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Abstract
Zero-shot cross-lingual generation implies fine-001
tuning of the multilingual pretrained language002
model (mPLM) on a generation task in one003
language and then using it to make predic-004
tions for this task in other languages. Previ-005
ous works notice a frequent problem of gen-006
eration in a wrong language and propose ap-007
proaches to address it, usually using mT5 as a008
backbone model. In this work we compare var-009
ious approaches proposed from the literature010
in unified settings, also including alternative011
backbone models, namely mBART and NLLB-012
200. We first underline the importance of tun-013
ing learning rate used for finetuning, which014
helps to substantially alleviate the problem of015
generation in the wrong language. Then, we016
show that with careful learning rate tuning, the017
simple full finetuning of the model acts as a018
very strong baseline and alternative approaches019
bring only marginal improvements. Finally, we020
find that mBART performs similarly to mT5021
of the same size, and NLLB-200 can be com-022
petitive in some cases. Our final models reach023
the performance of the approach based on data024
translation which is usually considered as an025
upper baseline for zero-shot cross-lingual gen-026
eration.027

1 Introduction028

Multilingual pretrained language models (mPLMs)029

such as mBERT (Devlin et al., 2019), mBART (Liu030

et al., 2020), and mT5 (Xue et al., 2021) provide031

high-quality representations for texts in various lan-032

guages and serve as a a universal backbone for033

finetuning on language-specific task data. The lat-034

ter, however, is not always available for a language035

of interest, providing motivation for studying zero-036

shot cross-lingual capabilities of mPLMs. In this037

setting, the model is finetuned on the task data in038

one source language, usually English, and then ap-039

plied in a zero-shot manner to make predictions in040

another target language, seen only at the pretrain-041

ing stage.042
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Figure 1: Learning rate plays a key role in cross-lingual
transfer: decreasing LR almost completely eliminates
generation in the wrong language with standard full fine-
tuning, and often brings larger improvements that using
complex adaptation methods developed to overcome
this problem. Full results in Fig. 8–11 in Appendix.

While the described setting was broadly studied 043

for natural language understanding tasks (Xue et al., 044

2021; Conneau et al., 2020; Artetxe et al., 2020a; 045

Pires et al., 2019; Wu and Dredze, 2019; Pfeiffer 046

et al., 2020), work on zero-shot cross-lingual gen- 047
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eration is more limited (Vu et al., 2022; Pfeiffer048

et al., 2023; Maurya et al., 2021; Li and Murray,049

2023). Previous work highlight two main problems050

arising in this scenario: producing incoherent or051

irrelevant answers, and generating text in a wrong052

language. A series of potential solutions were pro-053

posed, such as freezing parts of the weights during054

finetuning, utilizing parameter-efficient finetuning055

methods, mixing-in unsupervised target language056

data together with supervised source language data,057

or using more than one source language. A com-058

mon strategy is also to perform an intermediate059

tuning of the model on the language generation060

task in a self-supervised manner (as opposed to061

denoising tasks used for pretraining).062

However, despite listed efforts, the state of zero-063

shot cross-lingual generation still remains unclear064

and poses open questions:065

• Which adaptation method is most effective?066

Methods proposed for mitigating generation in067

the wrong language, were all tested on different068

tasks and benchmarks, and not compared to meth-069

ods from other works, making it hard to establish070

the best performing one.071

• What makes a better mPLM for zero-shot cross-072

lingual transfer? Different models have different073

pretraining objectives, training and architectural074

choices. How do those factors impact the quality075

of the cross-lingual transfer in generation?076

• Importance of hyperparameters in downstream077

task adaptation. None of the previous work stud-078

ied an impact of hyper-parameters used during079

downstream task adaptation for zero-shot cross-080

lingual generation.081

• Finally, if we pick the best solutions from all082

of the three listed dimensions, how far in per-083

formance can we get?. Can we reach the per-084

formance of a strong baseline, data translation,085

consisting in translating train data into target lan-086

guage? Previous studies either did not reach its087

performance or did not compare to this baseline.088

The contribution of this work is conducting a089

deep empirical study addressing the listed ques-090

tions. We consider most commonly used multilin-091

gual encoder-decoder mPLMs, namely mT5 and092

mBART, as well as the translation model NLLB-093

200. We systematically study six adaptation meth-094

ods, investigate the effect of intermediate tuning,095

pay attention to adaptation hyperparameters, and096

compare models and adaptation methods in a uni-097

fied setting. We consider two tasks: summarization 098

and questions answering (QA). Our main findings 099

are as follows: 100

• Hyperparameter tuning plays a very important 101

role in cross-lingual transfer: while most of the 102

works report severe problems with generation in 103

wrong language for mT5 with full finetuning, we 104

find that simply reducing learning rate helps to 105

alleviate this problem almost completely, without 106

hurting performance. 107

• Intermediate tuning substantially improves per- 108

formance in the majority of cases; 109

• With carefully chosen learning rates and interme- 110

diate tuning when necessary, simple full finetun- 111

ing is a very strong baseline in zero-shot cross- 112

lingual generation. Improvements brought by 113

more advanced methods are quite modest, and 114

none of the methods consistently outperform full 115

finetuning in all cases. The notable methods are 116

freezing model decoder and embeddings, which 117

performs consistently well with mBART (but not 118

with mT5), and using more than one source lan- 119

guage, which performs consistently well with 120

mT5 (but not with mBART). 121

• mBART and mT5 of similar size lead to com- 122

parable performance. Qualitatively, due to 123

the specifics of masking pretraining objective, 124

mBART is better suited for tasks with long out- 125

puts while mT5 is for tasks with short outputs. 126

• NLLB-200 is surprisingly competitive in sum- 127

marization, reaching performance of mT5 and 128

mBART for high-resource Latin-alphabet lan- 129

guages, but lags behind in QA. 130

• The final performance of cross-lingual genera- 131

tion reaches or outperforms the data translation 132

approach, often considered as an upper bound 133

for zero-shot cross-lingual generation. Notably, 134

careful learning rate tuning coupled with inter- 135

mediate tuning allow mT5 closely approach the 136

performance of data translation simply with full 137

finetuning adaptation. 138

2 Related Work 139

All works on zero-shot cross-lingual generation 140

underline (and try to address) the severe problem 141

of generating in a wrong language at the test time. 142

This problem is also referred to under terms catas- 143

trophic forgetting (of languages not participating 144

in finetuning, Vu et al., 2022), source language 145

hallucination (Pfeiffer et al., 2023), or accidential 146
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translation problem (Li and Murray, 2023). Vu147

et al. (2022) propose to overcome generation in a148

wrong language by using parameter-efficient fine-149

tuning instantiated by prompt-tuning (Lester et al.,150

2021). They also mix-in the unsupervised target151

language task together with the supervised source152

language task, and factorize learnable prompts into153

language and task components.154

Pfeiffer et al. (2023) propose mmT5 (modu-155

lar mT5), allocating a small amount of language-156

specific parameters in the model during pretrain-157

ing and freezing them during task-specific finetun-158

ing. To alleviate generation in a wrong language,159

they freeze some additional mmT5 parameters dur-160

ing finetuning, e. g. embedding layer and feed for-161

ward layers in Transformer decoder. Li and Mur-162

ray (2023) argue that learning language-invariant163

representations during finetuning is harmful for164

cross-lingual generation and propose finetuning on165

data from more than one source language to avoid166

generation in a wrong language, with mT5 as a167

backbone model. ZMBART (Maurya et al., 2021)168

is the only work which considers other backbone169

model than mT5: they perform an intermediate tun-170

ing of mBART on an auxiliary unsupervised task171

on Hindi, Japanese and English. To avoid genera-172

tion in a wrong language, they freeze embeddings173

and Transformer decoder, and mix-in data from174

auxiliary pretraining during finetuning.175

In our work we are interested to compare all pre-176

viously proposed approaches in the unified settings177

to better assess the impact of different factors on178

the zero-shot cross-lingual transfer for generation.179

Alternative approaches to zero-shot cross-180

lingual transfer include data translation approaches,181

often referred as translate-train and translate-test182

paradigms. The former one implies translating train183

task data to the target language and finetuning the184

model on this translated data, and the latter one185

assumes translating test input examples into the186

source language, generating outputs in the source187

language and translating them back into the tar-188

get language. The drawbacks of these approaches189

include a high computational cost either at train-190

ing or testing time, lack of high-quality transla-191

tion models for low-resource languages, and poten-192

tial inconsistencies between sentences in transla-193

tion (Vu et al., 2022). Despite its computational194

cost, data translation is a strong baseline which195

is usually considered as an upper bound on cross-196

lingual generation. Another related field is few-shot197

cross-lingual generation which assumes access to a198

small amount of labeled examples in the target lan- 199

guage (Schmidt et al., 2022; Lauscher et al., 2020; 200

Zhao et al., 2021). This setting is out of scope of 201

this study, but could be considered in the future 202

work. 203

3 Methodology and experimental setup 204

Adaptation methods. We investigate the follow- 205

ing adaptation methods: 206

• Full finetuning: all weights of the model are fine- 207

tuned on the source language data; 208

• Prompt tuning (Vu et al., 2022): comprises 209

prepending several learnable vectors ("prompt") 210

to the list of embeddings of text input and freez- 211

ing all other model weights during finetuning. 212

Parameter-efficient approaches were shown in 213

the literature to be better suited for transfer learn- 214

ing than full finetuning. 215

• Adapters (Houlsby et al., 2019; Bapna and Fi- 216

rat, 2019): lightweight tuned modules inserted 217

after each fully-connected and attention block of 218

Transformer, when the rest of (pretrained) model 219

weights are frozen. We consider adapters as the 220

most widely used parameter-efficient adaptation 221

approach in the literature; 222

• Freezing of encoder and embeddings (Maurya 223

et al., 2021): only weights in the encoder are fine- 224

tuned. The motivation behind this approach is 225

that the decoder should keep capabilities of gen- 226

erating in various languages while the encoder 227

will adapt the model to the task; 228

• Mixing-in self-supervised data for target lan- 229

guages (Lester et al., 2021; Maurya et al., 2021): 230

during finetuning, task data instances in source 231

language will be alternated with self-supervised 232

data instances in target language. The motiva- 233

tion is that such a mixing will preserve model’s 234

capability of generation in target languages; 235

• Using several source languages (Li and Murray, 236

2023): performing finetuning on more than one 237

source language to better decouple task knowl- 238

edge from language knowledge. 239

In the rest of the text term "full finetuning" refers 240

to the finetuning of all weights on the English task 241

data, even though two last described methods also 242

finetune all weights. We do not consider mmT5 as 243

it was not publicly released and requires substantial 244

resources for pretraining. 245

We also experiment with intermediate tuning 246

(IT) of the model, used in several works and per- 247
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formed before finetuning on the task data. Standard248

encoder-decoder mPLMs rely on a self-supervised249

denoising training, where often input corresponds250

to corrupted text (eg. masked tokens), and output251

can follow some very specific structure (eg. un-252

masked span rather than full sentence, output con-253

taining special tokens, etc.). Therefore, in their raw254

form, these mPLMs are not necessarily well suited255

to recieve well-formed text as an input and generate256

clean text as an output. IT performs finetuning on257

language modeling-like tasks, e.g. predicting the258

continuation of a paragraph based on its beginning,259

to compensate for this gap. IT was shown to be260

necessary in Vu et al. (2022) with prompt tuning of261

mT5 and in Maurya et al. (2021) with full or partial262

finetuning of mBART. We systematically test the263

necessity of IT for all methods and models.264

Models. We focus on encoder-decoder mPLMs265

as they are well suited for generation purposes, as266

opposed to encoder-only mPLMs such as mBERT267

or XLM-R. We leave the investigation of decoder-268

only mPLMs such as BLOOM (Scao et al., 2022)269

for future work. We consider mT5 and mBART as270

two most widely used mPLMs and NLLB-200 as a271

high-quality translation model:272

• mT5: pretrained using the masked language273

modeling objective where parts of the input se-274

quence are masked and the missing fragments275

act as targets1. mT5 is pretrained on the mC4276

corpora, supports 101 languages, and does277

not use any language codes. Among released278

sizes from 300M to 13B we experiment with279

mT5-base (580M, most of the experiments)280

and mT5-Large (1.2B, additional experiment).281

• mBART (pt): pretrained using the denoising282

objective where parts of the input sequence283

are masked and the entire original sequence284

acts as a target (Liu et al., 2020; Tang et al.,285

2021). mBART is pretrained on Common286

Crawl (Conneau et al., 2020) corpora, sup-287

ports 50 languages, has 680M parameters in288

total and uses language codes in both encoder289

and decoder sides. Both input sequence X290

and target sequence Y are prepended with291

the language code: [lang_code, X] and292

[lang_code, Y], and at the inference time293

lang_code is forced as a first generated token.294

Our hypothesis is that the use of the language295

1In contrast to English-centric T5, mT5 did not include
supervised tasks in pretraining.

code in the decoder can help to alleviate the 296

problem of generation in a wrong language. 297

• mBART (tr): In addition to the pretrained ver- 298

sion, we also consider mBART finetuned for 299

translation (Tang et al., 2021). 300

• NLLB-200: translation model supporting 200 301

languages, pretrained on sentence-level data 302

mined from the web and automatically paired 303

using multilingual embeddings. NLLB-200 304

uses the same language code scheme as 305

mBART and is released in various sizes from 306

600M to 54.5B, among them we consider 307

600M (distilled version). Our hypothesis is 308

that translation-based pretraining may provide 309

good representations for cross-lingual transfer 310

as suggested by (Reid and Artetxe, 2023). 311

Evaluation. We select two generative tasks to 312

evaluate cross-lingual zero-shot knowledge trans- 313

fer: 314

• XL-Sum: news summarization on the XL-Sum 315

dataset (Hasan et al., 2021). The model needs 316

to generate a 1–2 sentences summary based 317

on a 1–2 news paragraphs. The evaluation is 318

performed with ROUGE-2 metric (Lin, 2004) 319

computed on the test sets (first 2k examples 320

per language). 321

• XQuAD: question answering dataset (Artetxe 322

et al., 2020b), the model needs to generate a 323

short phrase answer based on a paragraph and 324

question about it appended in the end of the 325

paragraph. The evaluation is performed with 326

F-measure comparing tokens in the gold an- 327

swer and model-generated answer computed 328

on publicly available development sets. For 329

better metrics interpretability, we only con- 330

sider questions for which groundtruth answers 331

do not contain numbers and are correctly iden- 332

tified to be written in the target language. 333

We select a representative subset of languages for 334

each task2, covering Latin- and non-Latin scripts, 335

and report how do task-specific metrics evolve dur- 336

ing adaptation. For better interpretability, in ad- 337

dition to task metrics, we also consider (1) lang. 338

correct rate metric (the percentage of outputs gen- 339

erated in the correct target language) and (2) aver- 340

age sequence length metric that allow to spot some 341

edge behaviour of the models. 342

2XL-Sum: Chinese, French, Korean, Russian, and Spanish.
XQuAD: Arabic, Chinese, German, Russian, and Spanish
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Figure 2: Comparison of adaptation methods, with tuned learning rates and intermediate tuning when it is needed.
Results averaged across target languages and 2 runs. Language correct rate is close to 100% in almost all cases, due
to hyperparameter tuning. The exception is prompt tuning of mT5 in the XQuAD task which is not shown because
of too low performance.

Adaptation settings. For all adaptation methods343

we train models on English data for 20k steps with344

batch size of 4000 tokens on a single A100 GPU,345

and run evaluation each 2k steps. We crop input346

sequences to the maximum length supported by347

models, which equals to 512 (mT5, NLLB-200) or348

1024 tokens (mBART). We grid search the learning349

rate (LR) for each task-model-adaptation method350

combination, details are given below.351

For Intermediate tuning we finetune models for352

100k steps on the CommonCrawl data with the353

batch size of 5k tokens and the LR chosen to opti-354

mize fluency of model generations, inspected man-355

ually. We use PrefixLM-inspired self-supervision356

from (Vu et al., 2022), where the continuation of357

the text needs to be predicted based on its be-358

ginning. It has shown more promising results359

in our preliminary experiments compared to self-360

supervised objective from (Maurya et al., 2021)361

(see details in Appendix B).362

• Prompt tuning: we use the prompt dimension363

of 100 and initialize the prompt with randomly364

selected rows of the embedding matrix, fol-365

lowing Vu et al. (2022).366

• Adapters: we use the adapter dimension of367

64 and insert adapters after each attention and368

fully-connected layer, following Bapna and369

Firat (2019).370

• Mixing-in target languages: we use the same371

self-supervised objective as in IT and sample372

the corresponding data with probability 1%373

(all languages represented uniformly within374

this 1%), following Vu et al. (2022). We exper-375

imented with higher portions in Appendix C,376

as well as with mixing-in the pretraining task377

of the base model, and found that they lead to378

worse results.379

• Using several source languages: we test 380

this approach only on XL-Sum, because for 381

XQuAD only English training data is avail- 382

able; for XL-Sum we use English, Japanese 383

and Arabic, selecting them uniformly when 384

forming mini-batches. More details on the 385

experimental setting are given in Appendix A. 386

Hyperparameter tuning. We tune LR and de- 387

cide on the necessity of IT, for each considered task- 388

model-adaptation method combination. We ini- 389

tially grid searched LR for full finetuning, adapters 390

and prompt tuning, for each task and model, with- 391

out IT. The result of this step is the preliminary LR 392

(PLR), and we utilize the PLR of full finetuning 393

for other adaptation methods since they are also 394

based on full finetuning. PLR usually corresponds 395

to the highest LR which still enables generation in 396

the correct language. After finding PLR, for each 397

task-model-adaptation method combination, we se- 398

lect the best of four hyperparameter combinations: 399

two options for LR (PLR and PLR ×10) and two 400

options for IT (used or not). Our intuition is that 401

the use of advanced adaptation methodology or IT 402

could potentially increase the LR which still does 403

not lead to generation in the wrong language. In 404

practice, this happened only once, for freezing of 405

mBART in the summarization task. For XL-Sum, 406

we perform the described tuning on the validation 407

sets, looking at the performance averaged over con- 408

sidered target languages. For XQuAD, we use held- 409

out languages (Thai, Romanian, and Vietnamese), 410

since publicly available validation sets are used for 411

the main evaluation. Results are usually consistent 412

between languages. 413

We report the resulting optimal setting in Ta- 414

ble 4 in Appendix. We could not find information 415

on the used LR in (Pfeiffer et al., 2023) and (Vu 416

et al., 2022), to compare our chosen LRs with theirs. 417

Maurya et al. (2021) and Li and Murray (2023) use 418

5



a constant LR for all tasks, which are hard to com-419

pare to ours because of different data3.420

4 Experiments421

First, we investigate the effect of learning rate, in-422

termediate tuning and adaptation method for two423

most commonly used models, mT5 and mBART.424

Second, we compare them with other models and425

consider larger models. Finally, we present some426

qualitative examples and observations from manual427

inspection of predictions. In general, model predic-428

tions reaching highest metric values in our plots,429

form quite meaningful and reasonable responses to430

the considered tasks; more details in Section 5.431

Effect of learning rate. We begin our study with432

analysing the effect of LR on the full finetuning433

on the English task data. With too small or too434

large LR the model does not learn even the English435

task because of too short steps or divergence. For436

the range of LRs when the English task is learned437

well, we observe that larger LRs lead to the effect438

reported in other works, when the model overfits to439

the source English language and generates answers440

in English when applied in cross-lingual setting.441

However, with the reduced LR, this effect almost442

completely eliminates and the model mostly gener-443

ates in the target language. This effect is demon-444

strated in Figure 1 on a subset of languages and in445

Fig. 8–11 in Appendix on all considered languages.446

Figure 1 also shows a comparison of enhance-447

ments of full finetuning proposed in the literature,448

such as mixing-in target language or freezing the449

decoder and the embedding. Even though these en-450

hancements improve performance and percentage451

of outputs in the correct language, with fixed LR,452

we find that reduced LR in full finetuning settings453

often brings larger improvements. Reducing LR454

for other methods makes them even stronger.455

We note that performance in English is usually456

a little higher with larger LR. This may raise a hy-457

pothesis that for non-English languages, outputs458

generated with larger LR in English may be of459

higher semantic quality than the ones generated in460

the correct target language with smaller LR. In Ap-461

pendix D we test this hypothesis and demonstrate462

that this is not the case.463

Effect of intermediate tuning. For each combi-464

nation of a task and adaptation method, we com-465

3Maurya et al. (2021) use LR=3e-5 larger than ours 1e-6,
Li and Murray (2023) use LR=7e-5 close to ours 1e-4.

XL-Sum XQuAD

Method mT5 mBART mT5 mBART

Full finetuning +0.1 +2.5 +6.3 +9.0
Ft + mix tgt langs 0 +0.6 +3.1 -8.3
Ft + >1 src langs 0 +1 n/a n/a
Freeze emb & dec +4.3 +4.1 +11.2 +1.3
Adapters 0 0 +1.0 +3.9
Prompt tuning +7.5 +7.2 +26.8 +25.1

Table 1: Difference in performance between task adap-
tation with and without intermediate tuning, for various
methods. Rouge-2 for XL-Sum, F-measure for XQuAD.

pare the mT5-base/mBART task adaptation with 466

and without intermediate tuning (IT). 467

We choose the best LR between PLR and PLR 468

×10 (section 3). Results are presented in Table 1. 469

We observe that intermediate tuning substantially 470

increases performance in the majority of cases. In 471

particular, IT appears to be essential for mBART 472

with almost all adaptation methods and in all tasks, 473

and important for mT5 in question answering. For 474

mT5 in summarization, the use of IT does not in- 475

crease performance, except with prompt tuning and 476

freezing methods. We believe that this is because 477

these two approaches do not modify the decoder, 478

which was trained only on masked spans during 479

mT5 pretraining and never was exposed to realistic 480

text, and IT closes this gap. This result is consistent 481

with (Vu et al., 2022) and (Maurya et al., 2021). 482

Comparison of adaptation methods. Figure 2 483

shows results (averaged over target languages) 484

comparing adaptation methods for mT5-base and 485

mBART models. Detailed per-language results are 486

presented in Figure 7 in Appendix. 487

We observe that with carefully chosen learning 488

rates and intermediate tuning, simple full finetun- 489

ing is a very strong baseline in zero-shot cross- 490

lingual generation. Improvements brought by 491

the use of more advanced adaptation methods are 492

rather modest, and none of the adaptation meth- 493

ods consistently outperform full finetuning in all 494

cases. The notable approach for mBART is freezing 495

the decoder and embeddings, proposed by Maurya 496

et al. (2021) for this base model: freezing con- 497

sistently outperforms full finetuning in all target 498

languages in both tasks. However, this approach 499

does not show such improvements for mT5. For 500

XL-Sum, using more than one source language pro- 501

posed in (Li and Murray, 2023) brings consistent 502

improvement over target languages for mT5. For 503

mBART this approach performs on par with using 504
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one source language. The obvious drawback of505

this approach is that multi-lingual data may be not506

available, e.g. this is the case for XQuAD.507

Mixing-in unsupervised tasks for target lan-508

guages often degrades performance and increases509

the length of predictions, see Appendix C. Prompt510

tuning often has difficulties learning an English511

task and substantially underperforms other adap-512

tation methods on XQuAD. Adapters usually per-513

form on par or slightly worse than full finetuning.514

Comparison of models. Figure 2 allows us to515

compare mT5-base and mBART after tuning of516

hyperparameters and adaptation methods. These517

models incorporate comparable numbers of param-518

eters. We observe that mT5 and mBART reach the519

similar level of performance in both tasks. The520

same conclusion holds if we simply compare full521

finetuning runs of both models.522

In Figure 3 we compare all four models we con-523

sider, adapted using full finetuning. We compare524

models without intermediate tuning, to avoid hin-525

dering model capabilities behind this additional526

step. We find that translation-pretrained NLLB-527

200 performs well in summarization, achieving per-528

formance of mT5 and mBART in Latin-language529

high-resource languages, French and Spanish, and530

performing on par with mBART without interme-531

diate tuning in other languages4. We selectively532

inspected the predictions of NLLB and found that533

they indeed form meaningful summaries. How-534

ever, in QA, NLLB-200 performs poorly, often535

(but not always) generating non-relevant answers.536

Translation-finetuned version of mBART performs537

poorly in all tasks, generating a lot of wrong lan-538

guage predictions.539

Comparison versus data translation. Figure 2540

also shows comparison versus the data translation5541

approach, when English training data is translated542

into target languages using the NLLB-3.3B model.543

We translate data sentence-by-sentence and grid544

search the LR for finetuning. The results show that545

after careful tuning, zero-shot cross-lingual gener-546

ation reaches or outperforms the data translation547

approach in both considered tasks. If we consider548

a simpler setting when only LR and the use of IT549

are tuned, i.e. comparing full finetuning and data550

translation runs in Figure 2, we observe that zero-551

4Expect Chinese, for which NLLB-200 generates a lot of
empty predictions. NLLB-200 was noticed previously in the
literature to have issues with processing Chinese.

5Data translation is often referred as translate-train method.

XL-Sum XQuAD

Method R2 LCR F1 LCR

Large / IT + ft 9.9 99.8% 69.8 94.7%
Large / IT + ft >1 src lg 10.9 99.8% n/a n/a
Large / Data translation 10.8 99.8% 63.6 96.7%

Base / IT + ft 8.0 99.7% 59.4 92.9%
Base / IT + ft >1 src lg 9.0 99.8% n/a n/a
Base / Data translation 8.5 99.6% 53.9 95.3%

Table 2: Results for mT5-large model, averaged over
target languages. Metrics: Rouge-2 for XL-Sum, F-
measure for XQuAD, LCR: language correct rate. LCR
is lower than 100% on XQuAD (partly) because of
language identification errors for short sequences.

shot cross-lingual generation closely approaches 552

the data translation approach in summarization and 553

performs the same in question answering. The 554

XQuAD dataset is harder to automatically translate 555

than XL-Sum, e.g. single words often present in 556

targets may be translated into short full sentences. 557

Experiments with larger models. Table 2 re- 558

ports results for the mT5-large model where we 559

compare performance achieved with full finetuning 560

after intermediate tuning versus training on trans- 561

lated data. We also include the leader approach 562

of using several source languages. We consider 563

only mT5 because mBART is released in one size. 564

We reduce LR to 0.00001 for the larger model, 565

as the LR of 0.0001 used for the base model was 566

sometimes producing English outputs. We also list 567

mT5-base results for reference. 568

We find that the same conclusions hold for the 569

mT5-large model as for mT5-base: reducing LR 570

eliminates generation in the wrong language, and 571

the zero-shot cross-lingual model is on par or better 572

than the data translation approach. 573

5 Inspection of predictions 574

We inspected a subset of predictions in the lan- 575

guages we speak and found that models achiev- 576

ing highest scores in both tasks generate fluent, 577

meaningfull and reasonable predictions in a lot 578

of cases, but sometimes have issues with factu- 579

alness, grammaticality or hallucinations. Exam- 580

ples are shown in Figure 4. Analyzing effects 581

of LR, we observe that increasing LR leads first 582

to increase in code switching and then to wrong 583

language generation, while reducing LR leads to 584

producing rudiments of pretraining in generation. 585

For example, models sometimes generate extra to- 586

kens used in pretraining, such as <extra_id_{N}> 587
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Figure 3: Comparison of base models with full finetuning. Each plot averaged over 3 runs. Correct language rate is
close to 100%, due to hyperparameter tuning, in almost all cases except the translation-tuned version of mBART. pt:
pretrained version of mBART, tr: translation-finetuned version of mBART.

Model Model outputs in French Translation into English Avg len
1 Grountruth Pr Hulda Swai, professeure tanzanienne de sciences de la vie et de bio-

ingénierie, a été désignée lauréate 2020 du prix continental Kwame 
Nkrumah de l'Union africaine (UA) pour l'excellence scientifique.

Pr. Hulda Swai, a Tanzanian female professor of life sciences and 
bioengineering, has been named the 2020 winner of the African Union 
(AU) Kwame Nkrumah Continental Prize for Scientific Excellence. 151

2 mT5-base, 
full ft w/o IT

<extra_id_0> femmes sont très motivées à entreprendre une carrière 
scientifique dans le domaine de la nanotechnologie.

<extra_id_0> women are highly motivated to pursue a scientific career in 
the field of nanotechnology. 101

3 mT5-base, 
full ft with IT

La professeure de nanotechnologie de l'Union africaine a réussi à réunir 
7,5 millions de dollars.

The nanotechnology female professor from the African Union managed to 
raise $7.5 million. 91

4 mT5-base, 
>1 src langs w/o IT

<extra_id_0> une scientifique africaine a reçu une récompense pour son 
travail dans le domaine de la nanotechnologie.

<extra_id_0> an African female scientist has received an award for her 
work in the field of nanotechnology. 107

5 mT5-base, train 
data translation

Un professeur de nanotechnologie a reçu une récompense continentale 
pour son travail dans le domaine des nanotechnologies.

A nanotechnology professor has received a continental award for her work 
in the field of nanotechnology. 112

6 mBART, 
full ft w/o IT

Ancienne professeure de l'université de Durban a reçu un prix de la part 
de la Banque mondiale.

Former professor at the University of Durban received an award from the 
World Bank. 117

7 mBART,
full ft with IT

A ne pas manquer sur BBC Afrique : Une femme motivée et concentrée Not to be missed on BBC Africa: A motivated and focused woman
111

8 mBART, freeze dec 
& emb, with IT

La professeure africaine de nanotechnologie a été lauréate du prix 
Kwame Nkrumah de l'Union africaine.

The African nanotechnology female professor was the recipient of the 
African Union Kwame Nkrumah Prize. 115

9 mBART, train 
data translation

Un scientifique africain a été lauréat du prix Kwame Nkrumah de l'Union 
africaine.

An African scientist has been awarded the African Union Kwame Nkrumah 
Prize. 108

Figure 4: Example predictions for a selection of models. Avg. len. over evaluation corpora in French, in characters.
Red highlights errors or extra tokens.

for mT5 or <sep> for mBART, see rows 2 and588

4 in Figure 4. In most cases this does not af-589

fect meaningfulness of predictions, but in rare590

cases leads to mT5 producing incomplete sen-591

tences, which may look unreasonable in summa-592

rization, e.g. “<extra_id_0> Guinea-Bissau593

President Alberto Dabo said.” (translated594

from French). The reason is that in mT5 pretraining595

tokens <extra_id_{N}> were followed by frag-596

ments of input sentences. The described effect is597

eliminated by intermediate tuning (row 3 in Fig. 4).598

In the same fashion, mBART average lengths are599

closer to groundtruth average lengths than mT5 in600

summarization, and the reverse effect takes place601

in QA. The reason is that in mT5 pretraining, the602

targets are only fragments masked in the input,603

which are shorter than targets in mBART pretrain-604

ing represented by full sequences (they need to be605

reconstructed from the masked inputs).606

Notably, data translation can produce translation-607

related errors, e.g. in rows 5 and 9 models generate608

a wrong male article "Un", probably because this609

was a dominating article in the translated data. 610

6 Conclusion 611

In this work, we conducted a deep systematic 612

study of how to achieve high-performing zero-shot 613

cross-lingual generation. Our study highlights the 614

high importance of careful learning rate tuning 615

and the usefilness of the intermediate tuning. We 616

show that with these two ingredients, mT5 and 617

mBART achieves strong results with simple full 618

finetuning, i.e. closely approach the performance 619

of the translate-train approach in summarization 620

and reaching it in question answering. The perfor- 621

mance gap in summarization is closed by using sev- 622

eral source languages in mT5 and freezing decoder 623

and embeddings in mBART. Translation-pretrained 624

NLLB-200 shows surprisingly good performance 625

in summarization but lags behind in question an- 626

swering. We suggest that future works report more 627

rigorously their experimental setup and details on 628

hyperparameter search, and consider wider spec- 629

trum of models and baselines in the experiments. 630
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7 Limitations and broader impact631

We aim at conducting a deep, thoughtful study of632

various design choices in zero-shot cross-lingual633

generation, but acknowledge the impossibility of634

considering all possible options, given the resource635

constraints. In particular, we could not perform full636

fine-grained grid search of LR for each task-model-637

adaptation method combination. Instead, we use a638

well-designed simplified strategy described in Sec-639

tion 3, which already gave strong results. In the640

same fashion, we had to limit our study to three641

models (we picked most commonly used models)642

and adaptation methods which do not require model643

pretraining, e.g. we do not consider mmT5 model.644

Nonetheless, we hope our study provides helpful645

insights on zero-shot cross-lingual transfer in gen-646

erative tasks and shows that it can achieve the per-647

formance of the data translation method, which is648

usually considered as an unreachable upper bound.649

We do not anticipate any negative impact of our650

work and on the reverse hope that it will help to651

make higher-quality language technologies acces-652

sible to a broader set of languages.653
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A Experimental setup832

Data. We experiment with news summarization833

on the XL-Sum dataset (Hasan et al., 2021) (re-834

leased under the CC BY-NC-SA 4.0 license) and835

question answering on the XQuAD dataset (Artetxe836

et al., 2020b) (released under the CC BY-SA 4.0 li-837

cense). Both datasets were released for research pu-838

poses. The XL-Sum dataset was obtained by crawl-839

ing BBC news in 44 languages, with corpus size840

per language varying from 1K (Scottish Gaelic)841

to 300K (English) article-summary pairs. Inputs842

are composed of 1–2 paragraphs and targets are843

usually 2–3 sentences. We evaluate on test sets844

and crop test sets larger than 2K samples, to 2K.845

The XQuAD dataset was obtained by translating846

SQuAD validation set (Rajpurkar et al., 2016) into847

11 languages, thus all language corpora are parallel.848

We use this dataset for evaluation and train on the849

training set of SQuAD (80K training instances).850

Each input is composed of a paragraph and a ques-851

tion about this paragraph appended in the end of the852

paragraph. Each output is an answer to a question,853

a short segment copied from the paragraph.854

Preprocessing and postprocessing. We tokenize855

data using each model’s tokenizer. We crop856

model inputs and outputs to the maximum lengths857

supported by models, which equal to 1024 to-858

kens for mBART and 512 tokens for mT5-base859

and NLLB-600M. Due to the design of pretrain-860

ing, models may generate extra tokens such as861

<extra_id_{N}> for or <sep> for mBART. We re-862

move such extra tokens from predictions before863

computing metrics.864

Models and training. We consider three models:865

mT5 (base and large, released under the Apache866

License 2.0 license), mBART (MIT license), and867

NLLB-200 (cc-by-nc-4.0 license). All models al-868

low use for research purposes. We train models869

on English data for 20k steps with batch size of870

4000 tokens on a single A100 GPU, and conduct871

validation on considered target languages each 2k872

steps. We use Adam optimizer with standard in-873

verse square root LR schedule and warm up of 4k874

steps, and update model parameters after each mini-875

batch. We estimated the total computational budget876

of our experiments to be 4K GPU hours.877

Hyperparameter search. For full finetuning,878

adapters and prompt tuning, we run a search over879

a range of LR. For each task and model (without880

intermediate tuning), we search the LR best for non881

English languages on average, looking at ROUGE- 882

2 for summarization and F-measure for QA. We 883

start with the set of three LRs: {10−k, k = 3, 4, 5}. 884

If the optimal k∗ ̸= 4 then we extend search cor- 885

respondingly to k = 2, 1 or k = 6, 7 until per- 886

formance stops improving. For full finetuning, af- 887

ter we find optimal k∗ we also consider 3 · 10−k∗ . 888

The motivation is that the optimal k∗ usually cor- 889

responds to the maximal k that still allows gen- 890

eration in the correct language, and considering 891

3 · 10−k∗ enables more accurate search for this 892

maximum. We report chosen LRs for full finetun- 893

ing and adapters in Table 4. For prompt tuning we 894

chose LR of 0.01 for both tasks. 895

Evaluation. For summarization, we report 896

ROUGE metrics (Lin, 2004), and for QA, we report 897

F-measure. In QA, a lot of answers contain num- 898

bers or English words which could inflate metrics 899

even if the model does not generate in the correct 900

language. Moreover, the accuracy of language iden- 901

tification decreases on short answers, resulting in 902

false indication of generation in wrong language. 903

To avoid these issues, we compute metrics in QA 904

only over questions for which groundtruth answers 905

do not contain numbers and are correctly identified 906

to be written in the target language (∼50% of 1190 907

questions satisfy this criteria). 908

For ROUGE metric, we use the gem-metrics 909

package. For F1 metric in XQuAD, we use the 910

script provided by the dataset authors. To identify 911

language, we use fasttext library (Joulin et al., 912

2017, 2016) and its lid.176.bin model6. 913

B Preliminary experiments with 914

intermediate tuning 915

Figure 5 reports comparison of two self-supervised 916

objectives for intermediate tuning: Prefix-LM and 917

ZmBART-like objective. PrefixLM objective im- 918

plies predicting the continuation of the chuck of 919

text based on its beginning, while ZmBART-like 920

objective implies citing random sentences from the 921

input chunk of text. We compare two objectives 922

using the freezing of the decoder and embeddings 923

as an adaptation method, applied after intermediate 924

tuning with the chosen objective, because we found 925

intermediate tuning to be essential for this adapta- 926

tion method in the preliminary experiments. Fine- 927

tuning LR equals to the PLR defined in Section 4, 928

intermediate tuning LR was chosen to optimize 929

6https://fasttext.cc/docs/en/
language-identification.html
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Figure 5: Comparison of self-supervised objectives for
intermediate tuning, with freezing decoder and embed-
dings as an adaptation method. Task metric: Rouge-2
for XL-Sum, F1 for XQuAD. Correct language rate is
close to 100% in all cases except pretrained mBART on
XL-Sum.

fluency of model generations, inspected manually.930

Intermediate tuning is performed on the Common-931

Crawl dataset.932

We observe that for XL-Sum, the Prefix-LM ob-933

jective leads to substantially higher Rouge-2 values,934

while for XQuAD both objectives lead to close re-935

sults. Based on these results, we decided to use the936

Prefix-LM objective in all experiments.937

C Preliminary experiments with938

mixing-in target languages939

Figure 6 reports results of preliminary experiments940

with mixing-in a self-supervised task in target lan-941

guages. For each base model, namely mT5-base942

and mBART, we consider its pretraining task and a943

Prefix-LM task used for intermediate tuning. We944

consider several options for the probability of sam-945

pling target language examples when forming mini-946

batches. CommonCrawl data is used for the self-947

supervised task. The experiment is conducted for948

the XL-Sum task, with LR being equal to the PLR949

defined in Section 4, without intermediate tuning.950

For mt5, we observe that using the span corrup-951

tion pretraining task leads to empty outputs with952

any mixing-in probability (with smaller probabili-953

ties this effect happens later in the training). This954

is because task examples do not contain any mask955

tokens, and empty generation is a default response956

of the pretrained mT5 to such inputs. Mixing-in957

PrefixLM task examples performs similarly to the958

standard finetuning of mT5, with mixing-in proba-959

bility of 1% performing best, same as in (Vu et al.,960

2022). Qualitatively, mixing-in self-supervised961

task increases the length of generated outputs in962

the tasks of interest.963

For mBART, all mixing-in strategies lead to964

modest improvements in performance, with Pre-965
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Figure 6: Preliminary experiments with mixing-in a self-
supervised task for target languages. The probability
in the legend denotes the probability of sampling target
language examples when forming mini-batches. Two
self-supervised tasks considered: Prefix-LM and the
pretraining task of the model. Correct language rate is
close to 100% in all cases

fixLM task performing slightly better. All consid- 966

ered mixing-in probabilities lead to similar results. 967

Based on these observations, we decided to use the 968

PrefixLM task with mixing-in probability of 1% in 969

our experiments. 970

D Additional experiment with translating 971

English outputs into target languages 972

When reducing the LR for preserving generation 973

in correct language, a reasonable question could be 974

whether predictions of higher LR models are higher 975

quality answers, but just in the wrong language, or 976

simply hallucinations caused by data distribution 977

shift. The premise for the former scenario is that 978

on English data, performance with our chosen LR 979

is usually slightly lower than with a larger LR. 980

We find that actually the later scenario takes 981

place, by comparing performance of our chosen 982

LR (best for non-English) and of the best LR for 983

English with model predictions being translated 984

into target languages using NLLB-3.3B7, for last 985

7NLLB-3.3B handles well inputs containing code switch-
ing which are frequent in predictions we are translating, and
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Best-En LR + Tr. Best-non-En LR

LR Score LR Score

mT5 1e-3 4.02 1e-4 7.7
Sum mBART 1e-5 4.06 1e-6 5.34

NLLB-200 1e-4 2.86 1e-5 4.62

mT5 1e-4 46.2 1e-4 58.6
QA mBART 1e-5 41.1 1e-5 46.6

NLLB-200 1e-4 17.4 3e-5 18.2

Table 3: Comparison of best LR for non-English lan-
guages and best LR for English with model outputs
being translated into target languages. Performance av-
eraged over non-English languages, after 20k of full
finetuning. Reported metric: Rouge-2 for summariza-
tion, F-measure for QA. mBART — pretrained version,
no intermediate tuning is used in this experiment.

Model Method XL-Sum XQuAD
LR IT? LR IT?

Ft w/o IT 1e-4 1e-4
Ft 1e-4 1e-4 ✓

mT5 + Mix tgt langs 1e-4 1e-4 ✓
(base) + >1 src langs 1e-4 n/a

Freeze 1e-4 ✓ 1e-4 ✓
Adapters 1e-3 1e-3
Prompt tuning 1e-2 ✓ 1e-2 ✓

Ft w/o IT 1e-6 1e-5
Ft 1e-6 ✓ 1e-5 ✓
+ Mix tgt langs 1e-6 ✓ 1e-5

mBART + >1 src langs 1e-6 ✓ n/a
Freeze 1e-5 ✓ 1e-5 ✓
Adapters 1e-5 ✓ 1e-3 ✓
Prompt tuning 1e-2 ✓ 1e-3 ✓

NLLB Ft w/o IT 1e-5 3e-5

mBART
(tr)

Ft w/o IT 1e-6 1e-3

Table 4: Best learning rates for non-English languages.
n/a: not applicable.

checkpoints of full models finetuning. Accord-986

ing to Table 3, translated predictions of higher LR987

model score lower than the (non-translated) pre-988

dictions of lower LR model. This result further989

advocates for the importance of careful LR tun-990

ing for full finetuning in zero-shot cross-lingual991

generation.992

simply copies inputs which are already in the target language.
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mT5-base in question answering on XQuAD
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Figure 7: Per-language results on the comparison of adaptation methods. Each plot averaged over 2 runs. Correct
language rate is close to 100% in all cases, due to the hyperparameter tuning, except prompt tuning of mT5 in the
XQuAD task.
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Figure 8: Per-language results on the effect of learning
rate, for mT5 on XL-Sum.
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Figure 9: Per-language results on the effect of learning
rate, for mBART on XL-Sum.
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Figure 10: Per-language results on the effect of learning
rate, for mT5 on XQuAD.
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Figure 11: Per-language results on the effect of learning
rate, for mBART on XQuAD.
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