
STaRFormer: Semi-Supervised Task-Informed
Representation Learning via Dynamic Attention-Based

Regional Masking for Sequential Data

Maximilian Forstenhäusler1,2,∗ Daniel Külzer1 Christos Anagnostopoulos2
Shameem Puthiya Parambath2 Natascha Weber1

1BMW Group 2University of Glasgow

Project Page: https://star-former.github.io

Abstract

Understanding user intent is essential for situational and context-aware decision-
making. Motivated by a real-world scenario, this work addresses intent predictions
of smart device users in the vicinity of vehicles by modeling sequential spatiotem-
poral data. However, in real-world scenarios, environmental factors and sensor
limitations can result in non-stationary and irregularly sampled data, posing signifi-
cant challenges. To address these issues, we propose STaRFormer, a Transformer-
based approach that can serve as a universal framework for sequential modeling.
STaRFormer utilizes a new dynamic attention-based regional masking scheme
combined with a novel semi-supervised contrastive learning paradigm to enhance
task-specific latent representations. Comprehensive experiments on 56 datasets
varying in types (including non-stationary and irregularly sampled), tasks, domains,
sequence lengths, training samples, and applications demonstrate the efficacy of
STaRFormer, achieving notable improvements over state-of-the-art approaches.

1 Introduction

Advancements in machine learning architectures, such as LSTM [1] and Transformer [2], have
enhanced the ability to model sequential data. However, these algorithms typically assume that the
data is fully observed, stationary, and sampled at regular intervals [3]. In reality, sensor technology and
external conditions often influence data collection, leading to non-stationary and irregularly sampled
time series. For instance, in the automotive industry, manufacturers have recently integrated Ultra-
Wideband (UWB) and Bluetooth Low-Energy (BLE) technologies to enhance the Digital Key (DK)
[4–8]. This integration ensures precise and secure vehicle access along with applications for connected
vehicles. Precise localization is achieved by performing time-of-flight calculations between each
UWB anchor in a vehicle and a smart device, leveraging UWB’s 2ns pulse duration [9]. Nonetheless,
the measuring algorithm for UWB ranging may yield irregularly recorded time-of-flight calculations,
resulting in irregularly sampled time series. Additionally, when recording real-world data using
UWB-capable ranging devices, external factors such as signal interference and device positioning can
introduce non-stationarity. These conditions may ultimately affect the overall performance of Machine
Learning (ML) algorithms. In the real-world Digital Key Trajectories (DKT) dataset provided by
the BMW Group (Appendix A and C.1.1), we confirmed, by Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) and augmented Dickey-Fuller (ADF) tests, that approximately 79% of the sequences are
non-stationary. Based on the real-world trajectories generated from the DK, we focus on predicting
the smart device user’s intent, formulated as a specific classification task.

∗Email: maximilian.forstenhaeusler@bmw.de, m.forstenhaeusler.1@research.glasgow.ac.uk

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://star-former.github.io


Generally, trajectories involve variables such as latitude, longitude, altitude, and speed, which
are often irregular. Similarly, weather conditions, geographical barriers, sensor availability, and
device malfunctions [10] can result in non-stationary characteristics, aligning with the properties
found in the DKT dataset. Although several solutions exist to address these issues, they require
substantial prior knowledge and effort in model selection [11–20]. To address these challenges,
we propose a versatile framework, STaRFormer, designed to effectively model time series with
the aforementioned characteristics while maintaining applicability to standard time series data.
STaRFormer proposes dynamic regional masking to manipulate key task-specific regions within
an input sequence, introducing synthetic variations in statistical properties, such as mean, variance,
and sampling frequency. By incorporating this masking layer during the learning process of a
downstream task, STaRFormer generates masked and unmasked latent representations of the same
input sequence. Building on prior work, which highlighted that the task-specific importance of
elements within a sequence can vary in their influence on downstream tasks [21, 22], we extend this
approach by coupling representation learning with a downstream objective. This coupling allows
to incorporate context-specific information that may be overlooked in decoupled self-supervised
frameworks [23–27]. Through a novel combination of self-supervised and supervised contrastive
learning (CL), STaRFormer creates robust task-informed latent embeddings by maximizing agreement
between class-wise and batch-wise similarities of the masked and unmasked latent representation.
This technique is designed to enhance the model’s robustness to irregularities in time series while
serving as an augmentation method to improve performance for various time series types and tasks.
In summary, our main contributions are:

• We propose STaRFormer, a highly effective and robust approach boosting the performance of
downstream tasks for diverse types of time series and tasks.

• We develop a novel semi-supervised CL approach for time series analysis, leveraging batch-wise
and class-wise similarities by reconstructing latent representations from masked inputs.

• We design a novel Dynamic Attention-based Regional Masking (DAReM) scheme that identifies
task-specific important regions of a sequence, allowing to embed task-specific knowledge.

• We assess STaRFormer using 56 public and non-public datasets to validate its effectiveness
compared to state-of-the-art methods, highlighting its versatility for various types of time series.

2 Related work

Regular time series modeling for classification. Time series modeling for classification seeks to
analyze and identify patterns in sequential data collected over consistent time intervals, with the goal of
assigning labels to entire sequences or per elements within the sequence. It is generally assumed that
the sequential data is stationary and uniformly sampled. Common ML baselines include dimension-
dependent dynamic time warping (DTWD) [28, 29] and WEASEL-MUSE [30]. Deep Learning
(DL) has proven powerful for time series classification by automatically extracting complex features.
Unlike traditional methods that rely on handcrafted features, DL models such as RNN [31, 32], LSTM
[1] and GRU [14] learn hierarchical representations directly from the data. However, these models
often struggle with capturing long-term dependencies and spatiotemporal patterns. ROCKET [33]
and MiniROCKET [34], CNNs that have been effective in capturing local dependencies, have
achieved impressive results by learning features through diverse random convolutional kernels.
Transformer-based approaches have recently gained attention due to their ability to capture long-
range dependencies in sequential data. Various Transformer-based models have been proposed for
forecasting, classification, and anomaly detection [3, 21, 23, 35–40]. Initial approaches utilized
a full encoder-decoder Transformer architecture for univariate time series forecasting [41], while
TST [23] generalized unsupervised representation learning for Transformers and time series, similarly
to BERT’s Masked Language Modeling (MLM) [42]. TARNet [21] addresses the issue of decoupling
unsupervised pretraining from downstream tasks using dynamic masking and reconstruction. We
address the challenge of time series classification by pairing a novel semi-supervised CL approach
with a proposed generalization of the dynamic masking approach from TARNet. In doing so, we
extend the proposition of coupling representation learning while learning a downstream task.

Non-stationary and irregularly sampled time series modeling. Non-stationary time series mod-
eling addresses the variability in statistical properties over time, i.e., changing means and covariances
[43, 44]. Traditional models often fail to capture these dynamics. While most research has focused

2



on forecasting, some efforts have been directed towards non-stationary time series classification.
Recent advancements include adaptive RNNs [45, 46], normalization-based approaches [47, 35], and
non-stationary Transformers, which incorporate non-stationary factors to improve accuracy while
addressing distribution shifts [48]. Irregularly sampled time series modeling addresses sequences
with varying time intervals between observations. A standard solution is converting continuous time
observations into fixed intervals [13, 15]. Several models have been proposed to capture dynamics
between observations such as GRU-D [16] and multi-directional RNN [49]. Attention-based models,
including Transformers, [2, 23] and ATTAIN [50], incorporate attention mechanisms to handle time
irregularity. Raindrop [20] uses graph neural networks to model irregular time series as graphs.
Meanwhile, TrajFormer [51] introduces a Transformer architecture that generates continuous point
embeddings to deal with irregularities of trajectories. Recently, ViTST [3] focused on time series
in the visual modality by transforming sequences into visualized line graphs, leveraging pretrained
Vision-Transformer backbones. To handle non-stationarity and sampling irregularity, we introduce a
dynamic regional masking strategy that perturbs input sequences by modifying their statistical and
sampling properties. Coupled with our CL scheme, this representation learning approach promotes
robustness to distributional shifts and irregular sampling, enhancing the latent space rather than
relying solely on input reconstruction.

Time series contrastive learning. CL has proven effective in extracting high-quality, discrimina-
tive features [52]. CL operates as a self-supervised learning paradigm, learning representations by
contrasting positive and negative pairs. The goal is to bring similar (positive) pairs closer and push
dissimilar (negative) pairs apart, typically using contrastive losses like NT-Xent [52], InfoNCE [53],
or triplet loss [54]. For sequential data, self-supervised CL aims to extract invariant representations
from augmented views of unlabeled data through carefully designed pretext tasks. Methods such as
TCL [55], and TNC [56] use subsequence-, neighborhood-based sampling assuming distant segments
as negative pairs and neighboring segments as positive pairs. InfoTS [26] emphasizes appropriate
augmentation selection using meta-learning, and TS2Vec [24] learns contextual representations
across semantic levels. CoST [25] uses model inductive biases to separate seasonal and trend patterns,
introducing a frequency-domain contrastive loss. However, these methods often suffer from flawed
augmentations, weak negative samples, and limited information use [27]. TimesURL [27] proposes a
self-supervised framework that combines CL, time reconstruction, and a frequency-temporal aug-
mentation with hard negative sampling to learn universal time series representations for diverse
downstream tasks. While prior work applies self-supervised CL to learn universal time series repre-
sentations, we propose a task-coupled approach that jointly optimizes representation learning with
the downstream objective, embedding task-specific information into the representations.

3 Approach

STaRFormer adopts a Siamese network architecture [57] consisting of two ‘towers’ of N encoder-
only Transformer blocks, f , that share a common set of model parameters. STaRFormer is illustrated
in Fig. 1. Without loss of generality, we consider classification, anomaly detection and regression as
downstream tasks. For sequence-level classification tasks, a special token is utilized to facilitate the
downstream predictions. The other downstream tasks utilize appropriate variations, such as pooling
operations or element-wise predictions, to facilitate the computation of the desired task predictions.
For detailed information, output head formulations, and related remarks, see Appendix B.

Notation. Let D = {(S(i), y(i)) | i = 1, . . . ,M} denote a time series dataset containing M
samples. Each sequence, S(i) ∈ RN has N elements and is assigned to a label y(i) ∈ {1, . . . , C},
where C is the number of classes. Each data point in the sequence can have an associated timestamp.
Thus, the j-th data point in S(i) can be represented as s(i)j = (x

(i)
j , t

(i)
j ) ∈ R2. Therefore, S(i) =

{s(i)j | j = 1, . . . , N} ∈ RN×2 is formed by concatenating all N elements. For multivariate time
series, the dimensionality is not fixed to two; thus S(i) ∈ RN×D, where N ∈ N ̸=0 and D ∈ N≥2. A
mini-batch of size B, where B ≪M , is defined as X ⊂ D, where X ∈ RN×B×D.

Problem 1 - Classification. Given a dataset D = {(S(i), y(i)) | i = 1, . . . ,M} where S(i) ∈
RN×D can be multivariate, predict the class y(i) ∈ {1, ..., C}, for each sequence S(i) in D.

3



(a) (b)

[TOK] Sequence Padded

+Pos.
Encoding

Attention
Mask

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

N×

[TOK] Z

Task

DAReM

[TOK] Masked Sequence

+Pos.
Encoding

Attention
Mask

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

N×

[TOK] Z̃

Semi-Supervised CL

Batch → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layers ↓

1

2

3

4

Aggregation via Rollout

Attention Scores (σk)

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

ReM via
top-k σk ,
φ, γ, ζ

Figure 1: Architecture of STaRFormer; (a) High level Siamese network architecture - the left tower
performs the downstream task while the right tower performs the reconstruction of the masked
sequence. (b) The DAReM scheme exemplified by a single batch from the DKT dataset with batch
size 16 for an encoder with N = 4 layers. ReM abbreviates regional mask.

Problem 2 - Anomaly detection. Given a dataset D = {(S(i),y(i)) | i = 1, . . . ,M} where
S(i) ∈ RN×D can be multivariate and y(i) ∈ RN , predict for each element of sequence S(i) in D
whether y(i)j∈N = 0 (normal observation) or y(i)j∈N ∈ {1, . . . , C} (anomalous observation).

Problem 3 - Regression. Given a dataset D = {(S(i),y(i)) | i = 1, . . . ,M}, where S(i) ∈ RN×D

can be multivariate, predict the continuous target value y(i) ∈ R for each sequence S(i) in D.

3.1 Semi-supervised task informed representation learning

This section presents STaRFormer’s components facilitating task-informed representation learning.

3.1.1 Dynamic attention-based regional masking (DAReM)

Prior work has shown that the task-specific importance of elements within a sequence varies w.r.t.
their impact on downstream tasks [21, 22]. STaRFormer adopts this characteristic by dynamically
masking regions around the features the model deems important. These masks force the model to learn
changes in statistical properties and irregular sampling induced by the masking. Our rationale is that
reconstructing key sequential regions amplifies non-stationary and irregular sampling characteristics.
This enables the model to generate more effective latent representations for the downstream task. This
masking scheme, termed DAReM, can be seen as a generalization of the masking scheme proposed
in [21]. During training of a downstream task, STaRFormer dynamically gathers attention weights
A = softmax

(
QKT

√
dk

)
, A ∈ RL×B×N×N (left tower, Fig. 1), where L,B,N represent the number

of attention layers, the mini-batch size, and the number of elements in the sequences, respectively.
The attention weights, denoted as A, essentially indicate the importance of each sequential element
with respect to each other. The collected attention weights are then aggregated via attention rollout
[58], refer to Eq. (39), resulting in Ã ∈ RB×N×N . In order to determine the ‘global’ importance of
specific elements within a sequence, we compute the attention scores, σi,k′ , refer to Eq. (40), as in
[21], where greater σi,k′ values indicate a higher importance of a sequential element and vice versa.
The resulting attention scores, σi,k′ ∈ RB×N , allow a distinct masking scheme for each element
in X, resulting in B masks per X. The creation of the regional mask, g : D → R, requires three
hyperparameters: φ, determines the maximum amount of elements that are masked; ζ, determines
the number of sequential elements that are masked based on the attention scores σ (see Eq. (40)); and
γ, which determines the bounds of the region to be masked. Further details of DAReM, including the
implementation, are provided in Appendix B.3.

3.1.2 Semi-supervised contrastive learning

Previous work has focused on pretraining techniques aimed at creating generalizable time series
representations applicable to a wide range of downstream tasks, as well as on learning sequence
reconstructions both during pretraining and during training of a downstream task [24, 27, 42, 23, 21].

4



Instead, STaRFormer aims to enhance the latent space representation utilized by the model to perform
a downstream task. While training for a downstream task, DAReM allows the creation of two
correlated latent representations, i.e., masked (Z̃(i)) and unmasked (Z(i)). It is well know that CL
can extract high-quality, discriminative features [52–54, 59, 55, 60]. Thus, with STaRFormer, we
aim to facilitate CL in optimizing the trade-off between these representations (Appendix B.3, Fig. 8)
leveraging unmasked and masked embeddings of the same input sequence as batch-wise and of
the same class as class-wise positive pairs. This aims to: strengthen the model’s robustness to
perturbations, enhance generalization, reduce overfitting, and improve resilience to challenges like
non-stationarity and irregular sampling. Based on these positive pairs, STaRFormer fuses two types
of CL tasks: (i) self-supervised using batch-wise, and (ii) supervised using class-wise similarities.
We propose three formulations: the first requiring a class label per sequence; the second requiring a
label for every sequential element; and the third requiring a scalar target value per sequence.

Formulation 1 - Sequence-level prediction tasks. During training, the latent spaces Z, Z̃ ∈
RN×B×F become three-dimensional tensor representations, where Z = f(X), Z̃ = f(g(φ, γ, ζ,X))
and F is the latent embedding dimension. To extract the similarity scores, by computing the inter-
sequence cosine similarity (sim(u,v) = uTv/ ∥u∥ ∥v∥) between the sequences in a batch, we
average the latent representations along their first dimension, i.e., Ẑi,j =

1
N

∑N
n=1 Zn,i,j | ∈ RB×F ,

reducing each sequence to a single vector representation. This allows us to formulate the NT-Xent [52]
inspired batch-wise contrastive loss for a single positive batch-wise sample as:

l
(i)
bw = − log

exp
(
sim

(
ẑ(i), ˆ̃z(i)

)
/τ
)

∑B
k=1 I[k ̸=i] exp

(
sim

(
ẑ(i), ˆ̃z(k)

)
/τ
) (1)

and the class-wise contrastive loss for a single positive class-wise sample as:

l(i)cw = − log

∑B
j=1 I[Cj=Ci] exp

(
sim

(
ẑ(i), ˆ̃z(j)

)
/τ
)

∑B
k=1 I[Ck ̸=Ci] exp

(
sim

(
ẑ(i), ˆ̃z(k)

)
/τ
) . (2)

The indicator function differs in the two cases: I[k ̸=i] for batch-wise, which is 1 iff k ̸= i, I[Ck ̸=Ci]

for class-wise, which is 1 if the class of i is different from the class of k, and vice versa for I[Ck=Ci].
The complete loss is the sum over all sequences in a batch, where the batch-wise and class-wise
components are defined as Lbw = 1

B

∑B
i=1 l

(i)
bw and Lcw = 1

B

∑B
i=1 l

(i)
cw respectively.

Formulation 2 - Sequence element-level prediction tasks. The previous formulation is insufficient
for element-wise prediction tasks. To address this, we introduce modifications that enable the
application of our contrastive loss compositions in such settings. To create element-wise positive
pairs per batch element, the first two dimensions of Z are collapsed to form Zflat, Z̃flat ∈ RN∗B×F .
Thus, at each position where i = j, the element originates from the same sequential input element.
Consequently, the element-wise contrastive loss for a single sequential element becomes:

l
(i)
bw = − log

exp
(
sim

(
z
(i)
flat, z̃

(i)
flat

)
/τ
)

∑N∗B
k=1 I[k ̸=i] exp

(
sim

(
z
(i)
flat, z̃

(k)
flat

)
/τ
) . (3)

In the element-wise formulation, the class-wise positive pairs allow intra- and inter-class formulations,
whereas, in Formulation 1, only inter-class formulations are possible. To compute the positive pairs,
we need to define a left, Yl ∈ RB∗N×1, and a right, Yr ∈ R1×B∗N , label tensor as well as a sequence
indicator tensor, S = ⌊ i

N∗B ⌋, where i = {0, 1, ..., N ∗ (B − 1)}. Thus, the inter-class element-wise
contrastive loss for a single sequential element becomes:

l
(i)
cw-inter = − log

∑N∗B
j=1 I(i,j)

inter,
[
Y

(i,j)
l =Y

(i,j)
r

] exp(sim(z(i)flat, z̃
(j)
flat

)
/τ
)

∑N∗B
k=1 I(i,k)

inter,
[
Y

(i,k)
l ̸=Y

(i,k)
r

] exp(sim(z(i)flat, z̃
(k)
flat

)
/τ
) (4)

where I(i,j)
inter,

[
Y

(i,j)
l =Y

(i,j)
r

] is 1 iff Si ̸= Sj ∧ Y
(i,j)
l = Y

(i,j)
r ∧ Y

(i,j)
l > −1 ∧ Y

(i,j)
r > −1,

refer to Eq. (41). The intra-class formulation requires the cosine similarity computation between

5



each element of a sequence, simintra. We use a batch-wise matrix multiplication operator
⊗

bmm :
RB×N×M × RB×M×P → RB×N×P to compute the three-dimensional similarity matrix (Eq. (42)).
Zperm and Z̃perm are permuted equivalents of Z and Z̃ fitted to the required shapes for

⊗
bmm. Thus,

the intra-class element-wise contrastive loss for a single sequential element becomes:

l
(i,j)
cw-intra = − log

I(i,j)
intra,

[
Y

(i,j)
l =Y

(i,j)
r

] exp(simintra

(
z
(i)
perm, z̃

(j)
perm

)
/τ
)

∑N
k=1 I

(i,k)

intra,
[
Y

(i,k)
l ̸=Y

(i,k)
r

] exp(simintra

(
z
(i)
perm, z̃

(k)
perm

)
/τ
) (5)

where I(i,j)
intra,

[
Y

(i,j)
l =Y

(i,j)
r

] is 1 iff i ̸= j ∧Y
(i,j)
l = Y

(i,j)
r ∧Y

(i,j)
l > −1 ∧Y

(i,j)
r > −1 (Eq. (43)).

For the element-wise formulation, the total batch-wise loss is Lbw = 1
N∗B

∑N∗B
i=1 l

(i)
bw, whereas the

total class-wise loss is Lcw = 1
N∗B

∑N∗B
i=1 l

(i)
cw−inter +

1
B

∑B
i=1

1
N

∑N
j=1 l

(i,j)
cw−intra.

Formulation 3 - Sequence-level regression tasks. This section outlines the formulation for the
regression task, which necessitates scalar predictions rather than categorical classes. Consequently,
only the self-supervised component, specifically the batch-wise formulation presented in the sequence-
level prediction task (Eq. (1)), can be computed directly. To incorporate the supervised CL component,
we generate pseudo labels by clustering the predictive target values into K clusters. The parameter
k is a hyperparameter requiring optimization. Once the targets are clustered, each target within a
cluster k ∈ K is assigned the same pseudo-label k, which is subsequently employed as supervision in
Eq. (2). The clustering of target values into k clusters is achieved using the k-means algorithm [61].

Independent of the formulation used, we define the fused contrastive loss as the weighted sum of the
batch-wise and class-wise contrastive losses:

LSTaR-CL = λfuse-CLLbw + (1− λfuse-CL)Lcw. (6)

Finally, STaRFormer’s loss is defined as the weighted sum of LTask and the fused contrastive loss,
LSTaR-CL:

LSTaRFormer = LTask + λCLLSTaR-CL, (7)
where λCL is a tunable hyperparameter. In our experiments, we set λfuse-CL = 0.5 to equally weigh
batch and class-wise similarities. For further insights, see Appendix B.3 and Figures 10 and 11.

4 Experiments

This work is motivated by the challenge of predicting user intent (a classification task) from non-
stationary, spatiotemporal, and irregularly sampled time series. This problem can present significant
difficulties for conventional modeling techniques. Our main focus is to evaluate model performance
under these conditions. To ensure a robust and comprehensive assessment, we additionally employ an
irregular sampled and a regular sampled time series benchmark. To demonstrate broader applicability,
we extend the evaluation to additional downstream tasks, i.e., anomaly detection and regression.
We compare against state-of-the-art methods to evaluate STaRFormer’s effectiveness and perform
exhaustive ablation studies to verify the performance gains. In [62], we present a comprehensive
large-scale evaluation conducted within a federated environment.

4.1 Classification results

This section reports the classification results obtained across various time series domains.

4.1.1 Non-stationary and spatiotemporal time series

First, we evaluate the performance on non-stationary spatiotemporal data using the DKT and Geolife
(GL) [63] datasets. The DKT dataset consists of a mixture of non-stationary, spatiotemporal, and
irregularly sampled time series, encompassing 559,709 labeled and anonymized customer trajectories.
These trajectories were recorded from vehicles in the BMW Group’s fleet over a three-month period.
The associated task is intent prediction, which is framed as a binary classification problem. The DKT
results in Table 1 are averaged over five seeds. We additionally use a public dataset (GL) similar to the

6



Table 1: Results for spatiotemporal,
non-stationary time series.

DKT GL

Accuracy ↑ F0.5 ↑ Accuracy ↑
RNN 0.754 ± 0.010 0.754 ± 0.010 0.643++

TrajFormer++ - - 0.855
SVM∗∗ - - 0.861
LSTM 0.844 ± 0.003 0.843 ± 0.002 0.884∗∗

GRU 0.840 ± 0.003 0.840 ± 0.003 0.898∗∗

ST-GRU∗∗ - - 0.913
Transformer 0.849 ±0.002 0.849 ±0.002 0.881
TARNet 0.781 ±0.011 0.782 ±0.012 0.880
TimesURL 0.724 ±0.003 - 0.751

STaRFormer 0.852 ± 0.003 0.852 ± 0.003 0.932

Table 2: Results for irregular sampled time series (in %).

P19 P12 PAM

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Transformer† 80.7± 3.8 42.7± 7.7 83.3± 0.7 47.9± 3.6 83.5± 1.5 84.8± 1.5 86.0± 1.2 85.0± 1.3
Trans-mean† 83.7± 1.8 45.8± 3.2 82.6± 2.0 46.3± 4.0 83.7± 2.3 84.9± 2.6 86.4± 2.1 85.1± 2.4
GRU-D† 83.9± 1.7 46.9± 2.1 81.9± 2.1 46.1± 4.7 83.3± 1.6 84.6± 1.2 85.2± 1.6 84.8± 1.2
SeFT† 81.2± 2.3 41.9± 3.1 73.9± 2.5 31.1± 4.1 67.1± 2.2 70.0± 2.4 68.2± 1.5 68.5± 1.8
mTAND† 84.4± 1.3 50.6± 2.0 84.2± 0.8 48.2± 3.4 74.6± 4.3 74.3± 4.0 79.5± 2.8 76.8± 3.4
IP-Net† 84.6± 1.3 38.1± 3.7 82.6± 1.4 47.6± 3.1 74.3± 3.8 75.6± 2.1 77.9± 2.2 76.6± 2.8
DGM2-O† 86.7± 3.4 44.7± 11.7 84.4± 1.6 47.3± 3.6 82.4± 2.3 85.2± 1.2 83.9± 2.3 84.3± 1.8
MTGNN† 81.9± 6.2 39.9± 8.9 74.4± 6.7 35.5± 6.0 83.4± 1.9 85.2± 1.7 86.1± 1.9 85.9± 2.4
Raindrop† 87.0± 2.3 51.8± 5.5 82.8± 1.7 44.0± 3.0 88.5± 1.5 89.9± 1.5 89.9± 0.6 89.8± 1.0
ViTST† 89.2± 2.0 53.1± 3.4 85.1± 0.8 51.1± 4.1 95.8 ±1.3 96.2 ±1.3 96.1 ±1.1 96.5 ±1.2
STaRFormer 89.4 ±1.3 61.3 ±3.4 85.3 ±1.2 52.0 ±1.7 97.6 ±0.9 97.3 ±0.4 97.6 ±0.3 97.4 ±0.3

The model results marked with ** are taken from [17], ++ from [51] and † from [3].

DKT dataset to evaluate STaRFormer. Due to the environmental influences while recording GPS data,
we expected some degree of non-stationary in GL [10]. KPSS and ADF tests [64, 65] confirmed that
93% of the data used for training and validation is non-stationary. Across both datasets, STaRFormer
consistently outperforms state-of-the-art approaches, including TimesURL and other Transformer-
based methods such as TARNet. The results are documented in Table 1. Additionally, we perform
a robustness analysis with baseline models that achieve very similar performance to STaRFormer
on the DKT dataset. To investigate the sensitivity of the predictions to potential sensor noise, we
add noise to the last 10 and 30 elements of longer sequences in the test set of DKT and evaluate
the coefficient of variation (CV). The analysis reveals that all models exhibit reduced robustness as
noise increases. However, STaRFormer demonstrates superior robustness by maintaining the lowest
CV and moderate MAE values, indicating minimal sensitivity to noise. In contrast, the Transformer
model exhibits the most significant performance degradation, underscoring the effectiveness of our
approach in learning robust latent representations that enhance downstream task performance. Refer
to Appendix D.2 and Table 14 for an extended analysis.

4.1.2 Irregularly sampled time series

We compare STaRFormer against state-of-the-art methods designed for irregularly sampled time
series on the PhysioNet Sepsis Early Prediction Challenge 2019 (P19) [66], the PhysioNet Mortality
Prediction Challenge 2012 (P12) [67], and the Physical Activity Monitoring (PAM) [68] datasets. In
real-world applications, particularly in healthcare, the times series data is often accompanied with
static attributes. Following prior baseline methods, such as ViTST, we convert these static attributes
into sentences and encode them using RoBERTa [69]. The resulting embeddings are concatenated
with the latent embeddings from STaRFormer before being passed to the output head. For consistency,
static features are also used in all baseline models. The results are averaged over five data splits.
Across all models, STaRFormer consistently and significantly outperforms state-of-the-art baseline
models on all datasets. Furthermore, STaRFormer yields predictions with significantly smaller
standard deviations across all metrics than other methods, indicating greater consistency, reliability,
and reduced performance variability. The results validate that our approach works particularly well
for irregularly sampled time series. These findings are summarized in Table 2.

4.1.3 Regular time series

We evaluate STaRFormer using the UEA benchmark [70] to assess its performance on regular time
series. The datasets covers a variety of domains, sensor types, sampling frequencies, number of
samples, time series lengths, feature counts, and target classes for comprehensive evaluation. For the
evaluation in Table 3, as not all models have reported results on the complete benchmark, we consider

Table 3: Classification results on the multivariate time series UEA benchmark (30 datasets) [70].

ViTST† DTWD∗ Weasel-
Muse∗

TST
(TimesURL)+ T-Loss+ TS-TCC+ TNC+ TS2Vec+ InfoTS++ Rocket∗ Mini-

Rocket∗
TST

(TARNet)∗ InfoTSs
++ TimesURL+ TARNet∗ STaR-

Former

Avg. Accuracy ↑ 0.790 0.608 0.691 0.617 0.658 0.668 0.670 0.704 0.714 0.715 0.719 0.729 0.730 0.752 0.755 0.795
Rank ↓ - - - 13 12 11 10 9 8 7 6 5 4 3 2 1
Avg. Rank ↓ - - - 10.6 8.6 9.2 9.9 7.4 6.8 5.5 5.7 6.5 5.3 3.9 4.9 2.8
Top Scores ↑ 1 0 5 1 1 1 0 1 1 5 4 6 3 4 7 9
1-v-1 ↑ 8 28 20 29 27 27 29 25 27 19 22 23 23 19 21 -
DS Count 10 29 28 30 30 30 30 30 30 30 30 30 30 30 30 30

Accuracy 28 ↑ - 0.604 0.691 0.631 0.675 0.680 0.677 0.713 0.722 0.730 0.733 0.724 0.738 0.760 0.770 0.793
Rank 28 ↓ - 15 10 14 13 11 12 9 8 6 5 7 4 3 2 1
Avg. Rank 28 ↓ - 11.2 7.8 11.7 9.1 10.3 11.0 8.1 7.5 5.8 6.0 7.5 5.8 4.1 5.2 3.1
Accuracy 9 ↑ 0.776 0.702 0.737 0.674 0.717 0.708 0.715 0.734 0.727 0.756 0.751 0.771 0.736 0.770 0.717 0.793
Rank 9 ↓ 2 15 7 16 12 14 13 9 10 5 6 3 8 4 11 1
Avg. Rank 9 ↓ 6.4 11.8 9.0 12.3 11.1 11.3 10.8 9.0 10.0 6.7 7.4 3.9 8.4 5.3 6.3 3.3

The model results marked with * are taken from the [21], + from [27], ++ from [26] and † from [3].

7



three splits of the benchmark depending on the results available in literature (UEA, UEA 28 and
UEA 9). The summarized scores of the complete results (Table 30) across the UEA benchmark are
displayed in Table 3. STaRFormer achieves the highest accuracy in all three splits (0.795), improving
the state-of-the-art on the complete benchmark by 4.0 percentage points; the largest number of top
scores (9); and the best average rank (2.8). Furthermore, STaRFormer performs better on UEA
datasets with only a few samples, achieving top scores for DDK, NT, PS, SCP2 and SWJ for example.
This suggests its capability as an augmentation technique, especially for lower data regimes.

4.2 Anomaly detection results

In this setting, we adopt the stream-
ing evaluation protocol proposed
in [71] and utilized by [24, 27]. The
model performance is evaluated on
the KPI [71] and Yahoo [72] bench-
mark datasets and compared against
several state-of-the-art approaches,
such as TimesURL and TS2Vec.

Table 4: Anomaly detection results (univariate).

Yahoo KPI

F1 ↑ Precision ↑ Recall ↑ F1 ↑ Precision ↑ Recall ↑
SPOT 0.338 0.269 0.454 0.217 0.786 0.126
DSPOT 0.316 0.241 0.458 0.521 0.623 0.447
DONUT 0.026 0.013 0.825 0.347 0.371 0.326
SR 0.563 0.451 0.747 0.622 0.647 0.598
TS2Vec 0.745 0.729 0.762 0.677 0.929 0.533
TimesURL 0.749 0.748 0.750 0.688 0.925 0.546

STaRFormer 0.789 0.772 0.807 0.830 0.852 0.811

Each time series is split chronologically, where the first half is used for training and the second
for evaluation. To facilitate efficient computation, we choose to segment sequences into fixed-size
windows, allowing overlap between these segments during training. STaRFormer demonstrates
superior performance across both datasets in the benchmark, as shown in Table 4.

4.3 Time series extrinsic regression results

Table 5: Regression results on the TSR benchmark (19 datasets) [73] reported in RMSE.

FPCR∗ SVR
Optimised∗

Random
Forest∗

XG-
Boost∗

5-NN-
ED∗

5-NN-
DTWD∗ Rocket∗ FCN∗ Res-

Net∗ Inception∗ TAR-
Net

STaR-
Former

Avg. Rel. Mean
Difference ↓ 0.028 0.208 -0.121 -0.132 0.051 -0.034 -0.245 -0.160 -0.119 -0.220 0.170 -0.254
Avg. Rel. Mean
Difference Rank ↓ 9 12 6 5 10 8 2 4 7 3 11 1
Top Scores ↑ 1 0 0 4 0 0 7 0 0 3 0 9

The model results marked with * are taken from the official benchmark (http://tseregression.org/).

The results of the Time Series Extrinsic Regression (TSR) benchmark are summarized in Table 5.
The complete results can be found in Table 33. The results present the Root Mean Squared Error
(RMSE) of scalar regression predictions produced by each model. In order to facilitate a comparative
analysis of the models within this benchmark, we adhere to the evaluation metric established in [23],
referred to as the average relative mean difference (Eq. (48)). This metric quantitatively evaluates
the deviation of each model from the mean RMSE for each dataset. Therefore, superior model
performance is indicated by increasingly negative values of the metric, whereas inferior performance
corresponds to less negative and positive values. We implemented TARNet and utilize the model
configurations provided by the authors, where available, for the respective datasets. Across the entirety
of the benchmark, STaRFormer consistently achieves the greatest relative mean difference among all
models, alongside the largest number of top scores.

4.4 What contributes to STaRFormer’s performance?

This section investigates the source of STaRFormer’s performance gains through empirical validation.

4.4.1 STaRFormer architecture ablation

To demonstrate the performance gains achieved by DAReM paired with the semi-supervised CL
in STaRFormer, we train two ablations of STaRFormer: an encoder-only Transformer (Base), and
STaRFormer with Random Masking (RM). We select the datasets from Sections 4.1.1, 4.1.2, and
4.2, in addition to a representative set from the UEA benchmark (see Appendix C.1.3), for a total of
19 datasets. STaRFormer outperforms STaRFormer-RM in 16 out of the 19 selected datasets, while
STaRFormer-RM outperforms STaRFormer only in one dataset, verifying that DAReM significantly
enhances the robustness of the model compared to RM, see Table 6. STaRFormer achieves the highest

8

http://tseregression.org/


Table 6: STaRFormer archi-
tecture ablation results on 19
datasets.

Base STaRFormer-RM STaRFormer

Avg. Acc. 0.824 0.826 0.841
Rank 3 2 1

Avg Rank 2.1 2.5 1.2
Top Scores 5 2 15

1-v-1
Base - 12 3
RM 6 - 1

STaRFormer 14 16 -

Table 7: Ablation results for semi-supervised CL and DAReM.

CL Method DKT (λCL ≈ 0.796) GL (λCL ≈ 0.773) PAM (λCL ≈ 0.567)

Accuracy ↑ F0.5 ↑ Accuracy ↑ F0.5 ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑
semi1 85.2± 0.3 85.2± 0.3 90.4± 1.6 88.3± 1.9 97.6± 0.9 97.3± 0.4 97.6± 0.3 97.4± 0.3

w/o self1 84.8± 0.2 84.8± 0.2 90.0± 1.4 87.7± 1.5 96.2± 2.1 97.1± 0.7 97.0± 0.7 97.0± 0.7
w/o sup1 84.8± 0.1 84.7± 0.2 89.5± 1.6 87.7± 1.4 96.5± 1.6 97.5± 0.3 97.4± 0.5 97.4± 0.3

semi1:
λCL = 0.1 84.8± 0.1 84.6± 0.4 90.0± 1.8 87.9± 2.1 96.2± 1.4 96.6± 0.6 96.8± 1.0 96.7± 0.8
λCL = 1 85.1± 0.2 85.1± 0.2 90.2± 1.3 88.0± 1.5 97.2± 0.7 97.4± 0.3 97.2± 0.7 97.3± 0.4
λCL = 5 84.9± 0.2 84.9± 0.2 90.8± 1.3 88.7± 1.6 96.7± 2.3 97.5± 1.2 97.0± 1.7 97.2± 1.5
λCL = 10 84.6± 0.3 84.6± 0.3 90.6± 1.0 88.5± 1.3 97.0± 1.6 97.7± 0.7 97.6± 0.7 97.6± 0.7

γ
DKT (φ ≈ 0.427, ζ = 0.2) GL (φ ≈ 0.472, ζ = 0.3) PAM (φ ≈ 0.207, ζ = 0.3)

Accuracy ↑ F0.5 ↑ Accuracy ↑ F0.5 ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑
0.00 85.0± 0.2 85.0± 0.2 89.8± 1.9 87.9± 1.8 97.0± 0.7 97.4± 0.2 97.3± 0.6 97.3± 0.3
0.05 85.0± 0.3 84.8± 0.3 90.4± 1.6 88.3± 1.9 95.8± 1.6 96.8± 0.8 96.8± 0.7 96.7± 0.7
0.10 84.9± 0.3 84.9± 0.2 90.3± 1.2 88.2± 1.3 97.6± 0.9 97.3± 0.4 97.6± 0.3 97.4± 0.3
0.15 85.0± 0.2 85.0± 0.2 90.3± 1.5 88.2± 1.7 97.1± 1.1 97.5± 0.6 97.5± 1.0 97.5± 0.8
0.20 85.1± 0.1 85.1± 0.1 90.1± 1.1 87.9± 1.0 96.2± 0.8 96.7± 0.5 96.6± 0.6 96.6± 0.4
0.25 85.2± 0.3 85.2± 0.3 90.1± 1.6 88.4± 1.4 96.4± 1.1 96.9± 0.7 96.5± 0.6 96.7± 0.5
0.30 85.0± 0.1 85.0± 0.1 90.3± 1.3 88.2± 1.4 96.3± 0.9 96.7± 0.5 96.4± 0.5 96.5± 0.4

average accuracy (0.841), surpassing the two ablation variants by 1.5 and 1.7 percentage points
respectively; the highest number of top scores (15); and best average rank (1.2).

4.4.2 Impact of semi-supervised contrastive learning and regional masking

Impact of semi-supervised CL. We examine the effect of different components of the semi-
supervised CL in STaRFormer by removing the respective components from the loss function. The
results in Table 7 show the advantages of maximizing agreement between both batch-wise and
class-wise representations in CL. The downstream task performance (accuracy) declined by 0.4 to
1.4 percentage points when these representations were not fused in the CL approach. There is no
consistent trend favoring one representation over the other; e.g., in GL, supervised CL outperformed
self-supervised CL, while the opposite holds for PAM. In DKT, both methods yield comparable
results. Additionally, we study the impact of combining the contrastive loss LSTaR-CL and the task
loss LTask via λCL, Eq. (7). The scale difference between LTask and LSTaR-CL is approximately a factor
of 10 across all datasets. Consequently, values of λCL > 0.1 assign greater weight to LSTaR-CL, thus
increasing its impact on the overall loss and the model updates during backpropagation. Our results
indicate that higher values of λCL lead to improved performance, with all top scores achieved at
λCL > 0.1 (in some cases, large weights of 5 and 10 yielded best results). These results indicate
that emphasizing context-aware representation learning during the training of a downstream task can
enhance the overall performance on this task, supporting our approach.

Impact of regional masking. To examine the impact and benefit of masking regions with DAReM,
we perform an one-at-a-time analysis (OAT), where we iteratively change the region defining pa-
rameter, γ, while keeping all other parameters fixed. We expect better performance when using
larger masking regions (γ > 0) around the top-k compared to only masking the top-k important
sequential elements (γ = 0), which is essentially the masking approach in TARNet. However,
excessively large masked regions may degrade performance by limiting the informative context for
reconstruction. The observed trend indicates on a macro scale that masking larger regions enhances
the performance of STaRFormer. Masking regions larger or equal to 10% of the global sequence
length around the selected elements achieves top scores for 7 out of 8 metrics (Table 7 bottom section).
On a micro-scale, performance peaks were observed at different optimal configurations with the best
performance for DKT at γ= 0.25, whereas for GL and PAM, the performance peaks were found for
smaller region masks. Further increasing or decreasing the masked regions gradually deteriorated the
results, supporting our initial hypothesis.

4.4.3 Latent space analysis

To evaluate the hypothesis that enhancing the latent space embedding improves prediction perfor-
mance, we analyzed t-SNE visualizations [74] of four datasets (test sets only) where STaRFormer
outperforms the Base ablation. Thus, we compare the latent space representation of Base and STaR-
Former. As shown in Fig. 2, the t-SNE visualizations reveal that while Base achieves some degree
of class separation, STaRFormer consistently produces distinct and well-separated clusters for each
class across all datasets (classes are color-coded). In DKT, the latent embeddings for both models

1semi = semi-supervised, self = self-supervised and sup = supervised

9



(a) DKT, Base (b) DKT, STaRFormer (c) PAM, Base (d) PAM, STaRFormer

(e) GL, Base (f) GL, STaRFormer (g) PS, Base (h) PS, STaRFormer

Figure 2: t-SNE visualizations (plotted with perplexity 50) of latent spaces representations for the
DKT (a, b), PAM (c, d), GL (e, f), and PS (UEA) (g, h) datasets, comparing Base and STaRFormer.

show overlap between class clusters. However, STaRFormer can more distinctly separate clusters
between the classes, whereas Base has one significant area of overlap. This trend is amplified by
the observations in PAM and GL, where STaRFormer displays more distinct clusters with minimal
overlap compared to Base. In GL, clusters for ‘walk’ and ‘bike’ as well as ‘car’ and ‘bus’ are
distinctly separated. However, distinguishing between ‘car’ and ‘bus’ remains challenging due to
similar traveling speeds and trajectories. In PS, the most pronounced difference is obtained with
Base producing scattered clusters with significant overlap, while STaRFormer achieves distinctly
separated clusters. These results align with the test accuracy reported in Table 31, where the accuracy
difference between Base and STaRFormer is most significant on PS. In summary, the clusters from
both models appear more similar for datasets with similar test accuracies. STaRFormer creates more
discriminative latent representations, i.e., enhanced class separation, which, considering the improved
test accuracy, leads to improved classification performance over the Base ablation. For datasets
where our CL approach is very effective, e.g., PS, the improvement through our approach is clearly
visualized in the t-SNE visualizations.

5 Limitations and conclusion

We propose a task-coupled semi-supervised CL technique that jointly optimizes representation
learning with the downstream objective, embedding task-specific information into the representations.
By integrating embeddings that are generated from masked (DAReM) and unmasked sequences, the
semi-supervised CL exploits both batch-wise (self-supervised) and class-wise (supervised) similarities
to achieve improved task-specific representations for predictions on various downstream tasks.
Comprehensive experiments demonstrate that STaRFormer either surpasses or is on par with state-
of-the-art techniques for various time series types. We verify this performance on 55 benchmark
datasets and real-world data from the BMW Group. Notable limitations include: the computational
overhead of the attention-based masking with O(N2) complexity, especially for long sequences,
and the additional increase in training time and complexity due to CL and DAReM, which however
does not affect inference time. Additionally, the task-coupled nature of STaRFormer results in a
further limitation constraining its flexibility compared to task-agnostic models such as TimesURL or
InfoTS. These models aim to learn universal representations that, theoretically, can be utilized across
a variety of downstream tasks without the need of training from scratch. Future work could explore
more efficient attention mechanisms, such as flash attention, to enhance the scalability and efficiency
of STaRFormer for long sequences and large-scale datasets. Moreover, exploring a task-agnostic
implementation of STaRFormer could substantially enhance its flexibility.

10



Acknowledgments

This project is supported and funded by the BMW Group and has received partial funding from the
European Union’s Horizon research and innovation programme (Grant Agreement No. 101159667).
Any opinions, findings, conclusions or recommendations expressed herein are those of the authors.
They should not be interpreted as necessarily representing the views, either expressed or implied, of
the BMW Group and its affiliates or the European Commission. Neither the European Commission
nor the BMW Group is responsible for any use that may be made of the information contained
herein.

References
[1] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9

(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https:
//proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91f
bd053c1c4a845aa-Abstract.html.

[3] Zekun Li, Shiyang Li, and Xifeng Yan. Time Series as Images: Vision Transformer for
Irregularly Sampled Time Series. Advances in Neural Information Processing Systems, 36:
49187–49204, December 2023.

[4] Apple. Explore UWB-based car keys - WWDC21 - Videos, June 2021. URL https:
//developer.apple.com/videos/play/wwdc2021/10084/.

[5] BMW. BMW announces support for Digital Key for iPhone. A secure and easy way to use
iPhone as a car key to lock, unlock, drive, and share keys with friends., June 2020. URL
https://www.press.bmwgroup.com/global/article/detail/T0309827EN/bmw-a
nnounces-support-for-digital-key-for-iphone-a-secure-and-easy-way-t
o-use-iphone-as-a-car-key-to-lock-unlock-drive-and-share-keys-with-f
riends?language=en.

[6] BMW. What’s the deal with Ultra Wideband technology and what will it do for your car?,
November 2021. URL https://www.bmw.com/en/innovation/bmw-digital-key-plu
s-ultra-wideband.html.

[7] Mercedes-Benz. UWB, BLE Digital Car Key - E Klasse, April 2023. URL https://media.
mercedes-benz.com/press-kit/2b41d0bb-f447-4d97-bfde-c10339232424/arti
cle/ca92e61f-252f-408d-be80-a7d659909c72.

[8] Samsung. Samsung Wallet Adds Digital Key for Select Audi Vehicles, November 2024. URL
https://news.samsung.com/global/samsung-wallet-adds-digital-key-for-s
elect-audi-vehicles.

[9] CCC. Digital Key Release 3, 2024. URL https://carconnectivity.org/digital-key
-release-3-0-specification-download/. Version 1.1.3.

[10] Luke Bermingham and Ickjai Lee. A probabilistic stop and move classifier for noisy GPS
trajectories. Data Min. Knowl. Discov., 32(6):1634–1662, November 2018. ISSN 1384-5810.
doi: 10.1007/s10618-018-0568-8. URL https://doi.org/10.1007/s10618-018-056
8-8.

[11] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines.
IEEE Intelligent Systems and their Applications, 13(4):18–28, July 1998. ISSN 2374-9423.
doi: 10.1109/5254.708428. URL https://ieeexplore.ieee.org/document/708428/
?arnumber=708428. Conference Name: IEEE Intelligent Systems and their Applications.

11

https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://developer.apple.com/videos/play/wwdc2021/10084/
https://developer.apple.com/videos/play/wwdc2021/10084/
https://www.press.bmwgroup.com/global/article/detail/T0309827EN/bmw-announces-support-for-digital-key-for-iphone-a-secure-and-easy-way-to-use-iphone-as-a-car-key-to-lock-unlock-drive-and-share-keys-with-friends?language=en
https://www.press.bmwgroup.com/global/article/detail/T0309827EN/bmw-announces-support-for-digital-key-for-iphone-a-secure-and-easy-way-to-use-iphone-as-a-car-key-to-lock-unlock-drive-and-share-keys-with-friends?language=en
https://www.press.bmwgroup.com/global/article/detail/T0309827EN/bmw-announces-support-for-digital-key-for-iphone-a-secure-and-easy-way-to-use-iphone-as-a-car-key-to-lock-unlock-drive-and-share-keys-with-friends?language=en
https://www.press.bmwgroup.com/global/article/detail/T0309827EN/bmw-announces-support-for-digital-key-for-iphone-a-secure-and-easy-way-to-use-iphone-as-a-car-key-to-lock-unlock-drive-and-share-keys-with-friends?language=en
https://www.bmw.com/en/innovation/bmw-digital-key-plus-ultra-wideband.html
https://www.bmw.com/en/innovation/bmw-digital-key-plus-ultra-wideband.html
https://media.mercedes-benz.com/press-kit/2b41d0bb-f447-4d97-bfde-c10339232424/article/ca92e61f-252f-408d-be80-a7d659909c72
https://media.mercedes-benz.com/press-kit/2b41d0bb-f447-4d97-bfde-c10339232424/article/ca92e61f-252f-408d-be80-a7d659909c72
https://media.mercedes-benz.com/press-kit/2b41d0bb-f447-4d97-bfde-c10339232424/article/ca92e61f-252f-408d-be80-a7d659909c72
https://news.samsung.com/global/samsung-wallet-adds-digital-key-for-select-audi-vehicles
https://news.samsung.com/global/samsung-wallet-adds-digital-key-for-select-audi-vehicles
https://carconnectivity.org/digital-key-release-3-0-specification-download/
https://carconnectivity.org/digital-key-release-3-0-specification-download/
https://doi.org/10.1007/s10618-018-0568-8
https://doi.org/10.1007/s10618-018-0568-8
https://ieeexplore.ieee.org/document/708428/?arnumber=708428
https://ieeexplore.ieee.org/document/708428/?arnumber=708428


[12] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001. ISSN
1573-0565. doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:
1010933404324.

[13] Benjamin M. Marlin, David C. Kale, Robinder G. Khemani, and Randall C. Wetzel. Un-
supervised pattern discovery in electronic health care data using probabilistic clustering
models. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Sympo-
sium, IHI ’12, pages 389–398, New York, NY, USA, January 2012. Association for Com-
puting Machinery. ISBN 978-1-4503-0781-9. doi: 10.1145/2110363.2110408. URL
https://doi.org/10.1145/2110363.2110408.

[14] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans, editors, Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://aclanthology.org/D14-1179.

[15] Zachary C. Lipton, David Kale, and Randall Wetzel. Directly Modeling Missing Data in
Sequences with RNNs: Improved Classification of Clinical Time Series. In Proceedings of the
1st Machine Learning for Healthcare Conference, pages 253–270. PMLR, December 2016.
URL https://proceedings.mlr.press/v56/Lipton16.html. ISSN: 1938-7228.

[16] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
Neural Networks for Multivariate Time Series with Missing Values. Scientific Reports,
8(1):6085, April 2018. ISSN 2045-2322. doi: 10.1038/s41598-018-24271-9. URL
https://www.nature.com/articles/s41598-018-24271-9. Publisher: Nature
Publishing Group.

[17] Hongbin Liu, Hao Wu, Weiwei Sun, and Ickjai Lee. Spatio-Temporal GRU for Trajectory
Classification. In 2019 IEEE International Conference on Data Mining (ICDM), pages 1228–
1233, November 2019. doi: 10.1109/ICDM.2019.00152. URL https://ieeexplore.ieee.
org/document/8970798/?arnumber=8970798. ISSN: 2374-8486.

[18] Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set
Functions for Time Series. In Proceedings of the 37th International Conference on Machine
Learning, pages 4353–4363. PMLR, November 2020. URL https://proceedings.mlr.
press/v119/horn20a.html. ISSN: 2640-3498.

[19] Satya Narayan Shukla and Benjamin Marlin. Multi-Time Attention Networks for Irregularly
Sampled Time Series. International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=4c0J6lwQ4_.

[20] Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-Guided
Network for Irregularly Sampled Multivariate Time Series. International Conference on
Learning Representations, February 2022. URL https://openreview.net/forum?id=Kw
m8I7dU-l5.

[21] Ranak Roy Chowdhury, Xiyuan Zhang, Jingbo Shang, Rajesh K. Gupta, and Dezhi Hong.
TARNet: Task-Aware Reconstruction for Time-Series Transformer. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 212–220,
Washington DC USA, August 2022. ACM. ISBN 978-1-4503-9385-0. doi: 10.1145/3534678.
3539329. URL https://dl.acm.org/doi/10.1145/3534678.3539329.

[22] Haoran Liang, Lei Song, Jianxing Wang, Lili Guo, Xuzhi Li, and Ji Liang. Robust unsupervised
anomaly detection via multi-time scale DCGANs with forgetting mechanism for industrial
multivariate time series. Neurocomputing, 423:444–462, January 2021. ISSN 0925-2312. doi:
10.1016/j.neucom.2020.10.084. URL https://www.sciencedirect.com/science/arti
cle/pii/S0925231220316970.

12

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2110363.2110408
https://aclanthology.org/D14-1179
https://proceedings.mlr.press/v56/Lipton16.html
https://www.nature.com/articles/s41598-018-24271-9
https://ieeexplore.ieee.org/document/8970798/?arnumber=8970798
https://ieeexplore.ieee.org/document/8970798/?arnumber=8970798
https://proceedings.mlr.press/v119/horn20a.html
https://proceedings.mlr.press/v119/horn20a.html
https://openreview.net/forum?id=4c0J6lwQ4_
https://openreview.net/forum?id=Kwm8I7dU-l5
https://openreview.net/forum?id=Kwm8I7dU-l5
https://dl.acm.org/doi/10.1145/3534678.3539329
https://www.sciencedirect.com/science/article/pii/S0925231220316970
https://www.sciencedirect.com/science/article/pii/S0925231220316970


[23] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. A Transformer-based Framework for Multivariate Time Series Representation
Learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD ’21, pages 2114–2124, New York, NY, USA, August 2021. Association
for Computing Machinery. ISBN 978-1-4503-8332-5. doi: 10.1145/3447548.3467401. URL
https://dl.acm.org/doi/10.1145/3447548.3467401.

[24] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong,
and Bixiong Xu. TS2Vec: Towards Universal Representation of Time Series, February 2022.
URL http://arxiv.org/abs/2106.10466. arXiv:2106.10466 [cs].

[25] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Contrastive
Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting, May
2022. URL http://arxiv.org/abs/2202.01575. arXiv:2202.01575 [cs].

[26] Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu,
Xuchao Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, and Xiang Zhang. Time Series
Contrastive Learning with Information-Aware Augmentations. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(4):4534–4542, June 2023. ISSN 2374-3468. doi:
10.1609/aaai.v37i4.25575. URL https://ojs.aaai.org/index.php/AAAI/article/vi
ew/25575. Number: 4.

[27] Jiexi Liu and Songcan Chen. TimesURL: Self-Supervised Contrastive Learning for Universal
Time Series Representation Learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(12):13918–13926, March 2024. ISSN 2374-3468. doi: 10.1609/aaai.v38
i12.29299. URL https://ojs.aaai.org/index.php/AAAI/article/view/29299.
Number: 12.

[28] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49,
1978. doi: 10.1109/TASSP.1978.1163055.

[29] Mohammad Shokoohi-Yekta, Jun Wang, and Eamonn Keogh. On the Non-Trivial Generaliza-
tion of Dynamic Time Warping to the Multi-Dimensional Case. In Proceedings of the 2015
SIAM International Conference on Data Mining (SDM), Proceedings, pages 289–297. Society
for Industrial and Applied Mathematics, June 2015. doi: 10.1137/1.9781611974010.33. URL
https://epubs.siam.org/doi/10.1137/1.9781611974010.33.

[30] Patrick Schäfer and Ulf Leser. Multivariate Time Series Classification with WEASEL+MUSE,
August 2018. URL http://arxiv.org/abs/1711.11343. arXiv:1711.11343 [cs].

[31] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, October 1986. ISSN 1476-4687. doi:
10.1038/323533a0. URL https://www.nature.com/articles/323533a0. Publisher:
Nature Publishing Group.

[32] Jeffrey L. Elman. Finding Structure in Time. Cognitive Science, 14(2):179–211, 1990. ISSN
1551-6709. doi: 10.1207/s15516709cog1402_1. URL https://onlinelibrary.wiley.
com/doi/abs/10.1207/s15516709cog1402_1.

[33] Angus Dempster, François Petitjean, and Geoffrey I. Webb. ROCKET: exceptionally fast
and accurate time series classification using random convolutional kernels. Data Mining
and Knowledge Discovery, 34(5):1454–1495, September 2020. ISSN 1573-756X. doi:
10.1007/s10618-020-00701-z. URL https://doi.org/10.1007/s10618-020-00701-z.

[34] Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. MiniRocket: A Very Fast (Almost)
Deterministic Transform for Time Series Classification. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, pages 248–257, New
York, NY, USA, August 2021. Association for Computing Machinery. ISBN 978-1-4503-8332-
5. doi: 10.1145/3447548.3467231. URL https://doi.org/10.1145/3447548.3467231.

13

https://dl.acm.org/doi/10.1145/3447548.3467401
http://arxiv.org/abs/2106.10466
http://arxiv.org/abs/2202.01575
https://ojs.aaai.org/index.php/AAAI/article/view/25575
https://ojs.aaai.org/index.php/AAAI/article/view/25575
https://ojs.aaai.org/index.php/AAAI/article/view/29299
https://epubs.siam.org/doi/10.1137/1.9781611974010.33
http://arxiv.org/abs/1711.11343
https://www.nature.com/articles/323533a0
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://doi.org/10.1007/s10618-020-00701-z
https://doi.org/10.1145/3447548.3467231


[35] Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong
Chen. Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice
Perspective. Advances in Neural Information Processing Systems, 36:14273–14292, December
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/2
e19dab94882bc95ed094c4399cfda02-Abstract-Conference.html.

[36] Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, and Rong Jin. CARD:
Channel Aligned Robust Blend Transformer for Time Series Forecasting. In The Twelfth
International Conference on Learning Representations, October 2023. URL https://open
review.net/forum?id=MJksrOhurE.

[37] Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin
Yang, and Chenjuan Guo. Pathformer: Multi-scale Transformers with Adaptive Pathways for
Time Series Forecasting. In The Twelfth International Conference on Learning Representations,
October 2023. URL https://openreview.net/forum?id=lJkOCMP2aW.

[38] Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, Baolin Sun, and Mingyuan Zhou. Transformer-
Modulated Diffusion Models for Probabilistic Multivariate Time Series Forecasting. In
The Twelfth International Conference on Learning Representations, October 2023. URL
https://openreview.net/forum?id=qae04YACHs.

[39] Junho Song, Keonwoo Kim, Jeonglyul Oh, and Sungzoon Cho. MEMTO: Memory-guided
Transformer for Multivariate Time Series Anomaly Detection. November 2023. URL https:
//openreview.net/forum?id=UFW67uduJd.

[40] Shengming Zhang, Yanchi Liu, Xuchao Zhang, Wei Cheng, Haifeng Chen, and Hui Xiong.
CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD ’22, pages 4541–4550, New York, NY, USA, August 2022. Association for
Computing Machinery. ISBN 978-1-4503-9385-0. doi: 10.1145/3534678.3539155. URL
https://dl.acm.org/doi/10.1145/3534678.3539155.

[41] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time
Series Forecasting. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper
/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html.

[42] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, May 2019. URL http:
//arxiv.org/abs/1810.04805. arXiv:1810.04805 [cs] version: 2.

[43] Christopher M. Bishop. Pattern recognition and machine learning. Information science and
statistics. Springer, New York, 2006. ISBN 978-0-387-31073-2.

[44] Rebecca Salles, Kele Belloze, Fabio Porto, Pedro H. Gonzalez, and Eduardo Ogasawara.
Nonstationary time series transformation methods: An experimental review. Knowledge-Based
Systems, 164:274–291, January 2019. ISSN 0950-7051. doi: 10.1016/j.knosys.2018.10.041.
URL https://www.sciencedirect.com/science/article/pii/S095070511830534
3.

[45] Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, and Jiang Bian. DDG-DA: Data Distribution
Generation for Predictable Concept Drift Adaptation. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(4):4092–4100, June 2022. ISSN 2374-3468. doi: 10.1609/aaai
.v36i4.20327. URL https://ojs.aaai.org/index.php/AAAI/article/view/20327.
Number: 4.

[46] Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun
Wang. AdaRNN: Adaptive Learning and Forecasting of Time Series. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, CIKM ’21,
pages 402–411, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
978-1-4503-8446-9. doi: 10.1145/3459637.3482315. URL https://doi.org/10.1145/34
59637.3482315.

14

https://proceedings.neurips.cc/paper_files/paper/2023/hash/2e19dab94882bc95ed094c4399cfda02-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2e19dab94882bc95ed094c4399cfda02-Abstract-Conference.html
https://openreview.net/forum?id=MJksrOhurE
https://openreview.net/forum?id=MJksrOhurE
https://openreview.net/forum?id=lJkOCMP2aW
https://openreview.net/forum?id=qae04YACHs
https://openreview.net/forum?id=UFW67uduJd
https://openreview.net/forum?id=UFW67uduJd
https://dl.acm.org/doi/10.1145/3534678.3539155
https://proceedings.neurips.cc/paper_files/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.sciencedirect.com/science/article/pii/S0950705118305343
https://www.sciencedirect.com/science/article/pii/S0950705118305343
https://ojs.aaai.org/index.php/AAAI/article/view/20327
https://doi.org/10.1145/3459637.3482315
https://doi.org/10.1145/3459637.3482315


[47] Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros
Iosifidis. Deep Adaptive Input Normalization for Time Series Forecasting. IEEE Transactions
on Neural Networks and Learning Systems, PP:1–6, December 2019. doi: 10.1109/TNNLS.20
19.2944933.

[48] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary Transformers:
Exploring the Stationarity in Time Series Forecasting. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 9881–9893. Curran Associates, Inc., 2022. URL https://proceedings.
neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92c
b-Paper-Conference.pdf.

[49] Jinsung Yoon, W. Zame, and M. Schaar. Multi-directional Recurrent Neural Networks :
A Novel Method for Estimating Missing Data. In Time series workshop in international
conference on machine learning, 2017. URL https://www.semanticscholar.org/pape
r/Multi-directional-Recurrent-Neural-Networks-%3A-A-for-Yoon-Zame/77
ffd0afe8748e7f241856e517aab45b59634343.

[50] Yuan Zhang, Xi Yang, Julie Ivy, and Min Chi. ATTAIN: Attention-based Time-Aware
LSTM Networks for Disease Progression Modeling. pages 4369–4375, 2019. URL https:
//www.ijcai.org/proceedings/2019/607.

[51] Yuxuan Liang, Kun Ouyang, Yiwei Wang, Xu Liu, Hongyang Chen, Junbo Zhang, Yu Zheng,
and Roger Zimmermann. TrajFormer: Efficient Trajectory Classification with Transformers.
In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, pages 1229–1237, Atlanta GA USA, October 2022. ACM. ISBN 978-1-4503-
9236-5. doi: 10.1145/3511808.3557481. URL https://dl.acm.org/doi/10.1145/351
1808.3557481.

[52] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework
for Contrastive Learning of Visual Representations, June 2020. URL http://arxiv.org/
abs/2002.05709. arXiv:2002.05709 [cs, stat].

[53] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Con-
trastive Predictive Coding, January 2019. URL http://arxiv.org/abs/1807.03748.
arXiv:1807.03748 [cs, stat].

[54] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning local
feature descriptors with triplets and shallow convolutional neural networks. In Procedings of
the British Machine Vision Conference 2016, pages 119.1–119.11, York, UK, 2016. British
Machine Vision Association. ISBN 978-1-901725-59-9. doi: 10.5244/C.30.119. URL
http://www.bmva.org/bmvc/2016/papers/paper119/index.html.

[55] Aapo Hyvarinen and Hiroshi Morioka. Unsupervised Feature Extraction by Time-Contrastive
Learning and Nonlinear ICA. In Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper
_files/paper/2016/hash/d305281faf947ca7acade9ad5c8c818c-Abstract.html.

[56] Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised Representation Learning
for Time Series with Temporal Neighborhood Coding. In International Conference on Learning
Representations, October 2020. URL https://openreview.net/forum?id=8qDwejCuCN.

[57] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with
application to face verification. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pages 539–546, 2005. doi: 10.1109/CVPR.2
005.202. URL https://ieeexplore.ieee.org/document/1467314.

[58] Samira Abnar and Willem Zuidema. Quantifying Attention Flow in Transformers, May 2020.
URL http://arxiv.org/abs/2005.00928. arXiv:2005.00928 [cs].

[59] Ling Yang and Shenda Hong. Unsupervised Time-Series Representation Learning with Iterative
Bilinear Temporal-Spectral Fusion. In Proceedings of the 39th International Conference on
Machine Learning, pages 25038–25054. PMLR, June 2022. URL https://proceedings.
mlr.press/v162/yang22e.html. ISSN: 2640-3498.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4054556fcaa934b0bf76da52cf4f92cb-Paper-Conference.pdf
https://www.semanticscholar.org/paper/Multi-directional-Recurrent-Neural-Networks-%3A-A-for-Yoon-Zame/77ffd0afe8748e7f241856e517aab45b59634343
https://www.semanticscholar.org/paper/Multi-directional-Recurrent-Neural-Networks-%3A-A-for-Yoon-Zame/77ffd0afe8748e7f241856e517aab45b59634343
https://www.semanticscholar.org/paper/Multi-directional-Recurrent-Neural-Networks-%3A-A-for-Yoon-Zame/77ffd0afe8748e7f241856e517aab45b59634343
https://www.ijcai.org/proceedings/2019/607
https://www.ijcai.org/proceedings/2019/607
https://dl.acm.org/doi/10.1145/3511808.3557481
https://dl.acm.org/doi/10.1145/3511808.3557481
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/1807.03748
http://www.bmva.org/bmvc/2016/papers/paper119/index.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/d305281faf947ca7acade9ad5c8c818c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/d305281faf947ca7acade9ad5c8c818c-Abstract.html
https://openreview.net/forum?id=8qDwejCuCN
https://ieeexplore.ieee.org/document/1467314
http://arxiv.org/abs/2005.00928
https://proceedings.mlr.press/v162/yang22e.html
https://proceedings.mlr.press/v162/yang22e.html


[60] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised Scalable Repre-
sentation Learning for Multivariate Time Series. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/hash/53c6de78244e9f528eb3e1cda69699bb-Abstr
act.html.

[61] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, March 1982. ISSN 1557-9654. doi: 10.1109/TIT.1982.1056489. URL
https://ieeexplore.ieee.org/document/1056489.

[62] Maximilian Forstenhäusler, Christos Anagnostopoulos, Shameem Puthiya Parambath, Daniel
Külzer, and Natascha Weber. Leveraging Federated Learning for Decentralized Semi-
Supervised Task-Informed Representation Learning on Sequential Data. In Proceedings
of the IEEE 45th International Conference on Distributed Computing Systems Workshops
(ICDCSW 2025). IEEE, 2025. URL https://eprints.gla.ac.uk/352003/.

[63] Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. Geolife GPS trajectory dataset -
User Guide. Geolife gps trajectories 1.1 edition, July 2011. URL https://www.microsoft.
com/en-us/research/publication/geolife-gps-trajectory-dataset-user-gui
de/.

[64] Denis Kwiatkowski, Peter C. B. Phillips, Peter Schmidt, and Yongcheol Shin. Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are we that economic
time series have a unit root? Journal of Econometrics, 54(1):159–178, October 1992. ISSN
0304-4076. doi: 10.1016/0304-4076(92)90104-Y. URL https://www.sciencedirect.co
m/science/article/pii/030440769290104Y.

[65] Yin-Wong Cheung and Kon S. Lai. Lag Order and Critical Values of the Augmented
Dickey–Fuller Test. Journal of Business & Economic Statistics, 13(3):277–280, July
1995. ISSN 0735-0015. doi: 10.1080/07350015.1995.10524601. URL https:
//doi.org/10.1080/07350015.1995.10524601. Publisher: ASA Website.

[66] Matthew A. Reyna, Christopher S. Josef, Russell Jeter, Supreeth P. Shashikumar, M. Brandon
Westover, Shamim Nemati, Gari D. Clifford, and Ashish Sharma. Early Prediction of Sepsis
From Clinical Data: The PhysioNet/Computing in Cardiology Challenge 2019. Critical Care
Medicine, 48(2):210, February 2020. ISSN 1530-0293. doi: 10.1097/CCM.000000000000
4145. URL https://journals.lww.com/ccmjournal/fulltext/2020/02000/earl
y_prediction_of_sepsis_from_clinical_data__the.10.aspx.

[67] A. Goldberger, Luis A. N. Amaral, L. Glass, Jeffrey M. Hausdorff, Plamen Ch. Ivanov,
Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene
Stanley. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource
for complex physiologic signals, January 2012. URL https://physionet.org/content/
challenge-2012/1.0.0/.

[68] Attila Reiss and Didier Stricker. Introducing a New Benchmarked Dataset for Activity
Monitoring. In 2012 16th International Symposium on Wearable Computers, pages 108–109,
June 2012. doi: 10.1109/ISWC.2012.13. URL https://ieeexplore.ieee.org/docume
nt/6246152. ISSN: 2376-8541.

[69] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized
BERT Pretraining Approach, July 2019. URL http://arxiv.org/abs/1907.11692.
arXiv:1907.11692 [cs].

[70] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom,
Paul Southam, and Eamonn Keogh. The UEA multivariate time series classification archive,
2018, October 2018. URL http://arxiv.org/abs/1811.00075. arXiv:1811.00075 [cs,
stat].

[71] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing,
Mao Yang, Jie Tong, and Qi Zhang. Time-Series Anomaly Detection Service at Microsoft. In

16

https://proceedings.neurips.cc/paper_files/paper/2019/hash/53c6de78244e9f528eb3e1cda69699bb-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/53c6de78244e9f528eb3e1cda69699bb-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/53c6de78244e9f528eb3e1cda69699bb-Abstract.html
https://ieeexplore.ieee.org/document/1056489
https://eprints.gla.ac.uk/352003/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.sciencedirect.com/science/article/pii/030440769290104Y
https://www.sciencedirect.com/science/article/pii/030440769290104Y
https://doi.org/10.1080/07350015.1995.10524601
https://doi.org/10.1080/07350015.1995.10524601
https://journals.lww.com/ccmjournal/fulltext/2020/02000/early_prediction_of_sepsis_from_clinical_data__the.10.aspx
https://journals.lww.com/ccmjournal/fulltext/2020/02000/early_prediction_of_sepsis_from_clinical_data__the.10.aspx
https://physionet.org/content/challenge-2012/1.0.0/
https://physionet.org/content/challenge-2012/1.0.0/
https://ieeexplore.ieee.org/document/6246152
https://ieeexplore.ieee.org/document/6246152
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1811.00075


Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 3009–3017, July 2019. doi: 10.1145/3292500.3330680. URL
http://arxiv.org/abs/1906.03821. arXiv:1906.03821 [cs].

[72] Yahoo Labs | Webscope. S5 - A Labeled Anomaly Detection Dataset, 2015. URL https:
//webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70.

[73] Chang Wei Tan, Christoph Bergmeir, François Petitjean, and Geoffrey I. Webb. Time series
extrinsic regression. Data Mining and Knowledge Discovery, 35(3):1032–1060, May 2021.
ISSN 1573-756X. doi: 10.1007/s10618-021-00745-9. URL https://doi.org/10.1007/
s10618-021-00745-9.

[74] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal
of Machine Learning Research, 9(86):2579–2605, 2008. ISSN 1533-7928. URL http:
//jmlr.org/papers/v9/vandermaaten08a.html.

[75] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis. Prentice Hall, 1994.

[76] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL
https://www.deeplearningbook.org/.

[77] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A Critical Review of Recurrent Neural
Networks for Sequence Learning, October 2015. URL http://arxiv.org/abs/1506.000
19. arXiv:1506.00019.

[78] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994. ISSN 1941-
0093. doi: 10.1109/72.279181. URL https://ieeexplore.ieee.org/document/27918
1. Conference Name: IEEE Transactions on Neural Networks.

[79] Sepp Hochreiter, Yoshua Bengio, P. Frasconi, and Jürgen Schmidhuber. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies. In A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press, 2001. URL https://www.bibsonomy.org/bibt
ex/279df6721c014a00bfac62abd7d5a9968/schaul.

[80] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Eval-
uation of Gated Recurrent Neural Networks on Sequence Modeling, December 2014. URL
http://arxiv.org/abs/1412.3555. arXiv:1412.3555 [cs].

[81] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language
Understanding by Generative Pre-Training, June 2018. URL https://cdn.openai.com/r
esearch-covers/language-unsupervised/language_understanding_paper.pdf.

[82] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot
Learners, July 2020. URL http://arxiv.org/abs/2005.14165. arXiv:2005.14165.

[83] OpenAI. ChatGPT, July 2024. URL https://chatgpt.com/.

[84] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:
Pre-training Text Encoders as Discriminators Rather Than Generators, March 2020. URL
http://arxiv.org/abs/2003.10555. arXiv:2003.10555.

[85] J Wang. Articulary Word Recognition. URL https://www.timeseriesclassification
.com/description.php?Dataset=ArticularyWordRecognition.

[86] Ben H. Williams. Character Trajectories Dataset. URL https://www.timeseriesclassi
fication.com/description.php?Dataset=CharacterTrajectories.

17

http://arxiv.org/abs/1906.03821
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://doi.org/10.1007/s10618-021-00745-9
https://doi.org/10.1007/s10618-021-00745-9
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://www.deeplearningbook.org/
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
https://ieeexplore.ieee.org/document/279181
https://ieeexplore.ieee.org/document/279181
https://www.bibsonomy.org/bibtex/279df6721c014a00bfac62abd7d5a9968/schaul
https://www.bibsonomy.org/bibtex/279df6721c014a00bfac62abd7d5a9968/schaul
http://arxiv.org/abs/1412.3555
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://arxiv.org/abs/2005.14165
https://chatgpt.com/
http://arxiv.org/abs/2003.10555
https://www.timeseriesclassification.com/description.php?Dataset=ArticularyWordRecognition
https://www.timeseriesclassification.com/description.php?Dataset=ArticularyWordRecognition
https://www.timeseriesclassification.com/description.php?Dataset=CharacterTrajectories
https://www.timeseriesclassification.com/description.php?Dataset=CharacterTrajectories


[87] Time Series Classification Webpage. Cricket Dataset, . URL https://www.timeseriescl
assification.com/description.php?Dataset=Cricket.

[88] Xenoxanto. Duck Duck Geese Dataset. URL https://www.timeseriesclassification
.com/description.php?Dataset=DuckDuckGeese.

[89] Andre Brown. Eigen Worms Dataset, 2013. URL https://www.timeseriesclassifica
tion.com/description.php?Dataset=EigenWorms.

[90] José R. Villar, Paula Vergara, Manuel Menéndez, Enrique De La Cal, Víctor M. González,
and Javier Sedano. Generalized Models for the Classification of Abnormal Movements in
Daily Life and its Applicability to Epilepsy Convulsion Recognition. International Journal
of Neural Systems, 26(06):1650037, September 2016. ISSN 0129-0657, 1793-6462. doi:
10.1142/S0129065716500374. URL https://www.worldscientific.com/doi/abs/10
.1142/S0129065716500374.

[91] M. Wilhelm. ERing Dataset. URL https://www.timeseriesclassification.com/des
cription.php?Dataset=ERing.

[92] James Large. Ethanol Concentration Dataset, 2018. URL https://www.timeseriesclas
sification.com/description.php?Dataset=EthanolConcentration.

[93] Rik Henson. Face Detection Dataset, 2014. URL https://www.timeseriesclassifica
tion.com/description.php?Dataset=FaceDetection.

[94] Benjamin Blankertz. Finger Movements Dataset. URL https://www.timeseriesclassi
fication.com/description.php?Dataset=FingerMovements.

[95] Tephan Waldert. Hand Movement Direction Dataset. URL https://www.timeseriesclas
sification.com/description.php?Dataset=HandMovementDirection.

[96] Mohammad Shokoohi-Yekta. Handwriting Dataset, 2017. URL https://www.timeseries
classification.com/description.php?Dataset=Handwriting.

[97] A Goldberger. Heartbeat Dataset, 2016. URL https://www.timeseriesclassification
.com/description.php?Dataset=Heartbeat.

[98] Time Series Classification Webpage. Insect Wingbeat Dataset, . URL https://www.timese
riesclassification.com/description.php?Dataset=InsectWingbeat.

[99] M Kudo. Japanese Vowels Dataset, 1999. URL https://www.timeseriesclassificati
on.com/description.php?Dataset=JapaneseVowels.

[100] D. Dias. Libras Dataset. URL https://www.timeseriesclassification.com/descr
iption.php?Dataset=Libras.

[101] Kaggle. LSST Dataset. URL https://www.timeseriesclassification.com/descrip
tion.php?Dataset=LSST.

[102] Time Series Classification Webpage. Motor Imagery Dataset, . URL https://www.timese
riesclassification.com/description.php?Dataset=MotorImagery.

[103] Time Series Classification Webpage. NATOPS Dataset, . URL https://www.timeseries
classification.com/description.php?Dataset=NATOPS.

[104] Marco Cuturi. PEMS-SF, 2009. URL https://www.timeseriesclassification.com
/description.php?Dataset=PEMS-SF.

[105] F Alimoglu. Pen Digits Dataset, 1996. URL https://www.timeseriesclassification
.com/description.php?Dataset=PenDigits.

[106] H. Hamooni. Phoneme Spectra Dataset. URL https://www.timeseriesclassificati
on.com/description.php?Dataset=PhonemeSpectra.

18

https://www.timeseriesclassification.com/description.php?Dataset=Cricket
https://www.timeseriesclassification.com/description.php?Dataset=Cricket
https://www.timeseriesclassification.com/description.php?Dataset=DuckDuckGeese
https://www.timeseriesclassification.com/description.php?Dataset=DuckDuckGeese
https://www.timeseriesclassification.com/description.php?Dataset=EigenWorms
https://www.timeseriesclassification.com/description.php?Dataset=EigenWorms
https://www.worldscientific.com/doi/abs/10.1142/S0129065716500374
https://www.worldscientific.com/doi/abs/10.1142/S0129065716500374
https://www.timeseriesclassification.com/description.php?Dataset=ERing
https://www.timeseriesclassification.com/description.php?Dataset=ERing
https://www.timeseriesclassification.com/description.php?Dataset=EthanolConcentration
https://www.timeseriesclassification.com/description.php?Dataset=EthanolConcentration
https://www.timeseriesclassification.com/description.php?Dataset=FaceDetection
https://www.timeseriesclassification.com/description.php?Dataset=FaceDetection
https://www.timeseriesclassification.com/description.php?Dataset=FingerMovements
https://www.timeseriesclassification.com/description.php?Dataset=FingerMovements
https://www.timeseriesclassification.com/description.php?Dataset=HandMovementDirection
https://www.timeseriesclassification.com/description.php?Dataset=HandMovementDirection
https://www.timeseriesclassification.com/description.php?Dataset=Handwriting
https://www.timeseriesclassification.com/description.php?Dataset=Handwriting
https://www.timeseriesclassification.com/description.php?Dataset=Heartbeat
https://www.timeseriesclassification.com/description.php?Dataset=Heartbeat
https://www.timeseriesclassification.com/description.php?Dataset=InsectWingbeat
https://www.timeseriesclassification.com/description.php?Dataset=InsectWingbeat
https://www.timeseriesclassification.com/description.php?Dataset=JapaneseVowels
https://www.timeseriesclassification.com/description.php?Dataset=JapaneseVowels
https://www.timeseriesclassification.com/description.php?Dataset=Libras
https://www.timeseriesclassification.com/description.php?Dataset=Libras
https://www.timeseriesclassification.com/description.php?Dataset=LSST
https://www.timeseriesclassification.com/description.php?Dataset=LSST
https://www.timeseriesclassification.com/description.php?Dataset=MotorImagery
https://www.timeseriesclassification.com/description.php?Dataset=MotorImagery
https://www.timeseriesclassification.com/description.php?Dataset=NATOPS
https://www.timeseriesclassification.com/description.php?Dataset=NATOPS
https://www.timeseriesclassification.com/description.php?Dataset=PEMS-SF
https://www.timeseriesclassification.com/description.php?Dataset=PEMS-SF
https://www.timeseriesclassification.com/description.php?Dataset=PenDigits
https://www.timeseriesclassification.com/description.php?Dataset=PenDigits
https://www.timeseriesclassification.com/description.php?Dataset=PhonemeSpectra
https://www.timeseriesclassification.com/description.php?Dataset=PhonemeSpectra


[107] Phillip Perks. Racket Sports Dataset. URL https://www.timeseriesclassification.c
om/description.php?Dataset=RacketSports.

[108] Thilo Hinterberger. Self Regulation SCP 1 Dataset, 1999. URL https://www.timeseries
classification.com/description.php?Dataset=SelfRegulationSCP1.

[109] Thilo Hinterberger. Self Regulation SCP 2 Dataset, 1999. URL https://www.timeseries
classification.com/description.php?Dataset=SelfRegulationSCP2.

[110] N Hammami. Spoken Arabic Digits Dataset, 2010. URL https://www.timeseriesclas
sification.com/description.php?Dataset=SpokenArabicDigits.

[111] Jiayang Liu. U Wave Gesture Library, 2009. URL https://www.timeseriesclassifica
tion.com/description.php?Dataset=UWaveGestureLibrary.

[112] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Appliances
Energy Dataset, June 2020. URL https://zenodo.org/records/3902637.

[113] Australia Rainfall Dataset. URL https://zenodo.org/records/3902654.

[114] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Beijing PM10
Dataset, June 2020. URL https://zenodo.org/records/3902667.

[115] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Beijing PM2.5
Dataset, June 2020. URL https://zenodo.org/records/3902671.

[116] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Benzene
Concentration Dataset, June 2020. URL https://zenodo.org/records/3902673.

[117] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. BIDMC Heart
Rate Dataset (32 seconds window), June 2020. URL https://zenodo.org/records/400
1456.

[118] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. BIDMC
Respiratory Rate Dataset (32 seconds window), June 2020. URL https://zenodo.org/r
ecords/4001463.

[119] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. BIDMC Blood
Oxygen Saturation Dataset (32 seconds window), June 2020. URL https://zenodo.org/r
ecords/4001464.

[120] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Covid-19
Death Rate Dataset, June 2020. URL https://zenodo.org/records/3902690.

[121] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Flood Modeling
Dataset 1, June 2020. URL https://zenodo.org/records/3902694.

[122] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Flood Modeling
Dataset 2, June 2020. URL https://zenodo.org/records/3902696.

[123] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Flood Modeling
Dataset 3, June 2020. URL https://zenodo.org/records/3902698.

[124] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Household
Active Power Consumption Dataset, June 2020. URL https://zenodo.org/records/390
2704.

[125] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Household
Reactive Power Consumption Dataset, June 2020. URL https://zenodo.org/records/3
902706.

[126] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. IEEEPPG
Dataset, June 2020. URL https://zenodo.org/records/3902710.

19

https://www.timeseriesclassification.com/description.php?Dataset=RacketSports
https://www.timeseriesclassification.com/description.php?Dataset=RacketSports
https://www.timeseriesclassification.com/description.php?Dataset=SelfRegulationSCP1
https://www.timeseriesclassification.com/description.php?Dataset=SelfRegulationSCP1
https://www.timeseriesclassification.com/description.php?Dataset=SelfRegulationSCP2
https://www.timeseriesclassification.com/description.php?Dataset=SelfRegulationSCP2
https://www.timeseriesclassification.com/description.php?Dataset=SpokenArabicDigits
https://www.timeseriesclassification.com/description.php?Dataset=SpokenArabicDigits
https://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibrary
https://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibrary
https://zenodo.org/records/3902637
https://zenodo.org/records/3902654
https://zenodo.org/records/3902667
https://zenodo.org/records/3902671
https://zenodo.org/records/3902673
https://zenodo.org/records/4001456
https://zenodo.org/records/4001456
https://zenodo.org/records/4001463
https://zenodo.org/records/4001463
https://zenodo.org/records/4001464
https://zenodo.org/records/4001464
https://zenodo.org/records/3902690
https://zenodo.org/records/3902694
https://zenodo.org/records/3902696
https://zenodo.org/records/3902698
https://zenodo.org/records/3902704
https://zenodo.org/records/3902704
https://zenodo.org/records/3902706
https://zenodo.org/records/3902706
https://zenodo.org/records/3902710


[127] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Live Fuel
Moisture Content Dataset, June 2020. URL https://zenodo.org/records/3902716.

[128] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. News Headline
Sentiment Dataset, June 2020. URL https://zenodo.org/records/3902718.

[129] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. News Title
Sentiment Dataset, June 2020. URL https://zenodo.org/records/3902726.

[130] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. PPGDalia
Dataset, June 2020. URL https://zenodo.org/records/3902728.

20

https://zenodo.org/records/3902716
https://zenodo.org/records/3902718
https://zenodo.org/records/3902726
https://zenodo.org/records/3902728


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope by clearly stating the claims in Section 1, 2, and 3, aligning with results in Section 4,
and acknowledging limitations, ensuring transparency and consistency with the findings in
Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The key limitations of the proposed approach are briefly discussed in Section 5,
with a more detailed analysis provided in Appendix B.4. We support our claims with a
diverse set of experiments and extensive ablation studies aiming to rigorously validate all
claims made throughout the paper, refer to Section 4, Section 4.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

21



3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not discuss any theoretical results, so we cannot provide corresponding
proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive documentation, including the necessary infor-
mation and code, to enable the reconstruction of the results, refer to Appendix D. Upon
acceptance of the paper, we will additionally publish an online report detailing all doc-
umented runs referenced within the paper. Due to anonymity concerns, this release is
contingent upon acceptance to comply with double-blind review restrictions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

22



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide access to most of this work’s code and data. The code and data
related to the DKT dataset, which is only a small percentage, cannot be made public due to
publishing restrictions of our sponsor. All other code and data are accessible. The code, data,
and instructions on how to run and access the data are placed in the anonymous repository
(https://anonymous.4open.science/r/STaRFormer-78D8/). Most of our dataset
classes will automatically download the respective raw data and apply pre-processing steps
automatically. The data used is extensively documented in the appendix. We also provide
all the links to access the public dataset used there; see Appendix C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have documented run configuration extensively using ‘hydra’ and corre-
sponding ‘yaml’ files that should allow users to understand the full specification required to
reproduce the training and test details. This is accessible in (https://anonymous.4open.
science/r/STaRFormer-78D8/).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

23

https://anonymous.4open.science/r/STaRFormer-78D8/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://anonymous.4open.science/r/STaRFormer-78D8/
https://anonymous.4open.science/r/STaRFormer-78D8/


7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In most of our experiments and ablation studies, we employed five distinct
seeds to quantify uncertainty scores in the reported results. These are reported. For datasets
and benchmarks where prior methodologies did not incorporate this approach, we align with
existing literature practices. All runs, along with corresponding statistical measures such as
the mean and standard deviation, where suitable, are documented in Appendix D.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details about the GPU types used for training, the training times,
and the corresponding AWS cluster utilized. For additional information, please refer to
Appendix D.3.1 and the detailed documentation in Table 15 and 16.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

24

https://neurips.cc/public/EthicsGuidelines


Justification: To the best of our knowledge, this work adheres to the NeurIPS Code of Ethics
and complies with other relevant ethical standards.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: At present, we do not foresee any direct negative societal impacts resulting
from this work. Given its foundation in a real-world application, the proposed approach
has the potential to yield positive societal benefits, such as enhancing customer experience.
However, at this time, further specifics cannot be disclosed due to confidentiality agreements
with the BMW Group.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: At the current time, we do not see any potential for misuse of our work, even
if pretrained models where to be released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

25



• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We thoroughly ensure that all prior work referenced in this study is appro-
priately credited and cited. For public data assets, all URLs are provided in the appendix,
specifically in the dataset overview in Table 8, as well as in the anonymous repository
https://anonymous.4open.science/r/STaRFormer-78D8/.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This work introduces a new asset, the DKT dataset, which is comprehensively
examined and detailed to the extent permitted by the sponsor. Due to its ongoing develop-
ment, the asset remains confidential, and exhaustive details cannot be disclosed publicly.
The asset will not be released to the public. Please refer to Section 1, Appendix A and
Appendix C.1.1.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

26

https://anonymous.4open.science/r/STaRFormer-78D8/
paperswithcode.com/datasets


Answer: [NA]
Justification: The paper does not involve crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM tools were used for editing purposes only, such as checking grammar or
paraphrasing elements and sentences of this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM


Glossary

γ Determines the bound of the region to be masked. 4, 9, 39
X Mini-batch. 3, 4, 32, 39–41
σ Attention scores computed from the attention weights Ã. 4, 40
φ Number of Elements that can be masked. 4, 39, 40
ζ Determines the number of sequential elements that are masked based on the attention scores σ. 4,

39

ADF Augmented Dickey-Fuller. 1, 7, 31, 32
AE Appliances Energy. 43, 53, 54, 62
AF Atrial Fibrillation. 43, 53, 60
AR Australia Rainfall. 43, 53, 54, 62
AWR Articulary Word Recognition. 43, 53, 60

BC Benzene Concentration. 43, 53, 54, 62
BCE Binary Cross-Entropy. 38
BIDMCHR BIDMC32HR. 43, 53, 54, 62
BIDMCRR BIDMC32RR. 43, 53, 54, 62
BIDMCSPO2 BIDMC32SpO2. 43, 53, 54, 62
BLE Bluetooth Low-Energy. 1, 31
BM Basic Motions. 43, 53, 60
BPM10 Beijing PM10 Quality. 43, 53, 54, 62
BPM25 Beijing PM25 Quality. 43, 53, 54, 62

C3M Covid3Month. 43, 53, 54, 62
CCC Car Connectivity Consortium. 31
CE Cross-Entropy. 38
CK Cricket. 43, 53, 60
CL Contrastive Learning. 1–6, 8–10, 38–42, 55, 57, 58
CNN Convolutional Neural Network. 2, 34
CoST Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Fore-

casting. 3
CT Character Trajectories. 43, 53, 60

DAReM Dynamic Attention-based Regional Masking. 1, 2, 4, 5, 8–10, 38, 39, 42, 55, 57–60
DDK Duck Duck Geese. 8, 43, 53, 60
DK Digital Key. 1, 31, 43
DKT Digital Key Trajectories. 1, 2, 4, 6, 7, 9, 10, 23, 26, 31, 32, 42–44, 47–51, 55, 56, 61
DL Deep Learning. 2, 34, 37
DTWD Dimension-dependent dynamic time warping. 2, 7, 60

EC Ethanol Concentration. 43, 46, 52, 60, 61
EP Epilepsy. 43, 53, 60
ER ERing. 43, 53, 60
EW Eigen Worms. 43, 46, 52, 60, 61

FD Face Detection. 43, 46, 52, 60, 61

28



FM Finger Movements. 43, 53, 60

FM1 Flood Modeling 1. 43, 53, 54, 62

FM2 Flood Modeling 2. 43, 53, 54, 62

FM3 Flood Modeling 3. 43, 53, 54, 62

GL Geolife. 6, 7, 9, 10, 42–45, 51, 57, 61

GRU Gated Recurrent Unit. 2, 7, 36, 49, 51, 55

HB Heartbeat. 43, 47, 52, 60, 61

HMD Hand Movement Direction. 43, 53, 60

HPC1 Household Power Consumption 1. 43, 53, 54, 62

HPC2 Household Power Consumption 2. 43, 53, 54, 62

HW Handwritting. 43, 47, 52, 60, 61

i.i.d. Independent and identically distributed. 33

IEEEPPG IEEEPPG. 43, 53, 54, 62

InfoTS Time Series Contrastive Learning with Information-Aware Augmentations. 3, 7, 10, 60

IW Insect Wingbeat. 43, 53, 60

JV Japenese Vowels. 43, 47, 50, 52, 60, 61

KPI KPI. 8, 43, 47, 52, 61

KPSS Kwiatkowski–Phillips–Schmidt–Shin. 1, 7, 31

LFMC Live Fuel Moisture Content. 43, 53, 54, 62

LI Libras. 43, 53, 60

LSST LSST. 43, 53, 60

LSTM Long Short-Term Memory. 1, 2, 7, 35–37, 49, 51, 55

MI Motor Imagery. 43, 53, 60

ML Machine Learning. 1, 2, 32

MLM Masked Language Modeling. 2

MLP Multilayer Perceptron. 34–36, 38

NHS News Headline Sentiment. 43, 53, 54, 62

NT NATOPS. 8, 43, 53, 60

NT-Xent Normalized temperature-scaled cross entropy. 3, 5

NTS News Title Sentiment. 43, 53, 54, 62

OAT One-at-a-time analysis. 9

P12 PhysioNet Mortality Prediction Challenge 2012. 7, 43, 45, 46, 51, 60, 61

P19 PhysioNet Sepsis Early Prediction Challenge 2019. 7, 43, 45, 51, 59, 61

PAM Physical Activity Monitoring. 7, 9, 10, 40, 43, 46, 51, 58, 59, 61

PD Pen Digits. 43, 47, 52, 60, 61

PPG PPG Dalia. 43, 53, 54, 62

PS PEMS-SF. 8, 10, 43, 47, 52, 60, 61

PSp Phoneme Spectra. 43, 53, 60

29



RM Random Masking. 8, 9, 52, 55, 57–61
RMSE Root Mean Squared Error. 8, 48
RNN Recurrent Neural Network. 2, 3, 7, 34–37, 51, 55
RS Racket Sports. 43, 53, 60

SAD Spoken Arabic Digits. 43, 47, 52, 60, 61
SCP1 Self Regulation SCP1. 43, 47, 52, 60, 61
SCP2 Self Regulation SCP2. 8, 43, 47, 52, 60, 61
STaRFormer Semi-Supervised Task-Informed Representation Learning Transformer. 1–10, 36,

38–42, 48–53, 55–62
SVM Support Vector Machines. 7, 56
SWJ Stand Walk Jump. 8, 43, 53, 60

t-SNE t-Distributed Stochastic Neighbor Embedding. 9, 10
TARNet Task-Aware Reconstruction for Time Series Transformer. 2, 7–9, 51, 54–56, 60
TCL Time-CL. 3
TimesURL Self-Supervised Contrastive Learning for Universal Time Series Representation Learn-

ing. 3, 7, 8, 10, 51, 55, 56, 60
TNC Temporal Neighborhood Coding. 3, 7, 60
TS2Vec Towards Universal Representation of Time Series. 3, 7, 8, 60
TSR Time Series Extrinsic Regression. 8, 42, 62
TST Time Series Transformer. 2, 7, 46, 51, 60

UEA UEA. 7, 8, 10, 42, 46, 50, 52, 53, 60
UW UWave Gesture Library. 43, 47, 52, 60, 61
UWB Ultra-Wideband. 1, 31, 32, 43

ViTST Vision Time Series Transformer. 3, 7, 60

Yahoo A Labeled Anomaly Detection Dataset. 8, 43, 47, 52, 61

30



Appendix - Supplementary Material

A Localization and Tracking via Ultra-Wideband Technology and the Digital
Key

The digital key (DK) enables the use of a smart device as a ‘vehicle key’ [5, 7], facilitating handsfree
or passive access to a vehicle through the smart device. The DK technology is standardized by the Car
Connectivity Consortium (CCC), led by Apple, the BMW Group, Ford, Google, Mercedes, Xiaomi,
and other global corporations [9]. In recent years, car manufacturers have started to incorporate
Ultra-Wideband (UWB) and Bluetooth Low-Energy (BLE) technologies to enhance the capabilities
of the DK [4–8]. This allows for precise and secure vehicle access while paving the way for the
creation of additional applications for connected vehicles.

A.1 Localization - Non-Stationary Characteristics

A Bluetooth connection is initially established between the smart device and the vehicle to detect
a paired personal smart device nearby. Following the exchange of security protocols, an UWB
connection is set up to enable secure ranging of the smart device. The vehicle is equipped with multiple
UWB anchors. Between each UWB anchor and the smart device, time-of-flight measurements
are executed, allowing precise localization due to UWB’s pulse duration of 2ns [9]. When the
localization is recorded, one is able to track the smart device around the vehicle, enabling intent
predictions based on the sequentially collected localization measurements. However, various external
factors can influence the localization accuracy, including materials of different vehicle models,
external environments like weather conditions, interference from other signals, and the position
of the smart device (e.g., in hand, front pocket, or handbag). These interferences can introduce
non-stationary characteristics to the sequential data. To verify this hypothesis, we compute the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and augmented Dickey-Fuller (ADF) tests [64, 65]. We
consider a time series non-stationary if both tests agree, i.e., the p-values for KPSS are smaller than a

(a) (b)

(c) (d)

(e) (f)

Figure 3: Example plots visualizing the non-stationary characteristics of the sequential data in the
DKT dataset. The red or orange line visualizes the mean and the green dashed lines the standard
deviation of a segment. Multiple mean and standard deviation lines per plot indicate changes in the
underlying generative distribution of the visualized data. These plots only serve as a demonstration
and visualization of the non-stationary characteristics of data samples from the DKT dataset.

31



0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 118 1 5

R0
B (288ms) R1

B R2
B

∆tR1
R = 120ms ∆tR2

R = 384ms

Figure 4: An illustration demonstrating the collection and utilization of UWB signal measurements
to localize a smart device around the vehicle using a multiplierRAN = 3. Due to the continuous
hopping strategy for ranging, fixed ranging round indices are set before the data is collected. In this
case, ranging round indices [9, 2, 6] lead to a difference in the time delta between three following
RR’s, e.g., |∆tR

1
R −∆tR

2
R| = 264ms [9].

significance level, i.e., pKPSS < 0.05, whereas the p-values for ADF are larger than a significance
level, i.e., pADF > 0.05. The results suggest that 79% of the data provided to us by the BMW Group
used for training and validation is indeed non-stationary. Fig. 3 depicts six examples visually, which
display non-stationary characteristics of the time series data in the DKT.

A.2 UWB Ranging and Measuring

The measuring algorithm employed for ranging introduces another level of uncertainty. The UWB
signal collection for localization occurs within a time window referred to as ranging block. A ranging
block, RB, is defined as RB = multiplierRAN × Tmin, where multiplierRAN ∈ {1, . . . , 255} and
Tmin = 96ms [9]. The Ri

B, where i = 0, 1, . . . , N − 1, is divided into M ranging rounds Rj
R,

where j = 0, 1, . . . ,M − 1. Although these RR are fixed, the specific Rj
R-index used for recording

varies per ranging block, to reduce the probability of interference in multi-device scenarios. Different
strategies have been proposed for selecting a Rj

R-index; in the data provided by the BMW Group, a
continuous strategy is employed such that the Rj

R-index for each Ri
B is predetermined. However, the

differences between consecutive Rj
R’s, ∆tR

j
R = Rj+1

R −Rj
R, do not necessarily match the differences

in the following window, ∆tR
j+1
R = Rj+2

R −Rj+1
R [9]. Fig. 4 visualizes the UWB ranging algorithm

and the resulting irregular sampled sequential data conceptually.

B Approach

Notation. We extend the formulation from Section 3. In this work, the following notation is used:
tensors and matrices are represented by capital letters A and column vectors are represented as a.
Given a matrix A, one can access the i-th, j-th element as Ai,j . To access a row of A, one can slice
the matrix Ai,: ≡ a(i) and vice versa A:,i to access a column. For a 3-D tensor A, element (i, j, k)
is Ai,j,k. The i-th element of column vector a is ai. Scalars are depicted as a. The dataset used to
train a machine learning algorithm is noted as D, where in general (x(i), y(i)) is the i-th sample-label
pair of D in the supervised setting. ŷ denotes the predicted labels by a function f . As previously
defined, a mini-batch (X), X ⊂ D and X ∈ RN×B×D is a 3-D tensor where B is the batch-size,
N the sequence length D the feature dimension and the B ≪ M . Hence, one can access the i-th
element of the mini-batch as X:,i,:, which is the same as S(i). A set is denoted as A, where R is the
set of real numbers for example. Special notations are the indicator function, I,

I[x∈A](x) :=

{
1 if x ∈ A
0 if x /∈ A (8)

and the identity matrix In, a (n× n)-matrix. The symbol ⊙ is the Hadamard (elementwise) product
operator, and the symbol ⊗ is a tensor product operator.

B.1 Baseline-Models

In machine learning, sequential data requires specific modeling techniques because the order and
context of the data points significantly influence the overall meaning and patterns, necessitating mod-
els that can effectively capture and utilize temporal dependencies and relationships. The sequences’

32



s
(i)
1 s

(i)
2

. . . s
(i)
j−1 s

(i)
j s

(i)
j+1

. . . s
(i)
N h

(i)
1

s
(i)
1

h
(i)
2

s
(i)
2

. . . h
(i)
j−1

s
(i)
j−1

h
(i)
j

s
(i)
j

h
(i)
j+1

s
(i)
j+1

. . . h
(i)
M

s
(i)
N

(a) (b)

Figure 5: Illustration of (a) a sequence using a first-order Markov chain and (b) a sequence using a
Markov chain of latent variables.

intrinsic order is crucial for conducting analysis and making predictions. Therefore, the generally
applicable independent and identically distributed (i.i.d) assumption, is not suitable [43], as a current
state in a sequence depends on its preceding states. Hence, to accurately model a sequence, one
would aim to compute the joint probability of all elements in the sequence, i.e.,

P
(
s
(i)
1 , s

(i)
2 , . . . , s

(i)
N

)
= P (s

(i)
1 )

N∏
j=2

P
(
s
(i)
j | s

(i)
1 , s

(i)
2 , . . . , s

(i)
j−1

)
. (9)

Naturally, recent observations will most likely provide more insights into future predictions than
historically older observations. Additionally, it is not feasible to assume that future observations
depend on all past observations [43]. The simplest formulation, Fig. 5(a), and hence ignoring the
intrinsic order of the sequence, applies the Markov assumption stating a new state is only dependent
on the current state, i.e.,

s
(i)
j+1 ⊥⊥ s

(i)
j−1 | s

(i)
j . (10)

Therefore, the joint probability is

P
(
s
(i)
1 , s

(i)
2 , . . . , s

(i)
N

)
= P (s

(i)
1 )

N∏
j=2

P
(
s
(i)
j | s

(i)
j−1

)
. (11)

To enable prior observations to impact the modeling, one can transition to utilizing higher-order
Markov chains, considering a greater number of preceding states. However, this will lead to an
exponentially growing number of parameters the model requires, rendering it impractical.

To consider the more complex intrinsic order in sequences, a latent variable model that is not limited
by the Markov assumption can be used, refer to Fig. 5(b). A latent variable model permits the
creation of a rich model out of simple components. In this approach, a latent variable or hidden state,
h
(i)
j−1, stores the information of the sequential steps up to j − 1, while still satisfying the conditional

independence property [43], h(i)
j+1 ⊥⊥ h

(i)
j−1 | h

(i)
j , such that the joint probability distribution is

P
(
s
(i)
1 , s

(i)
2 , . . . , s

(i)
N ,h

(i)
1 ,h

(i)
2 , . . . ,h

(i)
N

)
= P

(
h
(i)
1

) N∏
j=2

P
(
h
(i)
j | h

(i)
j−1

) N∏
j=1

P
(
s
(i)
j | h

(i)
j

)
.

(12)

Intuitively, when examining a sequence, one goal might be to predict the next value that might occur
in the sequence. This can be achieved, for example, by evaluating the expected value of the likelihood
of a new state s

(i)
j . Let’s define random variables for the subsequent state (Y(i)) as Y(i) = s

(i)
j and

the sequence of preceding states (X(i)) as X(i) = s
(i)
j−1, s

(i)
j−2, . . . , s

(i)
1 .

E
[
Y(i) | X(i)

]
= E

[
P
(
s
(i)
j | s

(i)
j−1, s

(i)
j−2, . . . , s

(i)
1

)]
(13)

Then, for example, a linear regression model can be employed to estimate the conditional expectation,
E, as follows,

ŷ(i) = Ê
[
Y(i) | X(i)

]
≈ f(X(i); Θ) + ϵi, (14)

where ϵ is Gaussian white noise, N (0, β−1) [43]. The model f ,

f(X(i); Θ) =

N∑
j=1

θTx
(i)
j + ϵ(i) (15)

is a linear combination of its parent nodes, which is known as an autoregressive model [75].

33



B.1.1 Recurrent Neural Network (RNN)

Elman [32] developed a unique modeling technique, referred to as RNN, which is specifically
designed to capture and utilize the temporal dependencies and relationships inherent in such data.
Note that RNNs are increasingly being replaced by Transformer-based architectures, which can be
more efficient at processing sequential data due to their parallel processing capabilities.

A RNN [31, 32] is a deep learning model that is trained to process a sequential input and convert it
into a specific sequential output. Sequential data refers to data, such as words, sentences, or time series
data, where sequential components are linked together based on complex semantic and syntactic
rules. RNNs manage sequence dynamics through recurrent connections, which function like cycles
within the network recursively evaluating the sequential elements. These recurrent connections are
unrolled across sequential steps, applying the same parameters at each step [76], as illustrated in
Fig. 6(a). While standard connections propagate activations synchronously within the same sequential
steps, recurrent connections transmit information across adjacent sequential steps, also shown in
Fig. 6(a). RNNs can be seen as feed-forward networks or multilayer perceptrons (MLPs) with shared
parameters across sequential steps, typically representing steps in time. Sequentiality is not exclusive
to RNNs; for instance, Convolutional Neural Networks (CNNs) can be adapted for data with varying
lengths, such as images of different resolutions. Although RNNs have recently been overshadowed
by Transformer models, they remain essential for complex sequential modeling. For a more detailed
discussion on RNNs, refer to the comprehensive reviews by [76] and [77].

h(i)

A

S(i)

unroll

h
(i)
0

A0

s
(i)
0

h
(i)
1

A1

s
(i)
1

. . .

h
(i)
N

AN

s
(i)
N

h
(i)
j−1 h

(i)
j

s
(i)
j s

(i)
j+1

Aj−1

h
(i)
j−1

Aj Aj+1

h
(i)
j

tanh

(a) Unrolling computational cycles in a RNN. (b) Computational logic in a RNN cell.

Figure 6: Recurrent Neural Network: (a) illustrates the high level computational concept of cycles
in the networks used in RNN and how they are unrolled. Recurrent connections are highlighted in
red. (b) illustrates the computational logic of each cycle applied as a neural network for an adjacent
element of the input sequence.

Adopting a Deep Learning (DL) perspective, the sequence in Fig. 5(a) could also be considered a
computational graph, for which Eq. (16) describes the recurrent or recursive computation [76].

s
(i)
j = f(s

(i)
j−1; Θj) (16)

This builds the foundation of the RNN architecture. In a similar fashion to the latent variable
model described previously, a RNN often is formulated using a hidden state, h(i)

j−1, which stores
the information of the preceding states in a higher dimension. This allows the hidden state to be
calculated at any step by the hidden state of the previous step and the current state, i.e.,

h
(i)
j = f

(
s
(i)
j ,h

(i)
j−1; Θj

)
. (17)

If the function f is sufficiently powerful, the latent variable model can be exact, as h(i)
j can store all

previously observed data. However, this can lead to high computational and storage costs. A simple
deep neural network, a MLP layer, is used in RNNs to describe the function f that allows to compute
hidden states h(i)

j that are used to approximate the likelihood, P
(
s
(i)
j | s

(i)
1 , s

(i)
2 , . . . , s

(i)
j−1

)
.

a
(i)
j = ΘT

i,as
(i)
j + bia +Θh,ah

(i)
j−1 + bh,a (18)

h
(i)
j = tanh

(
a
(i)
j

)
(19)

As defined in Section 3, s(i)j ∈ RD, hence, Θi,a ∈ RD×H , Θh,a ∈ RH×H and bi,a,bha ∈ RH ,
where D is the dimensionality of a sequential element of the input sequence and H the dimensionality

34



of the hidden state. Based on the hidden state, a simple MLP layer can be applied to compute an
output,

o
(i)
j = ΘT

h,oh
(i)
j + bh,o, (20)

where Θh,o ∈ RH×F and bh,o ∈ RF . F defines the dimensionality of the output. This allows to
compute the conditional expectations of the current state s(i)j . For example, to compute a classification,

ŷ
(i)
j , one would apply the softmax to the outputs, ŷ(i)j = softmax(o(i)

j ). The computational logic of
the aforementioned mathematical formulations are schematically displayed in Fig. 6(b).

B.1.2 Long Short-Term Memory (LSTM)

The Elman-style RNNs encounter difficulties in learning long-term dependencies, as identified by
Elman [32]. These challenges, articulated by [78] and [79], arise due to vanishing or exploding
gradients during backpropagation. In lengthy sequences, recurrent computations are repeatedly
applied to the weights. Since these weights are shared across sequential steps, if Θia ≪ 1, it results in
vanishing gradients, whereas if Θia ≫ 1, it leads to exploding gradients [76]. While gradient clipping
mitigates exploding gradients, vanishing gradients require more sophisticated solutions. One of the
earliest and most effective methods to address vanishing gradients is the LSTM model introduced
by [1]. LSTMs are similar to standard RNNs but replace each recurrent node with a memory cell.
Each memory cell includes an internal state with a self-connected recurrent edge, allowing gradients
to propagate across many time steps without vanishing or exploding. The term ‘long short-term
memory’ reflects the model’s ability to maintain both long-term memory, through slowly changing
weights that encode general data knowledge, and short-term memory, through transient activations
passed between nodes.

A LSTM cell contains an internal cell state, denoted as c(i)j .

It includes several multiplicative gates:

• the input gate, i(i)j , decides if an input, determined by the input node gate, g(i)
j , should affect

the internal cell state, c(i)j ,

• the forget gate, f (i)j , determines if the internal cell state, c(i)j , should be reset, and

• the output gate, o(i)
j , controls whether the internal cell state should influence the cell’s

output, h(i)
j .

As in the RNN, the input gate, the forget gate, the input node gate and the output gate are a latent
variable model in the form of a MLP layer, with fully connected layers for the input s(i)j and the

hidden state h
(i)
j−1, where σ denotes a sigmoid activation function. Hence, the gates are described as

follows:

f
(i)
j = σ(ΘT

i,fs
(i)
j + bi,f +Θh,fh

(i)
j−1 + bh,f ) (21)

i
(i)
j = σ(ΘT

i,is
(i)
j + bi,i +Θh,ih

(i)
j−1 + bh,i) (22)

g
(i)
j = tanh

(
ΘT

i,gs
(i)
j + bi,g +Θh,gh

(i)
j−1 + bh,g

)
(23)

o
(i)
j = σ

(
ΘT

i,os
(i)
j + bi,o +Θh,oh

(i)
j−1 + bh,o

)
(24)

c
(i)
j = f

(i)
j ⊙ c

(i)
j−1 + i

(i)
j ⊙ g

(i)
j (25)

h
(i)
j = o

(i)
j ⊙ tanh(c

(i)
j ) (26)

Given s
(i)
j ∈ RD, hence, Θi,f ,Θi,i,Θi,g,Θi,o ∈ RD×H , Θh,f ,Θh,i,Θh,g,Θh,o ∈ RH×H and

bi.f ,bi,i,bi,g,bi,o ∈ RH and bh,f ,bh,i,bh,g,bh,o ∈ RH . The computational logic of the afore-
mentioned mathematical formulations are schematically displayed in Fig. 7(a).

35



s
(i)
j s

(i)
j+1

h
(i)
jh

(i)
j−1

Aj−1 Aj

c
(i)
j

Aj+1

h
(i)
j

c
(i)
j−1

h
(i)
j−1

f
(i)
j

σ

⊙

i
(i)
j

σ

g
(i)
j

tanh

×

+

o
(i)
j

σ

⊙

tanh

(a) Computational logic in a LSTM cell.

s
(i)
j s

(i)
j+1

h
(i)
jh

(i)
j−1

Aj−1 Aj

h
(i)
j

Aj+1

h
(i)
j−1

σ

rj

⊙

σ

uj

⊙

1−

tanh

nj

⊙

+

(b) Computational logic in a GRU cell.

Figure 7: Illustration of the computational logic of each cycle applied as a neural network for an
adjacent element of the input sequence for a LSTM cell (a) and a GRU cell (b).

B.1.3 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) [14] provides a streamlined architecture of the LSTM memory cell,
retaining internal state and multiplicative gating mechanisms while speeding up computation and,
often, achieving comparable performance [80]. In a GRU, the LSTM’s three gates are replaced by
two: the reset gate, r(i)j , and the update gate, u(i)

j .

The reset gate controls how much of the previous state to remember, while the update gate manages
how much of the new state is a copy of the old one. As in previous RNN models, the gates’ outputs
are produced by a MLP layer with a sigmoid activation function. Similar to the input node gate
in the LSTM memory cell, the new gate, n(i)

j , computes the new temporary hidden state. The
information used from this state is determined by the reset gate. The final hidden state is determined
by incorporating the update gate, u(i)

j , and the new temporary hidden state, n(i)
j . Specifically, the

final hidden state, h(i)
j , is computed as a weighted sum of the temporary hidden state, n(i)

j and the

old hidden state, h(i)
j−1, with the update gate, u(i)

j , serving as the weight.

r
(i)
j = σ

(
ΘT

i,rs
(i)
j + bi,r +Θh,rh

(i)
j−1 + bh,r

)
(27)

u
(i)
j = σ

(
ΘT

i,us
(i)
j + bi,u +Θh,uh

(i)
j−1 + bh,u

)
(28)

n
(i)
j = tanh

(
ΘT

i,ns
(i)
j + bi,n + r

(i)
j ⊙

(
Θh,nh

(i)
j−1 + bh,n

))
(29)

h
(i)
j = (1− u

(i)
j )⊙ n

(i)
j + u

(i)
j ⊙ h

(i)
j−1 (30)

Given s
(i)
j ∈ RD, thus, Θi,r,Θi,u,Θi,n ∈ RD×H , Θh,r,Θh,u,Θh,n ∈ RH×H and bi,r,bi,u,bi,n ∈

RH and bh,r,bh,u,bh,n ∈ RH . The computational logic of the aforementioned mathematical
formulations are illustrated in Fig. 7(b).

B.1.4 Transformer

The seminal Transformer architecture in [2] includes encoders and decoders. Since then, there
has been a tendency to use decoder architectures mainly for generative tasks [81–83] and encoder
architectures for tasks requiring understanding [42, 84, 23, 21]. STaRFormer follows this trend and
chooses only Transformer encoder layers as the central component. Additionally, encoders allow for
a general framework for learning task-specific reconstructions that can be applied to a wide range
of tasks. It allows one to handle any task, such as classification, regression, generative forecasting,
or anomaly detection, by simply adjusting the output layer the latent embedding gets passed to.

36



As introduced in [2], the encoder layer consists of two sub-layers, a multi-head self-attention
mechanism, and a fully connected neural network. Both layers are followed by a residual connection
and a normalization layer. The self-attention in [2] is a mechanism that allows each element of a
sequence to consider the entire sequence when computing its representation. This capability helps
the model to grasp the context surrounding each token in a sequence, making it highly effective in
sequential data tasks. This allows the model to effectively capture both long-term and short-term
dependencies within the sequence. This feature addresses the limitations of previous DL approaches
like LSTM [1] or RNN [32], which can struggle with capturing such dependencies.

In order for attention to work, each sequence has been embedded as a vector representation. Then, a
series of query (Q), key (K) and value (V) terms are formed; Q is a representation the model focuses
on, K determines the relevance of each element, and V is a representation used to form output scores.
The Scaled Dot-Product Attention approach in [2] computes a weighted sum of the input values with
the attention weights, where the weights are determined by the similarity between input elements
computed via the softmax function. The attention scores are normalized by the square root of the
dimension of the key vectors to stabilize gradients during training, i.e.,

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (31)

where Q,K,V ∈ RN×B×D and dk is the dimension of key vectors. Often, not just a single
self-attention mechanism is performed, but rather a mechanism referred to as multi-head attention.
In multi-head attention, the queries, keys, and values are linearly projected nhead times and then
concatenated and projected to the model’s embedding dimension, i.e.,

MultiHeadAttention(Q,K,V) =

(
nhead⊕

i

Hi

)
WO, (32)

where nhead is a tunable hyperparameter and Hi = Attention(QWQ
i ,KWK

i ,VWV
i ) represents

an attention head. Here, WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WV

i ∈
Rnheaddv×dmodel are projection matrices where d∗ indicate the respective dimensions.

A necessity for Transformer models is the encoding process of the sequential inputs. When the
sequential input is vectorized, the input representation loses the sequential information, i.e., the order
of the sequence. Hence, an underlying property of the data type is lost. This is why it is essential
to inject the sequential information about the relative or absolute sequential position into the vector
representation. To do so, [2] introduces sinusoidal positional encodings, which are added to the
encoded sequence before it is passed to the Transformer encoder layer, i.e.:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
(33)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

)
(34)

As mentioned before, in certain time series, the sequence lengths N can vary. Consequently, to
process batches of sequences with differing lengths, padding is necessary. To ensure that padded
elements are not considered during the attention mechanism, it is crucial to introduce a batch-wise
masking strategy. This mask is passed to the attention process to prevent artificially padded elements
from being attended to, thereby preserving the integrity of the sequential data. This mask might
further be required in different output heads or loss formulations.

37



B.2 Downstream Tasks

Classification. Instead of performing autoregressive predictions [21] or predictions based on the
concatenation of the entire embedded representation [23], a special token is used ins STaRFormer
for classification tasks. This is a design choice and no requirement. The token effectively captures
the dependencies between sequential elements via the encoder’s self-attention mechanism. When
performing classification tasks, a multilayer perceptron (MLP) performs the classification based on
this token. The reduced version of the MLP layer used in STaRFormer, is a fully connected neural
network followed by a sigmoid or softmax activation, depending if multi-class or binary predictions
are required, i.e.,

ŷ = σ(ZCLSΘ+ b), (35)
while the default version adds an additional activation layer and a normalization layer, i.e.,

ŷ = σ((Norm(σ(ZCLSΘ+ b)))Θ + b). (36)

where ŷ ∈ RB×K , ZCLS = Z0,:,: | ∈ RB×F is the specialized token of the latent embedding and
Θ ∈ RF×K and b ∈ RK are the model weights and bias, where K defines the output dimension
of the final layer. The inner activation function, σ is a tuneable hyperparameter. The output of the
MLP layer, i.e., the prediction ŷ(i), is passed through either the cross-entropy (CE) loss function
for multi-class predictions, Ltask =

∑C
i=1 y

(i) log(ŷ(i)), or the binary cross-entropy (BCE) loss for
binary predictions, Ltask = y(i) log(ŷ(i)) + (1− y(i)) log(ŷ(i)).

Anomaly Detection. The same output head configuration is employed for anomaly detection, with
only the output dimensionality K adjusted accordingly. In this setup, a dedicated classification token
is unnecessary, as predictions are made at the element level. Therefore, the raw latent embedding
Z ∈ RB×N×F serves as the input to the output head. Moreover, as the sequences possess element-
wise anomalous labels, anomaly detection tasks requires predictions at each time step. Consequently,
the model must generate N predictions for an input sequence S(i) ∈ RN×D, hence ŷ ∈ RB×N .

Regression. The objective is to predict a scalar value for each sequence, as defined in Section 3.
We adopt the output-head configuration used for classification, but fix the output dimension to K = 1.
Moreover, the model output does not require an outer activation function, such as softmax, since we
aim to predict scalar values. Accordingly, the reduced version is

ŷ = ẐΘ+ b. (37)

The default version incorporates an additional hidden layer, i.e.,

ŷ = Norm(σ(Norm(σ(ẐΘ+ b))Θ + b))Θ + b. (38)

Here, Ẑ ∈ RB×F is computed via an average pooling operation over each sequence, i.e., the mean
per sequence, and ŷ ∈ RB denotes the predicted scalar value per sequence in a batch.

B.3 Semi-supervised Task Informed Representation Learning in STaRFormer

Fig. 8 display the Contrastive Learning (CL) approach applied in STaRFormer. The CL approach
ultimately depends on the accumulated latent representations, Z and Z̃, that are created via the
Dynamic Attention-based Regional Masking (DAReM) scheme. During the computation of the multi-
head attention, while executing training of a downstream task, STaRFormer dynamically collects the
attention weights, A. To aggregate the attention, STaRFormer employs a slightly modified attention
rollout technique [58] rather than mere summation or aggregation. This approach enables a better
consideration of the flow of information within the Transformer layers. The operation accounts for
padded sequences by masking the attention if necessary, i.e.,

Ã =

{
( 12Ai,:,:,: ⊙M+ 1

2IN )⊗ Ãi−1,:,:,: if i > 0,
Ai,:,:,: ⊙M if i = 0

(39)

where Ã ∈ RB×N×N represents the aggregated attention, and M the mask accounting for the padded
input sequences. STaRFormer then computes the attention scores σ as in [21], i.e.,

σi,k′ =

∑N
j=1 Ãi,j,k∑N

k=1

∑N
j=1 Ãi,j,k

, (40)

38



X

X X̃

g(ζ, γ, φ, ·)

Z Z̃

f(·) f(·)

Maximize batch-
wise & class-wise

agreement

Figure 8: STaRFormer’s CL approach: The
masking, g, generates two correlated views.
The encoder, f , is trained to maximize the
trade-off between batch- and class-wise agree-
ment of the latent embeddings Z and Z̃ while
training for a downstream task.

γ = 0.00

γ = 0.05

γ = 0.10

γ = 0.15

γ = 0.20

γ = 0.25

γ = 0.30

Figure 9: Seven different regional masks for the
same batch, with sequences aligned horizontally
and stacked vertically (per X). The masked re-
gions in DAReM are defined by different values
of γ, with φ ≈ 0.2 and ζ = 0.3 held constant and
depicted in yellow.

Algorithm 1 Dynamic Attention-based Regional Masking (DAReM)
Require: A,n, B, ζ, γ, φ
Ã← attention-rollout(A)

σ ← attention-scores(Ã)
mask-indices← []
for i in range (B) do
σtop ← topk(ζ,ni)
σtop1 ← σtop[0]
btop1 ← ni · γ
mask-indicesi ← []
mi ← range(max(0, σtop1 − btop1),min(ni, σtop1 + btop1 + 1))
mask-indicesi.append(mi)
if len(mask-indicesi) ≤ ni · φ then

for i, σtopk in enumerate(σtop[1:]) do
if len(mask-indicesi) ≤ ni · φ then
btopk ← ni · γ
mask-indicesi.extend(mi)

end if
end for

end if
if len(mask− indicesi) ≤ ni · φ then

mj ← random(available-indices, ndiff)
mask-indicesi.extend(mj)

end if
mask-indices.append(mask-indicesi)

end for
return mask-indices

where Ãi,j,k is the attention weight assigned to s
(i)
k during the update of s(i)j in Eq. (31). A greater

σi,k′ value indicates a higher importance of the k-th element in S(i). Algorithm 1 implements
the arithmetic’s of the DAReM scheme introduced in STaRFormer. In the algorithm, A refers to
the attention weights collected from the multi-head attention layer in the encoder, n refers to an
array stating the sequence lengths per element in the mini-batch and B refers to the batch-size of
the mini-batch. The masking parameters φ, γ and ζ are introduced in Section 3.1.1. We illustrate
several regional masks for the same batch, with the region parameter γ varied while φ and ζ remain
fixed in Fig. 9. To note is that if the region of the most important sequential element is already

39



(a) batch-wise (b) class-wise (c) batch-wise (d) class-wise

Figure 10: Example visualizations from two different batches of the PAM dataset: images (a) and
(b) are from one batch, while images (c) and (d) are from another batch, both have a mini-batch of
size B = 32. Positive pairs within each batch are color-coded. The darkest shade represents negative
pairs.

(a) semi-
supervised

(b) supervised (c) self-
supervised

(d) semi-
supervised

(e) supervised (f) self-
supervised

(g) semi-
supervised

(h) supervised (i) self-
supervised

(j) semi-
supervised

(k) supervised (l) self-
supervised

Figure 11: Similarity heat maps illustrating the contrastive loss formulation in STaRFormer for two
mini-batches of size B = 32 from the PAM dataset. The top row displays similarities between latent
embeddings Ẑ(i) and ˆ̃Z(i) for an untrained model, while the bottom row shows similarities between
Ẑ(i) and ˆ̃Z(i) for a trained model. Plots (a)-(c) and (g)-(i) pertain to one batch (same batch as in plots
(a) and (b) in Fig. 10), whereas plots (d)-(f) and (j)-(l) pertain to another batch (same batch as in plots
(c) and (d) in Fig. 10).

greater than threshold φ, only that region is masked, and the other selected σ values are dropped. If
all important sequential regions are masked and the threshold still allows samples to be masked,
then random samples are selected using the available indices of σ. We opt to select the following
bounds for the masking parameters: φ ∈ (0.0, 0.5], γ = {5j × 10−2 | j ∈ {0, 1, 2, 3, 4, 5}} and
ζ = {j × 10−1 | j ∈ {1, 2, 3, 4, 5}}.

In Section 3.1.2, we introduce the implementation of a semi-supervised CL paradigm as
employed in the STaRFormer framework. This methodology exploits the inherent batch-wise and
class-wise agreement between masked (Z̃(i)) and unmasked (Z(i)) latent representations allowing
to facilitate semi-supervised CL. Fig. 10 provides a visual illustration of positive pair selection
under the semi-supervised CL framework, using two distinct batches from the Physical Activity
Monitoring (PAM) dataset. It demonstrates the construction of batch-wise and class-wise positive
pairs for contrastive learning. For batch-wise pairs, the corresponding diagonal elements are selected
(Fig. 10(a) and 10(c)), whereas for class-wise pairs, the corresponding diagonal and off-diagonal
elements are selected.

In Fig. 11, the results of deploying different possible CL paradigms are graphically represented.
Specifically, as discussed in Section 4.4.2, we analyze three different learning paradigms: semi-
supervised, supervised, and self-supervised. Fig. 11 is a continuation of the visual analysis initiated

40



in Fig. 10, employing the same two batches for consistency. The upper row of Fig. 11 presents the
similarity heat maps for a model prior to training, while the lower row illustrates the heat maps
post-training. A color-coded scheme is utilized to convey similarity levels, with yellow indicating
high similarity and purple denoting low similarity. The matrices’ diagonal entries quantify the self-
similarity among batch elements. In contrast, the off-diagonal entries measure the degree of similarity
between disparate batch elements. The two rows within Fig. 11 visualize the learning objective
of CL as described in Section 3.1.2 and Fig. 8, where similar samples are pulled closer together,
while dissimilar samples are pushed further apart. In the top row, the untrained model evaluates
relatively high similarity across all element pairs within the batch, regardless of the CL paradigm
used, whereas the trained model clearly distinguishes between similar and dissimilar samples in the
batch in accordance to the contrastive paradigm applied.

When the model is trained to prioritize batch-wise similarity under the self-supervised contrastive
learning paradigm, the heat maps reveal, as expected, brightly colored diagonal entries in yellow,
indicating the intended emphasis on self-similarity. This is illustrated in Fig. 11(i) and 11(l). Con-
versely, the off-diagonal entries are predominantly cast in darker shades ranging from blue to purple,
indicating a stark contrast in similarity and, thus, a clear distinction between different elements.

Training with an emphasis on class-wise similarity yields a different pattern; refer to the heat maps in
Fig. 11(h) and 11(k). Here, in addition to self-similar elements, the heat maps distinctly accentuate
high similarity among elements belonging to the same class, while elements of disparate classes are
clearly differentiated by lower similarity scores, reflecting the model’s class-wise learning.

The semi-supervised training paradigm offers a composite view, where the model demonstrably
assimilates both batch-wise and class-wise similarities (see Fig. 11(g) and 11(j)). This dual learning
is evidenced by the pronounced similarity not only along the self-similar diagonal entries but also
between class-aligned, diagonal, and off-diagonal elements. However, the off-diagonal entries not
associated with class similarity do not display the darkened hues observed in the strictly supervised
model. This absence of dark hues suggests a more tempered and generalized learning process, where
the model avoids overfitting to specific batch-wise or class-wise similarities, potentially achieving a
more holistic representation of the data.

B.3.1 Additional Information - Formulation 1

The resulting cosine similarity matrix computed from the reduced latent space representation Ẑi,j

and ˆ̃Zi,j represents the inter-batch similarity between all sequences in a batch. Hence, elements at
position where i = j in the similarity matrix originate from the same input sequence S(i). Thus,
given Ẑi,j ∈ RB×F , STaRFormer can form B positive and B(B − 1) negative batch-wise pairs.

By having C classes per X, we obtain
∑C

c=1 n
2
c positive and

(∑C
c=1 nc

)2
−
(∑C

c=1 n
2
c

)
negative

class-wise pairs; nc is the number of samples per class per X.

B.3.2 Additional Information - Formulation 2

As stated in Section 3.1, the element-wise formulation allows to create intra- and inter class positive
pairs. Intra-class positive pairs are created between elements within a sequence whereas inter-class
positive pairs are created between elements with other sequences in a mini-batch.

Inter-class. We chose to select an inter-class positive pair if I(i,j)
inter,

[
Y

(i,j)
l =Y

(i,j)
r

] is 1, i.e., the class

in the left and right label is equal to each other, non-negative and the elements are not from the same
sequence. The following equation, for completeness, defines the indicator function applied for the
inter-class class-wise contrastive loss formulation in Section 3.1.2.

I(i,j)
inter,

[
Y

(i,j)
l Y

(i,j)
r

] :=

{
1 if Si ̸= Sj ∧Y

(i,j)
l = Y

(i,j)
r ∧Y

(i,j)
l > −1 ∧Y

(i,j)
r > −1

0 otherwise
(41)

This definition accounts for padded elements, where the label tensor equals −1.

41



Intra-class. We chose to select an intra-class positive pair if I(i,j)
intra,

[
Y

(i,j)
l =Y

(i,j)
r

] is 1, i.e., the

class in the left and right label is equal to each other, non-negative and the elements are from the
same sequential input element. In this case, a few modifications are necessary. The left and right
label tensors are created as Yl ∈ RB×N×1 and Yr ∈ R1×B×N respectively. Additionally, the
cosine similarity needs to be computed between each element of a sequence; thus, we require a
three-dimensional similarity matrix. As described in Section 3.1, this requires

⊗
bmm in the similarity

computation. Thus, the cosine similarity is defined as:

simintra(U,V) =
U
⊗

bmm V

∥U∥∥V∥
(42)

The latent embeddings Zperm and Z̃perm are permuted equivalents of Z and Z̃, where Zperm ∈
RB×N×D and Z̃perm ∈ RB×D×N . For completeness, the following equation defines the indicator
function applied for the intra-class class-wise contrastive loss formulation in Section 3.1.2.

I(i,j)
intra,

[
Y

(i,j)
l =Y

(i,j)
r

] :=

{
1 if i ̸= j ∧Y

(i,j)
l = Y

(i,j)
r ∧Y

(i,j)
l > −1 ∧Y

(i,j)
r > −1

0 otherwise
(43)

This definition accounts for padded elements, where the label tensor equals −1.

B.4 Limitations of STaRFormer

A key limitation of the proposed approach is the computational overhead introduced by the attention-
based masking mechanism (DAReM), which requires the computation of attention weights scaling
with O(N2) complexity, which becomes increasingly computationally expensive proportional to the
length of the sequences. Additionally, integrating CL and DAReM during training further increases
training time and computational demands, as each input must be processed two times on top of the
increased workload by applying CL in the first place. However, these overheads are confined to
the training phase and do not impact inference performance, where only the downstream prediction
task is executed. Despite the additional computational overhead introduced by CL and DAReM,
STaRFormer maintains comparable batch sizes during training. For instance, STaRFormer trains with
batch sizes of 512 and 256 on DKT and Geolife (GL), respectively, matching those of the baseline
transformer model. In practice, batch size limitations are primarily constrained by sequence length
due to the quadratic complexity of attention-weight computation.

The outlined limitations become more pronounced at scale, particularly when training on large
datasets such as DKT. While the additional computational cost is negligible for small datasets, it
becomes a significant factor during large-scale training, especially in the context of hyperparameter
tuning. Although this work prioritizes predictive performance over computational efficiency, we
acknowledge the potential for optimizing the implementation of DAReM to mitigate training overhead
and more efficient attention computation to improve scalability.

C Datasets

In Table 8, we display the different attributes of each dataset used in this work. For GL and DKT,
we use five different seeds to ensure a fair evaluation of STaRFormer’s performance. For DKT, we
keep the test set fixed across all splits. As default, we set the seed to 42 and use 123, 0, 63, and 2024
additionally. For the benchmarks of GL, the UEA benchmark (UEA) [70] and the TSR benchmark
(TSR) [73], we only report the best performing model in the paper of a single seed, to be consistent
with previous literature.

42



Table 8: Time Series Datasets Overview

# Task Type Dataset Train Samples Test Sample Classes Max Length Dimension Literature Link

1

Classifi-
cation

Non-
Stationary

Digital Key Trajectories (DKT) 447,765 111,944 2 677 8 - -
2 Geolife (GL) 6,434 1,556 4 7,990 10 [63] geolife-link

3 Irregularly
Sampled

PhysioNet Sepsis Early Prediction Challenge 2019 (P19) 34,922 3,881 2 60 34 [66] p19-link
4 PhysioNet Mortality Prediction Challenge 2012 (P12) 10,789 1,199 2 215 36 [67] p12-link
5 Physical Activity Monitoring (PAM) 4799 534 8 600 17 [68] pam-link

6

Regular

Articulary Word Recognition (AWR) 275 300 25 144 9 [85] awr-link
7 Atrial Fibrillation (AF) 15 15 3 640 2 [67] af-link
8 Basic Motions (BM) 40 40 4 100 6 [67] bm-link
9 Character Trajectories (CT) 1,422 1,436 20 182 3 [86] ct-link

10 Cricket (CK) 108 72 12 1,197 6 [87] ck-link
11 Duck Duck Geese (DDK) 60 40 5 270 1,345 [88] ddk-link
12 Eigen Worms (EW) 131 128 5 17,984 6 [89] ew-link
13 Epilepsy (EP) 137 138 4 206 3 [90] ep-link
14 ERing (ER) 30 30 6 65 4 [91] er-link
15 Ethanol Concentration (EC) 261 263 4 1,751 3 [92] ec-link
16 Face Detection (FD) 5,890 3,524 2 62 144 [93] fd-link
17 Finger Movements (FM) 316 100 2 50 28 [94] fm
18 Hand Movement Direction (HMD) 320 147 4 400 10 [95] hmd
19 Handwritting (HW) 150 850 26 152 3 [96] hw-link
20 Heartbeat (HB) 204 205 2 405 61 [97] hb-link
21 Insect Wingbeat (IW) 30,000 20,000 10 78 200 [98] iw-link
22 Japenese Vowels (JV) 270 370 9 29 12 [99] jv-link
23 Libras (LI) 180 180 15 45 2 [100] li-link
24 LSST (LSST) 2,459 2,466 14 36 6 [101] lsst-link
25 Motor Imagery (MI) 278 100 2 3,000 64 [102] mi-link
26 NATOPS (NT) 180 180 6 51 24 [103] nt-link
27 PEMS-SF (PS) 267 173 7 144 963 [104] ps-link
28 Pen Digits (PD) 7,494 3,498 10 8 2 [105] pd-link
29 Phoneme Spectra (PSp) 3,315 3,353 39 217 11 [106] psp-link
30 Racket Sports (RS) 151 152 4 30 6 [107] rs-link
31 Self Regulation SCP1 (SCP1) 268 293 2 896 6 [108] scp1-link
32 Self Regulation SCP2 (SCP2) 200 180 2 1,152 7 [109] scp2-link
33 Spoken Arabic Digits (SAD) 6,599 2,199 10 65 13 [110] sad-link
34 Stand Walk Jump (SWJ) 12 15 3 2,500 4 [67] swj-link
35 UWave Gesture Library (UW) 2,238 2,241 8 315 3 [111] uw-link

36 Anomaly
Detection - A Labeled Anomaly Detection Dataset (Yahoo) 367 367 2 840 1 [72] uw-link

37 KPI 58 58 2 74,581 1 [71] kpi-link

38

Regression -

Appliances Energy (AE) 96 42 - 144 24 [112] ae-link
39 Australia Rainfall (AR) 112,186 48,081 - 24 3 [113] ar-link
40 Beijing PM10 Quality (BPM10) 12,432 5,100 - 24 9 [114] bpm10-link
41 Beijing PM25 Quality (BPM25) 12,432 5,100 - 24 9 [115] bpm25-link
42 Benzene Concentration (BC) 3,433 5,445 - 240 8 [116] bc-link
43 BIDMC32HR (BIDMCHR) 5,471 2,399 - 4,000 2 [117] bidmchr-link
44 BIDMC32RR (BIDMCRR) 5,550 2,399 - 4,000 2 [118] bidmcrr-link
45 BIDMC32SpO2 (BIDMCSPO2) 5,550 2,399 - 4,000 2 [119] bidmcspo2-link
46 Covid3Month (C3M) 140 61 - 84 1 [120] c3m-link
47 Flood Modeling 1 (FM1) 471 202 - 266 1 [121] fm1-link
48 Flood Modeling 2 (FM2) 389 167 - 266 1 [122] fm2-link
49 Flood Modeling 3 (FM3) 429 184 - 266 1 [123] fm3-link
50 Household Power Consumption 1 (HPC1) 746 694 - 1,440 5 [124] hpc1-link
51 Household Power Consumption 2 (HPC2) 746 694 - 1,440 5 [125] hpc2-link
52 IEEEPPG (IEEEPPG) 1,768 1,328 - 1,000 5 [126] ieeeppg-link
53 Live Fuel Moisture Content (LFMC) 3,493 1,510 - 365 7 [127] lfmc-link
54 News Headline Sentiment (NHS) 58,213 24,951 - 144 3 [128] nhs-link
55 News Title Sentiment (NTS) 58,213 24,951 - 144 3 [129] nts-link
56 PPG Dalia (PPG) 43,215 21,482 - 256-512 4 [130] ppg-link

C.1 Classification Time Series Datasets

This section introduces the datasets used to evaluate the performance for time series classification.

C.1.1 Non-Stationary Spatiotemporal Time Series Datasets

In this section, we provide details about the non-stationary spatiotemporal datasets used in Section 4.

C.1.1.1 Real-World Digital Key Trajectories (DKT) Dataset
The DKT dataset comprises multivariate time series data, capturing x- and y-positions sequentially
to predict the intent of the smart device carrier. In total, the DKT dataset comprises 559,709
anonymized customer trajectories, recorded over a span of three months from a subset of BMW’s fleet
of vehicles. This dataset of labeled trajectories was obtained using high-precision localization with
UWB technology and the DK. It includes various vehicle types, from small hatchbacks to large SUVs.
Each trajectory is associated with a binary label, y ∈ {0, 1}, indicating whether a specific action is

Table 9: DKT label distribution (in %) and number of samples per data-subset for seed 42.

Label Distribution (%) Num. of Samples
0 1

Train Dataset 48.50 51.50 358,211
Val Dataset 48.81 51.19 89,554

Test Dataset 48.67 51.33 111,944

Total 48.65 51.34 599,709

43

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://figshare.com/articles/dataset/P19_dataset_for_Raindrop/19514338/1?file=34683070
https://figshare.com/articles/dataset/P12_dataset_for_Raindrop/19514341/1?file=34683085
https://figshare.com/articles/dataset/PAM_dataset_for_Raindrop/19514347/1?file=34683103
https://www.timeseriesclassification.com/description.php?Dataset=ArticularyWordRecognition
https://www.timeseriesclassification.com/description.php?Dataset=AtrialFibrillation
https://www.timeseriesclassification.com/description.php?Dataset=BasicMotions
https://www.timeseriesclassification.com/description.php?Dataset=CharacterTrajectories
https://www.timeseriesclassification.com/description.php?Dataset=Cricket
https://www.timeseriesclassification.com/description.php?Dataset=DuckDuckGeese
https://www.timeseriesclassification.com/description.php?Dataset=EigenWorms
http://timeseriesclassification.com/description.php?Dataset=Epilepsy
https://www.timeseriesclassification.com/description.php?Dataset=ERing
https://www.timeseriesclassification.com/description.php?Dataset=EthanolConcentration
https://www.timeseriesclassification.com/description.php?Dataset=FaceDetection
https://www.timeseriesclassification.com/description.php?Dataset=FingerMovements
https://www.timeseriesclassification.com/description.php?Dataset=FingerMovements
https://www.timeseriesclassification.com/description.php?Dataset=Handwriting
https://www.timeseriesclassification.com/description.php?Dataset=Heartbeat
https://www.timeseriesclassification.com/description.php?Dataset=InsectWingbeat
https://www.timeseriesclassification.com/description.php?Dataset=JapaneseVowels
http://timeseriesclassification.com/description.php?Dataset=Libras
https://www.timeseriesclassification.com/description.php?Dataset=LSST
https://www.timeseriesclassification.com/description.php?Dataset=MotorImagery
https://www.timeseriesclassification.com/description.php?Dataset=NATOPS
https://www.timeseriesclassification.com/description.php?Dataset=PEMS-SF
https://www.timeseriesclassification.com/description.php?Dataset=PenDigits
https://www.timeseriesclassification.com/description.php?Dataset=PhonemeSpectra
https://www.timeseriesclassification.com/description.php?Dataset=RacketSports
https://www.timeseriesclassification.com/description.php?Dataset=SelfRegulationSCP1
https://www.timeseriesclassification.com/description.php?Dataset=SelfRegulationSCP2
https://www.timeseriesclassification.com/description.php?Dataset=SpokenArabicDigits
https://www.timeseriesclassification.com/description.php?Dataset=StandWalkJump
https://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibrary
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
http://test-10056879.file.myqcloud.com/10056879/test/20180524_78431960010324/KPI%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B%E5%86%B3%E8%B5%9B%E6%95%B0%E6%8D%AE%E9%9B%86.zip
https://zenodo.org/records/3902637
https://zenodo.org/records/3902654
https://zenodo.org/records/3902667
https://zenodo.org/records/3902671
https://zenodo.org/records/3902673
https://zenodo.org/records/4001456
https://zenodo.org/records/4001463
https://zenodo.org/records/4001464
https://zenodo.org/records/3902690
https://zenodo.org/records/3902694
https://zenodo.org/records/3902696
https://zenodo.org/records/3902698
https://zenodo.org/records/3902704
https://zenodo.org/records/3902706
https://zenodo.org/records/3902710
https://zenodo.org/records/4632439
https://zenodo.org/records/3902718
https://zenodo.org/records/3902726
https://zenodo.org/records/3902728


taking place (1) or not (0). The label distribution is approximately 48/52, with 52 % corresponding
to label 1. However, localization accuracy can be affected by various external factors and ranging
algorithms, as discussed in Appendix A. Consequently, the DKT data includes irregularly sampled
and non-stationary sequential data. Table 9 displays the label distribution in the DKT dataset.

C.1.1.2 Geolife (GL) Dataset
The GL GPS trajectory dataset was collected by 182 users as part of the Microsoft Research Asia
Geolife project over a span of more than five years (from April 2007 to August 2012) [63]. Each
GPS trajectory in this dataset is a sequence of time-stamped points, providing information on latitude,
longitude, and altitude. The dataset comprises 17,621 trajectories, covering a total distance of
approximately 1.2 million kilometers and a total duration exceeding 48,000 hours. These trajectories
were recorded using various GPS loggers and GPS-enabled phones, featuring a range of sampling
rates. This dataset captures a wide array of users’ outdoor movements, including everyday activities
like commuting to work or home, as well as recreational and sports activities such as shopping,
sightseeing, dining, hiking, and cycling. The GL trajectory dataset is valuable for research in multiple
fields, including mobility pattern mining, user activity recognition, location-based social networks,
location privacy, and location recommendation [63].

Our pre-processing of the data before it is usable in training includes:

• filtering for labeled and unlabeled samples

• removing samples that have fewer than five sequential elements

• the data is restricted to the Beijing metropolitan area, which is approximately 96% of the
entire labeled data

• converting longitude, latitude, and altitude to SI units, i.e., meters (m)

• considering the imbalance in data distribution, all trajectories labeled airplane, boat, mo-
torcycle, subway and train are dropped, runs are considered a walk and taxis considered a
car

• filtering trajectories that surpass a certain speed limit, indicating that the label is wrong. As
walks and runs are combined, we consider an average pace of 12 km/h, i.e., 5 min/km, as
the speed boundary for the walk-run class, 60 km/h for bikes, 100 km/h for busses, and 120
km/h for cars. The last two correspond to the speed limits in China.

• removing outliers

After the data has been preprocessed, it consists of 7,990 samples. We use a ratio of 7/1/2 to split the
data into training, validation, and testing respectively, following [17]. The breakdown of the class
distribution is provided in Table 10.

Table 10: Label distribution (in %) of pre-processed GL dataset of seed 42.

Label Num. of Samples Label Distribution (%)

bike 1,534 19.20
bus 1,745 21.84
car 1,186 14.84
walk 3,525 44.12

Total 7,990

In Fig. 12, the trajectories of the dataset are visualized for the Beijing metropolitan area.

44



(a) Overview (b) Zoomed View (c) Legend

Figure 12: This figure presents two images depicting the collected trajectories from the GL dataset in
the Beijing Metropolitan Area. Image (a) provides a complete overview, image (b) shows a zoomed-in
version, and image (c) includes the legend that explains the color coding used for the trajectories in
both (a) and (b). Images are taken from https://heremaps.github.io/pptk/tutorials/vi
ewer/geolife.html.

C.1.2 Irregular Sampled Time Series Datasets

In this section, we provide details about the irregular sampled time series datasets used in Section 4.

C.1.2.1 PhysioNet Sepsis Early Prediction Challenge 2019 (P19) Dataset
The PhysioNet Sepsis Early Prediction Challenge 2019 (P19) dataset comprises time series records
from 38,803 ICU patients, each monitored via 34 physiological sensors. From the original 40,336
patients, samples with extremely short or long sequences (fewer than 2 or more than 60 observations)
were excluded. Each patient is also associated with a static feature vector encoding demographic and
clinical attributes, including age, gender, ICU type, ICU stay duration, and time elapsed between
hospital and ICU admission. The prediction task involves a binary label indicating whether sepsis
will occur within the subsequent 6 hours [20]. The dataset is highly imbalanced, as displayed in
Table 11. To ensure a fair evaluation, the performance is averaged over five consistent data splits.

Table 11: P19 Label Distribution in percentage (%).

Split 0 Split 1 Split 2 Split 3 Split 4 Num. of Samples
0 1 0 1 0 1 0 1 0 1

Training Dataset 95.78 4.22 95.84 4.16 95.83 4.17 95.80 4.20 95.83 4.17 31,042
Validation Dataset 96.29 3.71 96.01 3.99 95.88 4.12 95.80 4.20 95.46 4.54 3,380

Test Dataset 95.54 4.46 95.34 4.66 95.54 4.46 95.88 4.12 96.01 3.99 3,881

Total 38,803

C.1.2.2 PhysioNet Mortality Prediction Challenge 2012 (P12) Dataset
After filtering out 12 entries lacking time series data, the PhysioNet Mortality Prediction Challenge
2012 (P12) contains data from 11,988 ICU patients. Each sample includes multivariate time series
from 36 sensors (excluding weight), collected over the first 48 hours of the ICU stay. A static feature
vector with nine demographic and clinical variables (e.g., age, gender) accompanies each sample.
The binary prediction target denotes the ICU length of stay, where ≤ 3 days is the negative class and
> 3 days the positive class. The dataset is heavily imbalanced, as displayed in Table 12. To ensure a
fair evaluation, the performance is averaged over five consistent data splits.

45

https://heremaps.github.io/pptk/tutorials/viewer/geolife.html
https://heremaps.github.io/pptk/tutorials/viewer/geolife.html


Table 12: P12 Label Distribution in percentage (%).

Split 0 Split 1 Split 2 Split 3 Split 4 Num. of Samples
0 1 0 1 0 1 0 1 0 1

Training Dataset 85.60 14.40 85.99 14.01 85.77 14.23 85.83 14.17 86.08 13.92 9,590
Validation Dataset 85.65 14.35 83.99 16.01 85.40 14.60 85.32 14.68 85.82 14.18 1,199

Test Dataset 87.16 12.84 85.74 14.26 86.07 13.93 85.65 14.35 83.15 16.85 1,199

Total 11,988

C.1.2.3 Physical Activity Monitoring (PAM) Dataset
The PAM dataset, derived from PAMAP2 (Physical Activity Monitoring), records physical activities of
nine subjects using three inertial measurement units. To adapt it for irregular time series classification,
the ninth subject, due to insufficient sensor readout length, is excluded. The continuous signals are
segmented into samples with a time window of 600 and a 50% overlap rate. Initially, PAM includes
18 daily activities, but those with fewer than 500 samples are excluded, leaving eight activities. After
these modifications, the PAM dataset comprises 5,333 segments (samples) of sensory signals. Each
sample is captured by 17 sensors and contains 600 continuous observations at a sampling frequency
of 100 Hz. To simulate irregular time series data, 60% of the observations are randomly removed.
For fairness in comparison, the removed observations are randomly selected but consistent across all
experimental settings and approaches. The PAM dataset is labeled into 8 classes, each representing a
physical activity, and does not include static attributes. For more detailed descriptions please refer to
[20]. The samples are roughly balanced across the 8 categories, as displayed in Table 13. To ensure a
fair evaluation, the performance is averaged over five consistent data splits. The pre-processed data
of PAMAP2 as well as the data splits can be accessed via the link provided in Table 8.

Table 13: PAM Label Distribution in percentage of Split 0 (in %).

1 2 3 4 5 6 7 8 Num. of Samples

Training Dataset 22.08 11.77 10.31 11.86 15.56 5.91 11.67 10.83 4,266
Validation Dataset 24.95 11.26 9.01 12.20 15.20 4.69 11.44 11.26 533

Test Dataset 23.22 12.17 11.05 13.67 15.73 6.37 7.49 10.30 534

Total 5,333

C.1.3 Regular Time Series Datasets

This section provides details about the regular sampled time series datasets used in Section 4.

C.1.3.1 UEA Benchmark Datasets
The datasets from the UEA Archive [70] are commonly used to benchmark machine learning models
on time series classification tasks. For a detailed overview of the datasets, please refer to Table 8. For
all datasets separate testing and training datasets are provided, hence only the training set is split with
a ratio of 9/1 into training and validation. This is executed consistently for all datasets from the UEA
benchmark mentioned below. For all other datasets, the test set is also used for validation.

C.1.3.1 Dataset Selection
We follow the curation of a diverse subset from Time Series Transformer (TST) [23] for the ab-
lation study in Section 4.4.1. The diverse selection of datasets from the UEA benchmark ensures
variability across key characteristics: sample dimensionality, sequence length, dataset size, and task
difficulty. Our selection encompasses both high-performing (‘easy’) and low-performing (‘challeng-
ing’) datasets, as referenced by the baselines employed. Below is a brief justification for each selected
multivariate dataset:

1. Eigen Worms (EW): Low dimensionality, few samples, very long sequence length, moderate
class count, relatively challenging dataset.

2. Ethanol Concentration (EC): Low dimensionality, few samples, moderate sequence length,
moderate class count, a challenging dataset [23].

3. Face Detection (FD): Very high dimensionality, large sample size, short sequences, binary
classification [23].

46



4. Handwritting (HW): Low dimensionality, limited samples, moderate sequence length,
many classes [23].

5. Heartbeat (HB): High dimensionality, small sample size, moderate sequence length, binary
classification [23].

6. Japenese Vowels (JV): Variable sequence lengths, moderate dimensionality, few samples,
moderate class count, baselines perform well [23].

7. Pen Digits (PD): Low dimensionality, many samples, short sequence length, many classes,
baselines perform well.

8. PEMS-SF (PS): Extremely high dimensionality, few samples, moderate sequence length,
moderate class count, baselines perform well [23].

9. Self Regulation SCP1 (SCP1): Low dimensionality, few samples, long sequences, binary
classification; baselines perform well [23].

10. Self Regulation SCP2 (SCP2): Similar to SCP1 but with increased task complexity [23].
11. Spoken Arabic Digits (SAD): Moderate dimensionality, large sample size, heterogeneous

sequence lengths, moderate class count, baselines perform well [23].
12. UWave Gesture Library (UW): Low dimensionality, few samples, moderate sequence

length, moderate class count, baselines perform well [23].

C.2 Anomaly Detection Time Series Datasets

This section introduces the benchmark datasets used to evaluate the performance for univariate time
series anomaly detection.

C.2.1 A Labeled Anomaly Detection Dataset (Yahoo) Webscope

Yahoo created a comprehensive public dataset, aiming to aid anomaly detection research [72].
This dataset includes both synthetic and real internet traffic data, with the latter manually labeled,
acknowledging potential human error. Further it includes a variety of anomaly types such as outliers
and change-points [24]. The dataset encompasses 367 hourly sampled time series with tagged
anomaly points. The sequences are split as described in Section 4.2.

C.2.2 KPI

The KPI dataset was released in an AIOPS challenge [71]. It includes multiple minutely sampled
real KPI curves from many internet companies [24]. In total, it has 58 sequences, with the longest
sequences exceeding 70,000 elements. The sequences are split as described in Section 4.2.

C.2.3 Window Creation for Long Sequences

To create a sliding window mechanism that creates instance segments of a sequence, two variables
are defined. W defines the size of the window and S the size of the stride. If W ≥ S, there is no
overlap between segments. The total number of segments is computed as:

Nw =

⌊
N −W

S

⌋
+ 1 (44)

where N is the length of a sequence S(i) ∈ RN×D. Then, a window can be defined as

W(i) = S
(i)
j∗S:j∗S+W,: (45)

where j = {0, 1, . . . , Nw} and W(i) ∈ RW×D.

D Experiments

D.1 Evaluation Metrics

Typically, for benchmarking classification tasks, the accuracy on the test set is reported. In addition,
for the DKT dataset, we want to focus on minimizing false positive predictions and thus record the
Fβ-score, Eq. (46) and (47), explicitly.

47



Fβ-score =
(1 + β2) · TP

(1 + β2) · TP + FP + β2 · FN
(46)

=
(1 + β2) · TP

(1 + β2) · TP + FP + β2 · FN

∣∣∣∣ · TPTP
=

(1 + β2) · TP 2

β2 · TP · (TP + FN) + (TP + FP ) · TP

∣∣∣∣ · 1/((TP + FN) · (TP + FP ))

1/((TP + FN) · (TP + FP ))

= (1 + β2) · ����:PrecisionTP
TP+FP · ����:RecallTP

TP+FN

β2 · TP(((((TP+FN)
(TP+FP )(((((TP+FN) +

TP(((((TP+FP )

(((((TP+FP )(TP+FN)

= (1 + β2) · Precision · Recall

β2 ·����:PrecisionTP
TP+FP + ����:RecallTP

TP+FN

= (1 + β2) · Precision · Recall
β2 · Precision + Recall

(47)

The Fβ-score balances precision and recall through the weighting parameter β. For β = 1, it equals
the F1-score. A β-value < 1 emphasizes precision, reducing false positives, while β > 1 prioritizes
recall, reducing false negatives. We choose β = 0.5. Excellent Fβ-scores range from 0.8 - 0.9,
whereas scores below 0.5 are considered poor.

Depending on the dataset, other metrics used for classification and anomaly detection tasks include
F1-Score, Precision, Recall, Area Under the Receiver Operating Characteristic (AUROC), Area
Under the Precision-Recall Curve (AUPRC) and Mean Absolute Error (MAE).

For regression, we follow the ‘average relative mean difference’, rj , the evaluation metric used in
previous literature [21, 23]. For each model j over N datasets, the average relative mean difference
is defined as:

rj =
1

N

N∑
i=1

R(i, j)− R̄i

R̄i
, (48)

and

R̄i =
1

M

M∑
k=1

R(i, j), (49)

where M is the number of models, R(i, j) is the Root Mean Squared Error (RMSE) of the model j
on dataset i.

D.2 DKT Robustness Analysis

Table 19 documents the complete results presented in Table 1, detailing performance across five
training seeds for various baseline models on the DKT dataset. Although STaRFormer is able to
outperform the baseline models, some achieve nearly similar performance. Thus, we conduct further
examinations to evaluate the performance.

We discovered that the labeling process during the trajectory recording leads to an overlap of positive
and negative labels for some visually similar trajectories. This overlap creates a performance ceiling
that we believe is inherent to the dataset. Despite efforts to overfit the model during training, the
maximum accuracy attained was approximately 90%. This suggests that the performance metrics
are approaching the upper limit, given the current data collection methods. Consequently, we
performed a robustness analysis to explore not only the defined metrics but also the sensitivity of
model predictions to potential noise from the sensors used for the data collection. In this analysis, we
utilized the coefficient of variation (CV), as shown in Eq. (50), to assess the variability in the model’s
predictions.

CV =
σ

µ
(50)

48



Experimental Setup. We selected longer sequences from the DKT test set, specifically those where
len(S(i)) > 100 elements. Then, Gaussian white noise is added to the final 10 and 30 elements of
the selected sequences. Consequently, for each sequence, we obtained 10/30 additional corrupted
sequences in the respective setups. We then evaluated all sequences and calculated their corresponding
CV values.

Results. Table 14 presents the results of the robustness analysis, comparing four models under
varying levels of input noise. The evaluation focuses on two primary metrics: CV, which reflects
the stability of model predictions, and the Mean Absolute Error (MAE) between original and noisy
predictions, which quantifies sensitivity to perturbations. A lower CV value is indicative of better
inherent robustness, implying more consistent predictions across samples. Conversely, a lower MAE
signifies that the model’s outputs are less influenced by noise. However, excessively low MAE
values may also suggest that a model is insensitive to real-world variability, potentially leading to
underfitting or lack of generalization.

The results clearly show that all models experience a degradation in robustness as the noise level
increases from 10 to 30 corrupted sequential elements. This trend is evident in the positive deltas
across all metrics (∆original, ∆noisy, and ∆MAE), signifying increased variability and error due to
noise. Among the models evaluated, STaRFormer demonstrates superior robustness characteristics:
yielding the lowest CV values for both original and noisy data for both perturbations (10 and 30),
exhibiting the smallest deltas (∆original = 0.063, ∆noisy = 0.098) which indicates that its predictions
are least affected by increased noise, and reporting moderate MAE values (0.039 at 10 and 0.074 at
30) suggesting a balanced trade-off between robustness and sensitivity, avoiding excessive rigidity.

In contrast, the Transformer model shows the highest deltas and CV values across the evaluation, indi-
cating the most substantial degradation in performance under noise. This emphasizes the advantages
of our approach, demonstrating that our method facilitates the creation of more robust latent represen-
tations, which consequently enhances the overall robustness of the downstream task performance,
even if the improvements in downstream task metrics are small. Additionally, it is notable that the
LSTM model consistently exhibits the lowest MAE between the original and corrupted sequences
under both perturbation levels (10, 30). This suggests a high degree of robustness to input noise.
However, the minimal deviation in predictions may also reflect an excessive rigidity or insensitivity
to input variability, potentially harming the model’s ability to generalize effectively.

Overall, STaRFormer emerges as the most robust model, maintaining consistent prediction quality
while allowing for some degree of variability, which is critical for generalization.

Table 14: Robustness analysis results.

Method
CV Deltas (∆)10 30

original noisy MAE original noisy MAE ∆original ∆noisy ∆MAE

LSTM 0.845 0.847 0.003 0.959 0.993 0.035 0.114 0.146 0.032
GRU 0.810 0.846 0.036 0.949 1.020 0.071 0.139 0.174 0.035

Transformer 1.018 1.068 0.050 1.223 1.309 0.086 0.205 0.241 0.036
STaRFormer 0.765 0.804 0.039 0.828 0.902 0.074 0.063 0.098 0.035

D.3 Experiment Runs

We use a Rate Scheduler (Reduce Learning Rate on Plateau Learning), Early Stopping, and the
Adam optimizer for all experiments. All configurations of the model, the datasets, and all other
relevant hyperparameters are extensively documented in the accompanying GitHub repository, https:
//github.com/STaR-Former/starformer, and can be found in the ‘experiment/final’ sub-
folder in ‘configs’.

D.3.1 Compute Resources and Execution Times

We conducted all experiments using Amazon EC2 instances (https://aws.amazon.com/ec2
/instance-types/?nc1=h_ls), which offer a broad range of instance types with configurable

49

https://github.com/STaR-Former/starformer
https://github.com/STaR-Former/starformer
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls


combinations of CPU, memory, storage, and networking capabilities. These allow for flexible resource
allocation tailored to specific computational requirements. For this study, we primarily utilized AWS
accelerated computing instances, specifically the P3 and G5 families.

Due to the asynchronous scheduling of experiments and the dynamic nature of cloud resource avail-
ability, we employed different GPU and CPU configurations depending on instance accessibility
at the time of execution. Nevertheless, all experiments were run exclusively on AWS EC2 P3 or
G5 instances, utilizing either an NVIDIA Tesla V100-SXM2-16GB or an NVIDIA A10G-24GB
GPU. During the course of experimentation, AWS deprecated the P3 instance family, rendering them
inaccessible for future runs. As a result, we transitioned to the G5 instance family. For a compre-
hensive overview of G5 instance specifications, please refer to the official AWS G5 documentation
(https://aws.amazon.com/ec2/instance-types/g5/).

Hyperparameter Tuning. We performed extensive hyperparameter tuning for all experiments
involving STaRFormer to identify optimal configurations. For large-scale datasets, such as DKT, this
process was computationally intensive and required sustained multi-GPU workloads over several
days. Specifically, for DKT, we executed multiple sweep agents on an 8-GPU EC2 P3 instance over
the span of one week to converge on the final configuration. In contrast, tuning for smaller datasets,
particularly those in the UEA benchmark benchmark, required significantly less time. For example,
in the case of Japenese Vowels (JV), a single sweep was completed in approximately five hours. All
hyperparameter sweep configurations used in this study are available in the accompanying GitHub
repository.

Execution Times. The following table reports training durations, memory usage, and resource
allocation for all executed runs, including both our model and baseline implementations. Note that
many ablation studies reused already documented configurations with slight changes. Given the high
similarity in resource profiles across these repeated runs and the large number of total ablations
(approximately 210), only representative execution times are documented from the original configu-
ration. Find the complete documentation for the individual execution times in Tables 15, 16, 17 and 18.

Note: In some instances, multiple experiments were simultaneously executed on the same GPU
to optimize memory utilization. Consequently, resource contention led to increased training dura-
tions, with some recorded runtimes exceeding those expected under isolated, single-workload GPU
execution.

50

https://aws.amazon.com/ec2/instance-types/g5/


Table 15: Combined training and testing times for non-stationary (DKT, GL) and irregularly sampled
(P19, P12, PAM) datasets. All training times for a single GPU are reported to ensure a fair comparison.
However, some are estimates (indicated by ∗), as they were trained using data-distributed parallel
strategies on multi-GPU workloads.

Dataset Method Hardware Memory
(GB)

Splits (Seed) Average Std. Dev.
0 (42) 1 (123) 2 (0) 3 (63) 4 (2024)

DKT

RNN A10G 24
Time (h) 3.600 1.713 2.157 2.805 2.749 2.605 0.716
Epochs 54 42 45 47 46 46.800 4.438

Memory Allocation 0.115 0.059 0.107 0.167 0.164 0.123 0.045

LSTM A10G 24
Time (h) 4.773 5.225 4.588 4.041 4.672 4.660 0.424
Epochs 98 63 102 105 68 87.200 20.042

Memory Allocation 0.080 0.125 0.128 0.122 0.122 0.115 0.020

GRU A10G 24
Time (h) 4.805 3.180 4.798 4.630 2.851 4.053 0.957
Epochs 94 146 124 104 192 132.000 39.013

Memory Allocation 0.129 0.118 0.129 0.118 0.072 0.113 0.024

Transformer (TST) Tesla V100 -
SXM2 16

Time (h) 3.670 1.846 2.900 2.315 2.455 2.637 0.689
Epochs 98 65 105 83 87 87.600 15.356

Memory Allocation 0.118 0.118 0.103 0.118 0.118 0.115 0.006

TARNet A10G 24
Time (h) 28.318 14.239 22.375 17.861 18.943 20.347 5.317
Epochs 300 300 300 300 300 300.000 0.000

Memory Allocation 0.574 0.499 0.599 0.649 0.448 0.554 0.080

TimesURL A10G 24
Time (h) 118.398 114.323 115.659 115.687 115.605 115.934 1.493
Epochs 100 100 100 100 100 100.000 0.000

Memory Allocation 0.681 0.706 0.756 0.530 0.555 0.646 0.098

STaRFormer-RM∗ Tesla V100 -
SXM2 16

Time (h) 112.921 80.068 50.440 66.424 61.878 74.346 24.034
Epochs 95 78 80 89 69 82.200 10.085

Memory Allocation 0.939 0.484 0.516 0.939 0.516 0.679 0.238

STaRFormer∗ Tesla V100 -
SXM2 16

Time (h) 73.729 58.723 58.415 68.840 62.267 64.395 6.696
Epochs 102 84 88 82 100 91.200 9.230

Memory Allocation 0.846 0.566 0.941 0.939 0.484 0.755 0.215

GL

Transformer (TST) Tesla V100 -
SXM2 16

Time (h) 0.419 0.244 0.272 0.320 0.294 0.310 0.067
Epochs 115 61 69 84 74 80.600 20.959

Memory Allocation 0.112 0.079 0.112 0.079 0.112 0.099 0.018

TARNet A10G 24
Time (h) 1.541 - - - - 1.541 -
Epochs 200 - - - - 200.000 -

Memory Allocation 0.574 - - - - 0.574 -

TimesURL A10G 24
Time (h) 9.903 - - - - 9.903 -
Epochs 300 - - - - 300.000 -

Memory Allocation 0.383 - - - - 0.383 -

STaRFormer-RM∗ Tesla V100 -
SXM2 16

Time (h) 0.854 1.287 1.343 1.210 0.838 1.107 0.242
Epochs 57 62 69 56 56 60.000 5.612

Memory Allocation 0.174 0.254 0.254 0.254 0.174 0.222 0.044

STaRFormer∗ Tesla V100 -
SXM2 16

Time (h) 1.117 1.081 1.105 1.752 1.442 1.299 0.293
Epochs 70 67 68 96 91 78.400 13.939

Memory Allocation 0.878 0.674 0.639 0.732 0.641 0.713 0.100

P19

Base Tesla V100 -
SXM2 16

Time (h) 1.077 2.328 2.217 2.475 2.305 2.080 0.569
Epochs 125 86 74 86 77 89.600 20.501

Memory Allocation 0.549 0.928 0.928 0.928 0.928 0.852 0.170

STaRFormer-RM∗ Tesla V100 -
SXM2 16

Time (h) 1.501 1.080 1.246 1.705 2.236 1.554 0.450
Epochs 72 52 60 82 98 72.800 18.144

Memory Allocation 0.186 0.188 0.188 0.186 0.189 0.187 0.001

STaRFormer∗ Tesla V100 -
SXM2 16

Time (h) 3.445 4.247 4.021 5.613 4.953 4.456 0.843
Epochs 106 136 124 76 158 140.000 27.604

Memory Allocation 0.259 0.260 0.260 0.259 0.260 0.260 0.000

P12

Base Tesla V100 -
SXM2 16

Time (h) 1.199 0.519 0.285 0.323 0.286 0.523 0.390
Epochs 102 46 39 53 82 64.400 26.633

Memory Allocation 0.928 0.860 0.799 0.791 0.658 0.807 0.100

STaRFormer-RM∗ Tesla V100 -
SXM2 16

Time (h) 0.930 0.831 0.441 0.516 0.405 0.625 0.240
Epochs 82 97 53 62 49 68.600 20.354

Memory Allocation 0.984 0.581 0.564 0.590 0.746 0.693 0.179

STaRFormer∗ Tesla V100 -
SXM2 16

Time (h) 0.820 1.161 2.417 1.149 1.640 1.438 0.621
Epochs 85 117 259 122 163 149.200 67.351

Memory Allocation 0.515 0.879 0.705 0.670 0.585 0.671 0.138

PAM

Base Tesla V100 -
SXM2 16

Time (h) 0.166 0.078 0.122 0.160 0.166 0.138 0.039
Epochs 86 74 59 74 76 73.800 9.654

Memory Allocation 0.234 0.186 0.234 0.234 0.234 0.224 0.021

STaRFormer-RM∗ Tesla V100 -
SXM2 16

Time (h) 0.559 0.675 0.308 0.308 0.663 0.503 0.183
Epochs 80 101 100 103 101 97.000 9.566

Memory Allocation 0.268 0.268 0.099 0.099 0.266 0.200 0.092

STaRFormer∗ Tesla V100 -
SXM2 16

Time (h) 0.369 0.702 0.442 0.452 0.561 0.505 0.130
Epochs 88 170 103 103 132 119.200 32.568

Memory Allocation 0.371 0.371 0.371 0.371 0.371 0.371 0.000

51



Table 16: Combined training and testing times for datasets from the UEA and the anomaly detection
benchmarks (Yahoo, KPI). All training times are reported for a single GPU to ensure a fair comparison.

Dataset Hardware Memory
(GB) Method Time

(h) Epochs Memory
Allocation

EW Tesla V100 -
SXM2 16

Base 0.015 44 0.097
STaRFormer-RM 0.016 37 0.030
STaRFormer 0.033 87 0.180

EC Tesla V100 -
SXM2 16

Base 0.119 65 0.559
STaRFormer-RM 0.296 73 0.700
STaRFormer 0.035 71 0.557

FD Tesla V100 -
SXM2 16

Base 0.416 87 0.559
STaRFormer-RM 0.201 32 0.700
STaRFormer 0.342 102 0.557

HW Tesla V100 -
SXM2 16

Base 0.051 111 0.131
STaRFormer-RM 0.104 197 0.142
STaRFormer 0.114 162 0.277

HB Tesla V100 -
SXM2 16

Base 0.018 50 0.345
STaRFormer-RM 0.023 48 0.130
STaRFormer 0.023 34 0.481

JV Tesla V100 -
SXM2 16

Base 0.019 108 0.701
STaRFormer-RM 0.068 232 0.122
STaRFormer 0.041 103 0.126

PD Tesla V100 -
SXM2 16

Base 0.199 113 0.031
STaRFormer-RM 1.110 262 0.031
STaRFormer 2.017 266 0.427

PS Tesla V100 -
SXM2 16

Base 0.058 195 0.119
STaRFormer-RM 0.123 177 0.154
STaRFormer 0.159 291 0.237

SCP1 Tesla V100 -
SXM2 16

Base 0.049 87 0.788
STaRFormer-RM 0.118 112 0.609
STaRFormer 0.043 103 0.245

SCP2 Tesla V100 -
SXM2 16

Base 0.026 69 0.279
STaRFormer-RM 0.052 32 0.831
STaRFormer 0.054 42 0.442

SAD Tesla V100 -
SXM2 16

Base 0.143 59 0.102
STaRFormer-RM 0.690 51 0.175
STaRFormer 1.567 105 0.145

UW Tesla V100 -
SXM2 16

Base 0.034 142 0.838
STaRFormer-RM 0.090 98 0.523
STaRFormer 0.037 96 0.295

Yahoo A10G 24
Base 0.036 39 0.601
STaRFormer-RM 0.141 46 0.904
STaRFormer 0.461 61 0.660

KPI A10G 24
Base 0.967 102 0.422
STaRFormer-RM 1.429 54 0.422
STaRFormer 2.374 100 0.415

52



Table 17: Combined training and testing times of STaRFormer of remaining datasets from the UEA
and TSR benchmarks. All training times are reported for a single GPU to ensure a fair comparison.

Benchmark Dataset Hardware Memory
(GB)

Time
(h) Epochs

Memory
Allocation

(max 1)

UEA

AWR A10G 24 0.227 145 0.472
AF A10G 24 0.009 53 0.010
BM A10G 24 0.011 76 0.010
CT A10G 24 1.221 163 0.526
CK A10G 24 0.085 116 0.934
DDK A10G 24 0.024 36 0.634
EP A10G 24 0.045 56 0.397
ER A10G 24 0.103 113 0.383
FM A10G 24 0.052 36 0.619
HMD A10G 24 0.049 54 0.320
IW A10G 24 8.768 84 0.743
LI A10G 24 0.170 189 0.657
LSST A10G 24 0.360 45 0.284
MI A10G 24 0.031 17 0.927
NT A10G 24 0.117 156 0.265
PSp A10G 24 0.859 64 0.417
RS A10G 24 0.124 122 0.597
SWJ A10G 24 0.024 96 0.902

TSR

AE A10G 24 0.085 827 0.089
AR A10G 24 22.039 200 0.298
BPM10 A10G 24 1.663 164 0.191
BPM25 A10G 24 1.108 127 0.150
BC A10G 24 2.144 263 0.529
BIDMCHR A10G 24 3.998 104 0.510
BIDMCRR A10G 24 1.249 110 0.460
BIDMCSPO2 A10G 24 2.733 104 0.340
C3M A10G 24 0.014 175 0.037
FM1 A10G 24 0.965 419 0.664
FM2 A10G 24 0.249 157 0.320
FM3 A10G 24 0.388 294 0.368
HPC1 A10G 24 0.786 146 0.670
HPC2 A10G 24 0.643 159 0.513
IEEEPPG A10G 24 2.439 173 0.705
LFMC A10G 24 1.650 190 0.358
NHS A10G 24 10.479 120 0.326
NTS A10G 24 9.910 107 0.586
PPG A10G 24 17.886 276 0.314

53



Table 18: Combined training and testing times of TARNet for the datasets from the TSR benchmarks.
All training times are reported for a single GPU to ensure a fair comparison.

Benchmark Dataset Hardware Memory
(GB)

Time
(h) Epochs

Memory
Allocation

(max 1)

TSR

AE A10G 24 0.011 200 -
AR A10G 24 1.291 300 -
BPM10 A10G 24 0.336 200 -
BPM25 A10G 24 0.262 200 -
BC A10G 24 0.529 200 -
BIDMCHR A10G 24 2.094 100 -
BIDMCRR A10G 24 1.264 100 -
BIDMCSPO2 A10G 24 1.781 300 -
C3M A10G 24 0.017 300 -
FM1 A10G 24 0.108 300 -
FM2 A10G 24 0.070 300 -
FM3 A10G 24 0.065 300 -
HPC1 A10G 24 0.462 100 -
HPC2 A10G 24 0.465 100 -
IEEEPPG A10G 24 1.745 200 -
LFMC A10G 24 0.921 300 -
NHS A10G 24 4.581 300 -
NTS A10G 24 3.709 300 -
PPG A10G 24 4.773 300 -

54



D.3.2 DKT

Table 19: Run documentation of the methods trained on the DKT dataset. The respective seeds for
each run are stated in the parenthesis in the header row.

Method Metrics 0 (42) 1 (123) 2 (0) 3 (63) 4 (2024) Median Average Std. Dev.

RNN Baseline Accuracy 0.74794 0.76239 0.76147 0.75659 0.73939 0.755 0.754 0.010
F0.5-Score 0.74776 0.76224 0.76288 0.75698 0.73917 0.755 0.754 0.010

LSTM Baseline Accuracy 0.83982 0.84202 0.84576 0.84732 0.8438 0.844 0.844 0.003
F0.5-Score 0.84046 0.84194 0.84581 0.84359 0.84383 0.844 0.843 0.002

GRU Baseline Accuracy 0.84088 0.8399 0.83505 0.84337 0.84284 0.841 0.840 0.003
F0.5-Score 0.84097 0.8399 0.83547 0.84323 0.84282 0.841 0.840 0.003

Transformer Accuracy 0.84847 0.84589 0.84962 0.84851 0.85059 0.849 0.849 0.002
F0.5-Score 0.84855 0.84577 0.84953 0.84844 0.8505 0.849 0.849 0.002

TARNet Accuracy 0.78050 0.76269 0.78482 0.78121 0.79360 0.781 0.781 0.011
F0.5-Score 0.78408 0.76311 0.78469 0.78152 0.79545 0.784 0.782 0.012

TimesURL Accuracy 0.72720 0.7261 0.7244 0.7205 0.7207 0.724 0.724 0.003
F0.5-Score - - - - - - - -

STaRFormer with RM Accuracy 0.84535 0.84509 0.84687 0.84477 0.84408 0.845 0.845 0.001
F0.5-Score 0.84535 0.8448 0.84675 0.8447 0.84405 0.845 0.845 0.001

STaRFormer with DAReM Accuracy 0.85498 0.85069 0.8493 0.85366 0.84931 0.851 0.852 0.003
F0.5-Score 0.8549 0.8507 0.84916 0.85355 0.84952 0.851 0.852 0.003

Table 20: Run documentation of the ablation study on the DKT dataset evaluating the impact of our
semi-supervised CL approach on the model performance. The respective seeds for each run are stated
in the parenthesis in the header row.

Ablation Metrics 0 (42) 1 (123) 2 (0) 3 (63) 4 (2024) Median Average Std. Dev.

semi-supervised (λCL ≈ 0.796)
Accuracy 0.85498 0.85069 0.8493 0.85366 0.84931 0.851 0.852 0.003
F0.5-Score 0.8549 0.8507 0.84916 0.85355 0.84952 0.851 0.852 0.003

w/o self-supervised (λCL ≈ 0.796)
Accuracy 0.84916 0.84950 0.8445 0.84680 0.84917 0.848 0.848 0.002
F0.5-Score 0.84991 0.84944 0.8444 0.84663 0.84917 0.849 0.848 0.002

w/o supervised (λCL ≈ 0.796)
Accuracy 0.84782 0.84824 0.84742 0.84762 0.84865 0.848 0.848 0.001
F0.5-Score 0.84770 0.84818 0.84371 0.84760 0.84854 0.848 0.847 0.002

semi-supervised (λCL = 0.1)
Accuracy 0.84943 0.84861 0.84736 0.84613 0.84908 0.848 0.848 0.001
F0.5-Score 0.84000 0.84874 0.84761 0.84593 0.84897 0.847 0.846 0.004

semi-supervised (λCL = 1.0)
Accuracy 0.85223 0.85337 0.85004 0.85030 0.84819 0.851 0.851 0.002
F0.5-Score 0.85227 0.85342 0.84994 0.85023 0.84820 0.851 0.851 0.002

semi-supervised (λCL = 5.0)
Accuracy 0.84629 0.84900 0.84900 0.85030 0.85132 0.849 0.849 0.002
F0.5-Score 0.84620 0.84891 0.84887 0.85023 0.85123 0.849 0.849 0.002

semi-supervised (λCL = 10.0)
Accuracy 0.84525 0.84455 0.84567 0.84309 0.85009 0.845 0.846 0.003
F0.5-Score 0.84517 0.84454 0.84553 0.84299 0.85000 0.845 0.846 0.003

55



Table 21: Run documentation of the ablation study evaluating how the size of the masked regions
affects the model performance on the DKT dataset. The respective seeds for each run are stated in
the parenthesis in the header row.

# Ablation Metrics 0 (42) 1 (123) 2 (0) 3 (63) 4 (2024) Median Average Std. Dev.
φ ζ γ

default 0.427 0.2 0.25 Accuracy 0.85498 0.85069 0.8493 0.85366 0.84931 0.852 0.852 0.003
F0.5-Score 0.8549 0.8507 0.84916 0.85355 0.84952 0.852 0.852 0.003

1 0.427 0.2 0.0 Accuracy 0.84898 0.85157 0.84685 0.84893 0.85129 0.850 0.850 0.002
F0.5-Score 0.84895 0.85139 0.84671 0.84883 0.8518 0.850 0.850 0.002

2 0.427 0.2 0.05 Accuracy 0.84958 0.84961 0.84611 0.85328 0.84941 0.850 0.850 0.003
F0.5-Score 0.84593 0.84594 0.84608 0.85324 0.84937 0.848 0.848 0.003

3 0.427 0.2 0.10 Accuracy 0.84890 0.85015 0.84488 0.85408 0.84799 0.849 0.849 0.003
F0.5-Score 0.84886 0.85005 0.8488 0.85403 0.84794 0.850 0.849 0.002

4 0.427 0.2 0.15 Accuracy 0.85227 0.85061 0.84839 0.84867 0.85171 0.850 0.850 0.002
F0.5-Score 0.85216 0.85059 0.84849 0.84854 0.8516 0.850 0.850 0.002

4 0.427 0.2 0.20 Accuracy 0.85221 0.84962 0.85106 0.84994 0.85138 0.851 0.851 0.001
F0.5-Score 0.85223 0.84957 0.85114 0.84978 0.85132 0.851 0.851 0.001

6 0.427 0.2 0.25 Accuracy 0.85498 0.85069 0.8493 0.85366 0.84931 0.852 0.852 0.003
F0.5-Score 0.8549 0.8507 0.84916 0.85355 0.84952 0.852 0.852 0.003

7 0.427 0.2 0.30 Accuracy 0.85126 0.84934 0.84974 0.849 0.8518 0.850 0.850 0.001
F0.5-Score 0.8512 0.84929 0.84963 0.84888 0.85176 0.850 0.850 0.001

D.3.3 Baseline Implementation

We selected two distinct state-of-the-art methodologies from literature to serve as additional baseline
methods on the DKT dataset. Specifically, we chose Task-Aware Reconstruction for Time Series
Transformer (TARNet) [21] and Self-Supervised Contrastive Learning for Universal Time Series
Representation Learning (TimesURL) [27]. To utilize the official code baselines, we adapted our data
loading procedures accordingly. Due to the absence of specified hyperparameters, for the Transformer
backend in TARNet, we applied the same hyperparameters as those used for STaRFormer. For
TimesURL, we employed the model’s default parameters. It is important to note that TimesURL
inherently utilizes a grid search strategy to find the optimal the Support Vector Machines (SVM) for
the downstream task. For the DKT dataset, as the grid search is quite expensive, we limited it to two
folds instead of the default five.

56



D.3.4 Geolife

Table 22: Run documentation of the ablation study on the three ablations of STaRFormer on the GL
dataset [63]; (i) (Base), (ii) STaRFormer-RM and (iii) STaRFormer. Here only the architecture of the
model is changed, keeping everything else fixed. The respective seeds for each run are stated in the
parenthesis in the header row.

Ablation Metrics 0 (42) 1 (123) 2 (0) 3 (63) 4 (2024) Median Average Std. Dev.

Base Accuracy 0.88614 0.89796 0.87687 0.86696 0.87750 0.878 0.881 0.012
F0.5-Score 0.86227 0.87591 0.84978 0.84574 0.85735 0.857 0.858 0.012

STaRFormer with RM Accuracy 0.91518 0.90074 0.88235 0.89093 0.8825 0.891 0.894 0.014
F0.5-Score 0.90047 0.88006 0.85443 0.8704 0.85923 0.870 0.873 0.018

STaRFormer with DAReM Accuracy 0.93238 0.89904 0.89904 0.89183 0.89625 0.899 0.904 0.016
F0.5-Score 0.91589 0.87505 0.87469 0.87114 0.87595 0.875 0.883 0.019

Table 23: Run documentation of the ablation study evaluating the impact of our semi-supervised CL
approach on the model performance on the GL dataset [63]. The respective seeds for each run are
stated in the parenthesis in the header row.

Ablation Metrics 0 (42) 1 (123) 2 (0) 3 (63) 4 (2024) Median Average Std. Dev.

semi-supervised (λCL ≈ 0.773)
Accuracy 0.93238 0.89904 0.89904 0.89183 0.89625 0.899 0.904 0.016
F0.5-Score 0.91586 0.87505 0.87469 0.87114 0.87595 0.875 0.883 0.019

w/o self-supervised (λCL ≈ 0.773)
Accuracy 0.92188 0.88882 0.88882 0.89964 0.90125 0.900 0.900 0.014
F0.5-Score 0.89874 0.86552 0.86048 0.87804 0.88177 0.878 0.877 0.015

w/o supervised (λCL ≈ 0.773)
Accuracy 0.92175 0.87921 0.89423 0.88942 0.89125 0.891 0.895 0.016
F0.5-Score 0.90169 0.87604 0.86763 0.86696 0.87048 0.870 0.877 0.014

semi-supervised (λCL = 0.1)
Accuracy 0.93125 0.89904 0.89363 0.88522 0.89063 0.894 0.900 0.018
F0.5-Score 0.91487 0.87578 0.86639 0.86519 0.87052 0.871 0.879 0.021

semi-supervised (λCL = 1.0)
Accuracy 0.92452 0.89483 0.90144 0.89844 0.89000 0.898 0.902 0.013
F0.5-Score 0.90499 0.87011 0.87759 0.87942 0.86601 0.878 0.880 0.015

semi-supervised (λCL = 5.0)
Accuracy 0.92925 0.90264 0.90505 0.89663 0.90438 0.904 0.908 0.013
F0.5-Score 0.91513 0.88069 0.88002 0.87347 0.88488 0.881 0.887 0.016

semi-supervised (λCL = 10.0)
Accuracy 0.91838 0.90565 0.90385 0.90925 0.89125 0.906 0.906 0.010
F0.5-Score 0.90368 0.88400 0.87978 0.88987 0.86998 0.884 0.885 0.013

Table 24: Run documentation of the ablation study evaluating how the size of the masked regions
affects the model performance on the GL dataset [63]. The respective seeds for each run are stated in
the parenthesis in the header row.

# Ablation Metrics 0 (42) 1 (123) 2 (0) 3 (63) 4 (2024) Median Average Std. Dev.
φ ζ γ

default 0.399 0.1 0.05 Accuracy 0.93238 0.89904 0.89904 0.89183 0.89625 0.904 0.904 0.016
F0.5-Score 0.91586 0.87505 0.87469 0.87114 0.87595 0.883 0.883 0.019

1 0.399 0.1 0.0 Accuracy 0.92875 0.88041 0.89183 0.89844 0.88875 0.898 0.898 0.019
F0.5-Score 0.91007 0.87835 0.86425 0.87641 0.86787 0.879 0.879 0.018

2 0.399 0.1 0.05 Accuracy 0.93238 0.89904 0.89904 0.89183 0.89625 0.904 0.904 0.016
F0.5-Score 0.91586 0.87505 0.87469 0.87114 0.87595 0.883 0.883 0.019

3 0.399 0.1 0.10 Accuracy 0.92375 0.90352 0.89543 0.89663 0.89375 0.903 0.903 0.012
F0.5-Score 0.90316 0.88335 0.86971 0.87761 0.87655 0.882 0.882 0.013

4 0.399 0.1 0.15 Accuracy 0.92875 0.90445 0.89543 0.89603 0.89063 0.903 0.903 0.015
F0.5-Score 0.90977 0.88539 0.86977 0.87752 0.86884 0.882 0.882 0.017

5 0.399 0.1 0.20 Accuracy 0.91750 0.90565 0.89483 0.89363 0.89312 0.901 0.901 0.011
F0.5-Score 0.89494 0.8839 0.86964 0.87391 0.87221 0.879 0.879 0.010

6 0.399 0.1 0.25 Accuracy 0.92813 0.88642 0.89663 0.89724 0.89625 0.901 0.901 0.016
F0.5-Score 0.90813 0.88427 0.8712 0.87805 0.87629 0.884 0.884 0.014

7 0.399 0.1 0.30 Accuracy 0.92287 0.90204 0.90144 0.89784 0.88875 0.903 0.903 0.013
F0.5-Score 0.90571 0.88161 0.87608 0.87777 0.86723 0.882 0.882 0.014

57



D.3.5 PAM

Table 25: Run documentation of the ablation study on the three ablations of STaRFormer on the PAM
dataset [68]; (i) Base, (ii) STaRFormer-RM and (iii) STaRFormer. Here only the architecture of the
model is changed, keeping everything else fixed.

Ablation Metrics 0 1 2 3 4 Median Average Std. Dev.

Base

Accuracy 0.97917 0.96875 0.96181 0.96544 0.94476 0.965 0.964 0.013
Precision 0.98309 0.97635 0.96303 0.97274 0.94997 0.973 0.969 0.013
Recall 0.97998 0.96654 0.97068 0.97579 0.95619 0.971 0.970 0.009
F1-Score 0.98184 0.9705 0.96647 0.97414 0.95184 0.971 0.969 0.011

STaRFormer with RM

Accuracy 0.97812 0.96122 0.97031 0.9625 0.94901 0.963 0.964 0.011
Precision 0.978 0.96542 0.9654 0.9687 0.96077 0.965 0.968 0.006
Recall 0.97711 0.97067 0.97067 0.96327 0.95837 0.971 0.968 0.007
F1-Score 0.97735 0.96777 0.96777 0.96591 0.95893 0.968 0.968 0.007

STaRFormer with DAReM

Accuracy 0.98307 0.98047 0.97786 0.96011 0.97917 0.979 0.976 0.009
Precision 0.97796 0.97683 0.97132 0.97032 0.96945 0.971 0.973 0.004
Recall 0.98016 0.9745 0.97467 0.97275 0.97717 0.975 0.976 0.003
F1-Score 0.97893 0.97542 0.97278 0.97146 0.97299 0.973 0.974 0.003

Table 26: Run documentation of the ablation study evaluating the impact of our semi-supervised CL
approach on the model performance on the PAM dataset [68].

Ablation Metrics 0 1 2 3 4 Median Average Std. Dev.

semi-supervised (λCL ≈ 0.567)

Accuracy 0.98307 0.98407 0.97786 0.96011 0.97917 0.979 0.976 0.009
Precision 0.97796 0.97683 0.97132 0.97032 0.96945 0.971 0.973 0.004
Recall 0.98016 0.9745 0.97467 0.97275 0.97717 0.975 0.976 0.003
F1-Score 0.97893 0.97452 0.97278 0.97146 0.97299 0.973 0.974 0.003

w/o self-supervised (λCL ≈ 0.567)

Accuracy 0.97786 0.96402 0.97656 0.96532 0.9272 0.965 0.962 0.021
Precision 0.97559 0.97403 0.97192 0.97513 0.95906 0.974 0.971 0.007
Recall 0.97187 0.9711 0.96882 0.97989 0.96069 0.971 0.970 0.007
F1-Score 0.97349 0.97201 0.97013 0.97708 0.95936 0.972 0.970 0.007

w/o supervised (λCL ≈ 0.567)

Accuracy 0.98047 0.95017 0.98177 0.96271 0.95017 0.963 0.965 0.016
Precision 0.97777 0.97697 0.97531 0.97483 0.9708 0.975 0.975 0.003
Recall 0.97677 0.97115 0.98065 0.97062 0.97006 0.971 0.974 0.005
F1-Score 0.97722 0.97388 0.9777 0.97265 0.96993 0.974 0.974 0.003

semi-supervised (λCL = 0.1)

Accuracy 0.95147 0.94709 0.97526 0.95881 0.97786 0.959 0.962 0.014
Precision 0.96899 0.95585 0.96865 0.96658 0.97207 0.969 0.966 0.006
Recall 0.97509 0.95055 0.97504 0.97247 0.96874 0.972 0.968 0.010
F1-Score 0.97161 0.95235 0.97129 0.96895 0.97003 0.970 0.967 0.008

semi-supervised (λCL = 1.0)

Accuracy 0.97135 0.97786 0.98047 0.96532 0.96402 0.971 0.972 0.007
Precision 0.97248 0.97765 0.97733 0.97445 0.96996 0.974 0.974 0.003
Recall 0.96366 0.96661 0.97721 0.97883 0.97242 0.972 0.972 0.007
F1-Score 0.96764 0.97155 0.97718 0.97635 0.97107 0.972 0.973 0.004

semi-supervised (λCL = 5.0)

Accuracy 0.92803 0.96922 0.98438 0.96792 0.98307 0.969 0.967 0.023
Precision 0.95442 0.98047 0.98276 0.97708 0.97937 0.979 0.975 0.012
Recall 0.9394 0.97688 0.97828 0.98013 0.97473 0.977 0.970 0.017
F1-Score 0.94606 0.9785 0.98039 0.97846 0.97682 0.978 0.972 0.015

semi-supervised (λCL = 10.0)

Accuracy 0.94886 0.96141 0.98698 0.96922 0.98568 0.969 0.970 0.016
Precision 0.96938 0.96931 0.98449 0.97912 0.98321 0.979 0.977 0.007
Recall 0.96927 0.96652 0.98293 0.98193 0.97697 0.977 0.976 0.007
F1-Score 0.96907 0.96733 0.98352 0.98043 0.97947 0.979 0.976 0.007

58



Table 27: Run documentation of the ablation study evaluating how the size of the masked regions
affects the model performance on the PAM dataset [68].

# Ablation Metrics 0 1 2 3 4 Median Average Std. Dev.
φ ζ γ

default 0.207 0.3 0.10

Accuracy 0.98307 0.98047 0.97786 0.96011 0.97917 0.976 0.976 0.009
Precision 0.97796 0.97683 0.97132 0.97032 0.96945 0.973 0.973 0.004

Recall 0.98016 0.9745 0.97467 0.97275 0.97717 0.976 0.976 0.003
F1-Score 0.97893 0.97542 0.97278 0.97146 0.97299 0.974 0.974 0.003

1 0.207 0.3 0.0

Accuracy 0.97656 0.96251 0.97786 0.96662 0.96402 0.967 0.970 0.007
Precision 0.97485 0.9759 0.97289 0.97544 0.97176 0.975 0.974 0.002

Recall 0.97116 0.96728 0.9759 0.98193 0.96955 0.971 0.973 0.006
F1-Score 0.97282 0.97135 0.9742 0.97817 0.97045 0.973 0.973 0.003

2 0.207 0.3 0.05

Accuracy 0.96875 0.97656 0.96141 0.94105 0.94235 0.961 0.958 0.016
Precision 0.96279 0.97400 0.96650 0.96174 0.96014 0.965 0.965 0.006

Recall 0.96229 0.96516 0.97287 0.96853 0.95972 0.966 0.966 0.005
F1-Score 0.96450 0.96917 0.96938 0.96449 0.95961 0.965 0.965 0.004

3 0.207 0.3 0.10

Accuracy 0.98307 0.98047 0.97786 0.96011 0.97917 0.976 0.976 0.009
Precision 0.97796 0.97683 0.97132 0.97032 0.96945 0.973 0.973 0.004

Recall 0.98016 0.9745 0.97467 0.97275 0.97717 0.976 0.976 0.003
F1-Score 0.97893 0.97542 0.97278 0.97146 0.97299 0.974 0.974 0.003

4 0.207 0.3 0.15

Accuracy 0.97266 0.96271 0.98828 0.95881 0.97183 0.972 0.971 0.011
Precision 0.9703 0.9747 0.98254 0.96929 0.97944 0.975 0.975 0.006

Recall 0.96576 0.96958 0.98727 0.96638 0.9842 0.970 0.975 0.010
F1-Score 0.96763 0.97153 0.98478 0.96737 0.98167 0.972 0.975 0.008

5 0.207 0.3 0.20

Accuracy 0.96532 0.96122 0.97031 0.9625 0.94901 0.963 0.962 0.008
Precision 0.96551 0.97312 0.96542 0.9687 0.96077 0.966 0.967 0.005

Recall 0.97354 0.96209 0.97067 0.96372 0.95837 0.964 0.966 0.006
F1-Score 0.96855 0.96711 0.96777 0.96591 0.95893 0.967 0.966 0.004

6 0.207 0.3 0.25

Accuracy 0.97917 0.96122 0.97031 0.9625 0.94901 0.963 0.964 0,011
Precision 0.97775 0.97312 0.96542 0.9687 0.96077 0.969 0.969 0,007

Recall 0.97103 0.96209 0.97067 0.96372 0.95837 0.964 0.965 0,006
F1-Score 0.9742 0.96771 0.96777 0.96591 0.95893 0.968 0.967 0,005

7 0.207 0.3 0.30

Accuracy 0.97266 0.96122 0.97031 0.9625 0.94901 0.963 0.963 0.009
Precision 0.96562 0.97312 0.96542 0.9687 0.96077 0.966 0.967 0.005

Recall 0.96632 0.96209 0.97067 0.96372 0.95837 0.964 0.964 0.005
F1-Score 0.96585 0.96711 0.96777 0.96591 0.95893 0.966 0.965 0.004

D.3.6 P19 Runs

Table 28: Run documentation of the ablation study on the three ablations of STaRFormer on the P19
dataset [66]; (i) Base, (ii) STaRFormer-RM and (iii) STaRFormer. Here, only the architecture of the
model is changed, keeping everything else fixed.

Ablation Metrics 0 1 2 3 4 Median Average Std. Dev.

Base

AUROC 0.9095 0.88573 0.88623 0.8879 0.86183 0.886 0.886 0.017
AUPRC 0.63754 0.57881 0.60019 0.58167 0.55528 0.582 0.591 0.031
Accuracy 0.9714 0.9665 0.97114 0.97011 0.96856 0.970 0.970 0.002
F1-Score 0.80053 0.77317 0.78357 0.76393 0.75725 0.773 0.776 0.017
Recall 0.87247 0.84609 0.89798 0.85501 0.81718 0.855 0.858 0.030
Precision 0.75358 0.72758 0.72314 0.71227 0.71775 0.723 0.727 0.016

STaRFormer with RM

AUROC 0.921 0.87785 0.88049 0.88521 0.86792 0.880 0.886 0.020
AUPRC 0.67494 0.57197 0.57515 0.58078 0.5798 0.580 0.597 0.044
Accuracy 0.9714 0.96702 0.96882 0.97088 0.75293 0.969 0.926 0.097
F1-Score 0.81059 0.76449 0.74701 0.76374 0.97063 0.764 0.811 0.092
Recall 0.85729 0.86743 0.91123 0.8728 0.86125 0.867 0.874 0.022
Precision 0.77563 0.70946 0.6806 0.70699 0.69718 0.707 0.714 0.036

STaRFormer with DAReM

AUROC 0.91218 0.89776 0.89279 0.89397 0.87469 0.894 0.894 0.013
AUPRC 0.66579 0.60643 0.61391 0.60891 0.57196 0.609 0.613 0.034
Accuracy 0.97346 0.96212 0.96985 0.97243 0.97114 0.971 0.970 0.005
F1-Score 0.81241 0.77328 0.77309 0.78401 0.77452 0.775 0.783 0.017
Precision 0.89539 0.79238 0.886 0.85432 0.87199 0.872 0.860 0.041
Recall 0.76017 0.75682 0.7142 0.73374 0.71976 0.734 0.737 0.021

59



D.3.7 P12 Runs

Table 29: Run documentation of the ablation study on the three ablations of STaRFormer on the P12
dataset [67]; (i) Base, (ii) STaRFormer-RM and (iii) STaRFormer. Here, only the architecture of the
model is changed, keeping everything else fixed.

Ablation Metrics 0 1 2 3 4 Median Average Std. Dev.

Base

AUROC 0.85655 0.85965 0.7408 0.85859 0.83593 0.85655 0.830 0.051
AUPRC 0.51476 0.55478 0.33127 0.54069 0.52082 0.52082 0.492 0.092
Accuracy 0.60384 0.86822 0.86322 0.82402 0.84487 0.84487 0.801 0.111
F1-Score 0.54218 0.57294 0.55269 0.7109 0.60415 0.57294 0.597 0.068
Recall 0.60725 0.79105 0.70883 0.68606 0.74284 0.70883 0.707 0.068
Precision 0.73951 0.55995 0.54662 0.76901 0.585 0.585 0.640 0.106

STaRFormer with RM

AUROC 0.85727 0.86518 0.83434 0.86184 0.82935 0.857 0.850 0.017
AUPRC 0.51466 0.5758 0.47908 0.53086 0.49449 0.515 0.519 0.037
Accuracy 0.8849 0.8799 0.86072 0.8824 0.77815 0.880 0.857 0.045
F1-Score 0.61662 0.63967 0.86072 0.8824 0.68701 0.687 0.737 0.125
Recall 0.79122 0.82993 0.70894 0.77173 0.66954 0.772 0.754 0.064
Precision 0.58794 0.60576 0.70578 0.69176 0.75015 0.692 0.668 0.069

STaRFormer with DAReM

AUROC 0.85853 0.85989 0.84508 0.86469 0.83435 0.859 0.853 0.012
AUPRC 0.51325 0.53224 0.51175 0.5426 0.50128 0.513 0.520 0.017
Accuracy 0.88657 0.87239 0.86986 0.88407 0.84237 0.872 0.871 0.018
F1-Score 0.67798 0.61871 0.65169 0.70709 0.63258 0.652 0.658 0.035
Recall 0.64426 0.59163 0.62328 0.67095 0.60915 0.623 0.628 0.031
Precision 0.75933 0.78038 0.72938 0.78793 0.71802 0.759 0.755 0.031

D.3.8 UEA Benchmark

Table 30: Complete results of the UEA benchmark for 30 multivariate time series datasets [70].

Dataset ViTST† DTWD∗ Weasel-
Muse∗

TST
(TimesURL)+ T-Loss+ TS-TCC+ TNC+ TS2Vec+ InfoTS++ Rocket∗ Mini-

Rocket∗
TST

(TARNet)∗ InfoTSs
++ TimesURL+ TARNet∗ STaR-

Former

AWR - 0.987 0.990 0.977 0.943 0.953 0.973 0.987 0.987 0.993 0.993 0.947 0.993 0.990 0.977 0.993
AF - 0.220 0.333 0.067 0.133 0.267 0.133 0.200 0.200 0.067 0.133 0.533 0.267 0.400 1.000 0.667
BM - 0.975 1.000 0.975 1.000 1.000 0.975 0.975 0.975 1.000 1.000 0.925 1.000 1.000 1.000 1.000
CT - 0.989 0.990 0.975 0.993 0.985 0.967 0.995 0.974 0.991 0.990 0.971 0.987 0.990 0.994 0.994
CK - 0.100 1.000 1.000 0.973 0.917 0.958 0.972 0.986 1.000 0.986 0.847 1.000 1.000 1.000 1.000
DDK - 0.600 0.575 0.622 0.650 0.380 0.460 0.680 0.549 0.500 0.750 0.300 0.600 0.720 0.750 0.760
EW 0.878 0.618 0.890 0.748 0.840 0.779 0.840 0.847 0.733 0.650 0.790 0.720 0.748 0.870 0.420 0.850
EP - 0.618 1.000 0.949 0.971 0.957 0.957 0.964 0.971 0.986 1.000 0.775 0.993 0.978 1.000 0.986
ER - 0.133 0.122 0.874 0.133 0.904 0.852 0.874 0.949 0.989 0.974 0.930 0.953 0.985 0.919 0.959
EC 0.456 0.323 0.430 0.262 0.205 0.285 0.297 0.308 0.281 0.450 0.430 0.337 0.323 0.304 0.323 0.393
FD 0.632 0.529 0.545 0.534 0.513 0.544 0.536 0.501 0.543 0.638 0.612 0.625 0.525 0.608 0.641 0.697
FM - 0.530 0.490 0.560 0.580 0.460 0.470 0.480 0.630 0.520 0.550 0.590 0.620 0.660 0.620 0.640
HMD - 0.231 0.365 0.243 0.351 0.243 0.324 0.338 0.392 0.486 0.392 0.675 0.514 0.432 0.392 0.635
HW - 0.286 0.605 0.225 0.451 0.498 0.249 0.515 0.452 0.596 0.520 0.359 0.554 0.462 0.281 0.373
HB 0.766 0.717 0.727 0.746 0.741 0.751 0.746 0.683 0.722 0.741 0.771 0.782 0.771 0.746 0.780 0.772
IW - - - 0.105 0.156 0.264 0.469 0.466 0.470 0.179 0.229 0.687 0.472 0.473 0.137 0.681
JV 0.946 0.949 0.973 0.978 0.989 0.930 0.978 0.984 0.984 0.978 0.986 0.995 0.986 0.989 0.992 0.990
LI - 0.870 0.878 0.656 0.883 0.822 0.817 0.867 0.883 0.906 0.822 0.861 0.889 0.922 1.000 0.894
LSST - 0.551 0.590 0.408 0.509 0.474 0.595 0.537 0.591 0.635 0.653 0.576 0.593 0.602 0.976 0.679
MI - 0.500 0.500 0.500 0.580 0.610 0.500 0.510 0.630 0.460 0.610 0.610 0.610 0.680 0.630 0.670
NT - 0.883 0.870 0.850 0.917 0.822 0.911 0.928 0.933 0.872 0.933 0.939 0.939 0.961 0.911 0.989
PS 0.913 0.711 - 0.740 0.676 0.734 0.699 0.682 0.751 0.832 0.809 0.930 0.757 0.821 0.936 0.943
PD - 0.977 0.948 0.560 0.981 0.974 0.979 0.989 0.990 0.981 0.967 0.981 0.989 0.989 0.976 0.983
PSp - 0.151 0.190 0.085 0.220 0.252 0.207 0.233 0.249 0.273 0.291 0.111 0.233 0.237 0.165 0.178
RS - 0.803 0.934 0.809 0.855 0.816 0.776 0.855 0.855 0.901 0.868 0.796 0.829 0.862 0.987 0.947
SCP1 0.898 0.775 0.710 0.754 0.843 0.823 0.799 0.812 0.874 0.867 0.915 0.961 0.887 0.908 0.816 0.913
SCP2 0.561 0.539 0.460 0.550 0.539 0.533 0.550 0.578 0.578 0.555 0.506 0.604 0.572 0.600 0.622 0.635
SAD 0.985 0.963 0.982 0.923 0.905 0.970 0.934 0.988 0.947 0.997 0.963 0.998 0.932 0.985 0.985 0.989
SWJ - 0.200 0.333 0.267 0.333 0.330 0.400 0.467 0.467 0.467 0.330 0.600 0.467 0.467 0.533 0.733
UW 0.862 0.903 0.916 0.575 0.875 0.753 0.759 0.906 0.884 0.931 0.785 0.913 0.884 0.919 0.878 0.894

Avg. Accuracy 0.790 0.608 0.691 0.617 0.658 0.668 0.670 0.704 0.714 0.715 0.719 0.729 0.730 0.752 0.755 0.795
Rank - - - 13 12 11 10 9 8 7 6 5 4 3 2 1
Avg. Rank - - - 10.6 8.6 9.2 9.9 7.4 6.8 5.5 5.7 6.5 5.3 3.9 4.9 2.8
Top Scores 1 0 5 1 1 1 0 1 1 5 4 6 3 4 7 9
1-v-1 8 28 20 29 27 27 29 25 27 19 22 23 23 19 21 -
DS Count 10 29 28 30 30 30 30 30 30 30 30 30 30 30 30 30

Accuracy 28 - 0.604 0.691 0.631 0.675 0.680 0.677 0.713 0.722 0.730 0.733 0.724 0.738 0.760 0.770 0.793
Rank 28 - 15 10 14 13 11 12 9 8 6 5 7 4 3 2 1
Avg. Rank 28 - 11.2 7.8 11.7 9.1 10.3 11.0 8.1 7.5 5.8 6.0 7.5 5.8 4.1 5.2 3.1
Accuracy 9 0.776 0.702 0.737 0.674 0.717 0.708 0.715 0.734 0.727 0.756 0.751 0.771 0.736 0.770 0.717 0.793
Rank 9 2 15 7 16 12 14 13 9 10 5 6 3 8 4 11 1
Avg. Rank 9 6.4 11.8 9.0 12.3 11.1 11.3 10.8 9.0 10.0 6.7 7.4 3.9 8.4 5.3 6.3 3.3

The model results marked with * are taken from the [21], + from [27], ++ from [26] and † from [3].

60



D.3.9 STaRFormer Approach Ablation Runs

Table 31: STaRFormer architecture ablation study results (Accuracy).

Base STaRFormer-RM STaRFormer

DKT 0.849± 0.002 0.845± 0.001 0.852± 0.003
GL 0.881± 0.012 0.894± 0.014 0.904± 0.015

P19 0.970± 0.002 0.970± 0.002 0.970± 0.005
P12 0.801± 0.111 0.857± 0.045 0.871± 0.018

PAM 0.964± 0.013 0.964± 0.011 0.976± 0.009

EW 0.752 0.799 0.850
EC 0.371 0.402 0.393
FD 0.687 0.673 0.697

HW 0.336 0.327 0.373
HB 0.786 0.772 0.772
JV 0.990 0.982 0.990
PD 0.982 0.980 0.983
PS 0.909 0.922 0.943

SCP1 0.906 0.891 0.913
SCP2 0.630 0.620 0.635
SAD 0.990 0.983 0.989
UW 0.881 0.838 0.894

Yahoo 0.988 0.991 0.992
KPI 0.982 0.980 0.981

Avg. Acc. 0.824 0.826 0.841
Rank 3 2 1

Avg Rank 2.1 2.5 1.2
Top Scores 5 2 15

1-v-1
Base - 12 3
RM 6 - 1

STaRFormer 14 16 -

In Table 31, we display the complete metric scores summarized in Table 6. To ensure consistence, we
report the accuracy for every dataset, as it is available for each dataset. However, this is not the ideal
metric for many datasets. Heavily skewed datasets like P19 and P12 or anomaly detection datasets,
where anomalous elements appear much less frequently than regular elements, F1 would be a better
score to consider.

D.3.10 Univariate Anomaly Detection Benchmarks

Table 32: Run documentation of the ablation study on the three ablations of STaRFormer on the uni-
variate anomaly detection benchmark datasets; (i) Base, (ii) STaRFormer-RM and (iii) STaRFormer.
Here, only the architecture of the model is changed, keeping everything else fixed.

Method Yahoo KPI

F1 Precision Recall Accuracy F1 Precision Recall Accuracy

Base 0.685 0.671 0.767 0.988 0.814 0.857 0.780 0.982
STaRFormer-RM 0.737 0.801 0.696 0.991 0.737 0.910 0.670 0.980

STaRFormer 0.789 0.772 0.807 0.992 0.830 0.852 0.811 0.981

61



D.3.11 TSR Benchmark

Table 33: Complete results of the TSR Benchmark for 19 time series datasets.

Dataset FPCR∗ FPCR-
Bspline∗ SVR∗ SVR

Optimised∗
Random
Forest∗

XG-
Boost∗

1-NN-
ED∗

5-NN-
ED∗

1-NN-
DTWD∗

5-NN-
DTWD∗ Rocket∗ FCN∗ ResNet∗ Incep-

tion∗
TAR-
Net

STaR-
Former

AE 5.405 5.405 3.458 3.455 3.455 3.489 5.232 4.227 6.037 4.020 2.299 2.866 3.065 4.435 3.161 1.844
AR 8.436 8.436 8.651 8.651 8.390 8.493 30.254 10.233 12.002 11.951 8.124 8.426 8.179 8.841 8.390 4.719
BPM10 99.726 99.732 110.574 110.574 94.072 93.138 139.230 115.669 139.135 115.503 120.058 94.349 95.489 96.750 116.871 113.421
BPM25 69.379 69.370 75.734 71.437 63.301 59.496 88.194 74.156 88.256 72.718 62.770 59.727 64.463 62.228 85.271 84.004
BC 11.088 11.095 4.791 4.791 0.856 0.638 6.536 5.845 4.984 4.868 3.361 4.988 4.061 1.585 4.073 2.913
BIDMCHR 13.981 13.981 13.580 13.393 15.016 13.964 14.837 14.756 15.291 15.127 13.944 13.131 10.741 9.425 14.072 8.068
BIDMCRR 3.365 3.365 4.160 3.174 4.350 4.368 4.387 4.135 3.529 3.432 4.093 3.578 3.921 3.018 3.487 2.973
BIDMCSPO2 4.954 4.954 4.819 4.797 4.570 4.451 5.530 5.408 5.215 5.124 5.222 5.968 5.988 5.576 5.231 4.130
C3M 0.045 0.045 0.066 0.066 0.042 0.045 0.053 0.042 0.053 0.043 0.044 0.074 0.095 0.054 0.060 0.037
FM1 0.019 0.019 0.078 0.046 0.016 0.016 0.015 0.016 0.012 0.010 0.002 0.007 0.009 0.017 0.017 0.013
FM2 0.019 0.019 0.076 0.076 0.014 0.018 0.019 0.019 0.016 0.016 0.006 0.007 0.014 0.007 0.048 0.006
FM3 0.021 0.021 0.035 0.035 0.020 0.021 0.020 0.021 0.014 0.013 0.004 0.008 0.016 0.008 0.048 0.017
HPC1 147.549 147.549 519.156 152.391 248.859 231.090 473.933 432.595 427.043 297.222 132.799 162.244 193.207 153.716 519.454 147.250
HPC2 46.925 46.930 57.340 55.981 46.932 44.373 71.479 64.273 58.803 51.495 32.607 46.829 39.080 39.410 50.917 42.102
IEEEPPG 31.381 31.381 36.302 37.254 32.109 31.488 33.209 27.111 37.140 33.573 36.515 34.326 33.151 23.904 31.245 30.012
LFMC 37.684 37.688 43.022 39.734 32.163 32.442 47.837 38.536 39.972 35.185 29.410 33.257 30.352 28.796 41.905 31.628
NHS 0.142 0.142 0.143 0.143 0.148 0.142 0.203 0.157 0.198 0.156 0.142 0.148 0.150 0.150 0.144 0.142
NTS 0.138 0.138 0.139 0.139 0.143 0.138 0.193 0.151 0.187 0.151 0.138 0.138 0.138 0.159 0.140 0.138
PPG 20.674 20.674 19.005 19.005 17.531 16.583 21.877 18.282 26.025 20.768 14.051 13.039 11.382 9.924 20.703 12.794

Avg. Rel. Mean
Difference ↓ 0.028 0.029 0.387 0.208 -0.121 -0.132 0.288 0.051 0.125 -0.034 -0.245 -0.160 -0.119 -0.220 0.170 -0.254
Avg. Rel. Mean
Difference Rank ↓ 9 10 16 14 6 5 15 11 12 8 2 4 7 3 13 1
Number of Top
Scores ↑ 1 1 0 0 0 4 0 0 0 0 7 1 1 3 0 9

The model results marked with * are taken from the official benchmark (http://tseregression.org/).

62

http://tseregression.org/

	Introduction
	Related work
	Approach
	Semi-supervised task informed representation learning
	Dynamic attention-based regional masking (darem)
	Semi-supervised clcontrastive learning


	Experiments
	Classification results
	Non-stationary and spatiotemporal time series
	Irregularly sampled time series
	Regular time series

	Anomaly detection results
	Time series extrinsic regression results
	What contributes to starformer's performance?
	starformer architecture ablation
	Impact of semi-supervised clcontrastive learning and regional masking
	Latent space analysis


	Limitations and conclusion
	Localization and Tracking via uwbUltra-Wideband Technology and the dkDigital Key
	Localization - Non-Stationary Characteristics
	uwb Ranging and Measuring

	Approach
	Baseline-Models
	rnn
	lstm
	gru
	Transformer

	Downstream Tasks
	Semi-supervised Task Informed Representation Learning in starformer
	Additional Information - Formulation 1
	Additional Information - Formulation 2

	Limitations of starformer

	Datasets
	Classification Time Series Datasets
	Non-Stationary Spatiotemporal Time Series Datasets
	Irregular Sampled Time Series Datasets
	Regular Time Series Datasets

	Anomaly Detection Time Series Datasets
	yahoo Webscope
	kpi
	Window Creation for Long Sequences


	Experiments
	Evaluation Metrics
	DKT Robustness Analysis
	Experiment Runs
	Compute Resources and Execution Times
	DKT
	Baseline Implementation
	GL
	PAM
	p19 Runs
	p12 Runs
	UEA Benchmark
	starformer Approach Ablation Runs
	Univariate Anomaly Detection Benchmarks
	tsr Benchmark



