
Shifted Chunk Transformer for
Spatio-Temporal Representational Learning

Xuefan Zha
Kuaishou Technology

zhaxuefan@kuaishou.com

Wentao Zhu
Kuaishou Technology

wentaozhu@kuaishou.com

Tingxun Lv
Kuaishou Technology

lvtingxun@kuaishou.com

Sen Yang
Kuaishou Technology

senyang@kuaishou.com

Ji Liu
Kuaishou Technology

ji.liu.uwisc@Gmail.com

Abstract

Spatio-temporal representational learning has been widely adopted in various fields
such as action recognition, video object segmentation, and action anticipation.
Previous spatio-temporal representational learning approaches primarily employ
ConvNets or sequential models, e.g., LSTM, to learn the intra-frame and inter-
frame features. Recently, Transformer models have successfully dominated the
study of natural language processing (NLP), image classification, etc. However,
the pure-Transformer based spatio-temporal learning can be prohibitively costly
on memory and computation to extract fine-grained features from a tiny patch. To
tackle the training difficulty and enhance the spatio-temporal learning, we construct
a shifted chunk Transformer with pure self-attention blocks. Leveraging the recent
efficient Transformer design in NLP, this shifted chunk Transformer can learn
hierarchical spatio-temporal features from a local tiny patch to a global video
clip. Our shifted self-attention can also effectively model complicated inter-frame
variances. Furthermore, we build a clip encoder based on Transformer to model
long-term temporal dependencies. We conduct thorough ablation studies to validate
each component and hyper-parameters in our shifted chunk Transformer, and it
outperforms previous state-of-the-art approaches on Kinetics-400, Kinetics-600,
UCF101, and HMDB51.

1 Introduction

Spatio-temporal representational learning tries to model complicated intra-frame and inter-frame re-
lationships, and it is critical to various tasks such as action recognition [20], action detection [55, 52],
object tracking [23], and action anticipation [21]. Deep learning based spatio-temporal representation
learning approaches have been largely explored since the success of AlexNet on image classifica-
tion [24, 11]. Previous deep spatio-temporal learning can be mainly divided into two aspects: deep
ConvNets based methods [35, 15, 16] and deep sequential learning based methods [55, 28, 29].
Deep ConvNets based methods are primarily integrated various factorization techniques [51, 34],
or a priori [16] for efficient spatio-temporal learning [15]. Some works focus on extracting effec-
tive spatio-temporal features [41, 8] or capturing complicated long-range dependencies [49]. Deep
sequential learning based methods try to formulate the spatial and temporal relationships through
advanced deep sequential models [28] or the attention mechanism [29].

On the other hand, the Transformer has become the de-facto standard for sequential learning tasks
such as speech and language processing [44, 12, 54, 19]. The great success of Transformer on
natural language processing (NLP) has inspired computer vision community to explore self-attention
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Figure 1: The framework of the proposed shifted chunk Transformer which involves two main
components, frame encoder (dark grey) and clip encoder. The frame encoder consists of N alternative
blocks of image chunk self-attention (left) and shifted multi-head self-attention (MSA).

structures for several vision tasks, e.g., image classification [13, 40, 36], object detection [6], and
super-resolution [33]. The main difficulty in pure-Transformer models for vision is that Transformers
lack the inductive biases of convolutions, such as translation equivariance, and they require more
data [13] or stronger regularisation [40] in the training. It is only very recently that, vision Transform
(ViT), a pure Transformer architecture, has outperformed its convolutional counterparts in image
classification when pre-trained on large amounts of data [13]. However, the hurdle is aggravated
when the pure-Transformer design is applied to spatio-temporal representational learning.

Recently, a few attempts have been made to design pure-Transformer structures for spatio-temporal
representation learning [4, 5, 14, 2]. Simply applying Transformer to 3D video domain is compu-
tationally intensive [4]. The Transformer based spatio-temporal learning methods primarily focus
on designing efficient variants by factorization along spatial- and temporal-dimensions [4, 5], or
employing a multi-scale pyramid structure for a trade-off between the resolution and channel capacity
while reducing the memory and computational cost [14]. The spatio-temporal learning capacity can
be further improved by extracting more effective fine-grained features through advanced and efficient
intra-frame and inter-frame representational learning.

In this work, we propose a novel spatio-temporal learning framework based on pure-Transformer,
called shifted chunk Transformer as illustrated in Fig. 1, which extracts effective fine-grained intra-
frame features with a low computational complexity leveraging the recent advance of Transformer
in NLP [22]. Specially, we divide each frame into several local windows called image chunks,
and construct a hierarchical image chunk Transformer, which employs locality-sensitive hashing
(LSH) to enhance the dot-product attention in each chunk and reduces the memory and computation
consumption significantly. To fully consider the motion effect of object, we design a robust self-
attention module, shifted self-attention, which explicitly extracts correlations from nearby frames.
We further design a pure-Transformer based frame-wise attention module, clip encoder, to model the
complicated inter-frame relationships with a minimal extra computational cost. Our contributions
can be summarized as follows:

• We construct an image chunk self-attention to mine fine-grained intra-frame features leverag-
ing the recent advance of Transformer. The hierarchical image chunk Transformer employs
locality-sensitive hashing (LSH) [3] to reduce the memory and computation consumption
significantly, which enables an effective spatio-temporal learning directly from a tiny patch.

• We build a shifted self-attention to fully consider the motion effect of objects, which yields
effective modeling of complicated inter-frame variances in the spatio-temporal representa-
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tional learning. Furthermore, a clip encoder with a pure-Transformer structure is employed
for frame-wise attention, which models complicated and long-term inter-frame relationships
at a minimal extra cost.

• The shifted chunk Transformer with pure-Transformer outperforms previous state-of-the-
art approaches on several action recognition benchmarks, including Kinectics-400 [20],
Kinetics-600 [7], UCF101 [39] and HMDB51 [25].

2 Related Work

Conventional deep learning based action recognition Conventional deep spatio-temporal repre-
sentational learning mainly involves two aspects: deep sequential learning based methods [55, 28, 29]
and deep ConvNet based methods [35, 15, 16]. The recurrent networks can be extended to 3D
spatio-temporal domain for action recognition [28]. In deep ConvNet based methods, two-stream
ConvNet employs two branches of 2D ConvNets and explicitly models motion by optical flow [38].
The C3D [41] and I3D [8] directly extend 2D ConvNets to 3D ConvNets, which is natural for 3D
spatio-temporal representational learning [9]. However, the 3D ConvNet requires significantly more
computation and more training data to achieve a desired accuracy [51]. Thus, P3D [34] and S3D [51]
attempt to factorize the 3D convolution into a 2D spatial convolution and a 1D temporal convolution.
SlowFast network [16] and X3D [15] conduct trade-offs among resolution, temporal frame rate
and the number of channels for the efficient video recognition. Non-local network [49] proposes
to add non-local operations in deep network and captures long-range dependencies. The recent
pure-Transformer based spatio-temporal learning enables longer dependency relationship modeling
and further increases the accuracy of action recognition [4].

Vision Transformers NLP community has witnessed the great success of pre-training by Trans-
former [44, 12], and it has been emerging for image classification [13, 40, 36], object detection [6],
and image super-resolution [33]. CPVT [10] employs pre-defined and independent input tokens to
increase the generalization for image classification. Pure-Transformer network has no inductive bias
or prior as ConvNets. ViT [13] pre-trains on large amounts of data and attains excellent results on
image classification. CvT [50] introduces convolutions into ViT to yield better performance and
efficiency. DeiT [40] and MViT [14] instead employ distillation and multi-scale to cope with the
training difficulty. PVT [47] and segmentation Transformer [53] further extend Transformer to dense
prediction tasks, e.g., object detection and semantic segmentation. Simply applying Transformer to
3D video spatio-temporal representational learning aggravates the training difficulty significantly,
and it requires advanced model design for pure-Transformer based spatio-temporal learning.

Transformer based action recognition Recently, only a few works have been conducted using
pure-Transformer for spatio-temporal learning [4, 14, 5, 2]. Most of the efforts focus on designing
efficient Transformer models to reduce the computation and memory consumption. ViViT [4]
and TimeSformer [5] study various factorization methods along spatial- and temporal-dimensions.
MViT [14] conducts a trade-off between resolution and the number of channels, and constructs a
multi-scale Transformer to learn a hierarchy from simple dense resolution and fine-grained features
to complex coarse features. VATT [2] conducts unsupervised multi-modality self-supervised learning
with a pure-Transformer structure. In this work, we extract fine-grained intra-frame features from
each tiny patch and model complicated inter-frame relationship through efficient and advanced
self-attention blocks.

3 Method

In this section, we describe each component of our shifted chunk Transformer for spatio-temporal
representation learning in video based action recognition.

3.1 Overview

Let X = [X1,X2, · · · ,XT ] ∈ RT×H×W×3 be one input clip of T RGB frames sampled from a
video, where Xi ∈ RH×W×3 is the i-th frame in the clip, and H and W are the frame size. To
design an efficient pure-Transformer based spatio-temporal learning, we construct a shifted chunk
Transformer, including image chunk self-attention blocks, shifted multi-head self-attention blocks,
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and a clip encoder, as illustrated in Fig. 1. We first construct an image chunk self-attention block
leveraging the advanced efficient Transformer design in NLP [22], which is illustrated in the left of
Fig. 1. The locality-sensitive hashing (LSH) [3] in the image chunk self-attention enables a relatively
small patch as a token, thus it is capable of extracting fine-grained intra-frame features. A linear
pooling layer is designed to adaptively reduce the resolution after LSH attention. After that, a shifted
self-attention is designed to extract motion related inter-frame features. Our shifted self-attention
considers the motion of objects across nearby frames and explicitly models the temporal relationship
into self-attention. The frame encoder shown in dark grey color can be an effective feature extractor
which can be stacked for several times. The hierarchical frame encoder and image chunk self-attention
further learns an effective multi-level feature from local to global abstraction. Lastly, we employ a
pure-Transformer to learn complicated inter-frame relationships and frame-wise attention along the
temporal dimension. We use multi-head self-attention (MSA) in all the blocks.

3.2 Image Chunk Self-Attention

Table 1: ViT-B [13] with a smaller patch size yields
higher accuracy (%).

Crop size Patch size K400 UCF101

224 16 75.3 95.3
224 8 78.4 97.0

Transformer can learn complicated long range
dependencies which can be computed through
the high efficient matrix product [44]. Differ-
ent from convolution which has inherent induc-
tive bias [13], Transformer learns the entire fea-
tures from data. The main challenge for a pure-
Transformer based vision model mainly involves
two aspects: 1) how to design an efficient model
to learn effective features from the entire image,
because simply treating each pixel as a token is computationally intensive, 2) how to train this power-
ful model and learn various effective features from data. ViT [13] treats each patch of size 16× 16 as
one token and pre-trains the model with large amounts of data. We argue that Transformer with a
smaller patch as a token can extract fine-grained features which improves spatio-temporal learning
for action recognition. For ViT-B-16 [13] of crop size 224× 224 as a frame encoder followed by a
shifted MSA and a clip encoder, a smaller patch size of 8× 8 yields better accuracy on Kinectics-400
and UCF101 as shown in Table 1.

The Transformer computes each pairwise correlation through a dot product, thus it has a high
computational complexity of O(L2), where L is the totally number of tokens. In natural language
processing (NLP), LSH attention [22] employs locality-sensitive hashing (LSH) bucketing [3] and
chunk sorting for queries and keys to approximate the attention matrix computation. Leveraging the
efficient LSH approximation, the LSH attention reduce the computation complexity to O(L logL).

To preserve locality property and learn transition and rotation invariant low-level features from images,
we firstly design a visual local transformer (ViLT) with shared parameters along different image local
windows, or image chunks. Each image chunk consists of multiple tiny patches as illustrated in the
left bottom block of Fig. 1. We intend to employ patches of a small size in the ViLT which is the first
level abstraction of the input, so that the model extracts a fine-grained representation which enhances
the entire spatial-temporal learning. Employing the small patch yields large number of tokens in
the following self-attention, and we construct an image locality-sensitive hashing (LSH) attention
leveraging advanced design of Transformer in NLP [22]. The image LSH attention can efficiently
extract higher-level and plentiful intra-frame features ranging from a tiny patch to the entire image.
The framework of image chunk self-attention is illustrated in the left part of Fig. 1.

Visual local transformer (ViLT) In the shifted chunk Transformer, we firstly construct a ViLT
which slides one self-attention for each tiny patch along the whole image. The ViLT is illus-
trated in the bottom block of Fig. 1. Let h, w be the height and width of the tiny image patch
p ∈ Rh×w×3. Following the success of ViT [13], we treat each patch as one dimensional
vector of length h × w × 3. Suppose each chunk consists of m × n tiny patches, denoted as
{p1,1,p1,2, · · · ,p1,n;p2,1, · · · ,p2,n; · · · ;pm,1, · · · ,pm,n}. After flattening the chunk into a list of
tiny patches, we denote the chunk as {p1,p2, · · · ,pL} without loss of generality, where L = m× n.

In ViLT, we use a learnable 1D position embedding Epos ∈ RL×D to retain position information

z0 = [p1E;p2E; · · · ;pm×nE] +Epos, E ∈ R(h×w×3)×D, (1)
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where E is the linear patch embedding matrix, and D is the embedding dimension. Then we can
construct alternating layers of multi-head self-attention (MSA), MLP with GELU [18] non-linearity,
Layernorm (LN) and residual connections [44] for the chunk as

z′m = MSA(LN(zm−1)) + zm−1, zm = MLP(LN(z′m)) + z′m, m = 1, · · · ,M, (2)
where M is the number of blocks. We conduct the ViLT sliding the entire image without over-
lapping. The parameters of the ViLT are shared among all the image chunks, which forces the
chunk self-attention to learn translation and rotation invariant, and fine-grained features. The
tiny patch-wise feature extraction preserves the locality property, which is a strong prior for nat-
ural images. After the ViLT, we obtain the extracted features for the entire image denoted as
y = [y1;y2; · · · ;yL; · · · ;yL×L′ ], where the entire image can be split into L′ = m′ × n′ =
d H
h×me × d

W
w×ne chunks, and we conduct zero padding for the last chunks in each row and column.

The ViLT forces to learn image locality features which is a desired property for a low-level feature
extractor [26]. For pure-Transformer based vision system, it also reduces the memory consumption
significantly because it restricts the correlation of one tiny patch within the local chunk. Therefore,
the memory and computational complexity of dot-product attention in ViLT can be reduced to O(L2)
compared to the complexity of conventional self-attention O((L′ × L)2).

Image locality-sensitive hashing (LSH) attention After ViLT blocks, we obtain local fine-grained
features of length L′ ×L. Since the patch size is tiny, the total number of patches can be large, which
leads to more difficult training than other vision Transformers [4, 13]. On the other hand, the problem
of finding nearest neighbors quickly in high-dimensional spaces can be solved by locality-sensitive
hashing (LSH), which hashes similar input items into the same “buckets” with high probability. In
NLP, LSH attention [22] is proposed to handle quite long sequence data, which employs locality-
sensitive hashing (LSH) bucketing approximation and bucket sorting to reduce the computational
complexity of matrix product between query and key in self-attention.

In dot-product attention, the softmax activation function pushes the attention weights close to 1 or
0, which means the attention matrix is typically sparse. The query and key can be approximated by
locality-sensitive hashing (LSH) [3] to reduce the computational complexity. Furthermore, through
bucketing sort, the attention matrix product can be accelerated by a chunk triangular matrix product,
which has been validated by LSH attention [22].

The used multi-head image LSH attention can be constructed as
y′ = MSA(LSHAtt(LN(y))) + y, s = MLP(LN(y′)) + y′, (3)

where LSH attention LSHAtt(·) employs angular distance to conduct LSH hashing [3]. The image
LSH attention reduces the memory and time complexity to O(L′ × L log(L′ × L)), compared with
that of conventional dot-product attention O((L′ × L)2). The image LSH attention reduces the
complexity significantly because the patch size is tiny and the number of tiny patches L′ × L are
large. The image level LSH attention in the second level learns relatively global features from the
first level’s local fine-grained features.

The hierarchical feature learning from local to global has been validated as an effective principle for
vision system design [26, 45]. Inspired by hierarchical abstraction in ConvNets [26], we construct
a linear pooling layer which firstly conducts squeeze then employs linear projection for feature
dimension reduction. The linear pooling adaptively squeezes the sequence length by 1

4 .
Reshape: s = [s1,1, · · · , s1,n×n′ ; · · · ; sm×m′,1, · · · , sm×m′,n×n′ ],

Squeeze: s′ = [s′1,1, · · · , s′1,n×n′/2; · · · ; s
′
m×m′/2,1, · · · , s

′
m×m′/2,n×n′/2],

Linear: t = [s′1,1Et, · · · , s′1,n×n′/2Et; · · · ; s′m×m′/2,1Et, · · · , s′m×m′/2,n×n′/2Et],

(4)

where s′i,j in s′ concatenates s2i−1,2j−1, s2i−1,2j , s2i,2j−1 and s2i,2j from s, Et is the linear projec-
tion matrix to adaptively reduce the number of dimensions after squeeze by half. The reshape is to
retain the spatial relationship of each patch, and the squeeze reduces the number of patches by 1

4 and
enlarges the feature dimensions by four times. The linear pooling layer forces the model to learn
high-level global features in the following layers.

3.3 Shifted Multi-Head Self-Attention

Considering the motion effect of objects, we explicitly construct a shifted multi-head self-attention
(MSA) for spatio-temporal learning after image chunk self-attention as illustrated in Fig. 1 and Fig. 2.
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For video classification, a special classification token ([CLS]) [12] can be prepended into the feature
sequence. To learn frame-wise spatio-temporal representations, we prepend the [CLS] token to each
frame. Without loss of generality, we denote the image chunk self-attention feature to be a list of
[ti,1; ti,2; · · · ; ti,L×L′/4] for the i-th frame. Then, we obtain the input of T frames for shifted MSA
as

t′ = [t′1,1; · · · ; t′1,1+L×L′/4; · · · ; t
′
T,1; · · · ; t′T,1+L×L′/4]

= [z1,cls; t1,1; · · · ; t1,L×L′/4; · · · ; zT,cls; tT,1; · · · ; tT,L×L′/4].
(5)

The shifted multi-head self-attention explicitly considers the inter-frame motion of objects, which
computes the correlation between the current frame and the previous frame in the attention matrix,
which can be formulated as

qi
t,p = LN(t′t,p)W

i
Q, ki

t,p = LN(t′t−1,p)W
i
K , vi

t,p = LN(t′t,p)W
i
V , (6)

where Wi
Q, Wi

K and Wi
V are projection matrices for head i, and we employ a cyclic way to calculate

the key of the first frame t = 1 by defining t′0,p = t′T,p. By concatenating qi
t,p, ki

t,p v
i
t,p into matrices

Qi
t, K

i
t, V

i
t along patch location p, the shifted MSA for frame t can be calculated as

at = Concat(Attention(Q1
t ,K

1
t ,V

1
t ), · · · ,Attention(Ql

t,K
l
t,V

l
t))WO,

a′t = MLP(LN(at)) + at,
(7)

Figure 2: Illustration of shifted MSA, which ex-
plicitly extracts fine-grained motion information
along two frames.

where l is the number of heads in multi-head
self-attention. The shifted self-attention com-
pensates object motion and spatial variances.
We explicitly integrate motion shift into self-
attention, which extracts robust features for
spatio-temporal learning. The block with al-
ternating layers of image chunk self-attention
and shifted MSA can be stacked for multiple
times to fully extract effective hierarchical fine-
grained features from tiny local patches to the
whole clip in our shifted chunk Transformer.

3.4 Clip Encoder for Global Clip Attention

To learn complicated inter-frame relationship
from the extracted frame-level features, we de-
sign a clip encoder based on a pure-Transformer
structure to adaptively learn frame-wise atten-
tion. To facilitate the video classification, we
prepend a global special classification token
([CLS]) into the frame-level feature sequence.
In this module, we employ the classification feature a′t1 corresponding to zt,cls as the frame-level
feature for frame t. To consider frame position, we also employ a standard learnable 1D position
embedding as each frame position embedding. The clip encoder can be formulated as

b0 = [bcls;a
′
11E

′; · · · ;a′T 1E
′] +E′pos, E′pos ∈ R(T+1)×D′

,

b′m = MSA(LN(bm−1)) + bm−1, bm = MLP(LN(b′m)) + b′m, m = 1, · · · ,M ′,
c = MLP(LN(bM ′1))

(8)

where E′ is the linear frame embedding matrix, D′ is the clip encoder embedding size, M ′ is the
number of blocks, and bM ′1 is the clip-level classification feature for the classification token bcls,
c is the video classification logit for softmax. We use dropout [24] for the second last layer and
cross-entropy loss with label smoothing [32] for training. The clip encoder can be efficient with a
minimal computational cost in Appendix to achieve a powerful inter-frame representation learning.

4 Experiment

We evaluate our shifted chunk Transformer, denoted as SCT, on five commonly used action recognition
datasets: Kinetics-400 [20], Kinetics-600 [7], Moment-in-Time [31] (Appendix), UCF101 [39] and
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Table 2: Hyper-parameters of data processing and optimization.

K400 K600 U101 H51 MMT

Frame Rate 5 5 10 10 8
Frame Stride 10 10 8 8 10

#Warmup epochs 2 2 3 4 2
Learning rate 0.3 0.3 0.25 0.25 0.3
Label smoothing 0.1 0.1 0 0 0.3
Dropout 0.2 0.2 0 0 0.2

Table 3: The model structure of three shifted chunk Transformers.

Model D
MLP
size M D′

Clip MLP
size #Heads #Param GFLOPs

SCT-S 96 384 4 192 768 [4 6 8 8] 18.72M 88.18
SCT-M 128 512 6 192 768 [4 8 8 8] 33.48M 162.90
SCT-L 192 768 4 192 768 [4 6 8 8] 59.89M 342.58

HMDB51 [25]. We adopt ImageNet-21K for the pre-training [37, 11] because of large model capacity
of SCT. The default patch size for each image token is 4× 4. In the training, we use a synchronous
stochastic gradient descent with momentum of 0.9, a cosine annealing schedule [30], and the number
of epochs of 50. We use batch size of 32, 16 and 8 for SCT-S, SCT-M and SCT-L, respectively. And
the frame crop size is set to be 224× 224. For data augmentation, we randomly select the start frame
to generate the input clip. In the inference, we extract multiple views from each video and obtain
the final prediction by averaging the softmax probabilistic scores from these multi-view predictions.
The details of initial learning rate, optimization and data processing are shown in Table 2. All the
experiments are run on 8 NVIDIA Tesla V100 32 GB GPU cards.

We construct three shifted chunk Transformers, SCT-S, SCT-M, and SCT-L, in terms of various
model sizes and computation complexities. We employ four consecutive blocks with alternating one
image chunk self-attention and one shifted MSA. The patch embedding size D, MLP dimension
of these self-attentions, the number of ViLT layers M , the clip encoder embedding size D′, MLP
dimension of clip encoder, the numbers of heads in ViLT, LSH attention, shifted MSA and clip
encoder are shown in Table 3. Each image chunk self-attention consists of M layers ViLT followed
by an image LSH attention and a linear pooling layer to reduce the number of spatial dimensions. We
use four-layer clip encoders to obtain the video classification results as validated in the Appendix.

Validating frame feature extractor We compare the frame encoder of our shifted chunk Trans-
former (SCT) with ViT [13] in Table 4. For a fair comparison, we only replace the ViLT with ViT,
and remain all other components the same. From Table 4, we observe that 1) large models, ViT-L-16
and SCT-L, yield higher accuracy than base models, ViT-B-16 and SCT-S; 2) ViT with a small patch
size achieves better accuracy than ViT with a large patch; 3) SCT-L improves the accuracy of ViT-L
by 4% while using much less number of parameters and FLOPs. The tiny patch and enforced locality
prior in ViLT are validated to be effective for spatio-temporal learning.

Table 4: The effect of frame extractor and the number of tokens on Top-1 accuracy (%).

Method Patch size Chunk size #Tokens #Param GFLOPs Kinetics-400

ViT-B-16 16×16 - 14×14 114.25M 405.06 75.33
ViT-B-16 12×12 - 18×18 114.25M 665.78 77.12
ViT-B-16 8×8 - 28×28 114.25M 1603.67 78.95
ViT-L-16 16×16 - 14×14 328.63M 1413.45 79.15

SCT-S 4×4 7×7 8×8 18.72M 88.18 78.41
SCT-M 4×4 7×7 8×8 33.48M 162.90 81.26
SCT-L 4×4 7×7 8×8 59.89M 342.58 83.02
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Table 5: The effect of the number of shifted MSA layers and shifted frames on Top-1 accuracy (%).

Method #Shifted
MSA

#Shifted
frame K400 U101

SCT-S 0 0 76.91 97.01
SCT-S 1 1 78.41 98.02
SCT-S 1 5 77.02 97.15
SCT-S 2 1 77.45 97.33

Figure 4: Visualization of the patch and frame attention maps (the second and fourth rows).

Effect of shifted MSA We conduct experiments on Kinectis-400 and UCF101 to validate the hyper-
parameters of the shifted MSA layer, including the number of shifted MSA layers, and the number of
shifted frames used in the calculation of key in equation (6). All other network configurations follow
the Table 3. The #Shifted MSA of 0 and #Shifted frame of 0 in Table 5 mean that one standard MSA is
used instead of shifted MSA. From Table 5, we observe that 1) a shifted MSA improves the accuracy
up to 1.5% compared with the conventional MSA; 2) one layer shifted MSA with the shifted number
of frames of one yields the best accuracy. The shifted MSA explicitly formulates the motion effect of
object by considering the nearby frames, which improves the accuracy for video classification. We
use one layer shifted MSA with the number of shifted frames of one in our experiment.

Figure 3: The effect of varying the number of input
frames and temporal views.

Varying the number of input frames and
temporal views In our experiments so far, we
have kept the number of input frames fixed to 24
across different datasets. To discuss the effect
of the number of input frames on video level
inference accuracy, we validate the number of
input frames of 24, 48, 96, and the number of
temporal views from 1 to 8. Fig. 3 shows that as
we increase the number of frames, the accuracy
using a single clip increases, since the network is
incorporated longer temporal information. How-
ever, as the number of used views increases, the
accuracy difference is reduced. We use the num-
ber of frames of 24 and the number of temporal
views of 4 in our experiment.

Patch and frame attention Our shifted
chunk Transformer (SCT) can detect fine-grained discriminative regions for each frame in the
entire clip in Fig. 4. Specifically, we average attention weights of the shifted MSA across all heads
and then recursively multiply the weight matrices of all layers [1], which accounts for the attentions
through all layers. The designed framework of SCT leads to an easy diagnosis and explanation for
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Table 6: Top-1 and Top-5 accuracy (%) comparisons to state-of-the-art approaches on Kinectics-400.

Method TFLOPs×Views #Param Runtime (s) Top1 Top5

TEA [27] 0.07×10×3 - - 76.1 92.5
I3D NL [49] - 54M - 77.7 93.3
CorrNet-101 [46] 0.224×10×3 - - 79.2 -
ip-CSN-152 [42] 0.109×10×3 33M - 79.2 93.8
SlowFast [16] 0.234×10×3 60M - 79.8 93.9
X3D-XXL [15] 0.194×10×3 20M 0.176 80.4 94.6
TimeSformer [5] 2.38×1×3 121M 0.475 80.7 94.7
MViT-B 64×3 [14] 0.455×3×3 37M 0.153 81.2 95.1
ViViT-L [4] 399.2×4×3 89M - 81.3 94.7

SCT-S 0.088×4×3 19M 0.051 78.4 93.8
SCT-M 0.163×4×3 33M 0.072 81.3 94.5
SCT-L 0.343×4×3 60M 0.106 83.0 95.4

Table 7: Classification accuracy (%) comparisons to state-of-the-art approaches on Kinectics-600,
UCF101 (3 splits) and HMDB51 (3 splits). ‘K400’ denotes pretraining on Kinetics-400 and ImageNet.
‘K600’ denotes pretraining on Kinetics-600 and ImageNet.

Method Views #Para Top1 Top5

AttenNAS [48] - - 79.8 94.4
LGD-3D [35] - - 81.5 95.6
SlowFast [16] 10×3 60M 81.8 95.1
X3D-XL [15] 10×3 11M 81.9 95.5

TimeSformer [5] 1×3 121M 82.4 96.0
ViViT-L [4] 4×3 89M 83.0 95.7

SCT-S 4×3 19M 77.5 93.1
SCT-M 4×3 33M 81.7 95.5
SCT-L 4×3 60M 84.3 96.3

Method Pretrain U101 H51

I3D [8] K400 95.4 74.5
ResNeXt [17] K400 94.5 70.2
R(2+1)D [43] K400 96.8 74.5
S3D-G [51] K400 96.8 75.9
LGD-3D [35] K600 97.0 75.7

SCT-S ImageNet 98.0 76.5
SCT-L ImageNet 97.7 81.4
SCT-S K400 98.3 81.5
SCT-M K400 98.5 83.2
SCT-L K400 98.7 84.6

the prediction, which potentially makes SCT applicable to various critical fields, e.g., healthcare and
autonomous driving.

Comparison to state-of-the-art approaches We compare our shifted chunk Transformer (SCT)
to the current state-of-the-art approaches based on the best hyper-parameters validated in the previous
ablation studies. We obtain the results of previous state-of-the-art approaches from their papers. We
obtain the actual runtime (s) in one single NVIDIA V100 16GB GPU by averaging 50 inferences
with batch size of one. In Kinetics-400 and Kinetics-600, we initialize our ViLT and LSH attention
trained on ImageNet-21K.

Our shifted chunk Transformers (SCT) surpass previous state-of-the-art approaches including both
recent Transformer based video classification and previous deep ConvNets based methods by 2.7%,
1.3%, 1.7% and 8.9% on Kinectis-400, Kinectic-600, UCF101 and HMDB51 in Table 6-7 based on
RGB frames, respectively. The local scheme and LSH approximation in image chunk self-attention
enables to use patches of a small size. Because of the efficient model design, SCT achieves the best
accuracy even only using pretraining on the ImageNet on UCF101 and HMDB51. Besides the higher
action recognition accuracy, the SCT employs less number of parameters and FLOPs than ViViT
because we employ less number of channels and our SCT is effective for spatio-temporal learning.

5 Conclusion

In this work, we proposed a new spatio-temporal learning called shifted chunk Transformer inspired
by the recent success of vision Transformer in image classification. However, the current pure-
Transformer based spatio-temporal learning is limited by computational efficiency and feature
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robustness. To address these challenges, we propose several efficient and powerful components for
spatio-temporal Transformer, which is able to learn fine-grained features from a tiny image patch
and model complicated spatio-temporal dependencies. We construct an image chunk self-attention
which leverages locality-sensitive hashing to efficiently capture fine-grained local representation with
a relatively low computation cost. Our shifted self-attention can effectively model complicated inter-
frame variances. Furthermore, we build a clip encoder based on pure-Transformer for frame-wise
attention and long-term inter-frame dependency modeling. We conduct thorough ablation studies
to validate each component and hyper-parameters in our shifted chunk Transformer. It outperforms
previous state-of-the-art approaches including both pure-Transformer architectures and deep 3D
convolutional networks on various datasets in terms of accuracy and efficiency.

6 Acknowledgement

This work is supported by Kuaishou Technology. No external funding was received for this work.
Moreover, we would like to thank Hang Shang for insightful discussions.

References
[1] Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4190–4197,
2020.

[2] Hassan Akbari, Linagzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and
Boqing Gong. Vatt: Transformers for multimodal self-supervised learning from raw video,
audio and text. arXiv preprint arXiv:2104.11178, 2021.

[3] Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In Advances in Neural Information Processing
Systems (NIPS 2015), pages 1225–1233. Curran Associates, 2015.

[4] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
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