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Abstract

This paper introduces and investigates an extension of the price dy-
namics in serial monopoly blockchain described in Nisan [Nis23], tailored
to accommodate quasi-patient users. Our model reflects users’ diminish-
ing interest in having their transactions added to the ledger over time,
resulting in only a fraction δ of the current demand persisting in the sub-
sequent round. The framework presented by Lavi et al. [LSZ22], where
users are impatient and derive utility only from immediate transaction
inclusion in the next block, corresponds to δ = 0. Fully patient users
who wait forever as in [Nis23], correspond to δ = 1 in our model. This
work provides new bounds on the price dynamics for the more interesting
case δ ∈ (0, 1), showing somewhat unexpected effects on the dynamics
itself. While the dynamics for the fully patient case is essentially “obliv-
ious” of the structure of the daily demand curve, this is no longer true
for finite δ < 1. Moreover, the dynamics undergoes a “transition phase”
where for some δ it behaves as in the fully patient setting (δ = 1), and for
some smaller values δ′ < δ it stops “oscillating” and stays at the highest
(“monopolist”) price. We provide quantitative bounds and analytical re-
sults that apply to different demand functions showing that the bounds
for δ = 1 are not tight in general, for δ < 1. These provide guarantees
on the minimum (“admission”) price such that transaction willing to pay
that price are eventually included (and those who do not want are never
included).

1 Introduction

Transaction fee mechanisms are a fundamental part of a blockchain. A block
leader, in general, has full freedom to choose which transaction from the mem-
pool (and private transaction pool) to include in a block. A well designed
transaction fee mechanism contributes to maximizing the social welfare, which
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is the total value of the chosen transactions subject to the block size constraint.
The most prominent proof-of-work blockchain, Bitcoin, employs a pay-your-bid
mechanism. In particular, the higher the bid attached to a transaction, the
higher the chances to be included in the next block by the miner. The user-paid
bids are rewarded to the miner. Rational miners will always try to maximize
their revenue and will therefore choose the highest paying transactions. Since
block space is scarce, this mechanism can drive prices high, especially when
there is congestion and hence transaction inclusion might experience a consid-
erable delay. A recent example is the Bitcoin halving at block 840,000. Users
paid insane amounts in fees for their transaction to be included. For example
one user paid 800M Sats (approx. $500K) in transaction fee for a transaction
transferring $0.70. In total block 840,000 generated $2.4M in fees.1 Many users
wanted their transaction to be included in this historical block and were willing
to pay huge amounts of transaction fee. This came at the cost that “normal”
users had to experience a bigger delay for their transactions to be included.

Opposing to the pay-your-bid mechanism is the dynamic posted price mech-
anism, like EIP-1559. In Ethereum’s EIP-1559, the transaction fee is split into
base fee and a tip. The block proposer only receives the tips while the base fee
is burned. Rational block proposers will therefore only select transactions that
pay at least the base fee.2 The target of EIP-1559 is to have half-full blocks. If
the previous block was filled less (more) than the target, the base fee is lowered
(increased) accordingly. The dynamic base fee and the target of half-full blocks
allows to handle low and high demand phases.

A different approach to transaction fee is that of Cardano where there is a
fixed fee (per byte). The transaction selection process involves a first-in-first-out
(FIFO) mechanism. The transaction fees of included transactions are collected
in a pool and distributed at the end of an epoch (5 days). The distribution ensues
proportional to the proposed blocks in the epoch. High priority transactions
willing to pay higher fees may not experience faster transaction inclusion.3

A natural question to ask is whether block leaders should be allowed to set
their own fees rather than a fee imposed by the protocol. The study of such a
monopolist pricing mechanism is part of Nisan [Nis23] and this paper. In the
monopolist pricing mechanism, transactions willing to pay at least the price set
by the monopolist are included in a block (until the block is full). Unlike in the
pay-your-bid mechanism, all included transactions pay exactly the price set by
the monopolist (rather than their bid). Or, in the words of Lavi et al.[LSZ22],
the monopolist chooses the number of accepted transactions in the block and
all transactions pay the smallest bid among the accepted transactions.

In his paper [Nis23], Nisan assumes that block leaders set their own prices

1See here: https://www.blockchain.com/explorer/blocks/btc/840000 (accessed on April
25, 2024)

2It may be that a block proposer has some positive intrinsic value for some transaction that
pays less than the base fee, and therefore includes this transaction by paying the remaining
base fee himself. Note that this is related to active block proposers, see Bahrani et al. [BGR24].

3There is a proposal to split the blocks in different tiers with different fees. Priority tiers
have higher fees and ensure that high priority transactions paying enough fees get fast inclusion
in the eligible tier, see Kiayias et al. [KKLP23].
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and all transaction that are not included in a block remain in the mempool
forever until they are picked up eventually in a future block. This assumption,
however is too strong and does not reflect real world behavior. Impatient users
may cancel their transaction after some time if not included in a block. We
assume that only a fraction of unsupplied transactions remain in the next round.

1.1 Our Contributions

We put forward a model for monopolist pricing dynamics tailored to accommo-
date quasi-patient users (see Section 2 for details and formal definitions). Our
model incorporates a “decay” parameter δ ∈ [0, 1] which corresponds to the
fraction of pending transactions that remain in the mempool at the next round
(thus, a fraction 1 − δ of pending transactions gets withdrawn by the users at
each round). The case of impatient users in Lavi et al. [LSZ22] corresponds to
δ = 0, and the case of patient users in Nisan [Nis23] to δ = 1. Our model spans
all intermediate scenarios between these two extreme cases, and it allows us to
study how monopolist pricing mechanisms behave at different patience levels δ.
In particular, we no longer assume patient users who are willing to wait (and
pay) indefinitely long for their transactions to be included on the ledger.

We provide analytical results on the monopolistic pricing dynamics for any
δ ∈ (0, 1). Our findings highlight that monopolistic price mechanisms for quasi-
patient users still posses good features, though with some key differences with
the case of patient users. In Section 3, we analyze the dynamics for different
values of δ and how it affects their behavior. In particular, we demonstrate
that in regimes with a sufficiently small fraction of expiring transactions (δ < 1
sufficiently large), the dynamics behaves qualitatively similarly to the case of no
expiring transactions (δ = 1). The analysis highlights several differences, par-
ticularly how the “structure” of Q influences the dynamics for δ < 1 compared
to the case δ = 1.

Specifically, Theorem 2 informally states that:

• Prices decrease or jump up to maximum price. The price for being in-
cluded in the current block is either smaller than the one at the previous
block, or it is the maximum price.

• Immediate inclusion price (monopolistic price). This is the largest price
that the monopolist ever asks, which is also the price that is always asked
if users are impatient and there is no pent-up demand [LSZ22].

• Minimum admission price. Pent-up demand due to quasi-patient users,
makes the price fluctuate over time between the monopolistic (maximum)
price and some minimum admission price.

A direct comparison between our bounds for quasi-patient users and the case
of patient users, shows the following. First, our upper bounds on the minimum
admission price depend on δ. Second, the minimum admission price for δ < 1
is at least the minimum admission price for δ = 1 (cf. our Theorem 2 and
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Theorem 1 below from [Nis23]). In Section 3.2, we prove lower bounds on the
minimum admission price. In particular, Theorem 4 states the following:

• The minimum admission price for impatient users is never tight for quasi-
patient users. That is, for every δ < 1 there is a demand function for which
the minimum admission price is strictly higher.

• Collapse to the impatient case. The change in the dynamics is not con-
tinuous in δ. For some small positive δ > 0, the dynamics behave exactly
like the impatient users case (δ = 0). That is, the minimum admission
price coincides with the (maximum) monopolist price at all time steps.

Furthermore, the above mentioned collapse means that the positive effect of
pent-up demand, which results in a minimum admission price smaller than the
monopolist price, may completely be nullified for quasi-patient users. Another
important difference is that, for patient users, the minimum admission price is
“almost” independent of the structure of the demand function (it only depends
on s and on the revenue at the monopolist price). This is no longer true for
quasi-patient users, where the “overall strcture” of the demand function seems
to play a role.

1.2 Related Work

Transaction fee mechanisms are analyzed from the perspective of mechanism
design in Roughgarden [Rou21]. Additionally the dynamic posted price mecha-
nism EIP-1559 is analyzed. Follow up work on transaction fee mechanism design
includes [FMPS21, CS23, CRS24, CSLZZ24, BGR24]. More work focusing on
the dynamics of EIP-1559 is [LMR+21, RSM+21, LRMP23].

Monopolistic pricing mechanisms. Monopolistic pricing mechanisms have
been studied in Lavi et al. [LSZ22], Yao [Yao18] and Basu et al. [BEOS19] prior
to Nisan [Nis23] and this paper. Lavi et al. [LSZ22] study the monopolistic
pricing mechanism and describe the mechanism as follows: (1) Transactions
specify bids (maximal fee) they are willing to pay; (2) Miners (or block lead-
ers/monopolists) choose which subset to include in their block; (3) All trans-
actions in the block pay the exact same fee which is equal to the smallest bid
among the included transactions; (4) Miners maximize their revenue which is the
product of the minimal bid and the number of included transactions. The focus
of their paper is on a single shot game where users are maximally impatient in
the sense that they derive utility from immediate block inclusion and no utility
for inclusion in a future block. They show that truthful bidding (users bidding
their true valuation) is “nearly” an equilibrium, i.e. relative gains from strategic
bidding go to zero as number of transactions increase. The revenue achieved
monopolistic pricing mechanism collects at least as much revenue from maxi-
mally impatient users as the pay-your-bid mechanism (as employed in Bitcoin).
Yao [Yao18] builds on the work of [LSZ22] and studies properties of the mo-
nopolistic pricing mechanism, in particular, incentive compatibility when user’s
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valuations are drawn from an i.i.d. distribution. Basu et al. [BEOS19] study
a similar setting to the one of [LSZ22], however, in their model, they consider
many miners with the goal of maximizing social welfare. Note that the model of
[LSZ22] does not aim to maximize social welfare. To see this, note that, if the
monopolist chooses a subset of transactions that does not fill the block entirely,
the monopolist could potentially include transactions with lower bids. However,
doing so would decrease the price that all included transactions have to pay and
hence would lower the monopolist’s revenue.

Nisan [Nis23] studies a monopolist pricing mechanism, in which each block
leader (or proposer) is allowed to choose the price p for his block. Transactions
willing to pay at least p may be included by the monopolist and all included
transactions pay exactly p.4 Rationality of block leaders implies that the block
leaders will choose a price that maximizes their revenue given price and the
block space filled by the chosen transactions.5 Nisan’s model involves infinitely
patient users, i.e. users’ valuations of transaction inclusion do not depreciate
over time. Transactions stay in the mempool until eventually picked up by some
block leader. Block leaders face the same demand distribution at every step in
time plus the pent-up demand from the previous steps, that is, additionally to
the daily demand the block leaders faces the transactions that were not picked
up by previous block leaders. When optimizing given the current total demand,
the block leader only optimizes for the current block (myopic block leader).
Furthermore, the available block space for each block is fixed and demand is
known to the block leader.

Kiayias et al. [KKLP23] study a mechanism to account for transactions
with different priority/urgency. In particular, the mechanism splits blocks into
different tiers with each tear having its own characteristics such as fee and
size. The fee and size are dynamically adjusted based on previous demand and
fees. This mechanism ensures that high priority transactions can choose to be
included in a tier with high priority by paying high transaction fee.

2 Model

We extend the model of Nisan [Nis23] for non-strategic agents with an additional
parameter δ ∈ [0, 1] which corresponds to the fraction of pending transactions
remaining at next round (thus, 1 − δ is the fraction of pending transactions
withdrawn by the corresponding users – see below). The dynamics is specified
as follows:

• Time is discrete and indexed by t = 1, 2, . . . ,.

4In principle, this mechanism is the same as in Lavi et al. [LSZ22]. In [LSZ22] the fee to be
paid by users is determined by the lowest bid p of the included transactions. There is at least
one transaction with bid p (which is the lowest bidding transaction), while in Nisan [Nis23]
there need not be a transaction with bid exactly equal to p.

5While the other mechanism of Bitcoin and Ethereum maximize the total value of in-
cluded transactions subject to the available block space (i.e. social welfare), the monopolist
mechanism maximizes the block leaders revenue.
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• Daily demand : A demand function Q quantifies the daily demand Q(p)
for every price level p. Function Q is continuous and decreasing in p as
Q(p) is the number of newly added transactions willing to pay p or more
to be included.

• Monopolist : A monopolist (chosen for the current round t) faces a total
demand Dt consisting of daily demand and pent-up demand from previous
rounds (see below). As Dt(p) is the total number of transactions willing
to pay at least p, the monopolist chooses a price maximizing his own
revenue subject to the supply constraint s (block size = max number of
transactions per block):

pt = argmax
p

p ·min(s,Dt(p)) . (1)

The corresponding supplied quantity is qt = Dt(pt), and the monopolist’s
revenue (at time t) is REVt := pt · qt.

• Pent-up demand : Initially there is no pent-up demand from previous
rounds, that is, Z0(p) = 0 for all p. The pent-up demand at time t ≥ 1 is

Zt(p) :=

{
Dt(p)− qt for p ≤ pt

0 for p > pt
. (2)

• Total demand and δ: Only a fraction δ ∈ [0, 1] of pent-up demand survives
to the next round, and thus total demand is

Dt(p) = δ · Zt−1(p) +Q(p) . (3)

Remark 1. For δ = 1 the model above boils down to the one in [Nis23] where
all transactions not included in the current round remain in the system and they
are eventually included if an only if their price is above some minimum price
pser. For δ = 0 transactions are either immediately included or they disappear,
thus implying that the dynamics above stay at the monopolist price pmon > pser
and only transactions willing to pay this price are included.

In the sequel we shall focus on the case δ ∈ (0, 1) as the case δ = 0 is trivial
and δ = 1 coincides with the model in [Nis23].

Key quantities. Note that by the definition of the total demand and pent-up
demand we can write the total demand as follows.

Remark 2. The total demand at time t can be rewritten as

Dt(p) = at ·Q(p)− bt (4)

where from (2) and (3) we have

at = 1 + δ + · · ·+ δt−1 , bt = q1δ
t−1 + q2δ

t−2 + · · ·+ qt−1δ . (5)

Note that at =
1−δt

1−δ for δ ∈ (0, 1), and at = t for δ = 1.
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As our main results (see Section 3) show, the price dynamics fluctuate be-
tween two prices that involve the following quantities:

Definition 1. For any demand function Q and any supply s, the corresponding
monopolist price pmon and serial price pser are defined as follows:

pmon := argmax
p

p ·Q(p) , qmon := Q(pmon) , (6)

pser := pmon · qmon/s , qser := Q(pser) . (7)

Note that the monopolist price pmon is simply the price that maximizes the
revenue of the monopolist when facing demand Q(p).

Remark 3. Since Dt(p) ≥ Q(p) at any time t ≥ 1, the monopolist can always
obtain the revenue at the monopolist price REVmon := pmon · qmon by choosing
price pmon. Therefore, we have REVt = pt · qt ≥ REVmon for all t.

It turns out that these prices characterize tightly the dynamics for the case
of patient users (δ = 1), as shown by the next definition and theorem.

Definition 2 (Eventual Transaction Inclusion, (Minimum) Admission Price).
For a given dynamics we consider the following definitions:

• A transaction with price p is eventually included if there exists ∆p such
that, for every T ≥ 1, there exists some t with pt ≤ p and T ≤ t ≤ T +∆p.

• A price p is called admission price if all transactions paying p are eventu-
ally included.

• The minimum admission price pmap is the smallest admission price such
that all transactions paying at least pmap are eventually included.

Theorem 1 (Theorem 1 in [Nis23] restated). For patient users (δ = 1) and for
any strictly decreasing demand function Q and supply s the following holds:

1. The dynamics stay always between pser and pmon, that is, prices pt satisfy
pser ≤ pt ≤ pmon for all t ≥ 1. In particular, transactions paying less
than pser will never be included. At each step t, the prices either decrease
(pt < pt−1) or they jump up to the monopolist price (pt = pmon).

2. Every price larger than pser is an admission price. Therefore the minimum
admission price is exactly pser. Moreover, the dynamics pass through the
monopolist price pmon infinitely often.

Transactions paying at least pmon are immediately included, and this is tight as
there are infinitely steps for which paying less will delay admission to a later
step.

We now go back to the case δ ∈ (0, 1). The following example illustrates the
dynamics and how different values of δ ∈ (0, 1) effect the latter.
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Example 1. Let Q(p) = 1− p for p ∈ [0, 1], s = 1 and let δ ∈ (0, 1). Then, we
have the following:

• t = 1 : The initial demand is D1(p) = Q(p) and thus we maximize
pD1(p) = p(1− p) which gives p1 = 0.5 as maximizer and q1 = D1(p1) =
0.5. This price p1 is the monopolist price and the revenue is REV1 =
REVmon = p1q1 = 0.25. The pent-up demand is Z1(p) = D1(p)−q1 = 1

2−p
if p < p1 and zero otherwise.

• t = 2 : The total demand is D2(p) = δZ1(p)+Q(p) = 1+ δ/2− (1+ δ)p if
p < p1 and Q(p) otherwise. We maximize pD2(p) and get p2 = 2+δ

4(1+δ) as

maximizer and thus q2 = 2+δ
4 . The revenue is REV2 = (2+δ)2

16(1+δ) . Note that

REV2 > REV1 if and only if δ > −1, that is, the revenue from step t = 2
is better than the monopolist revenue. The pent-up demand is Z2(p) =
D2(p)− q2 = (2 + δ)/4− (1 + δ)p if p < p2 and zero otherwise.

• t = 3 : The total demand is D3(p) = δZ2(p)+Q(p) = 2δ+δ2+4
4 −(1+δ+δ2)p

if p < p2 and Q(p) otherwise. Maximization yields p3 = 2δ+δ2+4
8(1+δ+δ2) . Note

that p3 < p2 if and only if δ > 0. Hence, q3 = 2δ+δ2+4
8 and the revenue

is REV3 = (2δ+δ2+4)2

64(1+δ+δ2) . Note that REV3 > REV1 if and only if δ > δ⋆ :=

2
√
2− 2 ≈ 0.828. That is, if δ > δ⋆, the price dynamics do not jump and

take p3 as above. The pent-up demand is Z3(p) =
2δ+δ2+4

8 −(1+δ+δ2)p if
p < p3 and zero otherwise. However, if δ ≤ δ⋆, the revenue will be less than
the monopolist revenue. In this case, the price dynamics would jump up to
the monopolist price and take p3 = pmon = 0.5 and thus q3 = qmon = 0.5.
The pent-up demand would be Z3(p) = D3(p)− q3 = Q(p)− 0.5 = 0.5− p
if p < p3 and zero otherwise.

The price dynamics for the first three steps are depicted in Figure 1. Further-
more, Figure 3 shows the price dynamics for 20 steps for different values of δ.

3 Bounds for General Demand Functions

In this section, we analyze the dynamics for different values of δ and how it
affects their behavior. In Section 3.1, we demonstrate that in regimes with a
sufficiently small fraction of expiring transactions (δ < 1 sufficiently large), the
dynamics behaves qualitatively similarly to the case of no expiring transactions
(δ = 1). The analysis highlights several differences, further investigated in
Section 3.2. There we consider finite (possibly small) values of δ in relation to
other parameters, particularly how the “structure” of Q influences the dynamics
for δ < 1 compared to the case δ = 1, where the results are uniform for all Q
with identical monopolist prices.
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Figure 1: Price dynamics depending on δ⋆ from Example 1. The price at times
t = 2, 3 are determined by the respective δ. If δ is below the threshold then the
dynamics jump after step t = 2. If δ is above the threshold, the price decreases
further for one step.

3.1 Upper Bounds on the Admission Price

In this section, we provide a bound on the minimum price which guarantees
transactions to be eventually included, depending on δ. The main result is
summarized by the following definition and the theorem (Definition 3 and The-
orem 2).

Definition 3. For any continuous decreasing demand function Q and supply s
we define the following quantities:

pser :=
pser · s
qser

, qser := Q(pser) , δser := 1− qser − qser
s

. (8)

Moreover, for any δ > δser, we let p
(δ)
ser be the price such that 6

Q(p(δ)ser) = qser − (1− δ) · s . (9)

Example 2 (Example 1 continued). For the setting in Example 1 we observe the
minimum admission prices pmap for every δ ∈ [0, 1] and display it in Figure 2.

We next state our main result.

Theorem 2. For any strictly decreasing demand function Q and supply s the
following holds:

6This price exists by continuity and monotonicity of Q, and because Q(pser) = qser =
qser − (1− δser) · s < qser − (1− δ) · s ≤ qser = Q(pser), where last inequality is due to δ ≤ 1.
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Figure 2: Minimum admission price pmap (derived from 100 steps) depending
on δ for daily demand Q(p) = 1− p and supply s = 1.

1. The minimum admission price is at least pser, and thus transactions pay-
ing less than this price will never be included. In particular, the dynamics
stay always between pser and pmon, that is, prices pt satisfy pser ≤ pt ≤
pmon for all t ≥ 1. Moreover, at each step t, the prices either decrease
(pt < pt−1) or they jump up to the monopolist price (pt = pmon).

2. For every δ > δser, the minimum admission price is at most p
(δ)
ser defined

by (9) which satisfies pser < p
(δ)
ser < pser. Moreover, the dynamics pass

through the monopolist price pmon infinitely often.

3. Every price larger than pser is an admission price for a sufficiently large
δ. That is, for every p⋆ > pser, there exists δmin(p

⋆) < 1 such that p⋆ is
an admission price for every δ > δmin(p

⋆). Moreover, the dynamics pass
through the monopolist price pmon infinitely often.

Therefore, transactions paying at least pmon are immediately included, and this
is tight as there are infinitely steps for which paying less will delay admission to
a later step.

Proof. See Appendix A.

Item 2 in the above theorem provides an upper bound on the minimum
admission price, provided δ being large enough (condition δ > δser). This
condition on δ is somehow necessary as implied by the results in the next section,
where we prove lower bounds on the minimum admission price, for sufficiently
small δ.
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3.2 Lower Bounds on the Admission Price

In this section, we complement the results in the previous section, by showing
that transactions below a certain price will never be included, depending on δ.

The monopolist aims to choose a price p maximizing the revenue REVt(p) :=
p ·min(s,Dt(p)) at the current step t. At every time step, there is always the
option to choose the monopolist price pmon and receive revenue REVmon. We
can compare REVt(p) and REVmon at any t by considering the following function:

ft(p) := p ·Dt(p)− pmonqmon . (10)

Since the revenue for price p satisfies REVt(p) ≤ p ·Dt(p), if the function aove is
negative for some p, it means that the revenue at p is worse than REVmon, and
therefore the next price pt cannot be p. Observe that evaluating Dt(p) and thus
ft(p) is rather complex because of the “previous history” component involving
qt−1, . . . , q1 – see Equations (4) and (5). We next provide a simpler function
to evaluate for a generic Q, which still can be used to determine “forbidden”
prices for the dynamics:

Ft(p) := p · (at ·Q(p)− (at − 1)qmon)− pmonqmon , at =

t∑
i=0

δt . (11)

Theorem 3. For any p such that Ft(p) < 0 it cannot be pt = p.

Proof. We first rewrite Equation (10) using Equation (4) as follows:

ft(p) =p ·Dt(p)− pmonqmon = p · (atQ(p)− bt)− pmonqmon , (12)

where at and bt are defined in (5).
For any at ≥ at and any bt ≤ bt we can obtain an upper bound on ft(·):

ft(p) ≤ f t(p) := p · (atQ(p)− bt)− pmonqmon . (13)

For any p such that f t(p) < 0, we obviously have ft(p) < 0, which implies that
it cannot be pt = p. Indeed, definition of ft(p) < 0 implies p ·Dt(p) < pmonqmon

and hence p will not be taken.
Next observe that, since pt ≤ pmon, the monotonicity of Q implies qt ≥ qmon,

thus implying

bt ≥ (at − 1)qmon =: bt . (14)

Finally, observe that for bt we have f t(p) is exactly Ft in (11). This completes
the proof.

3.2.1 A first example

We next apply the result in Theorem 3 to one of the simplest demand functions
and show that, even in this case, price pser is not a tight bound for the minimum
admission price.
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Proposition 1 (Lower bound). For demand function Q(p) = 1 − p, the price
p⋆ := 1−δ

2 is a lower bound for the price dynamics.

Proof. Theorem 3 yields a lower bound for the smallest p of the dynamics. Since
pmon = 1

2 = qmon we have

Ft(p) =

(
(1− δt) (1− p)

1− δ
−

1−δt

1−δ − 1

2

)
p− 1

4
(15)

which has two roots. One root is at 1
2 (= pmon) and the other one is

p⋆t =
1− δ

2(1− δt)
. (16)

We can make the following observations:

1. For t → ∞ and fixed δ ∈ (0, 1) we have p⋆t → p⋆ := 1−δ
2 meaning that the

dynamics cannot go below this minimum price p⋆.

2. For δ → 1 and for fixed t ≥ 2 we have p⋆t → 1
2t meaning that the dynamics

cannot be below 1
2t at step t.

This completes the proof.

Remark 4. According to the previous result, for δ = 1
2 the dynamics never go

below 1
4 . That is, the minimum admission price is at least 1

4 and transactions
paying less than this price are never admitted. We note that this bound is not
tight, as the dynamics for δ = 0.5 never passes value ≈ 0.363 (see Figure 3).
Figure 3 further shows the dynamics for different values of δ.

3.2.2 The Admission Price Must Depend on Q

In this section, we consider the following class Qϵ of daily demand functions:

Q(p) =

{
1
2 + ϵ− 2ϵp, 0 ≤ p ≤ 1

2

1− p, 1
2 ≤ p ≤ 1

(17)

A function Q of this class Qϵ is depicted in Figure 4. In particular, note that
the slope of the function on the interval [0, 0.5] is depending on ϵ ≥ 0. On the
remaining interval [0.5, 1] the function is just 1− p.

A few observations are in place.

Obs 1. Theorem 2 provides an upper bound on the minimum admission price
if δ > δser. According to (8), this condition is equivalent to qser−qser

1−δ > s.7

7For ϵ = 1
2
and s = 1, the condition in Obs 1 boils down to δ > 11/12 ≈ 0.917,

Q(p)−Q(p′)

1− δ(ϵ)
> s ⇐⇒ δ > 11/12 ≈ 0.917.
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Figure 3: The dynamics for Q(p) = 1 − p and δ ∈ [0, 0.25, 0.5, 0.75, 1] when
supply s = 1. Note that there is an additional step before the jumps for δ =
1. This is in fact true for any δ > δ⋆ = 2

√
2 − 2 ≈ 0.828 (see Example 1).

The smallest prices for each δ correspond to the respective minimum admission
prices. (Note that this figure displays only 20 iterations and for a price dynamic
to reach its minimum it may take more steps.)

Obs 2. For the type of demand function Q ∈ Qϵ, Theorem 2 may not apply,
unless Obs 1 is satisfied. This also depends on the value of ϵ.

Obs 3. The lower bound pser is not tight (Remark 4 deals with ϵ = 1
2 ).

These observations naturally suggest to obtain lower bounds on the minimum
admission price for the class of functions above.

Example 3. Theorem 2 applies only for δ that are large enough (δ > δ̄ser).
The necessary lower bound for δ for demand function of class Qϵ is calculated
below , that is, for the demand functions as in Equation (17) and s = 1, we
have (by Definition 3)

pmon =
1

2
= qmon , pser =

1

4
, qser =

1 + ϵ

2
, (18)

pser =
1

2(1 + ϵ)
, qser =

1

2
+

ϵ2

1 + ϵ
, δmin(pser) = 1− ϵ

2
+

ϵ2

1 + ϵ
, (19)

p(δ)ser =
1

4
+

1− δ

ϵ
, (20)

thus implying that for Q(p) = 1− p, and ϵ = 1
2 , we have

p(δ)ser =
1

4
+ 2(1− δ) for all δ > δ̄ser = δmin(pser) = 11/12 . (21)
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p

Q(p)
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1
2

1
2 + ϵ

1

1
2 + ϵ− 2ϵp

1− p

Figure 4: Daily demand function of the class Qϵ.

Next, we state three results for the class of demand functions Qϵ. First,
for any δ we can find a strictly decreasing demand function such that the price
dynamics are stuck at pmon. Second, for any strictly decreasing demand function
we find a δ such that the same holds. Finally, we find a lower bound for the
price dynamics if a certain condition on the demand function are met.

Theorem 4. The following holds:

1. For every δ there exists a strictly decreasing Q ∈ Qϵ such that the price
dynamics stays at pmon, i.e.

pt = pmon, for all t. (22)

2. Conversely, for any strictly decreasing Q ∈ Qϵ we find a δ such that
Equation (22) holds.

3. The price p⋆ = 1−δ
4ϵ < pmon is a new lower bound for the price dynamics

if ϵ ≥ 1−δ
2(1−δt) for all t.

Proof. We apply Theorem 3 to Q ∈ Qϵ and consider the corresponding function

Ft(p) = p ·

(
(1− δt)

(
−2ϵp+ ϵ+ 1

2

)
1− δ

−
1−δt

1−δ − 1

2

)
− 1

4
, (23)

which has two roots. One root is at 0.5 and the second root is

p⋆t :=
δ − 1

4δtϵ− 4ϵ
. (24)
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Figure 5: Daily demand function of class Qϵ for ϵ = 0.

Note that

p⋆t
t→∞→ 1− δ

4ϵ
=: p⋆. (25)

Furthermore, we have that p⋆t < p⋆. Therefore, for t → ∞ and ϵ < 1−δ
2 this

root p⋆t is bigger than the monopolist price and this implies that the dynamics
never goes below pmon. Similarly, for a fixed ϵ (i.e. a given Q ∈ Qϵ) we can find
the δ that satisfies the latter condition, the dynamics never go below pmon.

Furthermore, if ϵ ≥ 1−δ
2(1−δt) for all t, then the root in (24) is below 0.5,

which gives us a lower bound for the price dynamics. Alternatively, note that,
if ϵ ≥ 1−δ

2(1−δ1) =
1
2 holds, then ϵ ≥ 1−δ

2(1−δt) for all t. In particular, for a fixed ϵ we

can find two intervals for δ such that we end up with a lower bound less than
pmon on one interval and a lower bound equal to pmon on the other interval.

Next, we discuss the case when the demand function is not strictly decreas-
ing, but rather constant for some interval of prices.

Remark 5. For ϵ = 0, we have a piecewise constant demand function, see
Figure 5. For any s ≥ 0.5, the price dynamics stays at pmon = 0.5 which
can be verified by observing that for any p < pmon and any t ≥ 1 we have
Dt(p) =

1
2 . Therefore, to maximize revenue the monopolist will always choose

pt = pmon. Note that in Nisan’s setting [Nis23], with δ = 1, the same happens,
as this is independent of δ. All demand is supplied in each round. In particu-
lar, the lower bound has to be adjusted to be the largest p satisfying such that
Q(pser) = Q(pmonqmon/s). In this example, pmonqmon = 1

4 and for s ≥ 0.5,
Q(pmonqmon/s) = 0.5. Clearly, the largest p s.t. Q(p) = 0.5 is p = 0.5(=: pser)
which is the new lower bound (and equal to the upper bound pmon = 0.5).

3.2.3 General demand function Q

Let Q be a general demand function. Furthermore, let Q be upper bounded by
a constant K, i.e. Q(p) ≤ K for all p. We provide a lower bound that is higher
than pser.
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Proposition 2. Let Q be a general demand function such that Q(p) ≤ K for
some constant K. Furthermore, let K satisfy K ≤ s + δ(qmon − s). Then, the
price

p⋆ :=
pmonqmon

K
1−δ + qmon − qmon

1−δ

, (26)

is a lower bound for the price dynamics. In particular, p⋆ ≥ pser.

Proof. Similar to earlier calculations, we define

f t(p) :=p(atQ(p)− (at − 1)qmon)− pmonqmon, (27)

and

f t(p) :=p(atK − (at − 1)qmon)− pmonqmon, (28)

where f t(p) uses the upper bound on the demand function. Note that ft(p) ≤
f t(p) ≤ f t(p) where ft(p) is as in Equation (10). Being linear in p, note that

f t(p) has a root at

pt =
pmonqmon

atK − (at − 1)qmon

t→∞→ pmonqmon

K
1−δ + qmon − qmon

1−δ

=: p. (29)

Hence this p is a new lower bound if K ≤ s + δ(qmon − s) since then p ≥ pser.
The proof is completed as p corresponds to p⋆ in the theorem statement.

One example where the conditions in Proposition 2 are satisfied follows.

Example 4. For s = Q(0)
1−δ and K = Q(0), the condition above (K ≤ s +

δ(qmon − s)) is satisfied and p = pmonqmon

s− δ
1−δ qmon

which is larger than pser.

4 Conclusion and Future Work

In this paper we analyzed the fluctuations in prices under the monopolistic
pricing mechanism with quasi-patient users. In particular, only a fraction of
unsupplied transactions remains in the mempool after each block. A transac-
tion paying at least the minimum admission price will be eventually included in
a block. We provided upper and lower bounds for the admission price. Further-
more, we compared our bounds to the bounds achieved in [Nis23] and highlight
the differences.

The analysis of strategic agents is left to future research. Our analysis con-
centrated around the question of a monopolist maximizing myopically consider-
ing the current round only. An interesting future direction is to consider agents
maximizing over multiple rounds given that agents expect to be the block leader
for several consecutive blocks. Furthermore it remains to show properties of the
minimum admission price pmap depending on δ. In fact, for the particular linear
demand function (Q(p) = 1 − p), in Figure 2 we observe a decreasing pmap up
until approx. 0.8 and some kind of up and down after 0.8. A reason for this
behavior can be a lack of steps, that is, the price dynamics for some δ might
need more steps to attain its minimum prices.
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A Postponed Proofs

This section provides lemmas (and its proofs) that will be used to prove Theo-
rem 2. Note that the lemmas follow the style of [Nis23] but are adapted to our
setting.

Throughout this section we use the quantity at defined in Equation (5),
which we rewrite here for convenience:

at = 1 + δ + · · ·+ δt−1 =
1− δt

1− δ
, δ ∈ [0, 1) . (30)

Lemma 1. For p < p′ and any t:

Dt(p)−Dt(p
′) ≤ at · (Q(p)−Q(p′))

where at is defined as in (30).

Proof. Fix any t ≥ 1. We first show that the following holds:

Zt−1(p)− Zt−1(p
′) ≤ Dt−1(p)−Dt−1(p

′) . (31)

We distinguish the following cases:

1. (pt−1 < p < p′.) We have that Zt−1(p) = Zt−1(p
′) = 0 and hence Dt(p)−

Dt(p
′) ≤ [Q(p)−Q(p′)]

2. (p < p′ < pt−1.) We have that Zt−1(p) = Dt−1(p)− qt−1 and Zt−1(p
′) =

Dt−1(p
′)− qt−1. Together, Zt−1(p)− Zt−1(p

′) = Dt−1(p)−Dt−1(p
′) and

hence Dt(p)−Dt(p
′) = δ(Dt−1(p)−Dt−1(p

′))+[Q(p)−Q(p′)]. Iteratively,
we get Dt(p)−Dt(p

′) = (1 + δ + δ2 + · · ·+ δt−1)[Q(p)−Q(p′)].

3. (p < pt−1 < p′.) We have that Zt−1(p) = Dt−1(p)− qt−1 and Zt−1(p
′) =

0. Also note that Dt−1(p
′) ≤ qt−1 = Dt−1(pt−1). Hence, Zt−1(p) −

Zt−1(p
′) = Dt−1(p)− qt−1 ≤ Dt−1(p)−Dt−1(p

′). And therefore we have
that,

Dt(p)−Dt(p
′) ≤ δ(Dt−1(p)−Dt−1(p

′)) + [Q(p)−Q(p′)] (32)

Iteratively, we get again Dt(p)−Dt(p
′) ≤ (1+ δ+ δ2 + · · ·+ δt−1)[Q(p)−

Q(p′)]

We next prove the lemma by induction on t.

• Base case (t = 1): D1(p)−D1(p
′) = Q(p)−Q(p′) ≤ 1[Q(p)−Q(p′)]

• Inductive step: Assume the claim is true for t− 1. Then we have

Dt(p)−Dt(p
′) = δ(Zt−1(p)− Zt−1(p

′)) + [Q(p)−Q(p′)]

≤ δ(Dt−1(p)−Dt−1(p
′)) + [Q(p)−Q(p′)]

≤ δ((1 + δ + δ2 + · · ·+ δt−2)[Q(p)−Q(p′)]) + [Q(p)−Q(p′)]

= (1 + δ + δ2 + · · ·+ δt−1)[Q(p)−Q(p′)]

where we used Equation (31) in the second line.
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Lemma 2. For p < p′ and for all T and t > T :

Dt(p)−Dt(p
′) ≤ at−T · (Q(p)−Q(p′)) + δt−T · (ZT (p)− ZT (p

′)) , (33)

where at is defined as in (30).

Proof. Similar to the proof above. By repeating Equation (32), (t−T−1)-times
and in another step we just replace DT (p)−DT (p

′) with its definition, we end
up with the expression:

Dt(p)−Dt(p
′) ≤ δt−T (ZT (p)−ZT (p

′))+(1+δ+· · ·+δt−T−1)[Q(p)−Q(p′)]. (34)

By induction, it holds for all t:

• t = 1: D1(p)−D1(p
′) = δ(Z0(p)−Z0(p

′))+[Q(p)−Q(p′)] = [Q(p)−Q(p′)]

• Assume the claim is true for t− 1

• t− 1 → t:

Dt(p)−Dt(p
′)

= δ(Zt−1(p)− Zt−1(p
′)) + [Q(p)−Q(p′)]

≤ δ(Dt−1(p)−Dt−1(p
′)) + [Q(p)−Q(p′)]

≤ δ(δt−T−1(ZT (p)− ZT (p
′)) + (1 + δ + · · ·+ δt−T−2)[Q(p)−Q(p′)]) + [Q(p)−Q(p′)]

= δt−T (ZT (p)− ZT (p
′)) + (1 + δ + · · ·+ δt−T−1)[Q(p)−Q(p′)].

Lemma 3. For all T and t > T , if for all t′ such that T < t′ < t we also have
that pt′ ≥ p′ > p then in fact we have equality

Dt(p)−Dt(p
′) = at−T · (Q(p)−Q(p′)) + δt−T (ZT (p)− ZT (p

′)) (35)

where at is defined as in (30).

Proof. For pt−1 ≥ p′ > p we have that Zt−1(p) = Dt−1(p)−qt−1 and Zt−1(p
′) =

Dt−1(p
′) − qt−1. Therefore, Dt(p) −Dt(p

′) = δ(Zt−1(p) − Zt−1(p
′)) + [Q(p) −

Q(p′)] = δ(Dt−1(p)−Dt−1(p
′)) + [Q(p)−Q(p′)]. By induction the claim holds.

• t = 1: D1(p)−D1(p
′) = δ(Z0(p)−Z0(p

′))+[Q(p)−Q(p′)] = [Q(p)−Q(p′)]

• Assume the claim is true for t− 1

• t− 1 → t:

Dt(p)−Dt(p
′)

= δ(Zt−1(p)− Zt−1(p
′)) + [Q(p)−Q(p′)]

= δ(Dt−1(p)−Dt−1(p
′)) + [Q(p)−Q(p′)]

= δ((1 + δ + · · ·+ δt−T−2)[Q(p)−Q(p′)] + δt−T−1(ZT (p)− ZT (p
′))) + [Q(p)−Q(p′)]

= (1 + δ + · · ·+ δt−T−1)[Q(p)−Q(p′)] + δt−T (ZT (p)− ZT (p
′)).
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Lemma 4. For all T such that pT ≤ p < p′ (or T = 0) and all t > T , we have

Dt(p)−Dt(p
′) ≤ at−T · (Q(p)−Q(p′)) (36)

where at is defined as in (30). Furthermore, for all T such that pT ≤ p < p′ (or
T = 0), if for all t′ such that T < t′ < t we also have that pt′ ≥ p′ > p, then the
equation above holds with equality, i.e.

Dt(p)−Dt(p
′) = at−T · (Q(p)−Q(p′)) . (37)

Proof. Apply the previous two lemmas and note that ZT (p) = ZT (p
′) = 0 since

pT ≤ p < p′.

The proofs of Lemmas 5 and 6 below are the same as in [Nis23], and we
restate them here for the sake of completeness.

Lemma 5. For every t it holds that pt ≥ pser.

Proof. The maximum revenue that is achievable from a price p is p · s. For
p < pser we have that p · s < pser · s = pmon · qmon, and the latter revenue can
be achieved at any step using the monopolist price.

Lemma 6. For every t either pt = pmon or pt < pt−1.

Proof. For p ≥ pt−1 we have thatDt(p) = Q(p) so the maximal revenue obtained
by possible p ≥ pt−1 is exactly the monopolist’s revenue that is obtained at pt =
pmon (we assume that ties in maximum revenue are broken consistently). So,
unless pt = pmon, we must obtain the maximum revenue for some p < pt−1.

The next lemma provides a sufficient condition for the price to decrease.

Lemma 7. Assume that for some p > pser we have that Dt(p) ≥ s, then

(i) pt < pt−1, and

(ii) Q(pt)−Q(pt−1) ≥ (at−1)
−1s (p−pser)

pmon

where at is defined as in (30). Furthermore, if for some T < t we had pT ≤ pt
then, Q(pt)−Q(pt−1) ≥ (at−1−T )

−1s (p−pser)
pmon

.

Proof. We observe the following:

• We cannot have pt = pmon, as the revenue obtained from p would be
higher: ps > psers = pmonqmon.

• As pt gives better revenue than p, i.e. we have that ptqt = ptDt(pt) ≥
ps = (p− pser)s+ psers = (p− pser)s+ pmonqmon.
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• Separating the total demand at time t to its two components we get

ptDt(pt) = δptZt−1(pt) + ptQ(pt)

≤ 8δptZt−1(pt) + pmonqmon

≤ δpmonZt−1(pt) + pmonqmon.

• Putting these together we get that

(p− pser)s+ pmonqmon ≤ ptDt(pt) ≤ δpmonZt−1(pt) + pmonqmon, (38)

that is

(p− pser)s ≤ δpmonZt−1(pt) . (39)

• Now,

Zt−1(pt) = Zt−1(pt)− Zt−1(pt−1)

≤ Dt−1(pt)−Dt−1(pt−1)

≤ (1 + δ + . . .+ δt−2)[Q(pt)−Q(pt−1)],

where we used Lemma 1 in the last step.

• Hence, it follows that

(p− pser)s ≤ pmon(1 + δ + . . .+ δt−2)[Q(pt)−Q(pt−1)] (40)

and therefore,

[Q(pt)−Q(pt−1)] ≥ (1 + δ + . . .+ δt−2)−1s
(p− pser)

pmon
. (41)

• The second part of the lemma is similar.

The next lemmas assume some extra condition (which is necessary in our
setting), that is, we consider pair of prices such that

1

1− δ
· (Q(p)−Q(p′)) > s p < p′ . (gap)

Lemma 8. For every p < p′ satisfying (gap) there exists ∆0 s.t. for all T and
all ∆ ≥ ∆0 we have that either (a) there exists T ≤ t ≤ T +∆ with pt < p′ or
(b) DT+∆(p) ≥ s.

8In this step we use that pmon maximizes pQ(p) and qmon = Q(pmon). Also we know that
pt < pmon
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Proof. Let us observe that, if pt ≥ p′ for all T ≤ t ≤ T +∆, then using Lemma 3
we get

DT+∆(p) ≥ DT (p)−DT (p
′)

Lem 3
= a∆ · (Q(p)−Q(p′)) + δ∆(ZT (p)− ZT (p

′))

≥ a∆ · (Q(p)−Q(p′)) = (1 + δ + · · ·+ δ∆−1) · (Q(p)−Q(p′)) .

We next show that, for sufficiently large ∆, the latter quantity must exceed s.
That is, we can find ∆0 such that (1 + δ + · · ·+ δ∆0−1) · (Q(p)−Q(p′)) = s:

1− δ∆0

1− δ
=

s

Q(p)−Q(p′)
⇔ δ∆0 = 1− s(1− δ)

Q(p)−Q(p′)

⇔ ∆0 = ln

(
(1− δ)− s(1− δ)

Q(p)−Q(p′)

)
⇔ ∆0 = ln (1− δ) + ln

(
1− s

Q(p)−Q(p′)

)
.

This completes the proof.

Lemma 9. For every p⋆ > pser such that

δ > δmin(p
⋆) := 1− Q(pser)−Q(p⋆)

s
(42)

the following holds. There exists ∆ such that for every T there exists some
T < t ≤ T +∆ with pt ≤ p⋆.

Proof. By contradiction, assume T = 0 or T such that pt > p⋆ for all t ∈
[T, T +∆], for all ∆. Let

p :=
p⋆ + pser

2
(43)

so pser < p < p⋆ and p⋆ − pser = 2(p− pser). Next observe that (42) says that
the condition (gap) required in Lemma 8 holds for p = pser and p′ = p⋆. Hence,
there exists ∆0 after which Dt(p) ≥ s for all t ≥ T +∆0 until the first time that
pt ≤ p⋆. Fix ∆ > ∆0

9 such that Dt(p) ≥ s for all t ∈ [T + ∆0, T + ∆]. By
Lemma 7 we get a sequence of decreasing prices

pT+∆0
> pT+∆0+1 > · · · > pT+∆ (44)

such that, for all t ∈ [T +∆0 + 1, T +∆], we have

Q(pt)−Q(pt−1) ≥
1

at−1
· p− pser

pmon
· s . (45)

9It may happen that such a ∆ does not exist. In particular, if Dt(p) ≥ s only for t = T+∆0

and for t = T +∆0 + 1 we may have pt ≤ p⋆.
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Hence, using at =
1−δt

1−δ , we have

Q(pT+∆)−Q(pT+∆0) ≥
T+∆∑

t=T+∆0+1

1

at−1
· p− pser

pmon
· s

=

(
1− δ

1− δ∆0
+ · · ·+ 1− δ

1− δ∆−1

)
· p− pser

pmon
· s

≥ 1− δ

1− δ∆0
· (∆−∆0) ·

p− pser
pmon

· s .

Next observe that Q(pT+∆)−Q(pT+∆0
) ≤ Q(pser)−Q(pmon), since all prices are

between pser and pmon, and Q is decreasing. We therefore get a contradiction
if this inequality holds:

Q(pser)−Q(pmon) <
1− δ

1− δ∆0
· (∆−∆0) ·

p− pser
pmon

· s .

This condition is true whenever

∆ > ∆0 +Q(pser)−Q(pmon)
pmon(1− δ∆0)

s(p− pser)(1− δ)

and thus we have the contradiction for such ∆. We conclude that we must have
pt ≤ p⋆.

We next provide a technical lemma relating δ and values of p⋆ for which the
dynamics must take the monopolist price infinitely often.

Lemma 10. Suppose there exist two values p⋆ > pser and q⋆ > qser satisfying
(42) and the following inequality:10

p⋆q⋆ < pmonqmon = pser · s . (46)

Then, there exist infinitely many t such that pt = pmon.

Proof. By contradiction, assume there is a last time ℓ ≥ 1 such that the dynam-
ics takes the monopolist price. We then observe the following:

1. We have a sequence of decreasing prices (Lemma 6)

pℓ > pℓ+1 > · · · (47)

satisfying pt ≥ pser for all t ≥ ℓ (Lemma 5).

2. By Lemma 9 there is some T0 ≥ ℓ such that, for all t ≥ T0, we have

pt < p⋆ , ptqt ≥ pmonqmon = pser · s
(46)⇒ qt > q⋆ (48)

where the second inequality holds because the dynamics prefers pt to pmon.

10Note that q⋆ ̸= Q(p⋆) and in particular q⋆ > qser = Q(pser) > Q(p⋆).
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3. The monotonicity of Q and pt ≥ pser imply qt ≤ qser < q⋆, thus contra-
dicting (48).

This completes the proof.

We next turn our attention to the existence of p⋆ and q⋆.

Lemma 11. For every continuous Q such that the equilibrium revenue is less
than the monopolist revenue, the following hold:

1. Quantities in (8) satisfy pser > pser and qser < qser.

2. For every p⋆ > pser satisfying p⋆ < pser condition (46) in Lemma 10 holds
for some q⋆ > qser.

3. For every δ > δser, there exists p⋆ > pser satisfying p⋆ < pser such that
condition (42) in Lemma 9 holds. In particular, this holds true for any

p
(δ)
ser < p⋆ < pser.

Proof. We distinguish the three parts:

1. As shown in [Nis23], if the equilibrium revenue is smaller than the mo-
nopolist revenue, then qser < s. Indeed, the equilibrium is given by the
price peq such that qeq := Q(peq) = s, and Reveq = peqs < Revmon =
pmonqmon = psers, thus implying peq < pser. Hence,

2. Since p⋆qser < psers, we have that p⋆qser · ρ < psers for sufficiently small
ρ > 1. Hence, q⋆ = qserρ > q⋆ satisfy the desired conditions.

3. We first show that p
(δ)
ser < pser. Observe that

δmin(p
(δ)
ser) =1− qser −Q(p

(δ)
ser)

s
(49)

(9)
=1− qser − (qser − (1− δ) · s)

s
= δ (50)

>δser = 1− qser −Q(pser)

s
. (51)

Therefore, Q(p
(δ)
ser) > Q(pser) and, by monotonicity of Q, we have p

(δ)
ser <

pser. For any p⋆ such that p
(δ)
ser < p⋆ < pser we have Q(p⋆) < Q(p

(δ)
ser) and

therefore

δmin(p
⋆) = 1− qser −Q(p⋆)

s
< 1− qser −Q(p

(δ)
ser)

s

(50)
= δ . (52)

This completes the proof.

We restate Theorem 2.

Theorem 2. For any strictly decreasing demand function Q and supply s the
following holds:
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1. The minimum admission price is at least pser, and thus transactions pay-
ing less than this price will never be included. In particular, the dynamics
stay always between pser and pmon, that is, prices pt satisfy pser ≤ pt ≤
pmon for all t ≥ 1. Moreover, at each step t, the prices either decrease
(pt < pt−1) or they jump up to the monopolist price (pt = pmon).

2. For every δ > δser, the minimum admission price is at most p
(δ)
ser defined

by (9) which satisfies pser < p
(δ)
ser < pser. Moreover, the dynamics pass

through the monopolist price pmon infinitely often.

3. Every price larger than pser is an admission price for a sufficiently large
δ. That is, for every p⋆ > pser, there exists δmin(p

⋆) < 1 such that p⋆ is
an admission price for every δ > δmin(p

⋆). Moreover, the dynamics pass
through the monopolist price pmon infinitely often.

Therefore, transactions paying at least pmon are immediately included, and this
is tight as there are infinitely steps for which paying less will delay admission to
a later step.

Proof. We distinguish the three parts:

1. The bounds on the prices are due to Lemmas 5 and 6. The condition
on the price changes is simply the observation that for p ≥ pt−1 we have
Dt(p) = Q(p) and thus the dynamics either take the monopolist price
(pt = pmon) or take a smaller price (pt < pt−1).

2. Consider any p
(δ)
ser such that p

(δ)
ser < p⋆ < pser. Lemma 9 together with

Lemma 11 (Item 3) imply that there exists ∆ such that for every T there
exists some T < t ≤ T +∆ with pt ≤ p⋆. Lemma 11 (Item 2) states that
the conditions in Lemma 10 hold for some p⋆ < pser. The latter implies
that the dynamics takes the monopolist price infinitely often.

3. The first part follows directly from Lemma 9 and from the fact that p⋆ >
pser implies Q(p⋆) < Q(pser) and thus δmin(p

⋆) < 1. The second part
follows from Lemma 10 and Item 2 of Lemma 11.

This completes the proof.
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