
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COGDEVELOP2K: REVERSED COGNITIVE DEVELOP-
MENT IN MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Are Multi-modal Large Language Models (MLLMs) stochastic parrots? Do they
genuinely understand and are capable of performing the tasks they excel at? This
paper aims to explore the fundamental basis of MLLMs, i.e. core cognitive abili-
ties that human intelligence builds upon to perceive, comprehend, and reason. To
this end, we propose CogDevelop2K, a comprehensive benchmark that spans 12
sub-concepts from fundamental knowledge like object permanence and boundary
to advanced reasoning like intentionality understanding, structured via the devel-
opmental trajectory of a human mind. We evaluate 46 MLLMs on our bench-
marks. Comprehensively, we further evaluate the influence of evaluation strate-
gies and prompting techniques. Surprisingly, we observe a reversed cognitive
developmental trajectory compared to humans.

1 INTRODUCTION

Building on the foundation of advanced large language models (LLMs), multi-modal large language
models (MLLMs) have recently demonstrated human-level performance in complex tasks involving
high-level reasoning, perception, and cognition Li et al. (2024a); Liu et al. (2024); Team (2023); Fu
et al. (2023); OpenAI (2023) such as Spatial Reasoning Chen et al. (2024); Cai et al. (2024), OCR
Mori et al. (1999), Scene Understanding Cordts et al. (2016); Chen et al. (2017), Action Recognition
Jhuang et al. (2013); Herath et al. (2017) and Prediction Lan et al. (2014); Kong & Fu (2022), etc.
The progress in MLLMs has reignited hopes for achieving Artificial General Intelligence (AGI).
However, we pose a critical question: Do MLLMs truly comprehend these tasks and possess the
genuine capabilities to perform them, or are they merely ”stochastic parrots” that rely on learn-
ing spurious correlations? To explore this, we draw inspiration from the development of human
cognition.

Extensive research in human cognitive development suggests the existence of core cognition which
grounds the diversity of incredible human intelligent abilities (Spelke et al., 1992; 1994; 1995;
Spelke & Kinzler, 2007; Mitchell, 2020; 2021), and such core cognition is unraveled via the de-
velopmental cascades of the human mind (Masten & Cicchetti, 2010). From infancy to early adult-
hood, core cognitive concepts emerge and develop along a structured trajectory, with interdependent
relations between early, simple abilities and late, complex abilities. For instance, the ability to imag-
ine the perspectives of others typically develops between the ages of 3 and 6 (Piaget & Inhelder,
1969), while the capacity to fully comprehend others’ intentions matures around age 12 (Wimmer
& Perner, 1983; Wellman et al., 2001; Liu et al., 2008). At the same time, the ability to understand
other people’s intentions largely depends on the the ability to understand other people’s perspectives
(Iacoboni, 2009; De Waal & Preston, 2017; Liu et al., 2017; Caviola et al., 2021; Ninomiya et al.,
2020).

As highlighted in previous research, core cognitive abilities form the foundational basis of higher-
level human intelligence that existing MLLMs excel at, but such excellency do not translate into a
general domain (Mitchell, 2020; 2021; Shiffrin & Mitchell, 2023). The performance of MLLMs on
core cognitive tasks therefore provides a more profound insight into their true capacities for knowl-
edge, reasoning, and perception. This, in turn, serves as a critical indicator of whether MLLMs
possess genuine intelligence or if they are merely ”stochastic parrots” that depend on learning spuri-
ous correlations. To this end, we draw on theoretical and empirical approaches from developmental
science to create benchmarks that evaluate core cognitive abilities in large vision-language models,
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examining the relationships between these abilities. On a high level, we follow Jean Piaget’s theory
of cognitive development, which identifies four stages in children: sensorimotor, preoperational,
concrete operational, and formal operational (Piaget, 1950; Piaget & Inhelder, 1969; 1974). During
the sensorimotor stage, infants acquire knowledge through sensory experiences and actions, devel-
oping an understanding of basic object properties, such as permanence, continuity, and boundaries.
In the preoperational stage, symbolic representation emerges, along with a grasp of basic physical
properties. The concrete operational stage is characterized by the development of logical thinking
and an understanding of intuitive physics. Finally, the formal operational stage introduces more
advanced cognitive abilities, including abstraction, hypothetical reasoning, counterfactual thinking,
and tool use. The interdependence and developmental trajectories of these abilities can be mapped
in terms of a tree-like structure (as illustrated in Fig. 1).

To evaluate the performance of MLLMs on the core cognitive abilities, we curate the first-ever vision
cognitive development benchmark, termed as CogDeveop2K, which consists of a total of 2519 ques-
tions with 2517 images and 455 videos. Then, we evaluate 46 MLLM models on our benchmark that
spans all four stages of cognitive development. We introduce a novel multi-frame question format
to evaluate models’ co-reference, cognitive reasoning and temporal understanding capability simul-
taneously. Forty-seven models are compared against a human baseline under zero-shot conditions
using 11 different prompts (including no prompt). Surprisingly, while prompts can boost model
performance by 8.1%, models still demonstrate reversed trends in cognitive development against
those observed in children. For example, GPT series perform better in formal operation stage while
performing worse in concrete operation stage.
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Figure 1: Map of core cognitive concepts during human developmental stages

2 RELATED WORK

2.1 MULTI-MODAL LARGE LANGUAGE MODELS

The Vision Language Model (VLM) has a long history from Convolution Neural Networks (CNN)
and Recurrent Neural Networks (RNN) (Karpathy & Fei-Fei, 2014; Vinyals et al., 2015) to uni-
fied modeling of visual and text modality with transformers (Li et al., 2019; Xu et al., 2023; Tan
& Bansal, 2019; Alayrac et al., 2022; Radford et al., 2021). With the advancement of Large Lan-
guage Models (LLMs), existing state-of-the-art MLLMs (Liu et al., 2024; Li et al., 2023) adopt
open-sourced Large Language Models such as Llama (Touvron et al., 2023), Mistral (Jiang et al.,
2023), etc. Instruction Tuning is also introduced to further improve the task generalization ability of
MLLMs (Liu et al., 2024; Dai et al., 2023). To acquire open-ended conversation abilities, LLaVA
(Liu et al., 2024) proposes to distill the conversational abilities of ChatGPT to MLLMs, boosting
performance by a large margin, which becomes a defacto procedure in the area (Wang et al., 2023;
Bai et al., 2023; Team, 2023; 2024; Sun et al., 2023; Li et al., 2022).
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2.2 HUMAN COGNITIVE DEVELOPMENT

The sensorimotor stage is the first stage of cognitive development proposed by Jean Piaget (Piaget,
1952; Piaget & Inhelder, 1974). Spanning from birth to approximately 2 years of age, this stage is
characterized by infants’ understanding of the world through their sensory experiences and motor
actions. Several prominent features of human intelligence develop during this period. First, infants
develop object permanence, that they realize objects and people continue to exist even when not in
direct sight, or being heard or touched (Baillargeon et al., 1985). They start to understand that there is
a sense of continuity for the ways that objects exist, and the inductive bias of continuity is essential,
e.g., for recognizing objects when occluded or for continuously tracking objects (Spelke et al., 1995;
Le Poidevin, 2000). Infants also develop the sense of boundary during this stage, namely, the ability
to recognize where one object ends and another begins (Kestenbaum et al., 1987; Jackendoff, 1991).
Lastly, infants develop spatial and perceptual constancy by the end of sensorimotor stage. Spatiality
refers to the ability to perceive the position and distance of objects relative to oneself and each other,
and recognize the spatial invariance between them when presented by various sensory experiences
(Hermer & Spelke, 1996; Bell & Adams, 1999).

Preoperational and concrete operational stage are the second and third stage of Piaget’s cognitive de-
velopment. Typically spanning over 2 to 7 years of age, preoperational stage is the transitional stage
to concrete operational stage, which children enters around 7 years of age. During then, children
begin to develop internalized mental actions supported by organized structures that can be manipu-
lated and reversed in systematic ways, known as mental operatios (Janet, 1905; Kirkpatrick, 1908;
Piaget, 1950; Piaget & Inhelder, 2014; Miller, 2016). Through mental operations, children are then
able to rigidly perform tasks that are previously unreachable, such as thinking from other people’s
perspectives, understanding hierarchical relations of objects, and reasoning about physical events
in the world. These tasks require not only rudimentary understandings of physical concepts, which
gradually became in place during preoperational stage, but also relational and transformational rea-
soning that can only be done through mental operations (Piaget & Inhelder, 1974; Church & Goldin-
Meadow, 1986; Houdé, 1997). Since preoperational stage is mostly meaningful as the transitional
period preceding concrete operational stage, we do not have evaluation dimensions specifically tar-
geting the stage. However, tasks targeting concrete operational stage could assess presentations of
knowledge associated with preoperational stage, as prominently illustrated by the law of conserva-
tion (Piaget, 1952; Halford, 2011; Houdé, 1997).

The formal operational stage is the fourth and final stage in Piaget’s theory of cognitive development,
typically emerging around 11 or 12 years of age and continuing into adulthood (Inhelder & Piaget,
1958). Starting in this stage, one is able to systematic and flexibly apply mental operations to
not only concrete, physical domains but also abstract, formal domains (Kuhn & Angelev, 1976;
Shayer, 1979; Huitt & Hummel, 2003). Foremost, this stage is characterized by the development of
complex thinking and reasoning abilities, such as abstraction, pattern recognition, the employment
of logic, and hypothetical and counterfactual reasoning (Piaget, 1950; Inhelder & Piaget, 1958).
These cognitive advancements pave the way for more sophisticated abilities to interact with the
physical world, marked by mechanical reasoning and tool use (O’Brien & Shapiro, 1968). Together,
there is the advancement in social cognition, characterized by a deeper understanding of intentions,
actions, and the reasoning behind them (Meltzoff, 1999).

3 COGDEVELOP2K

3.1 EVALUATION DIMENSION

Boundary Boundary refers to the cognitive recognition of where one object ends and another
begins, an essential aspect of perceiving and understanding the physical world (Kestenbaum et al.,
1987). Without understanding boundary, which means where the object ends, it seems very hard to
construct a concept of object (Berkeley, 1709; Jackendoff, 1991).

Spatiality Spatiality, particularly demonstrated through the A-not-B task, involves a child’s under-
standing of the location of objects in relation to their environment (Bell & Adams, 1999). In a classic
A-not-B task, an object is hidden at location A (such as under a cup) and the child successfully finds
it several times. Then, the object is visibly moved to a different location B (under a different cup), in
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Figure 2: A video-image interleaved example of multi-frame questions. To correctly infer the an-
swer, model needs to understand the question by mapping each image (co-reference) to its option
letter, to understand correlation between frames (temporal understanding) and to infer the possible
trajectory of the bottle (reasoning).

Figure 3: We demonstrate examples of different sub-concepts from the three stages.

full view of the child. Younger infants often make the error of searching for the object at the original
location A, indicating a developmental stage where their understanding of object spatiality is still
forming.

Perceptual Constancy Perceptual constancy is the cognitive ability to perceive objects as being
constant in their properties, such as size, shape, and color, despite changes in perspective, distance,
or lighting (Rutherford & Brainard, 2002; Khang & Zaidi, 2004; Green, 2023). For instance, con-
sider a red ball being thrown in a park. To an observer, the ball appears smaller as it moves farther
away, yet the observer understands it remains the same size throughout its trajectory.
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Object Permanence Permanence, or specifically object permanence, is the idea in cognitive de-
velopment where an individual understands that objects continue to exist even when they are not
visible (Baillargeon, 1986; Spelke et al., 1992). Imagine a simple scene: a small child playing peek-
a-boo. In the beginning, when the caregiver covers their face with their hands, the child might seem
surprised or even distressed, thinking the person has disappeared. However, as the child’s under-
standing of permanence develops, they begin to realize that just because they can’t see the person’s
face, it doesn’t mean the person is gone.

Continuity Continuity is the cognitive prior in humans that in our world, objects usually exist in a
consistent and continuous manner, even moving out of sight (Spelke et al., 1995; Le Poidevin, 2000;
Spelke et al., 1994; Yantis, 1995; Yi et al., 2008; Bertenthal et al., 2013). Picture a train moving
through a tunnel: as it enters one end, yet we naturally expect it to emerge from the other end, if the
train is long enough. This expectation demonstrates our understanding of object continuity. Even
though the train is not visible while it’s inside the tunnel, we know it continues to exist.

Figure 4: Reversed Cognitve Development in Advanced Models

Conservation Conservation refers to the ability to understand that certain properties of physical
entities are conserved after an object undergoes physical transformation (Piaget & Inhelder, 1974).
This is instantiated in their ability to tell that quantities of physical entities across different domains,
such as number, length, solid quantity and liquid volume, will remain the same despite adjustments
of their arrangement, positioning, shapes, and containers (Halford, 2011; Craig et al., 1973; Piaget
& Inhelder, 1974; Houdé et al., 2011; Poirel et al., 2012; Marwaha et al., 2017; Viarouge et al.,
2019). For example, when a child watches water being poured from a tall, narrow glass into a short,
wide one, a grasp of liquid conservation would lead them to understand that the amount of water
remains the same even though its appearance has changed.

Perspective-taking Perspective-taking is the ability to view things from another’s perspective.
This ability has seminal importance both to the understanding of the physical world as well as to
the competence in social interactions (Wimmer & Perner, 1983; Wellman, 1992; Liu et al., 2008;
Barnes-Holmes et al., 2004). The Three Mountain Task first invented by Jean Piaget is widely used
in developmental psychology laboratories as the gold standard for testing perspective-taking abilities
in children (Piaget & Inhelder, 1969)

Hierarchical Relation Hierarchical relation refers to the cognitive phenomena that children be-
gin to understand hierarchical relations and be able to organize objects or concepts into structured
categories and subcategories, which are supported by the development of mental operations marked
by class inclusion and transitivity (Shipley, 1979; Winer, 1980; Chapman & McBride, 1992). Class
inclusion refers to the ability to recognize that some classes or groups of objects are subsets of a
larger class. For example, a child in the concrete operational stage is able to understand that all
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Figure 5: Multimodal Large Language Models and Human Performances

roses are flowers, but not all flowers are roses Borst et al. (2013); Politzer (2016). This concept is
essential for one’s systematic and logical organizations of conceptual knowledge. Transitivity refers
to the ability to understand logical sequences and relationships between objects (Andrews & Hal-
ford, 1998; Wright & Smailes, 2015). For instance, if a child knows that Stick A is longer than Stick
B, and Stick B is longer than Stick C, they can deduce that Stick A is longer than Stick C.

Intuitive Physics Intuitive physics refers to the ability of humans to predict, interact with, and
make assumptions about the physical behavior of objects in their world (Michotte, 1963). As chil-
dren grow, they transition from simplistic understandings, such as expecting unsupported objects to
fall, to more complex theories, such as grasping the principles of inertia (Spelke et al., 1994; Kim &
Spelke, 1999) and gravity (Vasta & Liben, 1996; Kim & Spelke, 1999; Li et al., 1999).

Intention Understanding Intention understanding involves recognizing and interpreting the ac-
tions of others (Searle, 1979; Rosenthal, 1991). This process is not just about observing a behavior
but also about understanding the goal behind it (Baker et al., 2009; Gandhi et al., 2021). For ex-
ample, seeing someone reaching for a cup is not just about recognizing the physical action but
understanding the intention behind it (e.g., they want to drink).

Mechanical Reasoning Mechanical reasoning refers to the ability to understand and apply me-
chanical concepts and logical principles to solve problems (Allen et al., 2020). This cognitive con-
cept first involves the ability to interpret and predict the behaviors of complex physical systems and
understand how different mechanisms of the systems work. Second, mechanical reasoning requires
the ability to apply logic rules (O’Brien & Shapiro, 1968; Cesana-Arlotti et al., 2018), such as induc-
tion, abduction, syllogism, Modus Ponens and Modus Tollens, and reasoning forms (Byrne, 2016),
such as hypotheticals and counterfactuals, figure out how to manipulate these systems to achieve a
desired outcome (Hegarty, 2004).

Tool Using Tool using refers to the ability to manipulate objects in its environment as aids in
achieving a specific goal, such as obtaining food or modifying the surroundings. A lot of cognitive
components involved in tool using ability, such as affordances, referring to computing the action
possibilities offered to the agent by the tool with reference to the agent sensorimotor capabilities

6
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(Gibson, 1979). For example, a door handle affords pulling or pushing, indicating how the door
should be operated.

3.2 DATA SOURCE

CogDevelop2K comprises 2517 images and 445 videos with multimodal options and questions,
crawled primarily from networks as well as self-recorded content. For example, concept intention-
ality were collected from platforms, including Wikipedia, Reddit, Twitter, Quora, and TieBa. Some
of the options were adapted from user comments to ensure content diversity and relevance. Videos
for intuitive physics were either self-recorded or produced using Physion1.

All concept questions were annotated by four researchers with cognitive science and computer sci-
ence background, then reviewed by two independent researchers. For a question to pass the screen-
ing stage, a minimum correctness rate of 95% was required from both reviewers.

3.3 DATASET DESIGN

Existing datasets typically support only one question-answer format or single modality type, which
hinders the assessment of reasoning capabilities across different modalities within the same domain.
For instance, current interleaved image understanding and video understanding models cannot be ef-
fectively compared on the same question. To address this limitation, we propose the CogDevelop2k
benchmark, which includes multiple Q&A formats (e.g., multiple-choice, true/false, and numeric
question-answer) and complicate question-answering by incorporating a new image-video-text in-
terleave format as shown in Fig. 2.

To further explore the cognitive development capabilities of models across these modalities, we
optimized CogDevelop2k as follows:

Addressing Weak Image-Text Correlation and Imbalance In existing interleaved image-text
datasets, the correspondence between images and text is often loose, and text provides marginal
information for image modeling. This imbalance can cause models to over-rely on textual informa-
tion, especially when text segments are lengthy (Lin et al. (2023)) . To address this issue and focus
on the image understanding abilities of the model, we eliminated sentences that describe the image,
such as ’A. an oil paint ¡img¿” This ensures that the textual information is highly relevant to but
does not overlap the image content.

Testing Co-Reference, Reasoning, and Temporal Understanding with novel Multi-Frame
Questions Multi-frame questions in CogDevelop can simultaneously evaluate a model’s three
inference ability: Co-Reference, Reasoning, and Temporal Understanding (Jiang et al. (2024)). Co-
reference involves linking natural language descriptions with specific image inputs (e.g., ”the first
image” or ”A.<img 1>”). Reasoning requires models to make decisions based on cognitive knowl-
edge, such as describing spatial relationships. Temporal Understanding, on the other hand, tests
the model’s capability to comprehend sequences of frames in terms of temporal order (multi-frame)
and correlation (multi-view) (Li et al. (2024b)). Existing interleaved multi-image datasets can not
adequately test all three properties simultaneously. For example, video datasets with temporal infor-
mation often include only a single video, while multi-image datasets that require co-reference lack
temporal dependencies. To address this, CogDevelop introduces multi-video interleaving and video-
image interleave formats (multi-frame) to evaluate all three properties concurrently. The statistics
of the dataset are presented in Table 2.

3.4 EVALUATION STRATEGY

We comprehensively evaluate models’ capability of cognitive reasoning using 46 multi-image in-
terleave MLLMs with 11 different promopts. The two evaluation baselines are outlined as follows:

Human baseline We recruited 22 participants, all of whom are Chinese college students proficient
in English. Each annotator was asked to label 2 to 6 concepts, with each concept being annotated

1https://physion.net/
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Table 1: Main statistics in CogDevelop2k. All the questions are image/video-text interleaved.

Statistic Number
single-frame 1677
multi-frame 842

* multiple images 200
* single video 401
* multiple videos 124
* video-image-text 117

total 2519

Figure 6: MLLMs’ Dissociation Between Law of Conservation and Rudimentary Quantity Under-
standing as Exemplified by GPT-4o

by two or more annotators. Participants were instructed to skip a question if the question is worded
ambiguously or is too complicated to answer in 90 seconds.

Zero-Shot-4482-Circular Baseline Similar to Lu et al. (2022), the zero-shot setup follows the
format of Q(M)T → A, where the input includes the question text (Q), task description (T), and
multiple options (M) concatenated as tokens, with the output being the predicted answer (A). Given
that model predictions can exhibit bias in multiple-choice settings, we implemented circular eval-
uation as baseline. In circular evaluation, all answer options are shifted one position at a time,
ensuring that the correct answer appears in each option slot. Only when the model correctly predicts
all shifted answers is it considered accurate. All images and videos were resized to 4882. (Liu et al.
(2023)).

Prompts Strategically crafted prompts can enhance model performance, regardless of whether
fine-tuning is applied (Bsharat et al. (2023); Yang et al. (2023)). In contrast to Science QA datasets,
where image captions are incorporated as the context in the prompts, this approach can cause models
to over-rely on text rather than reasoning about the image content. To mitigate this, we use image-
independent contexts, such as relevant concept introductions and character assignments, which en-
courage models to reason beyond the provided textual information. The prompts we used can be
categorized into leading words, deeper thing, role assignment, reward/penalty, and explanation. De-
tailed results can be found in Sec 4.

4 RESULTS AND DISCUSSION

We systematically evaluate 48 Multi-modal Large Language Models on the CogDevelop2K bench-
mark, which spans 12 cognitive concepts designed to assess a broad range of the developmental tra-
jectory of Multi-modal Large Language Models. These abilities substantiate core cognition ranging
from object permanence and boundary to mechanical reasoning and intentionality understanding.
The models were tested across multiple question formats and ten prompt variations, yielding a com-
prehensive assessment of their core cognition. For example, in the sensorimotor stage, GPT families
show moderate performance, with accuracy scores between 0.4 and 0.6. In the concrete operational
stage, GPT families show lower performance, with accuracy scores between 0.2 and 0.4. Neverthe-
less, in the formal operational stage, GPT families show stronger performance, with accuracy scores

8
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Table 2: Evaluation of different prompting techniques. The best result is achieved when the concept
explanation is provided to the model. We highlight the improvement over empty string in red.

Category Prompt GPT4V
Turbo High

GPT4o
High

GPT4o
Mini

Empty String 0.519 0.555 0.487

Leading

Word

1. Let’s think step by step. 0.531 0.577 0.489
2. Take a deep breath and

answer this question carefully. 0.522 0.562 0.489

Deeper

Thinking

3. Please answer the question
and provide an explanation. 0.518 0.562 0.499

4.Please answer the question and
explain to me in simple terms. 0.476 0.569 0.501

5. Please answer the question
and ensure that your answer is
unbiased and doesn’t rely on stereotypes.

0.522 0.575 0.478

Role

Assignment

6. (Assign assistance’s role) You are an
expert on cognitive science and
are familiar with [Concept name]

0.565 0.617 0.545

7. (Assign audiance’s role) Please answer
the question and explain it to me
like I am 11 years old.

0.538 0.564 0.496

Reward
&

Penalty

8. Please answer the question carefully.
I’m going to tip you 200 dollars
for a better solution.

0.528 0.563 0.487

9. Please answer the question carefully.
You will be penalized if your answer
is incorrect.

0.522 0.566 0.491

Explanation
10. Please read the concept explanation

and then answer the related question.
Concept: [concept description].

0.586
(+ 0.067)

0.636
(+ 0.081)

0.547
(+ 0.06)

between 0.6 and 0.8. Surprisingly, we find an inverse cognitive developmental trajectory compared
to humans in more advanced models, which are typically regarded as state-of-the-art (Fig. 3 and
Fig. 4).

Influence of Prompts. We investigate the influence of different prompting techniques on the perfor-
mance of MLLMs on our benchmark. As illustrated in Table 2, we explore 10 different prompting
techniques (divided into 5 categories). We observe that most prompts are useful on our benchmark,
increasing the averaged performance by at least 1%. Concept explanation, which offers a clearer
context of the question to the MLLMs, surpasses all the other prompts by at least 6%.

4.1 COGNITIVE DISCUSSIONS

We have demonstrated that MLLMs exhibit reverse cognitive development. Namely, they are sys-
tematically proficient at complex tasks that are typically understood to require abilities underlying
simple tasks that they perform poorly. This surprising finding could appear as challenge to the
current foundational architecture of MLLMs as a long-term solution to achieve human-like general
intelligence (Summerfield, 2022).

Our finding complement earlier research which raises worry that large language models may be
”stochastic parrots” that merely link words and sentences together based on probabilistics but do
not understand meanings and logic (Searle, 1980; Bender et al., 2021). If an intelligent agent truly
understand that changes in spatial arrangement do not affect quantity, it is logically impossible for it
to count correctly the amount of coins when the transformation is shown, while count wrongly when

9
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the transformation is not shown (Fig. 6). Contradictions like this reveal that MLLMs virtually do
not understand the answers they produce when tackling cognitive reasoning tasks. If this is indeed
the case, it may account for a variety of difficulties that MLLMs encounter, particularly in achieving
robustness across changing task situations (Zhao et al., 2024).

The developmental trajectory of human cognition is marked by complex cognitive abilities being
grounded upon extremely robust understandings of a series of foundational concepts, namely core
knowledge (Spelke, 2000; Spelke & Kinzler, 2007). Through early stages of development, children
exhibit rudimentary yet stable understandings of objects, actions, number, space, and social part-
ners, each dimension lays the foundations for the acquisitions of complex abilities in later life. It
has been suggested that core knowledge is precisely what supports the robustness of human cogni-
tion instantiated in commonsense reasoning (Mitchell, 2021). In reverse, the inability to implement
core knowledge in artificial intelligence models prevent them from achieving human-level robust-
ness in performances, even if such models seem to excel at certain complex cognitive reasoning tasks
(Mitchell, 2020; 2021; Shiffrin & Mitchell, 2023; Palmarini & Mitchell, 2024). MLLMs’ poor per-
formances on foundational concepts like spatiality, permanence, continuity, and perspective, those
that directly reflect upon grasps of core knowledge, while achieve proficiency in complex concepts
like tool using and intention understanding exactly exemplifies this concern.

To summarize, MLLMs’ performance on cognitive reasoning tasks significantly diverges from that
of humans, namely in terms of having a reverse developmental trajectory between simple and com-
plex abilities. This highlights the concerns that MLLMs do not genuinely understand meanings,
which require the grounding of human singular experiences (Turing, 1950; Wittgenstein, 1958; Den-
nett, 1969; Searle, 1980).

5 CONCLUSION

In this paper, we explored the cognitive capabilities of Multi-modal Large Language Models
(MLLMs) through the lens of core cognitive abilities that underpin human intelligence. By introduc-
ing CogDevelop2K, a novel benchmark that spans 12 subconcepts across developmental stages, we
aimed to assess the fundamental understanding and reasoning capacities of MLLMs. Our evaluation
of 46 models revealed intriguing insights, including a reversed cognitive developmental trajectory
compared to humans. This finding raises questions about whether MLLMs truly comprehend tasks
or simply exhibit performance without genuine understanding. These results underscore the need
for further investigation into the cognitive foundations of MLLMs, as well as the influence of evalu-
ation strategies and prompting techniques in shaping their outcomes. Ultimately, this study serves as
a step toward unraveling the nature of MLLM intelligence and their potential limitations in mirroring
human cognitive development.
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