters θ using the FVV sequence {I(t, v)}T,V
t=1,v=1.76

The trained parameters are then further compressed and sent to users as θ̂. Once users receive the77

parameters, they can reconstruct the t-th video frames of the desired viewpoint v by feeding the78

corresponding indices to the FV-NeRV architecture f(t, v; θ̂).79

2.1 Model Architecture80

FV-NeRV architecture f(t, v;θ) consists of a MLP and an upscaling module. The MLP part starts81

from positional embedding (PE) for both the frame and the viewpoint indices, which projects a single82

scaler onto a high-dimensional vector. The vector maintains the positional information of the index83

throughout the video sequence. As proposed in [8], we use a sinusoidal positional embedding with84

the basis b and level l as follows:85

tpos =
(
sin(b0πt), cos(b0πt), · · · , sin(bl−1πt), sin(bl−1πt)

)
∈ R2l,

vpos =
(
sin(b0πv), cos(b0πv), · · · , sin(bl−1πv), sin(bl−1πv)

)
∈ R2l. (2)

These embeddings are concatenated [tpos,vpos] and passed to the successive fully-connected (FC)86

layers. Finally, the output is reshaped to a 2D feature map m ∈ Rh0×w0×c, where h0, w0, c are the87

height, width, and channel.88

The upscaling module is made up of L upscaling blocks, implemented using NeRV blocks [8], which89

gradually enhance the resolution of the feature map. Specifically, the l-th block first performs 2D90

convolution to increase channels by hl−1 × wl−1 × c · s2l , and then 2D pixel shuffle to increase91

resolution by hl−1 · sl × wl−1 · sl × c, where sl is the scaling factor for the l-th block. The feature92

map will have a resolution of h · s1 . . . sL × w · s1 . . . sL × c after L upscaling blocks, and finally,93

the header layer of the 1 × 1 2D convolution projects the feature map to the final output with the94

resolution of H ×W × 3 pixels.95

2.2 Loss Function96

To train the proposed FV-NeRV architecture, we integrate mean absolute error (MAE) and structural97

similarity (SSIM) losses as the following:98

l =
1

T

1

V

T,V∑
t=1,v=1

{α ·MAE(f(t, v;θ), I(t, v)) + (1− α) · (1− SSIM(f(t, v;θ), I(t, v))}, (3)

where α is hyper-parameter to balance MAE and SSIM losses. Note that MAE represents the99

pixel loss averaged across the whole frame. Here, the MAE loss helps minimize the pixel-level100

distortions, whereas the SSIM loss reduces the perceptual distortion, e.g., blockwise distortion, during101

the training.102

2.3 Model Compression103

We introduce model compression for the overfitted FV-NeRV model to further reduce transmission104

and storage costs. Like existing INR models, the proposed FV-NeRV follows the model pruning,105

weight quantization, and weight encoding.106

2.3.1 Model Pruning107

Given the overfitted FV-NeRV model, global unstructured pruning is used to reduce the model size.108

Let θq be the q-percentile value of all parameters θ. FV-NeRV sets weights with magnitudes below109
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θq to zero as follows:110

θ̂ =

{
θ θ ≥ θq
0 otherwise

(4)

After pruning the model, the pruned FV-NeRV parameters θ̂ are fine-tuned using the same dataset.111

2.3.2 Model Quantization and Encoding112

The fine-tuned parameters are then uniformly quantized with respect to the given bit depth Nb,113

followed by the entropy coding. Given a parameter tensor µ ∈ θ̂, the quantized parameter tensor µq114

is given as:115

µq = round

(
µ− µmin

2Nb

)
∗ s+ µmin, s =

µmax − µmin

2Nb
, (5)

where round(·) is a rounding function to the nearest integer and µmax and µmin are the maximum116

and minimum values for the parameter tensor µ. The quantized tensor µq is finally coded into binaries117

using entropy coding. FV-NeRV uses Huffman coding for binarization. Since the distribution of the118

tensor parameters µq tends to zero, especially at small bit depths, the Huffman coding further reduces119

the size of the model.120

3 Experiments121

We evaluate the performance of our FV-NeRV with respect to the quality of decoded video sequences122

and decoding delay, using an FVV dataset obtained in the real world.123

3.1 Settings124

Dataset: We use a free-view TV dataset provided by Nagoya University [21] and specifically 2125

FVV sessions “Balloons” and “Kendo” in the dataset. This dataset provides RGB frame sequences126

and depth image sequences for these two sessions. For both, the frame resolution is 768 × 1024127

and the total number of frames T is 300. For every sequence, we choose 2 physical viewpoints,128

synthesize 9 virtual viewpoints in between, and utilize these 11-frame sequences as our own dataset129

for the experiments. We use High-Efficiency Video Coding (HEVC) test model (HTM) software130

renderer [22] for intermediate view synthesizing. The dispersion of camera positions is 10 cm for the131

selected viewpoints and 1 cm for the synthesized viewpoints. When frame indices or view indices are132

required, normalized indices {v|v = 0, 0.1, · · · , 1} and {t|t = 0, 1/300, 2/300, · · · , 1} are used.133

Baselines: In our experiment, we consider two scenarios for how an FVV sequence is encoded,134

decoded, and transmitted and select the corresponding baseline for each as the competitive method135

for our FV-NeRV.136

1. User-side rendering. The sender encodes the texture and depth image sequences for the137

selected viewpoints in a format and sends it to a user. The user first reconstructs the encoded138

texture and depth image sequences and takes charge of synthesizing RGB frame sequences139

for any other viewpoints as they want. As a baseline for this scenario, we use 3D AVC test140

model (3D-ATM) [23], an existing FVV codec that produces a bit stream from given texture141

and depth frame sequences. 3D-ATM employs delta encoding in both the temporal and142

geometric domains, accounting for motion and view disparity compensation.143

2. Sender-side rendering. The sender uses an image renderer to synthesize all the frame144

sequences for intermediate views in advance and then sends all encoded for each viewpoint145

to a user. For this scenario, we use NeRV+, in which we simply train as many NeRV146

networks as the viewpoints to be sent. For a total of V viewpoints, both actually recorded147

and synthesized, NeRV+ prepares dependent networks {f(t;θi) : R → RH×W×3 | i =148

1, · · · , V } and overfits each network to each view as single-view video encoding. After149

obtaining all V models, the user executes feedforward operations with these models by150

sequentially inputting frame indices and decoding the frame sequences.151
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Figure 2: Average MS-SSIM index of the proposed and baseline schemes as a function of the total
data size using (a) “Balloons” sequence and (b) “Kendo” sequence [2].

0 100 200
Decoding Time per Frame (ms)

FV-NeRV

NeRV+

3D-ATM

10.86 ms

10.99 ms

230.41 ms

Figure 3: Average decoding time for each frame across “Balloons” and “Kendo” video sequences.

FV-NeRV and NeRV+ training: Models for the proposed FV-NeRV and NeRV+ are trained with152

the Adam optimizer with a learning rate of 5e− 4. We implement a cosine annealing learning rate153

schedule, incorporating a 10-epoch warm-up phase, with a batch size of 1 over a total of 50 training154

epochs. Following model pruning, we retrain the networks for an additional 50 epochs to fine-tune155

them. For the loss function in Eq. (3), α is set to 0.7.156

Hardware and Software: All experiments are performed on a computer with Intel(R) Core(TM)157

i9-10850K CPU@3.60GHz, 128GB memory, and NVIDIA RTX 3080 with 10GB memory. The158

networks of NeRV+ and our FV-NeRV are implemented with Pytorch (2.2.0).159

Model size control: We control the data size of the proposed and baseline schemes to evaluate160

their performance under varying compression levels. For 3D-ATM, we control different quantization161

parameters (QPs) for changing the size of the encoded bitstream. Here, an identical QP is used for162

the texture and depth video frames. Specifically, we use 33, 40, 43, and 50 QP for compression.163

For NeRV+ and FV-NeRV, we control the size of the model by changing the number of network164

parameters and the degree of pruning and quantization. For both architectures, there are 5 upscale165

blocks, with up-scale factor 4, 2, 2, 2, 2 respectively for both “Balloons” and “Kendo” video sequences.166

In addition, we use b = 1.25 and l = 40 for input embedding in Eq. (2). For pruning and model167

quantization, we set q = 40% pruning ratio and Nb = 8 bit weight quantization according to the168

ablation study in [8].169

Metrics: As the video quality metric, we use Multi-Scale Structural Similarity (MS-SSIM) [24] .170

MS-SSIM is computed for each pair of frames, yet it remains valuable for assessing the overall video171

quality aligned with human perception. The value ranges from 0 to 1 and a higher value close to 1172

indicates a higher perceptual similarity between the original and decoded video frames. The decoding173

delay is measured by the average processing time required for a single frame reconstruction in the174

proposed FV-NeRV and NeRV+ and single-frame rendering in 3D-ATM.175
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(a) Original (v : 0.1, t : 0) (b) 3D-ATM
Data size: 3.7 Mbits
MS-SSIM: 0.82

(c) NeRV+
Data size: 44.0 Mbits
MS-SSIM: 0.83

(d) FV-NeRV
Data size: 4.1 Mbits
MS-SSIM: 0.83

(e) Original (v : 0.5, t : 0) (f) 3D-ATM
Data size: 3.7 Mbits
MS-SSIM: 0.82

(g) NeRV+
Data size: 44.0 Mbits
MS-SSIM: 0.80

(h) FV-NeRV
Data size: 4.1 Mbits
MS-SSIM: 0.84

Figure 4: Snapshot of “Balloons” in the baselines and the proposed FV-NeRV schemes.

3.2 Performance Evaluation176

Figs. 2 (a) and (b) show the MS-SSIM index as a function of the size of the data in the proposed and177

baseline schemes using “Balloons” and “Kendo” video sequences, respectively. It shows that the178

proposed FV-NeRV achieves a better MS-SSIM index compared to the existing 3D-ATM, especially179

in narrow-band environments. Even though 3D-ATM is the user-side rendering and sends texture180

and depth frames of adjacent viewpoints, that of the data size is larger than that of the proposed181

FV-NeRV. NeRV+, which is the sender-side rendering, proportionally increases the size of the data182

as the number of physical and virtual viewpoints increases, since it sends the overfitted parameters of183

all viewpoints to the receiver.184

Fig. 3 shows the average decoding delay of the proposed and baseline schemes in the video sequences185

of “Balloons” and “Kendo”. Here, the data size of the proposed FV-NeRV and existing 3D-ATM186

is approximately 4.0 Mbits, while that of the NeRV+ is approximately 44.0 Mbits. The proposed187

FV-NeRV achieves the lowest decoding delay for video frame reco, comparable to the NeRV+188

scheme, with a cheme with significantly small data size. 3D-ATM The 3D-ATM scheme needs to189

perform view synthesis to reconstruct video frames of the desired viewpoints, and such view synthesis190

operations cause more than 20 times longer decoding delays proposed FV-NeRV.191

Figs. 4 show the snapshots of the original and reconstructed “Balloons” frames of the desired192

viewpoints in the proposed and baseline schemes. Here, the frame index t is 0, and the viewpoint193

indices v are 0.1 and 0.5, respectively. Furthermore, the data size of the proposed and the baselines is194

the same as in Fig. 3.195

The snapshots in Figs. 4 (a) through (h) show that the proposed FV-NeRV reconstructs clean video196

frames regardless of the viewpoint positions. The reconstructed video frames in the 3D-ATM scheme197

are completely noisy due to large distortions in the texture and depth video frames. Although NeRV+198

can reduce noise, it does not reconstruct white lights near the center balloons.199

4 Conclusion200

In this paper, we proposed FV-NeRV, a novel FVV representation that addresses the challenge of201

balancing traffic and decoding latency in FVV delivery. By overfitting compact neural networks to202

all viewpoints and reducing the model through pruning and quantization, FV-NeRV simultaneously203

reduces both traffic and decoding delay. Experiments demonstrated that FV-NeRV outperforms204

existing FVV codecs and NeRV, offering a more efficient solution for smooth view-switching.205
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A Appendix260

A.1 Video Representations in Dense Viewpoints and Different Video Sequences261

We have prepared some results of video frame reconstruction as shown in Fig. 5 and 6 under the262

XS model size. In particular, in Fig. 6, we show the reconstructed video frames when the distance263

between the viewpoints is 1 cm. Although the camera arrangement is dense, the proposed FV-NeRV264

can reconstruct clean video frames of arbitrary viewpoints from the single compact model. In 3D-265

ATM, block noise occurs in the whole frame due to block-wise lossy operations for compression.266

The proposed FV-NeRV prevents block noise because the proposed upsampling blocks reconstruct267

the whole video frame at once. However, detailed visual information, such as the bamboo sword in268

each player, disappears when the size of the model is small.269

v Orig. 3D-ATM FV-NeRV
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0.9

Figure 5: Reconstructed “Balloons” video frame at t = 0.5 of the XS-sized proposed and baseline
schemes for different viewpoints v.
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A.2 Training settings for NeRVs270

Table 1 lists the parameter settings in the proposed FV-NeRV during training, pruning, and quantiza-271

tion.

Table 1: Parameter settings for our FV-NeRV.
Name Notation Value

Positional Embedding Basis b 1.25
Level l 40

Training parameters

Batch size B 1
Epoch - 50

Epoch (fine-tune) - 50
Optimizer - Adam

Learning rate - 5e-4
Learning rate scheduling - Cosine Annealing

Loss function | weight factor α 0.7

Model compression Model pruning threshold q 40%
Model quantization depth Nb 8

272

A.3 Detail Network Architectures for NeRVs273

Table 2 shows the detailed network architecture of FV-NeRV. c0 varies between different model sizes.274

SiLU stands for the activation function of the Sigmoid Linear Unit and is defined as:275

SiLU(x) = x ∗ σ(x),

where σ(x) is the logistic sigmoid.

Table 2: Network architecture of FV-NeRV. Here, c0 varies between different model sizes.
Group Layer Output Shape
Input [B, 2]

Positional Embedding [B, 160]

FC Layers

Linear [B, 512]
SiLU -
Linear [B, 12× 16× c0]
SiLU -

Reshape [B, c0, 12, 16]

Upsample Blocks

NeRV block 1 [B, c0, 48, 64]
NeRV block 2 [B, 96, 96, 128]
NeRV block 3 [B, 96, 192, 256]
NeRV block 4 [B, 96, 384, 512]
NeRV block 5 [B, 96, 768, 1024]

Conv head [B, 3, 768, 1024]

ith NeRV block
2D Convolution [B, ci−1 ∗ s2, hi−1, wi−1]
Pixel shuffling [B, ci, hi, wi]

SiLU -

276
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Figure 6: Reconstructed “Kendo” video frame at t = 0.5 of the XS-sized proposed and baseline
schemes for different viewpoints v.
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