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Abstract: Learning dense reward functions from unlabeled videos for reinforce-
ment learning exhibits scalability due to the vast diversity and quantity of video
resources. Recent works use visual features or graph abstractions in videos to
measure task progress as rewards, which either deteriorate in unseen domains or
capture spatial information while overlooking visual details. We propose Visual-
Graph Inverse Reinforcement Learning (VIRL), a self-supervised method that
synergizes low-level visual features and high-level graph abstractions from frames
to graph representations for reward learning. VIRL utilizes a visual encoder that
extracts object-wise features for graph nodes and a graph encoder that derives
properties from graphs constructed from detected objects in each frame. The
encoded representations are enforced to align videos temporally and reconstruct
in-scene objects. The pretrained visual graph encoder is then utilized to con-
struct a dense reward function for policy learning by measuring latent distances
between current frames and the goal frame. Our empirical evaluation on the
X-MAGICAL and Robot Visual Pusher benchmark demonstrates that VIRL ef-
fectively handles tasks necessitating both granular visual attention and broader
global feature consideration, and exhibits robust generalization to extrapolation
tasks and domains not seen in demonstrations. Our policy for the robotic task also
achieves the highest success rate in real-world robot experiments. Project website:
https://leihhhuang.github.io/VIRL/.
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1 Introduction

Intelligent agents have mastered complex tasks by learning policies through reinforcement learning
(RL), particularly in the gaming domain, where their performance can match or even surpass cham-
pion level [1, 2, 3]. Constructing a precise dense reward function is fundamental and indispensable
for appropriately training an agent for a task, as it succinctly defines the task to master [4] and
provides dense signals for faster policy learning [5, 6].

However, hand-designing such functions requires substantial domain knowledge and extensive en-
gineering efforts, making it unscalable given the myriad tasks in the real world [7]. Moreover, the
process of fine-tuning reward functions [8] is susceptible to overlooking corner cases, leading to
agent misbehavior due to unintended sub-optimal rewards [9]. Recently, large language models
(LLMs) have been leveraged to assist in generating executable reward functions for RL [10, 11],
but they necessitate appropriate prompts and function templates from domain experts and involve
considerable training time due to the evolutionary search process.

On the other hand, readily available video demonstrations contain implicit dense rewards in the form
of continuous progress towards goals. After watching videos, one can easily estimate how much
progress is achieved given a frame and the goal. To this end, inverse reinforcement learning (IRL)
has been proposed [12, 13, 14, 15, 16] to learn reward functions from demonstrations by utilizing
features of environments and agents. Compared to those requiring ground-truth actions [17, 18] or
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(a) Extrapolation Task (b) Visual-feature-dependent Task (c) Cross-domain Task

Figure 1: Capabilities of VIRL: (a) Generalizable to task extrapolations; (b) Adaptable to visual-
feature-dependent task, such as pushing debris with identical shapes; (c) Robust to domain shift.
Figures on the top are unlabeled video demonstrations and those on the bottom are tasks for imitators
to learn. X-MAGICAL benchmark contains 4 embodiments: short-stick, medium-stick, long-stick
as shown in (a) top from left to right, and gripper in the bottom. All tasks are set to be cross-
embodiment. Note: Long-stick agent is unsuitable for (b) visual-feature-dependent tasks due to its
excessive length, which hinders task execution.

inferred actions from dynamic models [19, 20], IRL algorithms for action-free videos [21, 22, 23]
have garnered greater attention recently due to their scalability and lower cost of data collection.

Recent IRL works [23, 24] achieve impressive performance in building task-specific embodiment-
agnostic reward functions using encoders pretrained by temporally aligning videos of varied lengths
[25]. Agents are encouraged to reach the provided goal in the latent space by receiving rewards based
on the distance between the embeddings of the current state and the goal state. However, employing
visual encoder [23] suffers from performance deterioration in unseen domains; and utilizing graph
abstractions of object coordinates [24], while robust to domain shifts, sacrifice visual features, which
can be crucial for certain tasks. Additionally, since their representations are task-specific, prior
works have not been tested beyond demonstrated tasks, such as extrapolations, which may pose
challenges even with a minor change in object counts [26]. Therefore, we are interested in two
questions: (i) How can we leverage both low-level visual features and high-level graph abstractions
to adapt to both geometry-aware and -unaware tasks? (ii) Can a single pretrained encoder be used
to build reward functions of tasks beyond those it is trained on, such as task extrapolations?

To this end, we propose a visual graph encoder that combines a visual encoder for capturing object-
centric low-level features with a graph encoder for extracting scene-level abstractions. By formu-
lating object-centric graphs that are generalizable across various object counts, we demonstrate that
the pretrained visual graph encoder can construct reward functions for tasks of manipulating an un-
seen number of objects. This capability is inspired by the adaptability and flexibility of graph neural
networks to encode graph structures with varying numbers of nodes. Figure 1 illustrates the main
properties of our approach, and Table 2 in Appendix A.1 compares advantages over related works.

2 Related Work

For a more comprehensive related work, please see Appendix A.2.

Imitation learning with actions. Imitation learning from expert demonstrations with state and
action pairs has demonstrated successes in various approaches [27], from behavioral cloning [28,
29, 30] to inverse reinforcement learning [17, 31, 32]. However, its reliance on ground-truth actions
renders data acquisition at scale both costly and challenging, thereby limiting its wider applicability.
To leverage unlabeled video demonstrations that are easier to obtain, methods have been developed
to infer actions in videos [33, 34, 35, 36, 37, 38, 39]. For example, VPT [39] trains an inverse
dynamics model (IDM) on a small labeled dataset and uses the trained IDM to augment a large
number of unlabeled videos with actions, which are used for the subsequent policy learning via
behavioral cloning. These methods have successfully trained agents using unlabeled videos, but are
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subject to well-defined morphologies and dynamics of demonstrators and imitators, making it hard
to leverage demonstrations with diverse embodiments.

Domain adaption for imitation learning. To overcome the domain gap between varied agent em-
bodiments, several works [40, 41, 42, 43, 44, 18] attempt to translate the context in demonstrations
to the imitators’ context in terms of agents and viewpoints, using methods such as generative adver-
sarial networks [45, 46] and context translation. Furthermore, another way to address the domain
gap between agents is by inpainting them from video demonstrations and online visual states [47].

Inverse reinforcement learning from videos. On the other hand, a group of works [21, 22, 48,
49, 50, 44, 51, 52, 53, 24] has focused on learning reward functions from videos by extracting
latent features that indicate intermediate steps or measure task progress, which are naturally and
implicitly present in demonstrations. Learned reward functions are then used for policy training in
the regular RL regime. To train on videos with varied lengths and paces, XIRL [23] adopts temporal
cycle-consistency loss [25] to learn visual embeddings that measure task progression and then uses
distances between current state embedding and the goal embedding as reward signal for policy
learning. They demonstrate the pretrained encoder benefits from the diversity of demonstrators’
embodiments and generalizes to unseen embodiments. Building on XIRL, our work seeks to train
an encoder that generalizes to constructing reward functions for task extrapolations by leveraging
graph abstractions, while maintaining the flexibility for tasks requiring attention to low-level visual
features by encoding object features.

Object-centric scene graphs. Abstracting visuals into object-centric scene graphs is beneficial for
agents to understand environments and make decisions in various tasks [54], such as dynamics mod-
eling [55, 56], navigation [57, 58, 59], and robotic manipulation [60, 61, 62, 43, 63, 64]. Following
up XIRL, GraphIRL [24] enhances robustness to diverse object appearances by abstracting frames
into graphs, where each node represents an object and contains features including its bounding box
coordinate and distances to other objects. However, limitations arise when tasks require attention
to object geometries or when dealing with different numbers of objects. Motivated by their work
and aiming to address the limitations, we encode object visual features and locations into nodes in
a unified way and build graphs such that the encoder can generalize to scenes with arbitrary num-
bers of objects. Our work can be considered a generalized version of GraphIRL, suitable for both
geometry-aware and -unaware tasks, as well as unseen task extrapolations.

3 Method

Our objective is to learn reward functions from video demonstrations showcasing a specific task,
enabling an agent with a different embodiment to learn the task and its extrapolations where there
is an unseen number of objects to manipulate (Section 3.1). Our approach involves two phases:
Firstly, pretraining a visual graph encoder (Section 3.2) to capture object-wise visual features and
global scene features in a self-supervised manner (Section 3.3); Secondly, cross-embodiment policy
learning for tasks by training RL algorithms with dense reward functions built on the pretrained
encoder (Section 3.4). The overall framework of VIRL is depicted in Figure 2.

3.1 Problem formulation

VIRL takes as input a dataset of action-free videos DT =
⋃K

k=1 V
e,T
k of the identical task T , where

V e,T
k is the kth video demonstration conducted by an agent with embodiment e. A video is defined to

be a sequence of image frames V e,T
k = {Ik1 , Ik2 , ..., IkLk

}, where Lk is kth video’s length. We design
a visual graph encoder ϕvg to transform DT into a dataset of graph sequences GT =

⋃K
k=1 G

e,T
k ,

where Ge,T
k = {Gk

1 ,Gk
2 , ...,Gk

Lk
}, and extract graph encodings. We pretrain the encoder via tem-

poral alignment of graph encoding sequences and pixel reconstruction of manipulable objects. The
pretrained encoder is then utilized to construct general-form dense reward functions that gauge task
progress through low-level visual and high-level structural features in graphs. It merits attention
that the visual graph encoder’s versatility allows it to not only formulate a reward function for the
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Figure 2: Overview of Visual Graph Inverse Reinforcement Learning. We transform videos to
graph sequences containing both low-level visual features and high-level global features, pretrain
the visual graph encoder via temporal alignment and object-centric scene reconstruction, and build
reward functions using the visual graph encoder for unseen embodiment to learn the demonstrated
task and task extrapolations with reinforcement learning.

demonstrated task T but also for its extrapolation tasks T ′ in a zero-shot fashion, attributable to the
encoder’s capability to process variable-sized graphs. We define extrapolation tasks T ′ to be those
where agents manipulate more objects than demonstrated, which are unseen in videos.

3.2 Visual graph encoder

We propose a visual graph encoder composed of a visual graphify module and a graph encoder.
The visual graphify module builds object-centric graphs from images by encoding the spatial and
visual features of each object in an image into graph node features and objects interactions into edge
features. Then, the graph encoder takes in graphs and outputs the representations, which will be
trained via temporal alignment in the latent space and reconstruction of object-centric frames.

Visual graphify module. We use the proposed visual graphify module to transform every se-
quence of frames V e,T

k = {Ik1 , Ik2 , ..., IkLk
} in the dataset DT to a sequence of graphs Ge,T

k =

{Gk
1 ,Gk

2 , ...,Gk
Lk

} to get GT . A graph is defined as Gk
t = (V, E), where V is the node set corre-

sponding to objects in the frame and E is the edge set indicating the relationships between objects.
For every frame Ikt ∈ RH×W×C , an off-the-shelf detector is employed to get N bounding boxes of
N objects in the scene. Contrary to approaches that extract visual and positional features using a
CNN-based encoder and an MLP separately [65, 66], we encode both features from regions defined
by bounding boxes using a shared CNN-based encoder in an unified way. Specifically, for each ob-
ject in an image, the pixels within its bounding box is kept while all the other pixels being masked so
that the positional information is encoded implicitly. After this operation, an image is transformed to
a stack of images Ikt,o ∈ RN×H×W×C , each of which contains only one object and is then encoded
into an object feature foi ∈ RDobj as the feature of a node in V using the shared ResNet-based [67]
visual encoder. The distance between two objects doij ∈ R represents the edge feature connect-
ing the node pair. We consider all graphs to be fully connected and undirected, allowing for direct
interactions between all objects.

Apart from the transformation from images to graphs, we obtain the reconstruction target from the
stack of object images Ikt,o to ensure that the embedding after the graph encoder can recover sufficient
low-level visual features of objects. It contributes to our work’s advantage of not only imitating the
spatial interactions between objects but also capturing the low-level visual features of manipulative
objects. For example, in the context of the Sweep-to-Goal task in X-MAGICAL [23], a variety of
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task variants can be generated, such as pushing multiple objects irrespective of their appearance and
selectively pushing duplicates out of three objects present in a scene. With this motivation, we merge
all non-agent images in a stack, i.e., Ikt,o

′ ∈ R(N−1)×H×W×C into a single RGB image to generate
the reconstruction target Ikt

′ for the original frame Ikt .

Graph transformer encoder. Subsequent to obtaining GT , we use a graph network to extract
frame embeddings for temporal alignment and reconstruction. Considering the impressive perfor-
mance of Transformer models in computer vision and natural language processing [68, 69, 70],
we employ a Graph Transformer [71] network as the encoder. Given a graph with node features
H = {hl

1,hl
2, ...,hl

N} and edge features E = {dij |i, j ∈ [N ] ∧ i ̸= j}, we update the node features
using the graph transformer operator by:

hl+1
i = Wl

1hl
i +

∑
j∈Ni

αij(Wl
2hl

j + Wl
3dij),where αij = σ

(
(Wl

4hl
i)

⊤(Wl
5hl

j + Wl
3dij)√

d

)
.

All Ws are different trainable parameters. αij is the attention coefficient and σ is the softmax
function. After the graph transformer operations, we apply a global mean pooling layer to extract
the average of node encodings as the final embeddings for temporal alignment and reconstruction.

3.3 Loss function for pretraining

The visual graph encoder is trained in a self-supervised way. Given each video V , we obtain a
sequences of graph embeddings ϕvg(V ) using the proposed visual graph encoder. For simplicity,
we omit subscripts and superscripts for video index k, embodiment e and task T . We adopt TCC
loss [25] to temporally align the graph embeddings between sampled videos for measuring task
progress. Meanwhile, we enforce the embeddings to keep objects’ low-level visual features by
adopting a reconstruction loss, which is inspired by He et al. [72] and Ye et al. [62].

Temporal alignment. Given a pair of randomly sampled videos U and V , the visual graph en-
coder computes their embeddings ϕvg(U) = (u1, u2, ..., uLU

) and ϕvg(V ) = (v1, v2, ..., vLV
).

To compute the TCC regression loss, we randomly select an embedding ui in ϕvg(U) and find its
soft nearest neighbor ṽ in ϕvg(V ) by estimating the similarity between ui and every embedding in
ϕvg(V ) and conducting a weighted average over ϕvg(V ):

ṽ =

LV∑
j

αjvj , where αj =
e−||ui−vj ||2∑LV

k e−||ui−vk||2
.

We then operate cycle back from ṽ and find the index of ṽ’s soft nearest neighbor in ϕvg(U):

µ̃ =

LU∑
k

βkk, where βk =
e−||ṽ−uk||2∑LU

j e−||ṽ−uj ||2
.

Since the index of the starting point ui is known to be i, the loss can be computed using the squared
distance (µ̃ − i)2. Additionally, variance σ2 =

∑LU

k βk(k − µ̃)2 is added to the loss function as
a regularization term to make predictions less dispersed [25]. Thus, the final objective function for
temporal alignment is Ltcc =

(i−µ̃)2

σ2 + λlog(σ), where λ is a constant weight.

Object-centric reconstruction. When coming to tasks that require reasoning about low-level fea-
tures, such as pushing duplicates among several objects, we want the visual graph encoder to keep as
much object-centric low-level information as possible [73]. Thus, we define a decoder Dec(ϕvg(V ))
that maps from graph embeddings back to frames. We would like to highlight that, instead of re-
constructing the original frame Ikt , our reconstruction target is Ikt

′ generated in the visual graphify
module as introduced in Section 3.2, which keeps pixels within the bounding boxes of N−1 objects,
excluding the agent. We define the reconstruction loss as Lrec = ||Ikt

′ − Dec(ϕvg(I
k
t ))||2.

Finally, we combine the two losses to get the overall loss function for pretraining the visual graph
encoder: L = Ltcc + λ1Lrec, where λ1 is a weight term.
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3.4 Reinforcement learning with learned reward

We use the visual graph encoder ϕvg pretrained on videos of task T to build reward functions for
T and its extrapolations T ′, which are then used for an agent with an embodiment different from
demonstrators to learn the tasks with RL algorithms. Since the embedding sequences are tempo-
rally aligned in the embedding space, we can build a reward function for a task by measuring the
current progress in the embedding space [23], i.e., the negative distance between the current frame
embedding ϕvg(I) and the goal embedding g: r(I) = −1/s||ϕvg(I) − g||22, where g is defined by
the average embedding of all last frames in videos, and s is a parameter that rescales the reward to a
reasonable range for policy learning [74]. For the most challenging extrapolation task where agents
learn to push 3 debris from videos of pushing 1 debris, combining our approach with a reformated
reward function: r(I) = −1/s× log(||ϕvg(I)− g||22 + 1), can achieve better performance.

Compared to the most related prior works [23, 24], the main advantages of building reward functions
using our approach are twofold: (i) it reserves the ability to learn tasks that require attention to low-
level features while maintaining generalization to unseen domains by leveraging graph abstraction,
(ii) apart from the demonstrated task T , it generalizes better to task extrapolations T ′ because of the
flexibility of the encoder to consume graphs consisting of various numbers of objects.

4 Experiments

We conduct experiments on the Sweep-to-Goal task in X-MAGICAL [75, 23] and Robot Visual
Pusher [44, 24] benchmark to answer following questions: (i) Can a pretrained visual graph encoder
construct reward functions for extrapolations of the demonstrated task in zero-shot? (ii) Does VIRL
retain low-level visual features for learning? (iii) How does VIRL perform in shifted domains 1?
We also deploy policies trained in simulation on a real robot for robotic tasks. For implementation
details, please see Appendix A.3.

4.1 Experiment setup

Baselines. We compare our work against self-supervised approaches that learn reward functions
from unlabeled videos: (i) XIRL [23] pretrains a task-specific visual encoder using TCC loss on
videos and builds reward functions using the pretrained encoder. (ii) GraphIRL [24] transforms
videos to graphs of object coordinates, uses a spatial interaction graph encoder to extract features,
and follows a similar pipeline of XIRL. (iii) TCN [22] uses triplet loss to pretrain representations
on videos such that frames at the same time are close in the embedding space while those that are
temporally different are far apart. (iv) LIFS [73] trains an invariant feature space to transfer skills
between agents with different embodiments using a contrastive loss and a reconstruction loss.

Task descriptions. Sweep-to-Goal in X-MAGICAL. All tasks are set to be cross-embodiment, i.e.,
an agent learns from videos of other 3 agents. Task I (Figure 1a): learning to sweep 3 debris to the
colored goal region on the top, given videos of sweeping 1 or 2 debris. Task II (Figure 1b): learning
to sweep 2 debris with the same shape to the goal region while leaving the rest outside, given videos
of the same task. Task III (Figure 1c): learning to sweep 3 debris regardless of shapes and colors,
given videos of sweeping 3 squares. Robot Visual Pusher tasks. Task I (Figure 5): xArm learning to
push an object to the goal, given videos of the same task by human. Task II: xArm learning to push
1 specific object out of 2 objects in-scene to the goal, only given the set of human videos in Task I.

4.2 Experiment results on X-MAGICAL

Results in extrapolation tasks. We validate a key feature of our method: the visual graph encoder’s
ability to construct reward functions for extrapolations of the demonstrated tasks and train agents
to manipulate an unseen number of objects. We begin by testing the results of policy learning from
videos showcasing cross-embodiment demonstrations of pushing 2 debris. We then increase the

1For experiment results of X-MAGICAL in domain-shift environment, please see Appendix A.4
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Figure 3: Cross-embodiment extrapolation tasks. Learning to push 3 debris given videos of push-
ing 2 debris (top), and videos of pushing 1 debris (bottom). Note: GraphIRL is not applicable when
agents are learning to manipulate a different number of objects than in the video demonstrations.

Figure 4: Cross-embodiment visual-feature-dependent task. Our approach can be applied for
visual-feature-dependent tasks. For example, pushing 2 debris with the identical shape out of 3.
Note: long-stick is not included for this task because its excessive length hinders the task execution.

difficulty by providing demonstrations of pushing only 1 debris, as shown in Figure 1a (top). In
Figure 3 (top), we illustrate that in the first scenario, our approach outperforms baselines for 3 out of
4 embodiments and is on par with XIRL for medium-stick. In the more challenging scenario, where
demonstrators push 1 debris, policy learning becomes significantly harder, as it is not demonstrated
that returning to fetch additional debris leads to greater rewards in the long term. Figure 3 (bottom)
shows that our approach generalizes to manipulate the unseen number of objects with higher success
rates than others. Surprisingly, TCN outperforms XIRL in the most challenging setting and delivers
performance comparable to our approach for the gripper and long-stick configurations.

Results in visual-feature-dependent task. We evaluate the second key feature of our method: the
adaptability to visual-feature-dependent tasks by encoding visual features of objects into nodes. The
task for imitators to learn is identical to what is demonstrated, as shown in Figure 1b. Hence, it
can be anticipated that the performance of XIRL should be comparable to our approach. Figure 4
reveals that our approach is capable of policy learning for geometry-aware tasks, achieving similar
performance to XIRL for two embodiments, yet slightly lower for medium-stick. On the other hand,
GraphIRL shows inferior performance in this task because of the lack of visual information.

4.3 Experiment results on Robot Visual Pusher

Learning robotic manipulation from human videos. We build reward functions on encoders
pretrained on human videos and use them for policy learning of demonstrated task. Task I in Figure
5 shows the result. Although XIRL can improve the sample efficiency when combined with sparse
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Figure 5: Robot Visual Pusher. Task I: robot learns the demonstrated task. Task II: robot learns
variant task to push a specific object among 2 objects to goal. Thresholds for success, measured by
distance between positions of object and goal, are 5cm for Task I and 10cm [24] for Task II.

environment reward [23], we notice that its learned rewards alone are insufficient for policy learning.
In contrast, our approach provides a learned reward function closest to dense environment rewards.

Learning visual-feature-dependent task variant. We use the same encoders in the first task to
build reward functions for the task variant: pushing a specific object among two objects to the
goal. It merits attention that GraphIRL is not applicable for this task since it encodes object counts
in demonstrations into node features and cannot generalize to scenarios with unseen numbers of
objects. The result of learning Task II in Figure 5 shows that our approach VIRL surpasses the
performance of using handcrafted dense environment rewards, while it is hard for agents to learn
functional policies given reward signals from the baseline XIRL.

Additionally, we ablate the detector’s accuracy to study the impact of missing detection in both robot
tasks. For experiment details and results, please see Appendix A.5.

Method Success rate

VIRL (ours) 0.55
XIRL 0.05
Env. reward 0.2
GraphIRL -

Table 1: Real robot test results.

Sim2Real transfer. We evaluate policies trained in simulation,
without domain randomization, on a real-world xArm 6 robot in
the Robot Visual Pusher - Task II. Each policy runs for 20 trials:
the green object is placed on the left and the red on the right for
the first 10 trials, then their positions are switched. Results are in
Table 1. The performance gap between simulation and real robot
likely stems from unaligned physics properties of objects and lack
of domain randomization. For details of robot setup and episode
visualization, please see Appendix A.6.

5 Discussion

Conclusion. We present VIRL, an IRL method utilizing a visual graph encoder to construct reward
functions for demonstrated tasks in videos and their extrapolation variants. VIRL integrates object-
level spatial and visual features unifiedly into nodes for graph construction from frames. Pretraining
the visual graph encoder is self-supervised using TCC loss and reconstruction loss. The design
of the visual graph encoder enables effective reward function generation for the demonstrated task
and extrapolations involving unseen object numbers, which is challenging in robotic tasks [26].
Additionally, our approach is flexibly adaptable for visual-feature-dependent tasks.

Limitations. Our approach depends on reliable object detectors. While occasional detection failures
have minimal impact, missing detection in keyframes can be critical. Additionally, the tested tasks
don’t fully capture the complexity of kinematics and scene variations in benchmarks like RoboSuite
[76], MetaWorld [77], and BridgeDataV2 [78]. Third, it remains unclear how VIRL would general-
ize to deformable object manipulation [79, 80]. Lastly, focusing only on object-centric information
may limit performance on tasks requiring broader scene context. 2

2For a more comprehensive discussion of limitations, please see Appendix A.9
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A Appendix

A.1 Property Comparison between VIRL and Baselines

Method Extrapolation
task

Visual-feature-
dependent task

Task in shifted
domain

Cross-
embodiment

XIRL [23] × ✓ × ✓
GraphIRL [24] × × ✓ ✓
VIRL (ours) ✓ ✓ ✓ ✓

Table 2: Property comparison in different task settings between VIRL and the most related works.

A.2 Extended Related Work

Imitation learning with actions. Imitation learning from expert demonstrations with state and
action pairs has demonstrated successes in various approaches [27], from behavioral cloning [28,
29, 30] to inverse reinforcement learning [17, 31, 32]. However, its reliance on ground-truth actions
renders data acquisition at scale both costly and challenging, thereby limiting its wider applicability.
To leverage unlabeled video demonstrations that are easier to obtain, methods have been developed
to infer actions in videos [33, 34, 35, 36, 37, 38, 39]. For example, Pathak et al. [34] utilize a forward
model so that, given the current state and the policy’s predicted action, it outputs the next state. With
the state sequences in state-only demonstrations, both the model and the policy can be trained using
the difference between the forward model’s output and the ground truth of the next state. A similar
forward dynamics model is also used in Edwards et al. [36]. In another example, VPT [39] trains an
inverse dynamics model (IDM) on a small labeled dataset and then uses the trained IDM to augment
a large amount of unlabeled videos with actions, which are used for the subsequent policy learning
via behavioral cloning. These methods have successfully trained agents using unlabeled videos, but
are subject to well-defined morphologies and dynamics of demonstrators and imitators, making it
hard to leverage demonstrations with diverse embodiments.

Domain adaption for imitation learning. To overcome the domain gap between varied agent em-
bodiments, several works [40, 41, 42, 43, 44, 18] attempt to translate the context in demonstrations
to the imitators’ context in terms of agents and viewpoints, using methods such as generative adver-
sarial networks [45, 46] and context translation. Furthermore, another way to address the domain
gap between agents is by inpainting them from video demonstrations and online visual states [47].

Inverse reinforcement learning from videos. On the other hand, a group of works [21, 22, 48,
49, 50, 44, 51, 52, 53, 24] has focused on learning reward functions from videos by, instead of us-
ing any additional models for action prediction or domain translation, extracting latent features that
indicate intermediate steps or measure task progress, which are naturally and implicitly present in
demonstrations. These learned reward functions are then used for policy training in the regular RL
regime. For example, Aytar et al. [48] pretrain a visual encoder on classifying temporal distances
between frames in a single video, retrieve a sequence of embedding checkpoints in the video, and
then generate reward signals by comparing observations and embedding checkpoints. For learning
robotic tasks from human videos, Sermanet et al. [22] train viewpoint-invariant representations on
pairs of simultaneous videos with an objective of attracting positive frame pairs while repulsing neg-
ative frame pairs in the latent space. They demonstrate that the agent-invariant representations can
directly provide reward signals for robot arms. To handle video demonstrations with varied lengths
and paces, XIRL [23] adopts temporal cycle-consistency loss [25] to learn visual embeddings that
measure task progression and then uses distances between current state embeddings and the goal
embedding as reward signal for policy learning via RL. They demonstrate the pretrained encoder
benefits from the diversity of demonstrators’ embodiments and generalizes to agents with unseen
embodiments. Building on XIRL, our work seeks to train an encoder that generalizes to construct-
ing reward functions for task extrapolations by leveraging graph abstractions, while maintaining the
flexibility for tasks requiring attention to low-level visual features by encoding object features.
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Object-centric scene graphs. Abstracting visual scenes into object-centric scene graphs is benefi-
cial for agents to understand environments and make decisions in various tasks [54], such as dynam-
ics modeling [55, 56], navigation [57, 58, 59], and robotic manipulation [60, 61, 62, 43, 63, 24, 64].
As a follow-up work to XIRL, GraphIRL [24] enhances robustness to diverse object appearances by
abstracting frames into graphs, where each node represents an object and contains features including
its bounding box coordinate and distances to other objects. However, limitations arise when tasks
require attention to object geometries or when dealing with different numbers of objects. Motivated
by their work and aiming to address the limitations, we encode object visual features and locations
into nodes in a unified way and build graphs such that the encoder can generalize to scenes with ar-
bitrary numbers of objects. Our work can be considered a generalized version of GraphIRL, suitable
for both visual-feature-dependent and -independent tasks, as well as unseen task extrapolations.

A.3 Implementation Details

The visual encoder borrows from a pretrained ResNet-18 [81]. We take 512-dimensional embed-
dings as node features to construct complete graphs and use graph transformer [71] to extract 512-
dimensional graph embeddings. We use the graph embeddings for reconstruction from decoder and
temporal alignment. We adopt ADAM [82] optimizer and Soft Actor-Critic (SAC) [83] RL algo-
rithm. Hyperparameters are from Zakka et al. [23] with minimum fine-tuning on the number of
frames per sequence in pretraining due to memory limitation. Learning rates are 10−5 for pretrain-
ing and 10−4 for RL. Our approach does not rely on any data augmentation. All results represent
the mean performance over 5 random seeds.

A.4 Additional Experiment Results of X-MAGICAL

Results in domain-shifted environment. We assess VIRL’s performance in shifted domains,
specifically with respect to unseen goal region colors and debris shapes, as depicted in Figure 1c.
In contrast to GraphIRL, which enhances robustness to unseen environments by disregarding visual
features and focusing solely on graph abstractions of coordinates of bounding boxes, we encode
both spatial and visual features into embeddings. Our aim is to validate that graph embeddings
remain effective for measuring progress despite the incorporation of unseen visual features. Fig-
ure 6 shows that our approach significantly outperforms baselines in the short-stick scenario. For
gripper, our approach and GraphIRL achieve similar performance, outperforming the rest, which
is expected considering that GraphIRL’s abstracted spatial information of objects is sufficient for
learning this task and is robust to shifted domains. For medium-stick and long-stick, results show
that our approach is on par with the best baselines.

Figure 6: Cross-embodiment cross-environment. Encoder is pretrained on demonstrations as
shown in Figure 1c (top). Policy learning in diverse environments with randomized goal region
color and debris shape as shown in Figure 1c (bottom). Each agent (gripper, short-stick, medium-
stick, long-stick) learns from videos of agents with the other 3 embodiments. For example, gripper
learns from videos by short-stick, medium-stick, and long-stick.
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(a) Robot Visual Pusher - Task I (b) Robot Visual Pusher - Task II

Figure 7: Impact of object detection failures. Each object is set to be not detected with a probability.
We test with probabilities being 0.1, 0.3, and 0.5 for both Task I and Task II.

A.5 Ablation Study

Impact of missed object detection. Our approach requires a reliable object detector in both pre-
training and policy learning. The detection performance on collected demonstrations can be exhaus-
tively evaluated, while that on scenes during policy learning is prone to uncertainty. Therefore, we
study the effect of object detection failures during policy learning. We randomly mask an object’s
visual and positional features by setting its crop to be zeroed out with a probability. The objects
subject to mask include the robot end effector, the red and green cubes, and the goal. We test with
probabilities being 0.1, 0.3, and 0.5 for Robot Visual Pusher Task I and Task II, and the results
are shown in Figure 7. The effect brought by failing to detect all objects in scene at a step is that
the corresponding reward signal may not accurately reflect the actual task progress. Interestingly,
performance drop by detection failure varies between tasks.

A.6 Real-World Robot Setup

In the real-world robot experiment, we apply the trained policies of the variant task of Robot Visual
Pusher, i.e., Task II in Figure 5, on a Ufactory xArm 6 robot arm. The observation is captured by a
fixed Intel RealSense D435 camera. The robot setup is shown in Figure 8. We utilize the codebase of
Diffusion Policy [84, 85] for the policy deployment on the real robot. We also visualize a successful
trial and a failed trial as shown in Figure 9a and Figure 9b, respectively.

Figure 8: Real-world robot experiment steup.

A.7 Details of Object Detector

Detection for X-MAGICAL. We use YOLO-v8 [86] as the object detector for X-MAGICAL exper-
iments. For encoder pretraining, we train the detector on a small set of images from demonstration
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(a) Real-world robot successful trial.

(b) Real-world robot failed trial.

Figure 9: Real-world robot experiment visualization.

data by XIRL [23], and evaluate it to ensure that detection is successful for all demonstration videos.
For policy learning, we adopt the trained detector from the pretraining step. Given an image, we ap-
ply the detector to detect objects and build the corresponding graph of the image. However, the
detection is not always successful during policy learning. We use the image from the previous step
when detection failure happens.

Detection for Robot Visual Pusher. We also use YOLO-v8 [86] as the object detector for Robot
Visual Pusher experiments, but only in pretraining. Similarly, for encoder pretraining, we train the
detector on a small set of images from demonstration in [44], and evaluate it for successful detection
of the object and the robot end effector over all demonstration videos. For scenes where the goal is
occluded by the object and cannot be detected, we set the goal bounding box to be the summation of
the object bounding box and Gaussian noise. For policy learning, we do not use any object detector.
Instead, we follow GraphIRL [24] and compute objects bounding boxes in 2D image.

A.8 Technical Comparison between VIRL and GraphIRL

VIRL differs from and improves upon GraphIRL [24] mainly in three aspects: (i) the construction
of graphs from images, (ii) the choice of graph encoder, and (iii) the loss function for pretraining.

Graph construction. GraphIRL concatenates an object’s bounding box coordinate with its dis-
tances to other detected objects as the node feature {x1, y1, x2, y2, d1, d2, ..., dN−1}. Although
robust to domain shift and visual distraction, their design has two downsides: First, it keeps ob-
ject spatial information via coordinates while disregarding the visual features; Second, a pretrained
graph encoder cannot generalize to policy learning for tasks where the number of objects is different
from that in demonstrations because of the change of node feature length.

To resolve the first issue, VIRL encodes object-wise visual features into graph nodes. Specifically,
VIRL creates an image for each detected object by zeroing out pixels outside of the object bounding
box, keeping images shape identical to the original scene image. We then use a convolutional neural
network to extract the object’s visual feature foi = ResNet(Io). In this way, we make our approach
applicable for tasks dependent on visual features. To resolve the second issue, we simply make the
distance between two nodes the feature of the edge connecting them.

Graph encoder. GraphIRL proposes a Spatial Interaction Encoder for their graphs following [55]
and [87] to extract abstract information. In contrast, we adopt Graph Transformer [71] as the graph
encoder. We argue that any graph neural network that is capable of extracting decent global features
from graphs with edges should be applicable in our approach.

Loss function for pretraining. GraphIRL follows XIRL [23] and uses Temporal Cycle-Consistency
(TCC) loss as the loss function for pretraining their graph encoder. In contrast, we follow [73] and
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add a reconstruction loss apart from TCC loss to ensure that sufficient object-centric low-level visual
features are kept in the graph embedding for learning policies of visual-feature-dependent tasks.

A.9 Extended Limitations and Opportunities

First, our approach relies on reliable object detectors. Although occasional nonconsecutive detec-
tion failure may result in limited influence, detection failure in keyframes can be influential. The
opportunity brought by this limitation is that our approach may be applicable for more complex tasks
by leveraging more powerful open-vocabulary detectors, such as OWL-ViT [88] and YOLO-World
[89]. By incorporating object tracking methods, the occlusion cases may be also improved. Second,
while our approach is tested on X-MAGICAL, Robot Visual Pusher, and real-robot, which provided
valuable initial insights, we acknowledge that it does not fully capture the complexity of kinematics
and scene variations present in more challenging benchmarks, such as tasks in RoboSuite [76], Meta-
World [77], and BridgeDataV2 [78]. Third, our approach is proposed for rigid object manipulation
in the first place. Thus, it is unclear how it would generalize to tasks of deformable object manipu-
lation [79, 80]. Fourth, since our approach focuses on object-centric information while disregarding
non-object-centric information, it might struggle with certain tasks that require an understanding of
the scene context.
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