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ABSTRACT

Multi-objective reinforcement learning (MORL) excels at handling rapidly chang-
ing preferences in tasks that involve multiple criteria, even for unseen preferences.
However, previous dominating MORL methods typically generate a fixed policy
set or preference-conditioned policy through multiple training iterations exclu-
sively for sampled preference vectors, and cannot ensure the efficient discovery
of the Pareto front. Furthermore, integrating preferences into the input of policy
or value functions presents scalability challenges, in particular as the dimension
of the state and preference space grow, which can complicate the learning process
and hinder the algorithm’s performance on more complex tasks. To address these
issues, we propose a two-stage Pareto front discovery algorithm called Constrained
MORL (C-MORL), which serves as a seamless bridge between constrained policy
optimization and MORL. Concretely, a set of policies are trained in parallel in
the initialization stage, with each optimized towards its individual preference over
the multiple objectives. Then, to fill the remaining vacancies in the Pareto front,
the constrained optimization steps are employed to maximize one objective while
constraining the other objectives to exceed a predefined threshold. Empirically,
compared to recent advancements in MORL methods, our algorithm achieves more
consistent and superior performances in terms of hypervolume, expected utility, and
sparsity on both discrete and continuous control tasks, especially with numerous
objectives (up to nine objectives in our experiments).

1 INTRODUCTION
In many real-world control and planning problems, multiple and sometimes even conflicting ob-
jectives are getting involved. Such situations necessitate striking a better trade-off among these
decision-making goals (Roijers et al., 2013; Hayes et al., 2022). For instance, in industrial control sce-
narios (Salvendy, 2001; Wang et al., 2023), maximizing utility and minimizing energy consumption
are of particular interest as objectives to be optimized. Since different decision makers have heteroge-
neous preferences over these objectives, there may exist multiple Pareto-optimal policies (Roijers
et al., 2014). Classical reinforcement learning (RL) methods typically involve training individual
policies exclusively to align with each preference weight vector over multiple rewards (Nagabandi
et al., 2018; Gupta et al., 2018). Yet it may lead to an enormous computational burden due to the
overly dependence on the model retraining and fine-tuning stages. Moreover, such policies are hard
to directly generalize or transfer to newer tasks (Cobbe et al., 2019; Taiga et al., 2022). Therefore,
the multi-objective reinforcement learning (MORL) paradigm has drawn significant attention by
reformulating these tasks for optimizing towards multiple criterion (Xu et al., 2020; Basaklar et al.,
2022; Zhu et al., 2023). MORL aims to obtain either a single policy readily adapted to different
preferences (Felten et al., 2023b; 2022; Teh et al., 2017) or a set of policies (Zhao & Grover, 2024;
Felten et al., 2024; Röpke et al., 2024; Kim et al., 2024) aligned with their respective preferences.

One prevalent category of MORL approaches is to train a single preference-conditioned policy (Yang
et al., 2019; Basaklar et al., 2022). They utilize a weight vector to quantify preferences for different
objectives and incorporate this weight vector as part of the input to the policy network. However, such
approaches often struggle with scalability, since for high-dimensional environments the weight space
extends exponentially as the number of objectives increases. By comparison, training a restricted
set of policies to align with the set of sampled preference vectors can circumvent the scalability
issue to some extent. Yet it could be scarcely possible to fulfill the demand of covering the entire
Pareto frontier. In addition, although some works focus on boosting sample efficiency (Wiering
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et al., 2014; Alegre et al., 2023), they may still rely on learning the environment dynamics with extra
training time, while inaccurate learned dynamics easily affect multiple RL objectives’ performance.
Evolutionary approach and user feedback are also integrated to find the Pareto set approximation (Xu
et al., 2020; Shao et al., 2024), while additional prediction models are needed to guide the learning
process. Although these methods demonstrate promising performance in tasks with simpler dynamics
or a limited number of objectives (typically two to five), they often struggle to scale effectively with
respect to a greater number of objectives or larger state and action spaces.

In summary, existing works mainly suffer from three aspects: (i) low training efficiency; (ii) hard to
cover the complete Pareto front; (iii) inability to maximize utility for any given preference. To address
these challenges, we propose a novel constrained optimization formulation for improved computation
complexity and stronger coverness of the Pareto front. To be specific, we adapt the constrained policy
optimization algorithms (Achiam et al., 2017; Liu et al., 2020), and reformulate the MORL problem
with designed constraints on policy performance over multiple objectives. Our approach of training
the policy set consists of two stages. In the Pareto initialization stage, we train several initial policies
in parallel based on fixed preferences until convergence. In the Pareto extension stage, we first select
diverse policies based on their crowd distance and employ constrained update steps to the initial
policies individually. In each optimization step, we optimize a specific objective while constraining
the expected returns of other objectives. Through this approach, we can extend the Pareto front
in various objective directions. For the third research gap, we introduce Policy assignment, which
ensures that for any given preference, we assign a policy from the Pareto set that maximizes its utility.

Our algorithm achieves favorable time complexity characteristics and derives a high-quality Pareto
front, as indicated by the following observations. Firstly, training several initial policies based
on fixed preferences is efficient. In addition, the adoption of constrained update steps allows for
rapid adjustment of the initial policy, leading to the derivation of new solutions on the Pareto
front. Regarding the second research gap concerning the complete Pareto front, different from
the meta-policy approach that relies on a single initial policy (Chen et al., 2019), our method can
extend multiple policies selected from initial policies based on their crowd distance to enhance
diversity while promoting better performances. Intuitively, a larger crowd distance indicates that
the corresponding policy appears on a sparser area on the Pareto front, therefore, extending such a
policy is more likely to fill the Pareto front. While sharing similarities with our formulation, as one
category of multi-objective optimization (MOO) approach, epsilon-constraint methods solves a MOO
problem by converting it to several single-objective constrained optimization problems (Laumanns
et al., 2006; Van Moffaert & Nowé, 2014). However, the running time of such a method is exponential
in problem size, rendering it impractical for MOO problems with numerous objectives. In contrast,
crowd-distance-based policy selection eases such burden, exhibiting linear complexity, and can
efficiently solve MORL tasks with numerous objectives. Our main contributions are as follows:
• We propose C-MORL, a two-stage policy optimization algorithm that enables rapid and complete

discovery of the Pareto front. By taking a novel constrained optimization perspective for MORL, our
Pareto front extension method can easily handle complex discrete or continuous MORL tasks with
multiple objectives (as demonstrated with up to nine objectives in our experimental evaluations).

• To empirically solve C-MORL without extra computation such as in the epsilon-constraint method,
we propose an efficient interior-point-based approach for finding the solution of a relaxed formula-
tion, which can guarantee the derivation of Pareto-optimal policies under specified conditions.

• To validate the efficacy of C-MORL, we employ an array of MORL benchmarks for both continuous
and discrete state/action spaces across various domains, such as robotics control and sustainable
energy management. C-MORL consistently achieves up to 35% larger hypervolume and 9% higher
expected utility in MORL benchmarks than the state-of-the-art baselines, indicating the discovery
of broader Pareto front given any preferences.

2 RELATED WORK
Prior trials on tackling multi-objective RL fall into training single preference-conditioned policy
or multi-policy. Typical single-preference-conditioned policy approaches adopt a policy that takes
preferences as part of network inputs and utilizes the weighted-sum scalarization of the value functions
(or advantage functions) to optimize the policy (Van Moffaert et al., 2013; Parisi et al., 2016; Yang
et al., 2019; Zhang & Golovin, 2020; Basaklar et al., 2022; Lu et al., 2022; Hung et al., 2022; Zhu
et al., 2023; Lin et al., 2024). In the evaluation stage, agents can execute corresponding solutions
based on users’ desired preferences (Yang et al., 2019; Basaklar et al., 2022). With the shared neural
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networks, gradients from different tasks can interfere negatively, making learning unstable, leading to
imbalanced performance across the entire preference space, and sometimes even less data efficient.

Instead of training a single policy agent, multi-policy approaches train a finite set of policies to
approximate the Pareto front (Abels et al., 2019; Xu et al., 2020; Alegre et al., 2022). In the
evaluation stage, the policy in policy set that maximizes the utility of the user (i.e., the weighted sum
of objectives) is chosen (Friedman & Fontaine, 2018). Rather than evenly sampling from preference
space, (Xu et al., 2020) proposes an efficient evolutionary learning algorithm to find the Pareto
set approximation along with a prediction model for forecasting the expected improvement along
vector-valued objectives. Yet the performance highly depends on prediction model’s accuracy, and
it is challenging to recover the Pareto front due to the long-term local minima issue. This method
also suffers from low training efficiency due to the exponential complexity involved in repeatedly
calculating the quality of the virtual Pareto front during the training process. (Kyriakis & Deshmukh,
2022) designs a policy gradient solver to search for a direction that is simultaneously an ascent
direction for all objectives. (Alegre et al., 2022) firstly trains a set of policies whose successor
features form a ϵ-CCS (convex coverage set), then utilizes the generalized policy improvement (GPI)
algorithm to derive a solution for a new preference. (Alegre et al., 2023) further introduces a novel
Dyna-style MORL method that significantly improves sample efficiency while relying on accurate
learning of dynamics. (Röpke et al., 2024) discovers the Pareto front by bounding the search space
that could contain value vectors corresponding to Pareto optimal policies using an approximate Pareto
oracle, and iteratively removing sections from this space. Our proposed C-MORL distinguishes from
their divide-and-conquer scheme by a novel policy selection procedure along with explicitly solving
a principled constrained optimization.

Our approach bears connections with (Chen et al., 2019) and (Huang et al., 2022), while distinguishing
itself in terms of both the training process and objectives. Compared to the meta-policy approach,
adaptation process is not necessary in the evaluation phase of our method. When presented with an
unseen preference, the policy in the Pareto front with the highest utility is chosen as the surrogate
execution policy. In contrast to (Huang et al., 2022; Kim et al., 2024), we do not aim at solving
a constrained RL problem for training the working policy under specific preference. Rather, we
propose to leverage the constrained optimization steps to fill the complete Pareto front with enhanced
flexibility (Liu et al., 2020; Xu et al., 2021), and design extension and selection algorithms to
explicitly promote diverse policies. Constrained optimization techniques are widely adopted to solve
multi-objective optimization (MOO) problems. Epsilon-constraint methods are a category of MOO
techniques that involve pre-defining a virtual grid in the objective space and solving single-objective
problems for each grid cell, where the optimum of each problem corresponds to a Pareto-optimal
solution (Laumanns et al., 2006). Instead of pre-defining virtual grid, this work proposes crowd
distance based policy selection to address the exponential complexity in the epsilon-constraint
method.

3 PRELIMINARIES

3.1 MORL SETUP

In this work, we adopt the general framework of a multi-objective Markov decision process
(MOMDP), which is represented by the tuple < S,A,P,R1:n,Ω, f, γ >. Similar to standard
MDP, at each timestep t, the agent under current state st ∈ S takes an action at at ∈ A,
and transits into a new state st+1 with probability P(st+1|st,at). One notable characteris-
tic of MOMDP is that for n different objectives, the reward is a n-dimensional vector rt =
[R1(st,at),R2(st,at), . . . ,Rn(st,at)] ∈ Rn. For any policy π, it is associated with a vector
of expected return, given as Gπ = [Gπ

1 , G
π
2 , . . . , G

π
n]

⊤, where the expected return of the ith objective
is given as Gπ

i = Eat+1∼π(·|st) [
∑

t γ
tR (st,at)i] for some predefined time horizon. We assume

such returns are observable.

The goal of MORL is to find a policy so that each objective’s expected return in Gπ can be optimized.
In practice, since training RL typically requires a scalar reward to interact with the training agent, and
co-optimizing multiple objectives is hard to achieve an ideal tradeoff, especially in a situation where
objectives are competing against each other. To that end, denote Ω = {ω ∈ Ω|

∑n
i=1 ωi = 1, ωi ≥ 0}

as the preference vector. We use the preference function fω(r) to map a reward vector r(s,a) to a
scalar utility given ω : fω(r(s,a)) = ω⊤r(s,a). Our goal is then to find a multi-objective policy
π(a|s,ω) such that the expected scalarized return ω⊤Gπ is maximized.
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3.2 PARETO OPTIMALITY

In MORL, a policy that simultaneously optimizes all objectives does not exist. This holds whenever
either of the two objectives is not fully parallel to each other. Thus, a set of non-dominated solutions
is desired. We say policy π is dominated by policy π′ when there is no objective under which π′ is
worse than π, i.e., Gπ

i ≤ Gπ′

i for ∀i ∈ [1, 2, . . . , n]. A policy π is Pareto-optimal if and only if it is
not dominated by any other policies. The Pareto set is composed of non-dominated solutions, denoted
as ΠP . The corresponding expected return vector Gπ of policy π ∈ ΠP forms Pareto front P . In this
paper, an element in solution set XP refers to a policy along with its corresponding expected return
vector (π,Gπ). However, in many complex real-world control problems, obtaining the optimal Pareto
set is challenging, and it is becoming even more difficult considering the sequential decision-making
nature of RL problems. Thus the goal of MORL is to obtain a Pareto set P to approximate the optimal
Pareto front.

With a finite Pareto set, we can define the Set Max Policy (SMP) (Zahavy et al., 2021) of a given
preference vector:
Definition 3.1. (Set Max Policy). Denote ΠP to be a Pareto set. Then, Set Max Policy (SMP) is the
best policy in the set ΠP for a given preference vector ω: πSMP

ω = maxπ∈ΠP
fω(G

π).

The notion of SMP enables the direct assignment of a surrogate execution policy given an unseen
preference in the evaluation phase. Fig. 1 illustrates the determination of SMP.

To evaluate a Pareto set ΠP , there are three evaluation metrics introduced to compare the quality
of the Pareto front and utility achieved by the underlying algorithm: (i) hypervolume, (ii) expected
utility, and (iii) sparsity (Hayes et al., 2022). The details of these evaluation metrics are provided in
Appendix E.3.
Definition 3.2. (Crowd Distance). Let P be a Pareto front approximation in an n-dimensional
objective space. Also denote G̃i as the ascending sorted list with a length of |P | for the ith objective
values in P . Given the jth solution, and suppose the sort sequence of P (j) in G̃i is k, then the Crowd
Distance of solution P (j) is D(P (j)) =

∑n
i=1

G̃i(k+1)−G̃i(k−1)

G̃i,max−G̃i,min
.

Figure 1: Visualization of metrics. (a)
Hypervolume, reference point, and exam-
ple of crowd distance calculation. As an
example, the crowd distance of πb is cal-
culated based on the expected return of
its neighbors πa and πc, as well as the
extreme solutions on the two objectives.
(b) Given a preference vector, the corre-
sponding expected return is calculated by
selecting the set max policy from Pareto
front solutions.

The crowd distance is a measure of how close an individ-
ual is to its neighbors (Deb et al., 2002).

4 OPTIMIZING CONSTRAINED MORL
In this section, we start from converting the MORL prob-
lem as a constrained MDP (CMDP) while guaranteeing
the local optimality under such formulation. Next, we
present the conditions under which a feasible solution
to the CMDP problem qualifies as a Pareto-optimal so-
lution. Then, to effectively solve the CMDP problem,
we prove that under primal-dual formulation, despite its
non-convexity, the CMDP problem has zero duality gap,
i.e., it can be solved exactly in the dual domain, where it
becomes convex (Paternain et al., 2019).

Constrained RL problems are typically formulated as con-
strained MDPs (CMDP) (Altman, 2021). A CMDP is
defined by the tuple < S,A,P,R1:n,d1:n, γ >. The
reward function of CMDP includes the reward func-
tion Rl(st,at) of the lth objective that is being op-
timized, and the constraint-specific reward functions
{Ri(st,at)}(1:n)\l of other objectives. d := {di}(1:n)\l
represents the corresponding thresholds of constraint-
specific reward functions.

The optimal solution to a CMDP is a policy that maximizes expected return of the objective being
optimized, while ensuring the expected returns of other constraints satisfy their baseline thresholds.
We adapt to the following constrained RL formulation to ensure when we optimize π for Gπ

l , the
returns of other objectives are not seriously hampered:

max
π

Gπ
l s.t. Gπ

i ≥ di i = 1, . . . , n, i ̸= l. (1)
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Assumption 4.1. The value Gπ
i (s), i = 1, ..., n, i ̸= l is bounded for all policies π ∈ ΠP .

Assumption 4.2. Every local minima of Gπ
l is a feasible solution.

Assumption 4.2 justifies the use of gradient-based algorithm for solving CMDP can converge with
general constraints. As long as the threshold d are chosen beforehand such that for initializations,
there are Gπ

i ≥ di, i ̸= l, then starting points for problem Eq. 1 is always feasible.

Note that implementing the Pareto extension aims to expand the Pareto front in various objective
directions, starting from the initialization points of problem Eq. 1. In this regard, the solution derived
from Eq. 1 should contribute to the Pareto front, meaning it must be a Pareto-optimal solution.
Therefore, it is crucial to set proper constraint values di, i = 1, ..., n, i ̸= l. Accordingly, we present
the following proposition that formalizes the criteria for specifying appropriate constraint values:

Proposition 4.3. Let G̃i denote the ascending sorted list for the ith objective values in P , and suppose
the sorted sequence of the initial point Pr in P̃i is k. If di ≥ G̃i(k − 1) for all i = 1, . . . , n, i ̸= l,
then the optimal solution of problem Eq. 1 is a Pareto-optimal solution.

See Proof in Appendix B. Proposition 4.3 provides the condition of which the feasible solution of
problem Eq. 1 is a Pareto optimal solution. Fig. 2 visualizes the constraint value setting criteria. In
the next section, we will further propose a more practical method of specifying constraint values di
for all i = 1, . . . , n, i ̸= l.

Having established the criteria for selecting appropriate constraints, we now turn our attention to the
challenges associated with solving the constrained formulation Eq. 1, which is untractable due to the
nonconvex and multiple-step formulation. To address such issue, constrained CMDP formulation of
MORL problem Eq. 1 can be solved by using the Lagrangian relaxation technique once converted
to an unconstrained problem. Denote Gπ

1:n\l = [Gπ
1 , ..., G

π
n]

⊤, i ̸= l. And define the Lagrangian
L := Gπ

l − λ⊤(d −Gπ
1:n\l), where λi ≥ 0, i = 1, ..., n, i ̸= l is the Lagrange multiplier. The

resulting equivalent problem is the dual problem

D∗ ≜ min
λ

max
π

L(λ, π) (2)

Denote the projection operator as Γλ, Γπ, which projects λ and π to compact and convex sets
respectively. It can be shown that at optimization iteration step r, for our CMDP formulation of the
underlying MORL problem, iteratively working on λr, πr with step size η1, η2 is guaranteed to reach
the local minima of the unconstrained problem Eq. 2 (Borkar, 2009; Tessler et al., 2018):
Proposition 4.4. Under mild conditions and by implementing the update rules as followed for λ and
π: λr+1,i = Γλ[λr,i − η1(r)∇λL(λr,i, πr)]; πr+1 = Γπ[πr − η2(r)∇πL(λr, πr)]; such iterates
(λn, πn) converge to a fixed point of MORL policy almost surely.

See proof in Appendix C. Indeed, (Paternain et al., 2019) shows that there is zero duality gap between
the original CMDP formulation and its dual formulation. Motivated by such property, if we denote
the optimal solution of the original MORL problem Eq. 1 as P ∗, we can alternatively work on finding
the solution of the dual formulation Eq. 2 to derive the optimal MORL policy.

Figure 2: Visualization of criteria for spec-
ifying constraint values. πr denotes initial
point. The expected return Gπa(Gπb) of
solution Pa(Pb) in objective 1(2) is the
(k − 1)th value in list G̃1(G̃2), respec-
tively. Therefore, specifying constraints val-
ues d1 ≥ Gπa and d2 ≥ Gπb is sufficient
for the feasible solution of corresponding
Eq. 1 to be Pareto-optimal solution.

Further, to justify the use of interior point method
adopted by our C-MORL-IPO described in Section
4, the following Theorem helps connect the solution
procedure via the log barrier method with the optimal
solution of the original C-MORL problem:
Theorem 4.5. Suppose that Ri is bounded for all
i = 1, . . . , n and that Slater’s condition holds for
problem Eq. 1. Then, strong duality holds for 1, i.e.,
P ∗ = D∗. Define the logarithmic barrier function for
each constraint ϕ(Gπ

i ) =
log(Gπ

i −βGπr
i )

t with t as a
hyperparameter. If the optimal policy for C-MORL is
strictly feasible, the maximum gap between Eq. 1 and
solving it via the interior point method is bounded by
n−1
t .

The above Theorem indicates that we can safely solve
C-MORL problem with tunable parameter t on the log
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barrier. With such properties, we are ready to show our
design strategies to more efficiently discover the Pareto
front via solving C-MORL involving multiple constraints on the return of heterogeneous preferences.

5 CONSTRAINED MORL-BASED PARETO FRONT EXTENSION
In this section, we introduce our two stage-design for the construction of the Pareto set via the
proposed C-MORL along with the selection scheme for the second extension stage.
5.1 PARETO INITIALIZATION

Figure 3: Procedure of two-stage C-MORL. Pareto initialization: training several initial policies to
derive the initial solution set Xinit. Pareto extension: iteratively implementing policy selection and
Pareto extension with constrained policy optimization toward desired Pareto extension directions in
the objective space. Policy assignment: given preference ω, the surrogate execution policy selected
from the Pareto set based on Eq. 3.1.

As shown in Fig. 3, during the Pareto initialization stage, we first train and collect a set of initial
policies. Each policy π corresponds to a pre-known preference vector ω, as we train policy π
using the multi-objective policy gradient algorithm (Xu et al., 2020) to maximize the return under
this particular ω. Specifically, we also extend the value function to a vectorized version with
vectorized target value V̂(s). Then in the policy update iterations, we utilize the vectorized advantage
function Aπ(st,at) to implement policy gradient updates: ∇θJ (θ,ω) =

∑n
i=1 ωi∇θJi(θ) =

E
[∑T

t=0 ω
⊤Aπ(st,at)∇θ log πθ(at|st)

]
.

By sampling diverse preference vectors to guide the training of initial policies, we obtain an initial
solution set Xinit. It is important to note that the preference vector is solely used for guiding the
training of these initial policies, and the resulting solutions are preference-irrelevant, meaning the
initialized policies can be further trained without specifying preference. Any policy in the set Xinit

can also be assigned to and evaluated by any new preference in the policy selection stage. Note that
in the Pareto initialization stage, we also maintain a solution buffer to enhance policy diversity.
5.2 POLICY SELECTION

Direct implementation of the Pareto extension based on policies from Xinit could encounter several
limitations. First, some policies may not lie on the Pareto front, making their extension less effective
for discovering new Pareto-optimal solutions. Furthermore, the distribution of Pareto-optimal policies
along the Pareto front may be uneven. Random selection for extension could result in trajectory
overlap and subsequent inefficiencies, or leaving regions of the Pareto front unexplored. Inspired
by multi-objective optimization algorithms (Deb et al., 2002), we design policy selection schemes
before and during the Pareto extension stage respectively.

The Pareto-optimal policies are selected based on their crowd distance. A larger crowd distance
indicates that the corresponding region on the Pareto front is relatively unexplored, and therefore, it
may hold a greater potential for augmenting the Pareto front during the next iteration of the Pareto
extension. We sort all Pareto-optimal policies according to their crowd distance value and select the
top N policies with the greatest crowding distance to construct Xextension for the subsequent Pareto
extension iteration. C-MORL selects policies after the Pareto initialization stage and every K

K′ steps
during the Pareto extension stage, where K is the total number of Pareto extension step, K

′
is the

number of constrained optimization steps between two iterations of policy selection. The detailed
policy selection procedure is summarized as Algorithm 1 in Appendix A.
5.3 PARETO EXTENSION

In this Pareto extension stage, we achieve the goal of filling the Pareto front from selected solutions
Xextension toward different directions by solving constrained optimization on the selected policies, as
is shown in the Pareto Extension stage in Fig. 3. In each constrained optimization step, we optimize
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one of the objectives, denoted as l. By performing such optimization on the initial policy for all listed
objectives, we are able to obtain a set of policies that approximate the Pareto front towards various
directions while fully utilizing currently collected initial policies.

In Section 4, we present Proposition 4.3 as a sufficient condition for specifying constraint values
that ensures the feasible solution of Eq. 1 is a Pareto-optimal solution. However, this Proposition
is impractical for several reasons. First, the condition is too strict and may lead to the exclusion of
discovering some potential Pareto-optimal solutions. Second, it necessitates evaluating the expected
return of all policies for non-dominated sorting at each step of the constrained optimization, which is
inefficient. Therefore, we propose an alternative constraint specification method that utilizes only
the expected return of the policy from the most recent step. Specifically, we consider solving the
following problem in which return constraints are controlled by a hyperparameter β ∈ (0, 1):

πr+1,i = arg max
π∈Πθ

{Gπ
l : Gπ

i ≥ βGπr
i , i = 1, . . . , n, i ̸= l}, (3)

where Gπr
i is the expected return of the ith objective in the last constrained optimization step, which

is indexed by r for the current iteration. Next, we introduce practical methods to solve Eq. 3.

C-MORL-IPO Constrained Policy Optimization (CPO) is a widely used general-purpose policy
search algorithm for constrained RL (Achiam et al., 2017). While the CPO algorithm ensures
monotonic policy improvement and guarantees constraint satisfaction throughout the training process,
inner-loop optimization is required when there are multiple constraints. Therefore, CPO is hard to
handle more than two MORL objectives. To overcome this issue, inspired by (Xu et al., 2021; Liu
et al., 2020), we also propose to find a satisfiable solution efficiently for Eq. 3 via the interior point
method (IPO), which is a primal type approach and holds the promise of finding a solution closer to
the original C-MORL as shown in Theorem 4.5. Given Gπr

i and the the defined log barrier in 4.5, we
then convert problem Eq. 1 into an unconstrained optimization problem:

max
π

Gπ
l +

n∑
i=1

ϕ(Gπ
i ) (4)

The detailed procedures of solving Eq.4 are provided in Appendix F. In practice, IPO is more robust
in stochastic environments, and larger t would guide to a solution with higher rewards yet with more
computation costs. Without the requirement of calculating the second-order derivative, C-MORL-IPO
is more computationally efficient than trust-region-based method for CPO updates (Achiam et al.,
2017), which we term as C-MORL-CPO and compare it in Appendix F.

We note that C-MORL can achieve a better approximation of the Pareto front by design, which is
different from previous CMDP approaches (Abdolmaleki et al., 2020; Huang et al., 2022). Such type
of methods typically have an explicit learning- or optimization-based policy improvement stage to
solve for particular preferences. Implementing C-MORL helps directly move away from dominated
solutions in the Pareto front, so that the hypervolume can be directly optimized, while resulting
policies are also more generalizable. The following proposition analyzes the time complexity of
C-MORL, demonstrating its linear time complexity with respect to the number of objectives, making
it suitable for MORL tasks with high-dimensional objective spaces:
Proposition 5.1. (Time complexity.) Given that the number of objectives is n, the number of extension
policies is N , assume the running time of each optimization problem is upper bounded by a constant,
and the number of Pareto extension steps is K, the expected running time of Algorithm 2 is O(nKN).

Compared to PG-MORL (Xu et al., 2020) which needs to solve a knapsack problem with K ×N
candidate points to evaluate and need O(KNn−2) steps to solve it exactly, the proposed C-MORL
excels when there are growing number of objectives or steps.
5.4 PARETO REPRESENTATION VIA POLICY ASSIGNMENT
Policy Assignment During the Pareto extension stage, we store the policies with their corresponding
expected return on the Pareto front. Therefore, after the Pareto extension stage, we derive an
approximated Pareto front with Pareto set policies, as shown in the Policy assignment process in
Fig. 3. With Pareto set policies, given an unseen preference, we can select its SMP πSMP

ω by solving
Eq. 3.1. Such a policy assignment process is efficient and does not require any retraining of the new
policy. Algorithm 2 in Appendix A presents the complete workflow of C-MORL.
6 EXPERIMENTS

In this Section, we validate the design of our proposed algorithm using both popular discrete and
continuous MORL benchmarks from MO-Gymnasium (Felten et al., 2023a) and SustainGym (Yeh
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Figure 4: Pareto front comparison on two-objective MO-MuJoCo benchmarks.

Figure 5: Pareto front comparison on MO-Ant-3d benchmark.

et al., 2024). These benchmarks include five comprehensive domains: (i) Grid World includes Fruit-
Tree, a discrete benchmark with six objectives. (ii) Classic Control includes MO-Lunar-Lander, a
discrete benchmark with four objectives. (iii) Miscellaneous includes Minecart, a discrete benchmark
with four objectives. (iv) Robotics Control includes five MuJoCo tasks with continuous action
space based on MuJoCo simulator (Todorov et al., 2012; Xu et al., 2020). (v) Sustainable Energy
Systems includes two building heating supply tasks. These benchmarks pose significant challenges
for MORL due to complex state (up to 348)/action (up to 23) spaces and large objectives spaces (up
to 9 objectives). More details of experiment settings are listed in Appendix E.

We benchmark our algorithm against five competitive baselines under the metrics of hypervolume
(HV), expected utility (EU), and sparsity metrics (SP). Higher HV and EU, lower SP indicate better
performance. Each of the baselines are trained for 5 × 105 time steps for discrete benchmarks.
Continuous benchmarks with two, three, and nine objectives are trained for 1.5× 106, 2× 106, and
2.5× 106 steps, respectively. The baselines involve: (i)Envelope (Yang et al., 2019).(ii) CAPQL (Lu
et al., 2022). (iii)Q-Pensieve (Hung et al., 2022). (iv) PG-MORL (Xu et al., 2020). (v) GPI-
LS (Alegre et al., 2023). (vi) MORL/D (Felten et al., 2024). Among these baselines, Envelope is
developed for discrete control tasks, GPI-LS is suitable for both discrete and continuous control. The
other baselines are specifically tailored for continuous control.

Overall Results. To assess the performance of MORL, we begin by comparing the quality of the
Pareto front. It can be observed from Table 1 and Table 2 that the proposed C-MORL achieves the
highest hypervolume in all benchmarks. This indicates that C-MORL successfully discovers a high-
quality Pareto front across various domains, particularly in benchmarks with large state and action
spaces (MO-Humanoid-2d) and a substantial number of objectives (Building-9d). Figures 4 and 5
illustrate the Pareto front for MO-MuJoCo benchmarks with two and three objectives, respectively.
C-MORL exhibits more comprehensive coverage of the Pareto front across all benchmarks, whereas
other baselines fail to encompass the entire front. For instance, in the MO-Ant-2d benchmark, Q-
Pensieve does not cover the upper-left portion of the Pareto front, indicating insufficient exploration of
the Y velocity objective, which results in lower utility for preference pairs prioritizing this objective.

Table 1: Evaluation of HV, EU, and SP for discrete MORL tasks.

Environments Metrics Envelope GPI-LS C-MORL

Minecart
HV(102) 1.99±0.00 6.05±0.37 6.77±0.88

EU(10−1) -2.72±1.01 2.29±0.32 2.12±0.66
SP(10−1) 5.11±2.11 0.10±0.00 0.05±0.02

MO-Lunar-Lander
HV(109) 0.43±0.18 1.06±0.16 1.12±0.03
EU(101) -2.84±4.06 1.81±0.34 2.35±0.18
SP(103) 0.19±0.16 0.13±0.01 1.04±1.24

Fruit-Tree
HV(104) 3.66±0.23 3.57±0.05 3.67±0.14

EU 6.15±0.00 6.15±0.00 6.53±0.03
SP(10−1) 5.46±0.15 5.29±0.21 0.42±0.03

While C-MORL leads the highest hypervolume by a large margin in almost all cases, it does not
always attain the best sparsity in some benchmarks. This occurs because, in certain cases, an
algorithm may identify only a few similar Pareto-optimal solutions, leading to low sparsity. As
illustrated in Table 2, along with Figures 4 (c) and 5, both CAPQL and GPI-LS cover only a specific
portion of the Pareto front, resulting in a reduced sparsity. In contrast, C-MORL generates a dense and
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Figure 6: Pareto extension stage of MO-Ant-2d benchmark. The blue points are Pareto-optimal
solutions, and the deep-blue points are selected solutions.

comprehensive Pareto front in these benchmarks. C-MORL also demonstrates the highest expected
utility in nine of the ten benchmarks, which indicates that C-MORL can better maximize user utility
given various user preferences. Appendix G.3 further illustrates that as a multi-policy approach,
C-MORL can align corresponding Pareto-optimal solution given any preference. This is in contrast to
single preference-conditioned policies, which may yield dominated solutions for unseen preferences.

Regarding time complexity, as stated in Section 4, C-MORL is linear time complexity with respect
to the number of objectives, and is therefore generalizable to benchmarks with more than three
objectives. We also note from Table 2 that for the Building-9d benchmark with nine objectives,
the training times for PG-MORL and GPI-LS are excessively long, exceeding the time limitation
we set. This finding aligns with the time complexity analysis of PG-MORL discussed in Section
4. Additionally, in both the Pareto initialization and extension stages, the policies can be trained
in parallel, which further reduces the total running time. Given that the expected running time is
O(nKN), the Pareto extension steps K and the number of selected policies N can be adjusted to
balance performance with running time.

Pareto extension analysis. In Fig. 6, we showcase how the Pareto front is filled using a set of
selected policies with our Pareto extension approach. During the initialization stage of the Pareto
set, we uniformly sample preference pairs from the preference space. Training a single policy with a
fixed preference vector facilitates convergence to a Pareto-optimal solution. Additionally, we present
an ablation study on the number of selected extension policies in Appendix G.1.

Building on this foundation, the subsequent Pareto set extension stage further populates the Pareto
front. As shown in Fig. 6, gaps remain on the Pareto front following the initialization stage. Our
effective policy selection algorithm targets Pareto-optimal solutions in these gap regions, which
exhibit higher crowding distances, thereby selecting them for the ensuing extension stage. During the
Pareto extension phase, as the number of extension steps K increases, C-MORL employs constrained
policy optimization to adjust the selected policies toward various objective directions, effectively
filling the gaps in the Pareto front.
Next, to better understand the influence of hyperparameters and key components of C-MORL, we
perform an in-depth analysis and conduct ablation studies focusing on these aspects.

Table 3: Parameter study of C-MORL for Policy Initial-
ization on MO-Hopper-2d benchmark.

HV(105) EU(102) SP(102)
M=3 (1.5M steps) 1.38±0.12 2.53±0.13 0.58± 0.43
M=6 (1.5M steps) 1.39±0.04 2.55±0.04 0.16±0.11
M=11 (1.5M steps) 1.32±0.03 2.47±0.03 0.44±0.33
M=6 (3M steps) 1.45±0.05 2.63±0.05 0.22±0.10

Parameter study of C-MORL for
Pareto Initialization. As mentioned in
Section 5.1, during Pareto initialization
stage, C-MORL aims to derive a few
Pareto optimal solutions by training a set
of initial policies. To study the impact of
the number of initial policies M , we con-
duct experiments while keeping the total
number of training steps fixed at 1.5 ×
106 steps (including 1×106 steps for initialization stage) to ensure a fair comparison. Specifically, we
uniformly sample M = 3, 6, 11 preference vectors, as shown in Table 3. For example, with a sampling
interval of 0.2, the preference vectors are ω = [0, 1], [0.2, 0.8], [0.4, 0.6], [0.6, 0.4], [0.8, 0.2], [1, 0].
Intuitively, increasing M can enhance diversity among Pareto-optimal solutions, which benefits the
subsequent extension phase. However, since the number of total time steps is fixed, increasing M
reduces the training steps allocated to each initial policy. The trade-off is evident as the performance
for M = 11 is worse than for M = 6, indicating that the increasing of M does not always guarantee
better performance. To further investigate, we increase the number of training steps to 3× 106 (with
2× 106 steps allocated to initialization stage) while keeping M = 6. The results demonstrate that
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Table 2: Evaluation of HV, EU, and SP for continuous MORL tasks. T/O indicates that the training
time exceeded the maximum limit of 100 hours.

Environments Metrics CAPQL Q-Pensieve PG-MORL GPI-LS MORL/D C-MORL

MO-Hopper-2d
HV(105) 1.15±0.08 1.26±0.01 1.20±0.09 1.19±0.10 1.11±0.03 1.39±0.01
EU(102) 2.28±0.07 2.28±0.01 2.34±0.10 2.33±0.10 2.19±0.04 2.56±0.02
SP(102) 0.46±0.10 1.61±1.31 5.13±5.81 0.49±0.37 2.72±2.05 0.33±0.28

MO-Hopper-3d
HV(107) 1.65±0.45 1.66±1.20 1.59±0.45 1.70±0.29 1.94±0.05 2.29±0.01
EU(102) 1.53±0.28 1.26±0.79 1.47±0.25 1.62±0.10 1.68±0.02 1.80±0.01
SP(102) 2.31±3.16 1.77±0.88 0.76±0.91 0.74±1.22 0.84±0.17 0.28±0.09

MO-Ant-2d
HV(105) 1.11±0.69 2.55±0.54 0.35±0.08 3.10±0.25 1.03±0.26 3.13±0.20
EU(102) 2.16±0.94 3.14±0.49 0.81±0.23 4.28±0.19 2.22±0.49 4.29±0.19
SP(103) 0.18±0.07 3.63±2.71 2.20±3.48 3.61±2.13 2.90±2.61 1.67±0.85

MO-Ant-3d
HV(107) 1.22±0.33 3.82±0.43 0.94±0.12 0.55±0.81 1.00±0.17 4.09±0.13
EU(102) 1.30±0.29 2.18±0.41 1.07±0.07 2.41±0.20 1.51±0.12 2.57±0.06
SP(103) 0.17±0.09 0.83±0.07 0.02±0.01 1.96±0.79 0.85±0.57 0.03±0.01

MO-Humanoid-2d
HV(105) 3.30±0.05 0.90±0.62 2.62±0.32 1.98±0.02 2.81±0.07 3.43±0.06
EU(102) 4.75±0.04 1.89±0.45 4.06±0.32 3.67±0.02 4.32±0.06 4.78±0.05
SP(104) 0.00±0.00 1.08±1.39 0.13±0.17 0.00±0.00 0.00±0.00 0.18±0.27

Building-3d
HV(1012) 0.33±0.18 1.00±0.02 0.83±0.02 0.26±0.04 0.87±0.38 1.15±0.00
EU(104) 0.75±0.09 0.96±0.00 0.93±0.01 0.74±0.01 0.95±0.00 1.02±0.00
SP(105) 0.18±0.08 0.92±0.78 0.04±0.02 0.07±0.09 7.31±2.20 0.07±0.06

Building-9d
HV(1031) 4.29±0.73 7.28±0.57 T/O T/O T/O 7.93±0.07
EU(103) 3.31±0.06 3.46±0.03 T/O T/O T/O 3.50±0.00
SP(103) 4.34±3.72 1.04±0.38 T/O T/O T/O 2.79±0.40

proportionally increasing the total training steps and the number of initial policies leads to improved
performance, highlighting the importance of balancing training resources with policy diversity.

Parameter Study for Return Constraint Hyperparameter β. In Section 5.3 and Section 4, we
develop criteria and practical methods for specifying constraint values for problem Eq. 1. We conduct
parameter study for return constraint hyperparameter β in Eq. 3 to examine how constraint values
influence the generation of Pareto-optimal solutions. Table 4 presents the results of C-MORL with
various β on the MO-Ant-2d benchmark. When β = 0.9, C-MORL presents the best performance on
all metrics. Intuitively, a higher β ensures that when optimizing a specific objective, the expected
returns on other objectives do not decrease significantly, thereby facilitating adaptation to new
Pareto-optimal solutions. Table 4: Evaluation of HV, EU, and SP for

MO-Ant-2d benchmark with different β.

β HV(105) EU(102) SP(103)
0.5 3.05±0.26 4.24±0.25 2.54± 2.41
0.7 3.07±0.26 4.23±0.24 2.06±1.51
0.9 3.08±0.25 4.27±0.22 1.71±0.21

Ablation Study on Policy Selection. To evaluate the
effectiveness of the crowding distance-based policy se-
lection method, we compare the Pareto extension using
this approach with random selection. Table 5 presents
the comparison results, where Random and Crowd refer
to random policy selection and crowd distance based
policy selection. Each method is tested across three runs with the same seeds to ensure consistent
Pareto initialization and uses the same hyperparameters for the Pareto extension. The experimental
results show that C-MORL with crowd distance based policy selection outperforms the random
selection across all metrics, highlighting the effectiveness of the proposed policy selection method.
Intuitively, adjusting the policies in sparse areas facilitates better filling of the gaps in the Pareto front.

7 CONCLUSIONS AND DISCUSSIONS
Table 5: Evaluation of HV, EU, and SP for MO-Ant-3d
benchmark with different policy selection methods.

Selection method HV(107) EU(102) SP
Random 3.91±0.31 2.51±0.13 8.69±5.02
Crowd 4.10±0.14 2.57±0.05 8.34±2.84

This paper introduces a novel formulation
and efficient solution procedure for multi-
objective reinforcement learning problems.
It leverages a two-stage approach to con-
struct the Pareto front efficiently. By em-
ploying a precise selection of sparse regions on the Pareto front that require further exploration and
the utilization of a customized extension method, C-MORL not only achieves superior performance
in terms of training efficiency but also excels in terms of both Pareto front quality and user utility
compared to state-of-the-art baselines on both discrete and continuous benchmarks. In future work,
we plan to develop a more effective extension method so as to more efficiently discover the unexplored
Pareto front, especially for continuous environments. We are also interested in designing transfer
schemes of learned MORL policies, as well as coordination of agents for mastering real-world MORL
tasks with agent-specific reward signals.
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A POLICY SELECTION AND C-MORL ALGORITHM

This section provides details of policy selection and C-MORL algorithms.

In our C-MORL implementation, during the policy initialization stage, we employ parallel training of
M policies for pre-known preference vector ω. We maintain a policy buffer, meaning that in addition
to the final policy obtained in the Pareto initialization stage, intermediate policies are also saved in
the buffer. As a result, the number of candidate policies in the policy selection stage is usually larger
than M , incorporating the policies stored in the solution buffer.

We conduct policy selection in both after the Pareto initialization stage and during the Pareto extension
stage. Specifically, the number of extension policies N , the number of Pareto extension steps K and
the number of constrained optimization steps K

′
are predefined. During the Pareto extension stage,

C-MORL selects Pareto optimal solutions based on their crowd distance every K
K′ steps to make sure

that the sparse areas on Pareto-front have a higher potential to be explored.

Furthermore, in the policy selection process, the extreme policies on the Pareto front (for each
objective, the extreme solution on the Pareto front refers to the solution that achieves the maximum
value for that particular objective) are selected by default. The other Pareto-optimal solutions are
selected based on their crowd distance. The policy selection process continues until a predetermined
number of N policies are selected or until all Pareto-optimal policies have been selected. This
procedure is detailed in the following Algorithm 1.

Algorithm 1 Policy Selection

Require: Number of extension polices N , solution set X .
1: Initialize extension solution set Xextension = {}, number of selected policies Nselected = 0.
2: Solution set X ← filter Pareto-optimal solutions in solution set X .
3: Sort solutions in solution set X by crowd distance in descending order.
4: while Nselected < N and Nselected ̸= |X | do
5: Add the N th

selected solution in solution set X into extension solution set Xextension.
6: Nselected = Nselected + 1
7: end while

Ensure: extension solution set Xextension.

In Algorithm 2, we describe the whole procedure of our proposed C-MORL algorithm.
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Algorithm 2 C-MORL

Require: Number of initial polices M , Number of extension polices N ,
initial policy task set I = {(ωinit, πinit)}Minit=1, solution set X = {},
initial solution set Xinit = {}, number of objectives n, number of Pareto extension step K,
number of constrained update steps K

′
, preference set Ω, number of evaluation preferences E.

1: \\Pareto Initialization.
2: for (ωinit, πinit) ∈ I do
3: Solution (πinit,G

πinit)← solve task (ωinit, πinit).
4: Store solution (πinit,G

πinit) in solution set Xinit

5: end for
6: \\Policy Selection. (Algorithm 1)
7: Xextension ← PolicySelection(N,Xinit)
8: \\Pareto Extension.
9: for iter = 1, . . . ,K/K

′
do

10: \\Constrained Policy Optimization.
11: for (π,Gπ) ∈ Xextension do
12: for i = 1, . . . , n do
13: Initialize πi,0 = π.
14: for r = 1, . . . ,K

′
do

15: πi,r+1 ←solve optimization problem in Eq. 3.
16: Store solution (πi,r+1,G

πi,r+1) in X .
17: end for
18: end for
19: end for
20: \\Policy Selection. (Algorithm 1)
21: Xextension ← PolicySelection(N,X )
22: end for
23: \\Policy Assignment.
24: Sample E preferences from Ω.
25: for ω ∈ Ω do
26: Solve and find SMP policy via πSMP

ω = maxπ∈ΠP
fω(G

π).
27: Derive solution (πSMP

ω ,GπSMP
ω ) for ω.

28: end for
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B PROOF OF PROPOSITION 4.3

Proof. We prove by contradiction. Suppose that the feasible solution P
′
= (π′,Gπ′

) of problem Eq.
1 is not a Pareto-optimal solution. By the definition of Pareto-optimal solution, there exists a solution
P̂ = (π̂,Gπ̂) in P dominates P ′, i.e., Gπ′

i ≤ Gπ̂
i for ∀i ∈ [1, 2, . . . , n]. Assume Pr = (πr,Gr) is

the initial point of solving problem Eq. 1. Therefore, Gπ̂
l ≥ Gπ′

l ≥ Gπr

l . Because both Pr and P̂ and
Pareto-optimal solutions, they do not dominate each other. Therefore, given that Gπ̂

l ≥ Gπr

l , there
exists j ∈ [1, 2, . . . , n], j ̸= l that Gπr

j ≥ Gπ̂
j .

Now consider the values of dj and Gπ̂
j . Note that dj ≥ G̃j(k − 1). If Gπr

j ≥ Gπ̂
j > dj , then

Gπr
j ≥ Gπ̂

j > G̃j(k − 1), which is conflicting with the condition that G̃j(k − 1) is the (k − 1)th

objective value in G̃j . If Gπ̂
j ≤ dj , it conflicts with the assumtion that P̂ dominates P ′. Therefore, P̂

does not exist, and P
′

is a Pareto-optimal solution.

C PROOF OF PROPOSITION 4.4

In this Section, we provide a brief proof for the convergence of iterates majorly inspired by (Tessler
et al., 2018). For detailed proof, we refer to Chapter 6 of (Borkar, 2009).

Proof. At iteration r, the update steps for λi and π are as follows:

λr+1,i =Γλ[λr,i − η1(r)∇λL(λr,i, πr)]; (5a)
πr+1 =Γπ[πr − η2(r)∇πL(λr, πr)]. (5b)

Using the log-likelihood trick (Williams, 1992) for the policy update, we have the gradient step

∇λi
L(λ, π) =− (di − Eπθ

s∼µ[G
π
i ]); (6a)

∇πL(λ, π) =∇πEπθ
s∼µ[log π(s, a; θ)[R(s)− λ⊤ ·Gπ

1:n\l]]. (6b)

In the above, η1, η2 are step-sizes which ensure that the policy update is performed on a faster
timescale than that of the penalty coefficient λi. We also make the following assumption:

∞∑
k=0

η1(k) =

∞∑
k=0

η2(k) =∞,

∞∑
k=0

(
η1(k)

2 + η2(k)
2
)
<∞ and

η1(k)

η2(k)
→ 0 (7)

Then for the update of policy π, for any given λi with the slowest timescale, we can show the
following ODE governs the updates:

π̇t = Γπ(∇πL(λ, πt)); (8)

Similarly, for the update of λi, denote π(λt) as the limiting point of the π-recursion corresponding to
λt, we have the following ODE

λ̇i,t = Γλi(∇λiL(λt, π(λt))). (9)

Then following the characterization made by (Tessler et al., 2018) on the internally chain transitive
invariant sets of the ODE Eq. 9, we can conclude the convergence for the two-timescale stochastic
approximation processes.

D PROOF OF THEOREM 4.5

We reuse the notations for the primal problem Eq. 1 and its dual problem Eq. 2. For the nonconvex
primal formulation of MORL, solving its dual problem can only provide an upper bound on P ∗.
Thus it is of interest to evaluate how close the policy obtained by solving the dual is compared to P ∗.
Further, as we resort to interior point method to empirically solve the unconstrained problem, the
second part of Proposition 4.5 characterizes the distance between the solution from Eq. 4 and P ∗.
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Proof. To show the first part of the Theorem, it majorly relies on the well-established Fenchel-Moreau
theorem and the concavity of the perturbed function defined as the following P (ξ):

Denote the duality gap as△ = D∗ − P ∗. To show△ = 0, we first define the perturbation function
of problem equation 1:

P (ξ) ≜max
π

Gπ
l

s.t. Gπ
i ≥ di + ξi, i = 1, . . . , n, i ̸= l.

(10)

Then, the conditions under which problem Eq. 1 has zero duality gap are as follows:

Lemma D.1. (Fenchel-Moreau). If (i) Slater’s condition holds for (PI) and (ii) its perturbation
function P (ξ) is concave, then strong duality holds for (PI).

In D.1, Slater’s condition requires that there exists a feasible policy π such that all inequality
constraints are strictly satisfied for problem (1), i.e.,

Gπ
i > di, ∀i = 1, . . . , n, i ̸= l.

. See proof of D.1 in the Corollary. 30.2.2 of (Rockafellar, 1997). For the proof of concavity of
the perturbed C-MORL formulation P (ξ), it suffices to show for every ξ1, ξ2 ∈ Rn, and for any
µ ∈ (0, 1), the following equation holds:

P
[
µξ1 + (1− µ)ξ2

]
≥ µP (ξ1) + (1− µ)P (ξ2). (11)

We refer the detailed proof of Eq. 11 in the Proposition 1 of (Paternain et al., 2019).

To show the second part, we make use of the optimality conditions of the dual problem. As the
Lagrangian function of Eq. 1 is L(λ, π) = Gπ

l − λ⊤(d − Gπ
1:n\l), and denote G̃π

i = di − Gπ
i .

Without loss of generality, we follow the standard minimization problem formulation in optimization,
and we can write out the dual function as

D(λi) = min
π
−Gπ

l +

n∑
i=1,i̸=l

λiG̃
π
i (12)

When the problem is strictly feasible, there exists an optimal π∗ such that for each objective other
than the objective l, we have Gi > di. Then the first-order optimality condition holds:

−∇Gπ∗

l +

n∑
i=1,i̸=l

1

−t× (G̃π
i )
∇G̃π

i = 0. (13)

We then set λ∗
i = 1

−t×(G̃π
i )

and plug it back into Eq. 13, we can obtain

−∇Gπ∗

l +

n∑
i=1,i̸=l

λ∗
i∇G̃π

i = 0.

This shows that under the optimal policy π∗ and dual variables λ∗
i , i ̸= l, we find the optimal value

for the dual function as

L(λ, π∗) = Gπ∗

l −
n∑

i=1,i̸=l

λ∗
i G̃

π
i = Gπ∗

l −
n− 1

t
. (14)

Using the first-part result that the C-MORL formulation has zero duality gap, P ∗ = D(λ∗), we thus
have

P ∗ −Gπ∗

l ≤
n− 1

t
. (15)
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E EXPERIMENT SETUP DETAILS

E.1 BENCHMARK

To evaluate the performance of our method and baselines. we collect benchmarks from MO-
Gymnasium Felten et al. (2023a) and SustainGym Yeh et al. (2024). MO-Gymnasium is an open
source Python library that includes more than 20 environments from diverse domains. SustainGym
provides standardized benchmarks for sustainable energy systems, encompassing electric vehicles,
data centers, electrical markets, power plants, and building energy systems. Among these environ-
ments, the building thermal control tasks involve large commercial buildings with multiple zones,
aiming to regulate temperature while minimizing energy costs, making them suitable for developing
multi-objective control tasks. Additionally, we incorporate the objective of demand response (re-
ducing peak demand) and extend its multi-objective version. The details of all benchmarks are as
follows:

Minecart: A discrete MORL benchmark with a cart that collects two different and must return them
to the base while minimizing fuel consumption. The states of the cart include its x and y position, the
current speed, the sin and cos orientations, and the percentage of its occupied capacity by each ore.
The agent is allowed to choose between six actions: {mine, left, right, accelerate, brake, do nothing}.
Let ⊮ denote Dirac delta function. The reward of three objectives is defined as:

R1 = quantity of ore 1 collected if s is inside the base, else 0;

R2 = quantity of ore 2 collected if s is inside the base, else 0;

R3 = −0.005− 0.025⊮{a = accelerate } − 0.05⊮{a = mine }.

MO-Lunar-Lander: A discrete MORL benchmark with a classic rocket trajectory optimization
problem. The state is an eight-dimensional vector that includes the x, y coordinates of the lander, its
linear velocities in x and y, its angle, its angular velocity, and two booleans that represent whether
each leg is in contact with the ground or not. The action is a six-dimensional vector: {do nothing, fire
left orientation engine, fire main engine, fire right engine}. The reward of three objectives is defined
as:

R1 = +100 if landed successfully, − 100 if crashed, else 0;

R2 = shaping reward ;

R3 = fuel cost of the main engine ;

R4 = fuel cost of the side engines.

Fruit-Tree: A discrete MORL benchmark with a full binary tree of depth d with randomly assigned
vectorial reward r ∈ R6 on the leaf nodes Yang et al. (2019). These rewards are related to six
objectives, showing the amounts of six different nutrition facts of the fruits on the tree:{Protein,
Carbs, Fats, Vitamins, Minerals, Water}. The goal of the MORL agent is to find a path on the tree
from the root to a leaf node that maximizes utility for a given preference. The reward of six objectives
is defined as:

Ri = value of nutrient i in s, for i = 1 . . . 6.

MO-Hopper-2d: The observation and action space are defined as:

S ⊆ R11,A ⊆ R3.

This control task has two conflicting objectives: forward speed and jumping height.

The first objective is forward speed:
R1 = vx + C.

The second objective is jumping height:

R2 = 10(h− hinit) + C.

where C = −0.001
∑

i a
2
i is composed of extra bonus and energy efficiency, vx is the speed toward

x direction, h is the current height, hinit is the initial height, ai is the action of each actuator.

MO-Hopper-3d: The observation and action space are defined as:

S ⊆ R11,A ⊆ R3.
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This control task has three conflicting objectives: forward speed, jumping height, and energy effi-
ciency.

The first objective is forward speed:
R1 = vx.

The second objective is jumping height:

R2 = 10(h− hinit).

The third objective is energy efficiency:

R3 = −
∑
i

a2i .

where vx is the speed toward x direction, h is the current height, hinit is the initial height, ai is the
action of each actuator.

MO-Ant-2d: The observation and action space are defined as:

S ⊆ R27,A ⊆ R8.

This control task has two conflicting objectives: x-axis velocity and y-axis velocity.

The first objective is x-axis velocity:
R1 = vx.

The second objective is y-axis velocity:
R2 = vy.

where vx is x-axis speed, vy is y-axis speed, ai is the action of each actuator.

MO-Ant-3d: The observation and action space are defined as:

S ⊆ R27,A ⊆ R8.

This control task has three conflicting objectives: x-axis speed, y-axis speed, and control cost.

The first objective is x-axis velocity:
R1 = vx.

The second objective is y-axis velocity:
R2 = vy.

The third objective is control cost:
R3 = −2

∑
i

a2i .

where vx is x-axis speed, vy is y-axis speed, ai is the action of each actuator.

MO-Humanoid-2d: The observation and action space are defined as:

S ⊆ R376,A ⊆ R17.

This control task has two conflicting objectives: forward speed and control cost. MO-Humanoid was
chosen because it has one of the most complex state space among all Mujoco environments, with 348
states.

The first objective is forward speed:
R1 = vx.

The second objective is control cost:

R2 = −10
∑
i

a2i .

where vx is the speed in x direction, ai is the action of each actuator.
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Building-3d: A building thermal control environment that controls the temperature of a commercial
building with 23 zones. The states contain the temperature of multiple zones, the heat acquisition
from occupant’s activities, the heat gain from the solar irradiance, the ground temperature, the outdoor
environment temperature, and the current electricity price. The actions set the controlled heating
supply of the zones. The conflicting objectives are minimizing energy cost, reducing the temperature
difference between zonal temperatures and user-set points, and managing the ramping rate of power
consumption:

R1 = M − 0.05 ∗
∑
i

|Ti[t]− Ti,user[t]|;

R2 = M − 0.05 ∗
∑
i

c[t]|Pi[t]|;

R3 = M − |(
∑
i

|Pi[t]| −
∑
i

|Pi[t− 1]|)|.

where M = 23 is the number of zones; Ti and Ti,user are indoor temperature and user setting point
of zone i, respectively; c is electricity price; Pi is heating supply power of zone i; t is the index of
environment time step.

Building-9d: A modified version of Building-3d:. Instead of calculating the reward based on all
zones collectively, this version evaluates the reward for each of the three floors of the commercial
building separately. Consequently, this results in a total of 3× 3 = 9 objectives.

Table 6: Environment details of continuous control benchmarks

Environments Continuous (Y/N) Number of Objectives State Space Action Space
Minecart N 3 S ⊆ R7 A ⊆ R6

MO-Lunar-Lander N 4 S ⊆ R8 A ⊆ R4

Fruit-Tree N 6 S ⊆ R2 A ⊆ R2

MO-Hopper-2d Y 2 S ⊆ R11 A ⊆ R3

MO-Hopper-3d Y 3 S ⊆ R11 A ⊆ R3

MO-Ant-2d Y 2 S ⊆ R105 A ⊆ R8

MO-Ant-3d Y 3 S ⊆ R105 A ⊆ R8

MO-Humanoid-2d Y 2 S ⊆ R348 A ⊆ R17

Building-3d Y 3 S ⊆ R29 A ⊆ R23

Building-9d Y 9 S ⊆ R29 A ⊆ R23

E.2 TRAINING DETAILS

We run all the experiments on a cloud server including CPU Intel Xeon Processor and GPU Tesla T4.
In the Pareto initialization stage, we use PPO algorithm implemented by Kostrikov (2018). The PPO
parameters are reported in Table 7 and Table 8. For constrained optimization, we adopt C-MORL-IPO
method. For the baseline implementations, Q-Pensieve (Hung et al., 2022) and PG-MORL (Xu et al.,
2020) are reproduced using the official code provided by their respective papers, ensuring consistency
with the original experiments. For Envelope (Yang et al., 2019), CAPQL (Lu et al., 2022), GPI-
LS (Alegre et al., 2023), and MORL/D (Felten et al., 2024), we utilize the implementations available
in the MORL-baselines library (Felten et al., 2023a), adapting them as necessary to align with our
experimental setup. The hyperparameters of C-MORL-IPO include:

• Number of initial policy M : the number of initial policies. This parameter is also related
to the Pareto initialization stage.

• Number of extension policy N : the number of policies selected in the Pareto extension
stage. This parameter is also related to the Pareto extension stage.

• Log barrier coef t: the tunable parameter on the log barrier.
• Constraint relax coef β: the constraint relaxing coefficient β in Eq. 3.
• Extension steps K: the number of Pareto extension steps in the Pareto extension stage.
• Time step: the total time step contains initialization steps and extension steps.

To be specific, time step = timesteps per actorbatch × (M + N × n), where
timesteps per actorbatch is a PPO parameter.
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The parameters we used are provided in Table 9 and Table 10.

In policy initialization stage, the preference vectors for training initial policies are uniformly sampled
from the preference space Ω. For example, in the case of MO-Ant-2d, we set the sampling interval to
0.2, with the minimum and maximum values for each dimension being 0 and 1, respectively. This
results in the following preference vectors: [0, 1], [0.2, 0.8], [0.4, 0.6], [0.6, 0.4], [0.8, 0.2], and [1, 0],
for a total of 6 preference vectors.

Table 7: PPO Hyperparameters for discrete baselines.

parameter name MinecartMO-Lunar-LanderFruit-Tree
steps per actor batch 512 512 512
LR(×10−4) 3 3 3
LR decay ratio 1 1 1
gamma 0.995 0.995 0.995
gae lambda 0.95 0.95 0.95
num mini batch 32 32 32
ppo epoch 10 10 10
entropy coef 0 0 0
value loss coef 0.5 0.5 0.5
max grad norm 0.5 0.5 0.5
clip param 0.2 0.2 0.2

Table 8: PPO Hyperparameters for continuous baselines.

parameter name MO-Hopper-2dMO-Hopper-3dMO-Ant-2dMO-Ant-3dMO-Humanoid-2dBuilding-3dBuilding-9d
steps per actor batch 512 512 512 512 512 512 512
LR(×10−4) 3 3 3 3 3 3 3
LR decay ratio 1 1 1 1 1 1 1
gamma 0.995 0.995 0.995 0.995 0.995 0.995 0.995
gae lambda 0.95 0.95 0.95 0.95 0.95 0.95 0.95
num mini batch 32 32 32 32 32 32 32
ppo epoch 10 10 10 10 10 10 10
entropy coef 0 0 0 0 0 0 0
value loss coef 0.5 0.5 0.5 0.5 0.5 0.5 0.5
max grad norm 0.5 0.5 0.5 0.5 0.5 0.5 0.5
clip param 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table 9: C-MORL-IPO Hyperparameters for discrete baselines.

parameter name MinecartMO-Lunar-LanderFruit-Tree
M 6 4 21
N 6 6 6
log barrier coef 20 20 20
constraint relax coef 0.90 0.90 0.90
Pareto extension step 60 50 30
time step (×105) 5 5 5

E.3 EVALUATION

We evaluate the quality of Pareto front with the following metrics:
Definition E.1. (Hypervolume). Let P be a Pareto front approximation in an n-dimensional objective
space and G0 be the reference point. Then the hypervolume metricH(P ) is calculated asH(P ) =∫
Rm ⊮H(P )(z)dz, where H(P ) = {z ∈ Z|∃1 ≤ j ≤ |P | : G0 ⪯ z ⪯ P (j)}. P (j) is the jth

solution in P , ⪯ is the relation operator of objective dominance, and ⊮H(P ) is a Dirac delta function
that equals 1 if z ∈ H(P ) and 0 otherwise. A higher hypervolume is better.
Definition E.2. (Expected Utility). Let P be a Pareto front approximation in an n-dimensional
objective space and Π be the policy set. The Expected Utility metric is U(P ) : U(P ) =

Eω∼Ω

[
ω⊤GπSMP

ω

]
. A higher expected utility is better.

Definition E.3. (Sparsity). Let P be a Pareto front approximation in an n-dimensional objective
space. Then the Sparsity metric S(P ) is

S(P ) =
1

|P | − 1

n∑
i=1

|P |−1∑
k=1

(
G̃i(k)− G̃i(k + 1)

)2

, (16)

where G̃i is the sorted list for the ith objective values in P , and G̃i(k) is the kth value in this sorted
list. Lower sparsity is better.
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Table 10: C-MORL-IPO Hyperparameters for continuous baselines.

parameter name MO-Hopper-2dMO-Hopper-3dMO-Ant-2dMO-Ant-3dMO-Humanoid-2dBuilding-3dBuilding-9d
M 6 6 6 6 6 6 9
N 5 6 5 6 5 6 6
log barrier coef 20 20 20 20 20 20 20
constraint relax coef 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Pareto extension step 60 100 60 100 60 100 100
time step (×106) 1.5 2.0 1.5 2.0 1.5 2.0 2.5

For metrics evaluation, we evenly generate an evaluation preference set in a systematic manner
with specified intervals ∆ = 0.01, ∆ = 0.1, and ∆ = 0.5 for benchmarks with two objectives,
three or four objectives, and six or nine objectives, respectively. For example, for benchmarks with
two objectives, we sample preference vectors covering a range of preferences from ω = [0, 1] to
ω = [1, 0] with a specified interval ∆ = 0.01, totally 1, 01 preference pairs. For C-MORL and other
multi-policy baselines, the calculation of metrics is the same. For single preference-conditioned
policy methods, the calculation of metrics is slightly different . Specifically, since in a multi-policy
setting, the policies in the Pareto set are preference-irrelevant, we directly use all solutions in the
Pareto front to compute hypervolume and sparsity. For single preference-conditioned policy methods,
we first evaluate the solutions using all the preferences in the evaluation preference set. Then, the
non-dominated solutions that form the Pareto front are used to compute hypervolume and sparsity.
Expected utility is evaluated for multi-policy baselines based on the evaluation preference set, and
the execution results on all preferences from the evaluation preference set are utilized for single
preference-conditioned policy methods.

F PROCEDURE OF SOLVING C-MORL-CPO AND C-MORL-IPO

F.1 C-MORL-CPO

C-MORL-CPO Rather than applying sampling-based approaches (Duan et al., 2016) for find-
ing policy updates in the relaxed formulation, empirically we can follow the adapted trust region
method (Schulman et al., 2015) for CPO updates (Achiam et al., 2017):

πr+1,i = arg max
π∈Πθ

{Gπ
l : Gπ

i ≥ βGπr
i , i = 1, . . . , n, i ̸= l;D(π, πr) ≤ δ}. (17)

The trust region set is defined as {πθ ∈ Πθ : D̄KL(π||πr) ≤ δ}, where D̄KL denotes the estimated
mean of KL-divergence given state s, and serves as a surrogate function of the original distance
function. Such trust region optimization updates hold guarantees of monotonic performance improve-
ment and constraint satisfaction. It is noteworthy that the original CPO algorithm requires a feasible
initialization, which by itself can be very difficult, especially with multiple, general constraints
involving policy returns (Zhou et al., 2022). While in our formulation for solving MORL, we can
almost guarantee the initial policy is always feasible for the solving process of extended policy with
properly selected β along with a well-initialized policy set.

However, solving this problem requires evaluation of the constraint functions to determine whether
a proposed point π is feasible. Therefore, follow (Achiam et al., 2017), we replace the objectives
functions with surrogate functions, which are easy to estimate from samples collected on πr. To be
specific, we solve the following optimization problem to approximately solve Eq. 17:

πr+1 = arg max
π∈Πθ

Es∼dπr ,a∼π[A
πr (s, a)]

s.t. Gπr
i −

1

1− γ
Es∼dπr ,a∼π[A

πr
i (s, a)] ≥ βGπr

i i = 1, . . . , n, i ̸= l

D̄KL(π||πr) ≤ δ.

(18)

However, Eq. 18 is impractical to be solved directly especially when the policy is parameterized
as a neural network with high-dimensional parameter spaces. We follow (Achiam et al., 2017) to
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implement an approximation to the update Eq. 18 that can be computed efficiently:

θr+1 = argmax
θ

g⊤(θ − θr)

s.t. ci + bTi (θ − θr) ≤ 0 i = 1, . . . , n, i ̸= l

1

2
(θ − θr)

TH(θ − θr) ≤ δ.

(19)

where g is the gradient of the lth objective that is chosen to be optimized, bi denotes the gradient of
the ith objective served as constraint, H is the Hessian of the KL-divergence, and ci

.
= βGπr

i −Gπ
i .

The dual problem of Eq. 19 can be expressed as:

max
λ≥0
ν≻0

−1
2λ

(
gTH−1g − 2rν + νTSν

)
+ νT c− λδ

2
, (20)

where B
.
= [b1, . . . , bn], c

.
= [c1, . . . , cn]

T , r .
= gTH−1B, and S

.
= BTH−1B. We derive λ∗, ν∗

by solving the dual, then the solution to the primal Eq. equation 19 is

θ∗ = θr +
1

λ∗H
−1(g −Bν∗). (21)

In our implementation, we adopt C-MORL-CPO to solve MORL tasks with two objectives, i.e.,
constrained optimization problem that only involves single constraint. Therefore, we can directly
compute the dual variables λ∗ and ν∗ with the analytical solution as follows Achiam et al. (2017):

ν∗ =

(
λ∗c− r

s

)
+

,

λ∗ = argmax
λ≥0

{
fa(λ)

.
= 1

2λ

(
r2

s − q
)
+ λ

2

(
n2

s − δ
)
− rr

s if λc− r > 0

fb(λ)
.
= − 1

2

(
q
λ + λδ

)
otherwise,

(22)

with q = gTH−1g, r = gTH−1b, and s = bTH−1b. If the constrains in Eq.18 are not satisfied,
the constrained optimization towards the corresponding objective direction in the current Pareto
extension iteration will be terminated.

F.2 C-MORL-IPO

Recall in Section 5.3, we augment the objective function of the objective that is being optimized
with logarithmic barrier functions for other constrained objectives. Note that the logarithmic barrier
functions can be integrated with any other policy optimization methods, in this paper, we follow (Liu
et al., 2020) to integrate it with PPO (Schulman et al., 2017) for training our policies. Therefore, the
surrogate objective becomes:

max LCLIP (θ) +

n∑
i=1

ϕ(Gπ
i ) (23)

where ϕ(Gπ
i ) =

log(Gπ
i −βGπr

i )

t and t is a hyperparameter; LCLIP (θ) is the clipped surrogate objective
of PPO. As t approaches∞, the approximation becomes closer to the indicator function.

G ADDITIONAL RESULTS

G.1 PARAMETER STUDY FOR NUMBER OF EXTENSION POLICIES
Table 11: Ablation study of C-MORL for the number of extension policies on MO-Ant-3d benchmark.

N=6 N=12 N=18
HV(107) 4.03±0.17 4.21±0.22 4.20±0.27
EU(102) 2.59±0.08 2.65±0.08 2.63±0.11
SP(10) 2.91±0.90 2.00±0.27 1.53±0.23

It is more difficult to derive Pareto-optimal policies to cover the entire Pareto front for the continuous
MORL tasks with more than two objectives. In this subsection we look into different settings for
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C-MORL and associated impacts to the algorithm performances. Table 11 presents the results of
the ablation study for the number of extension policies on the MO-Ant-3d benchmark, which is
one of the continuous MORL tasks with numerous objectives. We can observe that when N = 12,
C-MORL can derive a Pareto front with much higher hypervolume and lower sparsity than that of
N = 6. When N = 18, the result is similar, indicating that 12 policies are sufficient to be extended
to fill the Pareto front for this task. Fig. 7 further illustrates the Pareto extension process with varying
values of the number of extension policies (N = 6, 12, 18) on the MO-Ant-3d benchmark. It can
be observed that as the number of policies selected to be extended increases, the hypervolume also
increases. Notably, Fig. 7 highlights that when N = 18, there is a more comprehensive exploration
of the objectives of Y velocity. This observation suggests a more thorough exploration of sparser
areas on the Pareto front.

Figure 7: Ablation study of C-MORL for the number of extension policies on MO-Hopper-v3
benchmark. Number of extension policies on MO-Ant-3d benchmark N = 6, 12, 18 and number of
Pareto extension step K = 0, 30, 60, respectively.

G.2 ABLATION STUDY ON BUFFER SIZE.

In order to better understand how Buffer size can influence the performance of C-MORL, we provide
the comparison of the best baseline and C-MORL with various buffer sizes, as shown in Table 12
and Table 13. These studies show that even with reduced buffer sizes, C-MORL maintains highly
competitive performance. Compared to PG-MORL, our C-MORL achieves superior results while
requiring significantly fewer policies. Another notable observation is that, in some benchmarks, the
results remain consistent regardless of the buffer size. This consistency indicates that the number of
Pareto optimal policies in these cases does not exceed the buffer size.

G.3 EXPECTED UTILITY RESULTS

C-MORL outperforms other methods in terms of expected utility across nine out of ten benchmarks,
which can be attributed to two significant advantages. The first advantage is related to the inherent
characteristics of the multi-policy approach. As illustrated in Fig. 8, single preference-conditioned
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Table 12: Evaluation of HV, EU, and SP in discrete MORL tasks under varying buffer sizes, alongside
a comparison with the best-performing baseline.

Environments Metrics Best Baseline B=20 B=50 B=100 B=200

Minecart
HV(102) 6.05±0.37(GPI-LS) 6.22±0.70 6.57±0.92 6.63±0.89 6.77±0.88

EU(10−1) 2.29±0.32(GPI-LS) 1.88±0.59 2.05±0.67 2.09±0.65 2.12±0.66
SP(10−1) 0.10±0.00(GPI-LS) 0.64±0.17 0.19±0.02 0.09±0.03 0.05±0.02

MO-Lunar-Lander
HV(109) 1.06±0.16(GPI-LS) 1.01±0.07 1.08±0.04 1.12±0.03 1.12±0.03
EU(101) 1.81±0.34(GPI-LS) 1.84±0.31 2.21±0.23 2.35±0.18 2.35±0.18
SP(103) 0.13±0.01(GPI-LS) 1.14±2.14 1.65±1.83 1.04±1.24 1.04±1.24

Fruit-Tree
HV(104) 3.66±0.23(Envelope) 2.34±0.29 2.86±0.19 3.17±0.20 3.67±0.14

EU 6.15±0.00(Envelope/GPI-LS) 6.14±0.13 6.38±0.10 6.46±0.08 6.53±0.03
SP 0.53±0.02(GPI-LS) 2.62±0.49 1.65±1.83 0.81±0.12 0.04±0.00

Table 13: Evaluation of HV, EU, and SP in continuous MORL tasks under varying buffer sizes,
alongside a comparison with the best-performing baseline.

Environments Metrics Best Baseline B=20 B=50 B=100 B=200

MO-Hopper-2d
HV(105) 1.26±0.01(Q-Pensieve) 1.39±0.01 1.39±0.01 1.39±0.01 -
EU(102) 2.34±0.10(PG-MORL) 2.55±0.01 2.56±0.02 2.56±0.02 -
SP(102) 0.46±0.10(CAPQL) 2.68±1.66 0.57±0.29 0.33±0.28 -

MO-Hopper-3d
HV(107) 1.70±0.29(GPI-LS) 2.03±0.15 2.20±0.04 2.26±0.02 2.29±0.01
EU(102) 1.62±0.10(GPI-LS) 1.72±0.08 1.78±0.02 1.80±0.01 1.80±0.01
SP(102) 0.74±1.22(GPI-LS) 7.61±2.24 2.74±1.91 0.86±0.27 0.28±0.09

MO-Ant-2d
HV(105) 3.10±0.25(GPI-LS) 3.08±0.21 3.13±0.20 3.13±0.20 -
EU(102) 4.28±0.19(GPI-LS) 4.27±0.19 4.29±0.19 4.29±0.19 -
SP(103) 0.18±0.07(CAPQL) 3.66±1.29 1.67±0.85 1.67±0.85 -

MO-Ant-3d
HV(107) 3.82±0.43(Q-Pensieve) 3.52±0.16 3.83±0.17 4.00±0.12 4.09±0.13
EU(102) 2.41±0.20(GPI-LS) 2.48±0.09 2.55±0.08 2.57±0.07 2.57±0.06
SP(103) 0.02±0.01(PG-MORL) 1.56±0.67 0.30±0.19 0.08±0.05 0.03±0.01

MO-Humanoid-2d
HV(105) 3.30±0.05(CAPQL) 3.43±0.06 3.43±0.06 3.43±0.06 -
EU(102) 4.75±0.04(CAPQL) 4.78±0.05 4.78±0.05 4.78±0.05 -
SP(104) 0±0.00(CAPQL/GPI-LS) 0.18±0.27 0.18±0.27 0.18±0.27 -

Building-3d
HV(1012) 1.00±0.02(Q-Pensieve) 1.14±0.00 1.14±0.00 1.15±0.00 1.15±0.00
EU(104) 0.96±0.00(Q-Pensieve) 1.02±0.00 1.02±0.00 1.02±0.00 1.02±0.00
SP(104) 0.37±0.22(PG-MORL) 1.04±0.16 1.98±0.38 0.69±0.62 0.69±0.62

Building-9d
HV(1031) 7.28±0.57(Q-Pensieve) 7.64±0.17 7.93±0.07 7.93±0.07 7.93±0.07
EU(103) 3.46±0.03(Q-Pensieve) 3.50±0.00 3.52±0.00 3.52±0.00 3.52±0.00
SP(104) 0.10±0.04(Q-Pensieve) 1.16±0.19 0.28±0.03 0.28±0.04 0.28±0.04

Figure 8: Evaluation results of sampled preferences on MO-Ant-3d benchmark. (a) Q-Pensieve
evaluation. Returns of evaluated preference pairs with interval 0.1 are marked with orange points,
while Pareto-optimal solutions are marked with blue points. (b) C-MORL evaluation. Pareto-optimal
solutions are marked with blue points.
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policy approach does not guarantee that each preference sampled to be evaluated corresponds to
a solution on the Pareto front. The Pareto front exclusively encompasses solutions that are Pareto
optimal, while the majority of preferences do not lead to such optimal solutions. This limitation
arises from the inherent difficulty of achieving Pareto optimal for every preference in this kind
of approach. In contrast, the multi-policy approach yields a Pareto solution set that exclusively
comprises a Pareto-optimal solution set that is irrelevant of specific preferences. Consequently, when
presented with an unseen preference, one can simply select the solution with the utility (i.e. the SMP
in Eq. 3.1) from this pre-existing set.

H DISCUSSION AND LIMITATIONS OF C-MORL

With the novel design of Pareto initialization, policy selection, and Pareto extension, the proposed
method gives a novel and systematic approach on exploring the Pareto front and optimizing the
policies. Despite the capability of our approach to effectively populate the Pareto front, we observe
that in some benchmarks, the current constrained policy optimization method fails to adequately
extend the policies toward certain objective directions. Consequently, there still exist unexplored
areas on the Pareto front. To address this issue, we plan to develop a more effective extension method.
Additionally, since our implementation is based on PPO, its training efficiency is outstanding, but its
sample efficiency is relatively low. In the future, we plan to develop more sample-efficient methods
for MORL.
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