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Abstract

Multimodal AI research has overwhelmingly
focused on high-resource languages, hinder-
ing the democratization of advancements in the
field. To address this, we present AfriCaption,
a comprehensive framework for multilingual
image captioning in 20 African languages and
our contributions are threefold: (i) a curated
dataset built on Flickr8k, featuring semanti-
cally aligned captions generated via a context-
aware selection and translation process; (ii) a
dynamic, context-preserving pipeline that en-
sures ongoing quality through model ensem-
bling and adaptive substitution; and (iii) the
AfriCaption model, a 0.5B parameter vision-
to-text architecture that integrates SigLIP and
NLLB200 for caption generation across under-
represented languages. This unified framework
ensures ongoing data quality and establishes
the first scalable image-captioning resource for
under-represented African languages, laying
the groundwork for truly inclusive multimodal
AI.

1 Introduction

The digital divide in multimodal AI is starkly ev-
ident, with most advancements centered around
a selected few Western languages, leaving non-
Western languages, especially African languages,
underrepresented (Longpre et al., 2024). This
under-representation perpetuates a cycle of exclu-
sion, where machine learning systems fail to gen-
eralize to global contexts and perform poorly for
speakers of low-resource languages, creating a bar-
rier to inclusive AI development.

Datasets and models have both been two strong
pillars of machine learning since its inception,
where the performance of a good model stems not
only from its architecture or training hyperparame-
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ters but also from the foundational dataset on which
it is trained.

Early benchmark datasets such as ImageNet
(Deng et al., 2009) revolutionized computer vi-
sion by providing large-scale annotated images,
enabling the development of deep learning models.
Similarly, MS COCO (Lin et al., 2014), Flickr8k
(Hodosh et al., 2013), and Visual Genome (Kr-
ishna et al., 2016) provided diverse image-text pair-
ings, facilitating advancements in vision-language
tasks like image captioning and visual question-
answering. However, these datasets are overwhelm-
ingly monolingual, primarily in English, reflecting
an inherent bias in AI research (Gebru et al., 2018).
The consequence of this linguistic homogeneity is a
failure to generalize AI models across non-Western
contexts, limiting their usability and fairness (Ben-
der et al., 2021).

To this end, we introduce AFRICAPTION: an
image captioning model and dataset for African
languages. AFRICAPTION provides an image-text
pair dataset and an image captioning model that, in
addition to English, covers 20 African languages,
spanning across several language families and re-
gions. To the best of our knowledge, this is the first
image captioning model and curated caption cor-
pus of this scale built for African languages. The
key contributions of our work include:

• The AFRICAPTION dataset containing di-
versified multilingual captions: We cre-
ate a corpus of human-readable captions
in linguistically diverse African languages,
including Igbo, Hausa, Ewe, Yoruba, Lu-
ganda, Kinyarwanda, and others spanning
Afro-Asiatic, Niger-Congo, and Nilo-Saharan
families. AFRICAPTION addresses the lack of
coverage for low-resource African languages,
creating opportunities to train and evaluate
models while ensuring linguistic AI represen-
tation (Section 5).
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Figure 1: The context-preserving adaptive pipeline, ensuring continuous improvement and high data quality.

• Context-preserving pipeline: We present a
novel caption translation process to ensure the
African language captions remain faithful to
the image semantics (Figure 1 and Section 4).

• The AFRICAPTION image captioning
model: We introduce the first image caption-
ing model designed to generate captions in a
wide range of African languages. It is the first
to support image captioning for the majority
of the 20 African languages covered in our
dataset. The model aligns a vision encoder
(SIGLIP) with a multilingual text decoder
(NLLB) to produce captions across these lan-
guages (Section 6).

With this work, we hope to broaden the scope
of research and democratise AI, ensuring that
cutting-edge technologies benefit a global com-
munity rather than just speakers of high-resource
languages.

2 Related Work

Recent efforts have sought to address the under-
representation of diverse languages in multimodal
AI. A prime example is OpenAI’s CLIP model
(Radford et al., 2021), which aligns text and im-
ages using large-scale datasets primarily in high-
resource languages such as english. While CLIP
has demonstrated impressive zero-shot learning
capabilities, it struggles to generalize across di-
verse linguistic contexts, particularly for under-
represented languages, such as those spoken across
Africa. Similarly, multilingual models such as
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020), and M2M-100 (Fan et al., 2020;
Schwenk et al., 2019; El-Kishky et al., 2019) have
demonstrated the feasibility of training AI systems
across multiple languages, but their reliance on

textual corpora that often exclude low-resource
languages results in suboptimal performance for
African languages (Kakwani et al., 2020).

One of the more recent efforts to bridge this gap
is AViLaMa (Team, 2024), a large open-source text-
vision alignment pre-training model specifically
targeting African languages. AViLaMa integrates
supervision from several African languages, includ-
ing Swahili, Hausa, Yoruba, Igbo, Zulu, Shona,
Arabic, and Amharic, alongside Western languages,
such as English, French, and Portuguese.

Despite these advancements, a key limitation
remains: many of these datasets and models fo-
cus heavily on a small subset of widely spoken
African languages, often neglecting lower-resource
languages that are equally important for the democ-
ratization of AI. Additionally, many multimodal
models primarily focus on text-vision alignment
without addressing the full spectrum of African lin-
guistic diversity in image captioning and other mul-
timodal settings. Although datasets like Multi30k
(Elliott et al., 2016) and the CrissCrossed Captions
Dataset (CxC) (Parekh et al., 2020) have expanded
multilingual representation, they still lack sufficient
African language inclusion.

In our work, we aim to contribute to the inclusion
of African languages in the advances in the multi-
modal domain by introducing AFRICAPTION, the
first image captioning model and dataset that broad-
ens the linguistic spectrum and includes 20 African
languages. This ensures a wider representation,
particularly for under-represented languages. Un-
like previous efforts that focus solely on text-vision
alignment, our dataset integrates both text and im-
age pairs from the well-known Flickr8k dataset
(Hodosh et al., 2013), and our model integrates
SigLIP’s (Zhai et al., 2023) vision encoder with
NLLB’s decoder (Costa-Jussà et al., 2022), provid-
ing a richer multimodal resource. We also prioritize



and linguistic inclusivity by ensuring captions are
contextually relevant to each language, fostering
nuanced interactions with diverse linguistic groups.
We aim to facilitate research in multilingual mul-
timodal AI for low-resource languages and enable
models to generalize better across different lan-
guages, contributing to a more inclusive global AI
landscape.

3 Background

Africa is one of the most linguistically diverse re-
gions in the world. Estimates suggest that the
continent is home to between 1,500 and 2,000
distinct languages (Simons and Fennig, 2022). 1

These languages span several major families, in-
cluding Niger-Congo, Afro-Asiatic, Nilo-Saharan,
and Khoisan, and exhibit a wide range of morpho-
logical structures. In many African languages, par-
ticularly within the Afro-Asiatic and Niger-Congo
families, the morphology can be highly complex.

Many African languages remain absent from the
corpora despite being spoken by tens of millions
and this has led to the challenge of the significant
gap in machine learning (ML) resources. For ex-
ample, while languages like Yoruba, Hausa, and
Igbo, which collectively have speaker populations
ranging from approximately 20 to 50 million, are
included in some ML datasets, the vast majority
of Africa’s languages receive little or no attention
(Toure, 2025; EqualyzAI, 2025).

3.1 Harms of Misrepresentation

The underrepresentation of African languages in
ML datasets and models has significant technical
and societal consequences. From a technical per-
spective, models trained predominantly on high-
resource languages fail to generalize to the unique
grammatical structures and contexts inherent to
many African languages. This can lead to degraded
performance, misinterpretation of idiomatic expres-
sions, and ultimately, erroneous outputs when these
models are applied in real-world settings. The issue
is compounded by the morphological complexity
of many African languages, which demands tai-
lored linguistic models that can capture inflectional
nuances and tonal variations (Kandybowicz et al.,
2018). The harms, however, extend far beyond
technical inadequacies. When languages spoken by
millions are marginalized in AI research, speakers

1The Ethnologue reports a similar range, though numbers
vary with new surveys.

of these languages are effectively excluded from
the benefits of modern technology.

4 Context-Preserving Pipeline

A dedicated and reliable system for obtaining qual-
ity data in the context of African NLP is a rarely
explored topic. This is a result of some MTs per-
forming better in some languages and poorly in
others. To this end, we develop a simple and ef-
fective pipeline (Figure 1) that ensures data quality
and continual updates through a method of model
ensembling and substitution.

We start by using the Flickr8k dataset (Ho-
dosh et al., 2013) as input to several publicly
available machine translation (MT) models and
build a cascade of ensembles where each model
is capable of translating at least one African lan-
guage. We generate and evaluate similarities be-
tween embeddings using language-agnostic BERT
(LaBSE)(Feng et al., 2020), compared to other
methods like back-translation from the target lan-
guage to English, eliminates the need for computa-
tionally expensive resources.

For languages supported by multiple models,
we measure the cosine similarity between their
translations and retain the version with the high-
est score in the final dataset. To ensure ongoing
quality, we introduce a dynamic replacement mech-
anism: when newer models outperform previous
ones, that is, yielding higher similarity scores, the
corresponding translations are updated accordingly.
The novelty of our approach lies in the flexibility of
our framework, which allows swapping target lan-
guage translations when better-performing models
become available, ensuring continuous improve-
ment without compromising data integrity.

As a final step to ensure the quality of the dataset,
we used heuristic filters to filter out suspicious
translations. Inspired by the prior work on unified
text-to-text transformer (Raffel et al., 2020) and
work on developing heuristic filters through data
inspection (Penedo et al., 2025), we devise a mech-
anism to select close to accurate translations.We im-
plement a method of manually inspecting and elim-
inating translations that fall below a set threshold.
From observation in translated languages, manual
human evaluation in a sample revealed translations
that adequately describe an image without loss of
context, had cosine similarity scores above 0.53.
We then used this as the threshold to select quality
translations.



Dataset Name #Samples #lang Include African Lang #African Langs

Multi30K ((Elliott et al., 2016)) 30,014 2 × -
Crossmodal-3600 (Thapliyal et al., 2022) 3,600 36 × -
COCO-CN (Li et al., 2019) 20,342 2 × -
WIT (Srinivasan et al., 2021) 11.5M 108 ✓ unspecified
ArtELingo-28 (Mohamed et al., 2024) 2,000 28 ✓ 10+

AFRICAPTION (Ours*) 8K 21 ✓ 20

Table 1: Comparison of multilingual image-text datasets with respect to African language coverage. AFRICAPTION
(Ours) is the only dataset to explicitly support 20 African languages, providing broader coverage than existing
benchmarks.

For our dataset, the final collection D consists
of translations t such that the similarity score d(t)
lies in the interval [0.53, 0.98]:

D = {t | d(t) ∈ [0.53, 0.98]}

This method allows for data quality assurance even
for languages with limited access to human eval-
uators, which is crucial for creating datasets of
under-represented languages with low resources.

5 AFRICAPTION Dataset

5.1 Data Selection and Translation

The Flickr8k dataset, which consists of 8,000 im-
ages, each accompanied by five human-generated
captions, was chosen particularly for its dense cap-
tions upon human review of a few samples.

Caption Selection To compress the dataset to
as minimal as possible, a single caption had to be
selected among the five to represent a single image.
We assume that the best captions will have seman-
tic similarities when compared with each other. We
compute a cosine similarity score between all the
pairs of captions, and the caption with the highest
score is selected in order to avoid potential biases
inherent in any singular selection method. In order
to ensure preservation of context, which is vital for
multilingual tasks, we utilize the pre-trained Sen-
tenceBERT model from the sentence transformer
(Reimers and Gurevych, 2019) to generate vector
representations of the captions.

Translation Process Leveraging the individ-
ual translation capability of multiple machine trans-
lators, we experimented with SoTA models that
support African languages, proven by literature to
have a par performance. Our experiment utilized
NLLB200 (Team et al., 2022), M2M100 (Fan et al.,
2020) and Azure Translate (Microsoft, 2023), of
which the first two are publicly available models.

5.2 Quality Assurance

To assess the quality of translations in AFRICAP-
TION, we adopted a two-pronged approach: (1)
an automated similarity evaluation using a back-
translation method and (2) a human evaluation to
ensure contextual fidelity.

Automatic Evaluation The automatic process
leveraged a back-translation strategy using the
NLLB200 (Team et al., 2022) MT model. We trans-
lated captions from English to target languages
and then back to English. The cosine similarity
score between the original caption and the back-
translated caption was calculated between the em-
beddings of both the original and translated cap-
tions. To preserve context, embeddings were gener-
ated using the SentenceBERT model as described
in our caption selection process 5.1.

Human Evaluation To complement automatic
evaluation, we conducted a human evaluation study
on four languages: Yoruba, Igbo, Hausa, and Ewe.
We chose these languages based on proximity to
communities where these languages are spoken
and to cover a mix of high vs. low-resource sce-
narios. Yoruba and Hausa are widely spoken and
have relatively better MT support (we used Azure
and NLLB for Yoruba, NLLB for Hausa), whereas
Igbo and Ewe are less supported (both used NLLB;
Ewe is especially low-resource).

We gathered responses from native speakers of
these languages. In total, 102 Yoruba, 38 Igbo,
37 Hausa, and 2 Ewe ratings were collected. We
removed a small number of responses that were
obviously invalid (e.g., respondents giving all 1’s
or all 10’s without variation, which we suspected
was not genuine).

5.3 Results

Table 2 shows our effort to evaluate automatic trans-
lations using BLEU, which are commonly applied
metrics in MTs (Papineni et al., 2002; Popović,



Language BLEU Language BLEU

yor 0.4460 kin 0.5978
amh 0.6307 lua 0.3268
afr 0.3688 kon 0.3496
ibo 0.4945 bem 0.3571
lin 0.2163 dik 0.3714
hau 0.4434 kik 0.2432
cjk 0.4696 ewe 0.3887
lug 0.4468 kam 0.4896
fuv 0.4793 kmb 0.5262
kab 0.8565 dyu 0.5646

Table 2: BLEU scores for the AfriCaption dataset across
20 African languages. Language codes follow ISO 639-
3 standards.

2015). Although these metrics capture broad qual-
ity trends, we observe considerable variance in
translation quality across languages when evalu-
ated using BLEU (some languages score relatively
high while others remain lower). A key factor is
that many MT systems perform better in the for-
ward direction (Eng → target) than in reverse (tar-
get → Eng). Consequently, our back-translation
approach may yield artificially low scores, espe-
cially for morphologically complex or extremely
low-resource languages (Graham et al., 2019). We
therefore complement BLEU with semantic sim-
ilarity checks and human evaluations for a more
robust quality assessment.

Analysis on Human Evaluation We found
Yoruba to have the highest quality of translation
based on human evaluation, Hausa being the worst,
and Igbo and Ewe intermediate (Figure 3, left).
The standard deviation of scores was about 2.5–3.0
for all, showing quite a spread of opinions or vary-
ing quality across different captions.

Yoruba demonstrated the highest consistency,
with an average ICC of 0.68 (moderate agreement).
Igbo and Hausa showed lower agreement, with
ICCs of 0.52 and 0.41, respectively. Categorical
agreement mirrored ICC trends. Yoruba achieved
Fleiss’ kappa κ = 0.32 (moderate), while Igbo and
Hausa scored κ = 0.32 and κ = 0.32, respectively.

The moderate agreement for Yoruba aligns with
its relatively robust machine translation (MT)
pipelines (NLLB and Azure Translate) and syntac-
tic simplicity. For instance, the phrase “red-seated
swing” translated smoothly as “ìyípadà ìjókòó
pupa” (Yoruba), receiving 78% excellent ratings.
In contrast, Hausa’s low agreement correlates with
grammatical errors (e.g., “kayaks” mistranslated
as “teku,” a general term for “sea”) and limited
MT training data (Costa-Jussa et al., 2022). Igbo’s

bimodal scores likely stem from inconsistent han-
dling of idiomatic phrases, such as “taking a swing”
translated literally as “ewere swing” (Igbo), which
41% of raters deemed Poor.

Yoruba translation misinterpreted “taking a
swing”; a tricky idiom, leading to confusion. Sim-
ilarly in Hausa, “Three people participate in rock
climbing.” received a low 4.4 average; the Hausa
translation apparently lost the idea of “rock climb-
ing” (perhaps translating literally in a strange way).
On the other hand, Hausa raters gave 8.6 on av-
erage to “Women walking down the street.”, in-
dicating that simple captions were handled well.
Igbo showed a polarized trend: several captions
were rated very high (∼8.0–8.3) but a few were
low (∼4.6–5.4). This suggests the Igbo MT some-
times produced excellent results and sometimes
failed, perhaps due to inconsistent training data
coverage for certain vocabulary. Ewe data is too
sparse to draw strong conclusions, but interestingly,
the two Ewe evaluators disagreed on many items
(one gave much lower scores than the other), re-
flecting subjectivity or possibly differences in di-
alec. The human evaluation performed validates
that AFRICAPTION machine-translated captions
are generally understandable and contextually rele-
vant, though not flawless. They provide a realistic
testbed: models trained on or evaluated against
these captions will encounter some “noise” or er-
rors as evidenced in our model’s output.

6 AFRICAPTION Model

AFRICAPTION model is a vision-encoder–text-
decoder model that integrates a pre-trained vision
encoder with a pre-trained sequence-to-sequence
language model’s decoder (Figure 2), designed
specifically for multilingual image captioning in
low-resource African languages. Given an input
image and a designated language code, AFRICAP-
TION generates captions autoregressively, produc-
ing text in the specified target language. Our
model is capable of generating captions in up to
20 African languages listed in Section 5, thereby
addressing a critical gap in image captioning for
low-resource languages. AFRICAPTION consists
of three components: SigLIP’s Vision Encoder,
NLLB Decoder and a linear projector.

6.1 Encoder

For our vision encoder, we use the publicly avail-
able multilingual variant of SigLIP’s (Zhai et al.,



Languages

afr amh hau ibo lug lin kin yor cjk dyu

BLEU 71.12 41.03 22.24 39.35 32.74 39.03 18.28 34.85 0.92 0.72
ChrF++ 82.32 61.96 42.20 60.85 54.54 59.68 38.21 55.56 15.03 13.31

dik ewe fuv kam kab kmb kik kon lua bem

BLEU 4.22 1.08 1.31 1.55 0.50 0.44 1.68 0.16 0.76 1.16
ChrF++ 20.24 14.57 15.89 17.64 14.26 13.82 17.29 14.77 15.51 16.64

Table 3: Translation quality across languages measured by BLEU and ChrF++ scores. Language codes (e.g., amh for
Amharic, afr for Afrikaans, etc.) follow ISO 639-3 standards. Full language definitions are provided in Appendix 6.

Figure 2: AFRICAPTION model architecture.

2023) image encoder, which is tailored to support
multiple languages. This model employs sigmoid
loss instead of softmax loss for contrastive pretrain-
ing of image-text pairs, demonstrating state-of-the-
art performance, particularly given its small size

6.2 Decoder

For our text decoder, we use the publicly available
NLLB (Costa-Jussà et al., 2022) checkpoint,
which covers 200 of the world’s spoken languages
(20 of which AFRICAPTION focuses on). In our
setup, the NLLB decoder generates a sequence
of wordpiece tokens conditioned on the visual
features extracted by the SigLIP encoder. The
NLLB decoder produces output sequentially and
employs an attention masking mechanism that
restricts each generated token to attend only to
previously generated tokens, thereby ensuring
an autoregressive generation process. NLLB’s
tokenizer handles language-specific tokenization.

6.3 Vision-Encoder–Text-Decoder Integration

The image encoder and text decoder are inte-
grated using a modified version of Hugging Face’s
VisionEncoderDecoderModel class. The visual fea-
tures produced by the encoder are projected to
match the decoder’s hidden size, ensuring com-

patibility when performing encoder–decoder cross-
attention. During training, the model prepares the
decoder’s input by shifting the target sequence to
the right—ensuring that each output token only at-
tends to preceding tokens, as required in sequence-
to-sequence learning. Finally, an lm_head linear
layer is applied to project the decoder’s hidden
states to the size of the vocabulary, and a softmax
function produces the probability distribution over
the target tokens. This design allows for seamless
encoder–decoder cross-attention and end-to-end
training, and it is relevant for our task of choosing,
image captioning.

6.4 Training

The training of AFRICAPTION follows a two-stage
fine-tuning training technique, which we detail in
this section.

Stage 0: Selective layer pretraining Firstly, we
take the publicly available checkpoints of the pre-
trained models off-the-shelf and integrate them us-
ing a custom Hugging Face VisionEncoderTextDe-
coder class to include an LM Head at the final layer
of the NLLB decoder (Costa-Jussà et al., 2022).
We train the last layer of the vision encoder model
along with the linear projection layer with the aim
of aligning the image and text modalities. SigLIP
(Zhai et al., 2023) traditionally uses an encoder lan-
guage model; however, most language models with
African language translation capabilities are either
decoder-only transformers or encoder-decoder lan-
guage models. We opt for the NLLB decoder, as it
has decent African language translation capabilities
compared to other multilingual language models.
We train for 40 epochs, using an lr of 2.0e-5 and a
batch size of 16 on an L4 GPU.

Stage 1: Multimodal Pretraining In this
stage, we pretrain the resulting model from Stage
1 for the image captioning task. The goal is to
have a model that has acquired image captioning



skills and be able to generate correct image
captions in 20 African languages. We do not
freeze any layer in our models like we did in the
first stage. It is common practice to keep the
image encoder frozen during this stage due to
findings in LiT [132], reporting multimodal tuning
of pretrained image encoders degrading their
representations. Studies like CapPa (Tschannen
et al., 2023) and (Wan et al., 2024) have shown
that captioning tasks can provide valuable signals
to image encoders, allowing them to learn spatial
and relational understanding capabilities that
contrastive models like CLIP or SigLIP typically
lack. Hence, we do not freeze the image encoder.
We use a slow linear warm-up for our learning
rate and an inverse root decay after the warm-up
phase, which helps to first stabilize training (via
warm-up) and then maintain a slowly decreasing
learning rate to allow the model to train its
parameters over time. We train for 30 epochs using
an lr of 2.0e-5 and a batch size of 16 on an L4 GPU.

6.5 Results and Analysis

The model demonstrated steady improvement
across training epochs, as evidenced by the progres-
sive reduction in both training loss and validation
loss, indicating an overall improvement in model
confidence and generalization.

Model Lang Bleu Cider Spice

Pangea amh 0 2.642e-08 2.750e-3
igb 0.0014 1.127e-07 4.981e-3

AfriCaption afr 0.8387 8.3207 0.8358
amh 0.7768 7.6630 0.7906
bem 0.4813 4.4306 0.4952
cjk 0.2167 1.7945 0.1977
dik 0.2521 2.0666 0.2009
dyu 0.1732 1.3900 0.2288
ewe 0.2262 1.6527 0.1790
fuv 0.3552 2.1234 0.2192
hau 0.8567 8.4716 0.8435
ibo 0.8506 8.4087 0.8433
kab 0.1019 0.7688 0.0899
kam 0.1691 1.2574 0.1493
kik 0.1844 1.5548 0.1538
kin 0.7753 7.5940 0.7791
kmb 0.2407 1.9489 0.1968
kon 0.4129 3.4451 0.3728
lin 0.4044 3.6024 0.3807
lua 0.3017 2.6935 0.3162
lug 0.5156 5.0911 0.5364
yor 0.8212 7.9930 0.8127

Table 4: Performance Comparison between Pangea and
AFRICAPTION per language.

Table 4 presents a performance comparison be-
tween the AFRICAPTION model and Pangea model,
a state-of-the-art, open-weight, multilingual mul-
timodal model across BLEU, CIDEr, and SPICE
metrics. Table 5 shows our models’ output and it
effectively captures the context of the images and
generates complete sentences. In some instances,
it produces words that are semantically similar to
those in the ground truth captions, while in others,
it omits one or two words within the caption. For
the English translations, we highlight missed or
unrelated words in red, indicating that they do not
align with the image or the ground truth caption.
Words that are contextually similar such as verb
tense variations (e.g., a present-tense verb in the
ground truth appearing in past tense in the model’s
output) are marked in yellow to reflect their near-
equivalence in meaning.

7 Discussion

Our results show that the model is capable of gener-
ating image captions in a variety of African lan-
guages, achieving high-quality outputs in some
cases while facing challenges in others. It con-
sistently outperforms the Pangea model across the
two overlapping languages; see the detailed table in
Table 4. However, performance still varies, reveal-
ing broader limitations in existing tools for African
language processing. These findings underscore
the ongoing need for more robust multilingual AI
systems, particularly for low-resource settings.

A key factor contributing to this disparity is the
uneven representation of African languages in cur-
rent “massively multilingual” MT models. Lan-
guages like Hausa and Yoruba, which have a rel-
atively stronger digital presence and were likely
better represented in training data, yielded better
results compared to languages like Ewe or Dinka.
This suggests that not all African languages benefit
equally from such models, reinforcing the need for
more inclusive and balanced training datasets. This
raises an important question: can we bootstrap bet-
ter translations by leveraging closely related lan-
guages? For example, the strong performance in
Luganda, a Bantu language, suggests the potential
to improve captions for other Bantu languages like
Zulu or Xhosa if extended to those languages. Our
dataset provides a benchmark for such explorations,
offering a foundation for testing fine-tuned MT
models on captioning tasks across diverse African
languages.



8 Conclusion

We introduced AFRICAPTION, a family of the mul-
tilingual multimodal model that generates image
captions in 20 African languages and the dataset
that consists of 8k image-text samples in 20 African
languages and English. Together, the model and
dataset address the problem of exclusion of African
languages in the vision-language domain, laying
the foundation for broader inclusivity in multi-
modal AI. AfriCaption serves as a foundation for
future research in multilingual image captioning
and multimodal learning. We make our dataset and
model available publicly on hugging face and we
hope this spurs the development of more inclusive
AI models that can understand and caption images
in the languages spoken by the different communi-
ties in Africa.

Moving forward, we plan to adopt a participa-
tory approach, similar to Masakhane, to refine and
validate captions. We also advocate incorporating
culturally specific imagery and descriptions to en-
sure models resonate with diverse African contexts.
Ultimately, AFRICaption is a pivotal step toward
bridging the multimodal resource gap and fostering
equitable, multilingual AI systems.

9 Limitations

While AFRICAPTION significantly advances mul-
tilingual AI inclusivity, it also highlights systemic
gaps in low-resource language research. Transla-
tion quality remains uneven, for example, Yoruba
outperforms languages like Hausa, Ewe, or Dinka
due to richer digital representation, and standard
back-translation evaluation metrics (e.g., BLEU)
often miss semantic nuances in morphologically
complex languages. Furthermore, limited commu-
nity involvement in human evaluation may over-
look subtle, culturally nuanced errors.

Beyond these methodological gaps, this work
also lacks cultural awareness. While our dataset
and models represent a step toward enabling im-
age captioning in African languages for basic daily
conversations, they do not yet capture the deeper
cultural context embedded in language use, such as
idiomatic expressions, social norms, or culturally
specific references. Future iterations of this work
would benefit from stronger integration of cultural
perspectives, ensuring that captions reflect not only
linguistic accuracy but also the lived realities of
African communities.
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A Appendix

Survey on Dataset - Human Evaluation

Figure 3: A plot of the average human score per lan-
guage with error bars denoting standard deviation.

We created evaluation surveys where native
speakers were presented with the original English

caption and the translated caption in their language.
For each caption pair, we asked evaluators to rate
the translation’s adequacy on a scale from 1 to
10, with instructions that 1 means “completely
wrong translation,” 5 means “understandable gist
but with errors,” and 10 means “perfect translation
that preserves the full meaning.” We also asked
them to flag any catastrophic errors, like when the
translation says something entirely different from
the original caption.

Perceived Data Quality vs. Average Length: Fig-
ure 5 compares the average word count per lan-
guage caption in our dataset. It shows that our
dataset achieves a reasonable balance in caption
length across 20 African languages, with the En-
glish captions providing a baseline. The consistent
average word counts suggest that the translations
are neither too brief nor overly verbose, preserving
the essential information while ensuring readability.
According to previous studies (Singh et al., 2024),
balanced caption length is a key feature in prevent-
ing model bias in and improving interpretability.
This characteristic makes our dataset well-suited
for training models that need to generalize across
diverse linguistic contexts.

Figure 5: Average word count per language in the AFR-
ICaption dataset. The plot highlights variations in cap-
tion lengths across different languages.
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Table 5: Comparison of the groundtruth translations and our model’s output for 3 African Languages

Figure 4: Score distributions for Yoruba, Igbo, and Hausa. We observe that over 50% of Yoruba ratings were 8
or above, and ∼20% were perfect 10s. Hausa’s distribution is flatter, with a mode around 10 (16% of scores were
10) but also a substantial portion of low scores (1–4 ratings made up ∼35% of Hausa responses, compared to only
∼18% for Yoruba). Igbo’s distribution is bimodal – it has a high incidence of 9–10 scores (about one-third of Igbo
ratings were 9 or 10, similar to Yoruba) and a noticeable chunk of very low scores (1’s, 2’s, 3’s accounted for ∼21%
in Igbo, versus ∼9% in Yoruba). This bimodality aligns with the earlier observation of Igbo translations being
hit-or-miss



ISO 639-3 Language Name Countries (with Flags)

afr Afrikaans South Africa, Namibia

amh Amharic Ethiopia

hau Hausa Nigeria, Niger, Ghana, Chad, Cameroon

ibo Igbo Nigeria

lug Luganda Uganda

lin Lingala DR Congo, Rep. Congo, Angola, Central African Rep.

kin Kinyarwanda Rwanda, DR Congo, Uganda

yor Yoruba Nigeria, Benin, Togo

cjk Chokwe Angola, DR Congo

dyu Dyula (Jula) Burkina Faso, Côte d’Ivoire, Mali

dik Dinka South Sudan

ewe Ewe Ghana, Togo

fuv Fulfulde (Fula) Nigeria, Cameroon, Guinea, Senegal, Mali

kam Kamba Kenya

kab Kabyle Algeria

kmb Kimbundu Angola

kik Kikuyu Kenya

kon Kongo DR Congo, Rep. Congo, Angola

lua Luba-Kasai DR Congo

bem Bemba Zambia

Table 6: Languages and their definitions.

Languages

afr amh bem cjk dik dyu ewe fuv hau ibo

No. of Tokens 135336 148517 58640 19805 16042 2021 4734 8126 127429 152722
kik kab kam kon kmb lua lug lin kin yor

No. of Tokens 12494 2250 6035 15467 2757 16974 66018 22109 120542 172016

No. of Characters 425977 294622 206608 75104 51995 6745 14967 27041 478142 478600
kik kab kam kon kmb lua lug lin kin yor

No. of Characters 41032 6417 19750 60924 9890 67607 219135 88618 420213 461489

Avg. Length 3.15 1.98 3.52 3.79 3.24 3.34 3.16 3.33 3.75 3.13
kik kab kam kon kmb lua lug lin kin yor

Avg. Length 3.28 2.85 3.27 3.94 3.59 3.98 3.32 4.01 3.49 2.68

Table 7: Statistical overview of language characteristics. Language codes: afr (Afrikaans), amh (Amharic), bem
(Bemba), cjk (Chokwe), dik (Dinka), dyu (Dyula), ewe (Ewe), fuv (Fulfulde), hau (Hausa), ibo (Igbo), kik (Kikuyu),
kab (Kabyle), kam (Kamba), kon (Kongo), kmb (Kimbundu), lua (Luba-Katanga), lug (Luganda), lin (Lingala), kin
(Kinyarwanda), yor (Yoruba).
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