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ABSTRACT

Reward Models (RMs) play a crucial role in aligning large language models
(LLMs) with human preferences, enhancing their performance by ranking out-
puts during inference or iterative training. However, the degree to which an RM
generalizes to new tasks is often not known a priori. For instance, some RMs
may excel at scoring creative writing, while others specialize in evaluating math
reasoning. Therefore, using only one fixed RM while training LLMs can be sub-
optimal. Moreover, optimizing LLMs with multiple RMs simultaneously can be
prohibitively computationally-intensive and challenging due to conflicting signals
from different RMs, potentially degrading performance. To address these chal-
lenges, we introduce LASER (Learning to Adaptively Select Rewards), which
iteratively trains LLMs using multiple RMs, selecting and utilizing the most well-
suited RM for each instance to rank outputs and generate preference data, framed
as a multi-armed bandit problem. Our empirical results on commonsense and
math reasoning tasks demonstrate that LASER can boost iterative LLM optimiza-
tion by optimizing for multiple RMs, improving the absolute average accuracy of
Llama-3-8B over three datasets by 2.67% over training with ensemble RM scores
while also showing superior training efficiency (e.g., a 2× speedup). Moreover,
on WildChat, a benchmark of instruction-following prompts in open-form gen-
eration, we find that using Llama-3-8B LASER leads to a 71.45% AlpacaEval
win rate over sequentially optimizing multiple RMs. Extending to long-context
generation tasks, we find that on Llama-3-8B, LASER achieves an average im-
provement of 2.64 F1 points on single-document QA tasks and 2.42 F1 points on
multi-document QA over random RM selection when used with best-of-n sam-
pling. Our analysis shows that LASER is robust to noisy rewards and generalizes
to multiple settings. Finally, we demonstrate that LASER’s RM selection changes
depending on the underlying task or instance, and we verify the presence of con-
flicting preferences from multiple RMs, which can be mitigated using LASER.

1 INTRODUCTION

When comparing two responses, human preferences often differ depending on factors like the under-
lying task, who the annotators are (Santurkar et al., 2023; Ahmadian et al., 2024), and how prefer-
ences are elicited (Bansal et al., 2024). Therefore, models of preference data are also likely to differ
and might include noise as well as any biases contained in the preference data used to train them.
This can pose a problem when using such models as “reward models” (RMs) to align large language
models (LLMs) to human preferences using reinforcement learning with human feedback (Chris-
tiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022). Recent work has focused on aligning
LLMs through iterative training, using reward models as proxies for human judgment (Gulcehre
et al., 2023), leveraging the LLM to act as an implicit RM or judge (Yuan et al., 2024b; Chen et al.,
2024b), or using the gold answer to compute a reward (Pang et al., 2024). Under this paradigm, there
are three stages to training LLMs: (i) generating multiple responses to a query from an LLM; (ii)
scoring the responses with an RM to create preference data with better and worse responses; and (iii)
using model-generated preference data to further train the LLM. Note that for most domains, the
gold reward is not readily available, making the quality of the RM or the degree to which it reflects
human preferences (i.e., the gold reward) crucial to improving LLM performance. Indeed, several
prior efforts aim to train new RMs that better reflect human preferences (Lambert et al., 2024).
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However, selecting one reward model to guide LLM training can be suboptimal for three main rea-
sons: (1) A single RM may not be generalized to heterogeneous sets of examples. RMs are typically
designed to reflect specific objectives and may be trained on offline preference datasets. Thus, an
RM that performs well on one dataset or domain may not generalize effectively to others, leading to
misaligned outputs across different tasks or domains (Kirk et al., 2023; Chen et al., 2024a; Casper
et al., 2023; Gao et al., 2023). For instance, creativity plays a key role in evaluating the quality of a
story, whereas correctness is more important in scoring math solutions. (2) RM performance leader-
boards (e.g., Lambert et al. (2024)) that rely on human-annotated preferences can have unreliable
rankings due to the presence of incorrect and ambiguous preferences (Yu et al., 2024; Hejna et al.,
2023). (3) Lastly, over-optimization on a particular RM can lead to reward hacking (Skalse et al.,
2022; Rafailov et al., 2024a), resulting in minimal gain or even drops in downstream performance.

To mitigate these issues, a prevalent approach is to ensemble multiple reward models (Coste et al.,
2023; Eisenstein et al., 2023; Zhang et al., 2024; Ramé et al., 2024). However, these methods also
come with significant challenges: as RMs are typically based on LLMs, training with multiple RMs
often requires loading and managing several large models simultaneously, which can be computa-
tionally expensive, becoming infeasible as models increase in size. Moreover, aggregating multiple
RM scores together is susceptible to noisy rewards or conflicting preferences from RMs, especially
RMs that are not well-suited for the specific task (Rita et al., 2024). This, in turn, can degrade the
quality of the preference data, leading to low-quality updates during training (Wang et al., 2024a).
Finally, manually selecting a subset of RMs to combine is a labor-intensive process that involves
training many different variants on a combinatorially large set of RM groupings. This underscores
the need for more efficient methods that efficiently and robustly optimize LLMs using multiple RMs.

In this work, we introduce Learning to Adaptively Select Rewards (LASER), that, given a set of
RMs, adaptively and efficiently selects a suitable RM for each instance by casting selection as a
multi-armed bandit problem (Vermorel & Mohri, 2005; Audibert et al., 2009). Specifically, during
training, the RM (arm) is chosen dynamically based on contextual information about the model’s
performance and past interactions. The LLM is then fine-tuned based on the RM-annotated data,
and the bandit’s parameters are updated accordingly to reflect the performance of the LLM after
training on preference data annotated using selected RM (see Fig. 1). By design, LASER’s adaptive
instance-level RM selection (c.f. Sec. 3) addresses the three shortcomings of choosing one reward
model (lack of generalization, unreliable rankings, and over-optimization) and outperforms using
the same RM across all instances, yielding higher downstream performance and better generaliza-
tion. Moreover, unlike previous multi-RM methods that require simultaneously loading and running
multiple RMs (Ramé et al., 2024; Coste et al., 2023), our method selects one reward model at a time
(Sec. 4). This makes the training more efficient and improves performance by allowing the model
to adaptively focus on the most suitable RM for each specific instance or phase of training.

Empirically, we demonstrate the effectiveness of LASER for iteratively training LLMs using mul-
tiple RMs on three broad domains: reasoning, instruction-following in text generation, and long-
context understanding (Sec. 4.2). We show that on reasoning benchmarks such as StrategyQA (Geva
et al., 2021) (testing commonsense reasoning) and GSM8K (Cobbe et al., 2021) (testing math rea-
soning), LASER with Llama-3-8B improves absolute accuracy (averaged across 3 datasets) by
1.45% over the best single RM and 2.67% over an ensemble of RM scores. With Mistral-7B,
LASER outperforms RM agreement ensemble baseline by 1.65% in absolute accuracy. LASER
is also effective on general instruction-following: we show that using LASER with four strong
7B RMs from RewardBench to finetune Llama-3-8B on a subset of WildChat (Zhao et al., 2024)
beats LLMs trained with the best RM in the RM score ensemble and a sequential baseline, with
56.34% and 71.45% win rates (respectively) on length-controlled AlpacaEval (Dubois et al., 2024).
LASER also beats the RM score ensemble, with 72.69% and 73.27% win rates using Llama-3-8B
and Mistral-7B. Moreover, our results show the effectiveness of LASER’s RM selection strategy at
inference-time on long-form generation tasks; on LongBench (Bai et al., 2022), we find LASER
beats random RM selection baseline by 2.64 F1 points on single-document QA tasks and 2.42 F1
points on multi-document QA when using best-of-n sampling for Llama-3-8B. Our analysis reveals
that LASER is more efficient than sequential multi-RM and RM ensemble baselines in terms of
training time (wall-clock hours) by a factor of 3×, and 2×, respectively while being more robust
to noisy rewards and conflicting preferences from multiple RMs (Sec. 5). Finally, we demonstrate
that LASER effectively selects RMs based on the underlying instance and generalizes to multiple
settings, including out-of-distribution datasets, different training loss functions, etc.
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2 RELATED WORK

Multiple Reward Ensembles. Training large language models (LLMs) with multiple reward func-
tions is an emerging research area focused on aligning model outputs with complex objectives that
require diverse evaluation metrics. One prior approach involves using ensembles of multiple re-
wards (Ramé et al., 2024; Wu et al., 2024; Coste et al., 2023; Zhang et al., 2024; Wang et al., 2024b;
Jang et al., 2023; Eisenstein et al., 2023). Unlike these methods, which train multiple RMs or use
multiple RMs during LLM training, LASER selects only a single pretrained RM at each LLM train-
ing step. Not only is optimizing for one RM at a time more efficient, but it also avoids the problem
of having conflicting rewards (Rita et al., 2024). In Sec. 4.2, we show that LASER outperforms
multiple variants of optimizing LLMs with an ensemble of RMs aggregating scores (consistent with
Coste et al. (2023)) and based on the agreement between preferences from different RMs (similar to
Wang et al. (2024d)). Another line of work uses mixture-of-experts (MoE) techniques for training an
RM from multiple interpretable objectives (Wang et al., 2024c) or jointly training task-specific RMs
and a sparse MoE router (Quan, 2024). Instead of relying on static datasets with human-annotated
attributes for RM training (as Wang et al. (2024c) does), we employ existing RMs to train LLMs on
its own generations, a strategy that has been shown to be more effective (Ivison et al., 2024). Unlike
Quan (2024), who jointly train multiple RMs and sparse MoE router (requiring loading all models
at once), LASER implicitly and efficiently learns a sparse router and does not need to train RMs.
LASER performs RM selection via multi-armed bandits over existing off-the-shelf RMs with strong
performance on leaderboards (Lambert et al., 2024).

Iterative LLM Training. Recent works on training LLMs incorporate reinforcement learning with
human feedback (RLHF) due to its effectiveness in improving instruction following the ability of
LLMs over their pretrained counterparts (Ouyang et al., 2022; Bai et al., 2022; Touvron et al., 2023).
The standard RLHF training pipeline, which comprises finetuning the LLM on static datasets with
human-annotated preferences, is bottlenecked by the size and quality of annotated preference data as
well as the limited effectiveness of off-policy optimization (Xu et al., 2023; Xiong et al., 2024; Yuan
et al., 2024b; Guo et al., 2024). To remedy this, recent work focuses on training LLMs iteratively,
scoring the LLM’s generations to create feedback data for RLHF. This line of work obtains scores
either from gold labels (Singh et al., 2023; Pang et al., 2024), from a single RM (Gulcehre et al.,
2023), or from the generating LLM (Yuan et al., 2024b; Chen et al., 2024b). In contrast, we take
advantage of the abundance of publicly-available RMs and growing interest in developing RMs
(Lambert et al., 2024) by using multiple RMs. This has several advantages over past work: it
works in cases where gold labels are not available (e.g., generation tasks), deals with the three
issues associated with using a single RM (unreliable rankings, lack of generalizability, and over-
optimization), reduces the burden on the user to pick the right RM, and avoids problems stemming
from the inability of LLMs to judge their own responses for certain domains (Huang et al., 2023).

3 LASER: LEARNING TO ADAPTIVELY SELECT REWARDS

In this section, we describe LASER in detail. First, we expand on the training pipeline (in one
iteration) with a general reward function (Sec. 3.1). Then, in Sec. 3.2, we describe how LASER
dynamically selects an RM from a set of multiple RMs using MAB algorithms, i.e., how we dynam-
ically assign the reward function for a given instance or batch of instances. Finally, in Sec. 3.3, we
describe the overall training setup across iterations and specifically how we update the parameters
of the MAB at the end of each iteration. A detailed illustration of LASER is shown in Fig. 1.

3.1 TRAINING LLMS USING A REWARD FUNCTION

LASER involves training with multiple RMs using a multi-arm bandit (MAB), which selects one
model at a time. Therefore, we first describe how we train LLMs with generated data assuming a
single RM; this corresponds to the top-right in Fig. 1 (in blue).

Notation. Following Yuan et al. (2024b) and Pang et al. (2024), we adopt an iterative training
pipeline to finetune the LLM for M iterations. Let πm be the LLM at iteration m; we assume
that we start from an initial pretrained model π0. Let D = {x1, x2, . . . , xN} represent the training
inputs, where xi is an input query or prompt. Corresponding to each input query xi, we sample a
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Figure 1: Overview of LASER. Given the query, the multi-armed bandit selects an RM depending on
the underlying query and the bandit’s parameters (based on the usage of each RM and the expected
MAB reward). At iteration m, the LLM generates multiple responses that are scored based on the
selected RM for that query scoring each response. These responses are ranked into preference pairs,
which are then used to fine-tune the model. The same train loss Lm is used to update the parameters
of the LLM as well as the MAB for the next iteration, making the entire pipeline iterative.

set of n responses from the LLM at the current mth iteration as yi = {y1i , y2i , . . . , yni } ∼ πm(y|xi).
Let R⋆ : (yji |xi)→ R be a reward function that can score an LLM generated response yji to a query
xi based on how well it aligns with specific task objectives or instructions. Note that R⋆(.) can be
any reward function and may correspond to a single RM, one of the multiple RMs selected by the
MAB (as in our case), or even the true reward.

Generating Preference Pairs. We evaluate each response yji using the reward function R⋆(yji |xi).
By comparing the rewards assigned to different responses, we can form P preference pairs (ywi , y

l
i),

where ywi is preferred over yli if R⋆(ywi |xi) > R⋆(yli|xi), thereby building a preference dataset:1

Dpref = {(xi, y
w
i , y

l
i) | xi ∈ D, R⋆(ywi ) > R⋆(yli).

Training Loss Function (Lm). In each iteration, we fine-tune the model using the generated
preference dataset Dpref , resulting in M models π1, π2, . . . , πM . Specifically, we update the model
using the DPO loss (Rafailov et al., 2024b) for learning from the preference pairs. In this work, we
use the following loss functions for training the LLM at iteration m:

Lm
DPO(πm)=−E(xi,yw

i ,yl
i)∼Dpref

[
log σ

(
β log

πm(ywi |xi)

πm−1(ywi | xi)
− β log

πm(yli |xi)

πm−1(yli | xi)

)]
Lm

NLL(πm)=−E(xi,yw
i )∼Dpref

[
log πm(ywi |xi)

|ywi |

]
,

(1)

where πm, and πm−1 denotes the LLM in the current iteration m and the previous iteration m − 1
(used as the reference model in DPO loss). Following Yuan et al. (2024b), we use the standard DPO
loss for instruction-finetuning. Following Pang et al. (2024), we use the NLL loss on the preferred
responses as an additional regularizer for reasoning tasks, i.e., Lm=Lm

DPO + Lm
NLL. In Appendix C,

we show that LASER outperforms baselines irrespective of the choice of the loss function Lm.

3.2 BANDIT ALGORITHMS FOR ADAPTIVE RM SELECTION

Sec. 3.1 described the data creation and LLM training procedure for our method when using a gen-
eral RM (Fig. 1; top-right), which trains the LLM for a single mini-batch. Here, we describe the pro-
cess by which we adaptively select an RM for each batch of queries using bandit algorithms (shown
in Fig. 1-left, in yellow) and update the parameters of the bandit (more details in Appendix A.2).

1Following Pang et al. (2024), we randomly sample P = 10 pairs corresponding to each prompt xi. For
brevity, we omit this in the notation of Dpref ; but in our setting |Dpref | = P × |D|.
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Background: Multi-Armed Bandits. The multi-armed bandit (MAB) problem addresses the
challenge of balancing exploration and exploitation in sequential decision-making (Vermorel &
Mohri, 2005; Audibert et al., 2009). The goal is to maximize cumulative MAB rewards over time
by selecting arms that yield the highest MAB rewards.2 A decision-making agent faces a trade-off:
whether to exploit the arm with the highest known MAB reward based on past observations or ex-
plore other, less familiar arms to gather more information that might lead to even better rewards in
the future. In a contextual MAB setting, the agent is also provided with additional information in the
form of a context, such as current state and input, to help inform arm selection accordingly. LASER
uses MABs to dynamically identify the most suitable RM for each query xi through exploration
while simultaneously training the LLM. Pulling a previously un(der)-explored arm allows the MAB
to update its information about the relevance and quality of preference pairs built using that RM via
the MAB reward (discussed below).

RM selection in LASER. LASER uses mini-batch training for each iteration, i.e., we use MABs
to select a single RM for a batch of prompts xm,t for tth batch or training step of iteration m (to-
tal of T steps/batches in each iteration).3 Let the set of K reward models (or arms) denoted by
R = {R1, R2, . . . , RK}, where each Rk corresponds to a different RM. We employ LinUCB (Li
et al., 2010), a contextual bandit algorithm for the arm or RM selection. We choose LinUCB be-
cause it is a contextual bandit algorithm (i.e., it takes into account the context information), is easy
to incorporate into our framework, and provides a good trade-off between computational efficiency
and performance. Li et al. (2010) assume that the MAB reward – in our case, the cumulative train
loss function on the batch (Lm) at the given iteration m – can be modeled linearly as a function
of context features and computes the expected MAB reward of each arm with an upper confidence
bound to ensure exploration (Garivier & Moulines, 2008; 2011). In each step t, we have a batch of
input prompts xm,t for which we compute sentence embeddings, using the policy model πm, and use
the mean sentence embedding as the context c(t) to the MAB, i.e., c(t) =

∑
x∈xm,t

em(x)/|xm,t|,
where em(.) ∈ Rd yields the sentence embedding from the model πm. We calculate the embedding
for a prompt as the last token embedding from model πm (details in Appendix A.1). The learned
parameters of the LinUCB bandit include θ̂k ∈ Rd which represents the learned weights for the
features of each reward model and Ak ∈ Rd×d (a covariance matrix) and a bias vector bk ∈ Rd

corresponding to each arm or RM Rk. We initialize the parameters for LinUCB by randomly initial-
izing bk and setting parameter Ak to the identity matrix. Based on the LinUCB algorithm, for each
batch, the selected RM R⋆

t is determined by:

R⋆
t = Rj , such that j =arg max

k∈[1,K]

(
c(t)⊤θ̂k + α

√
c(t)⊤A−1

k c(t)

)
, (2)

where θ̂k = A−1
k bk. Ak and bk are updated based on the MAB reward for each RM, which corre-

sponds to the normalized negative train loss −L̂m (described in detail in Appendix A.2):

Ak ← Ak + c(t)c(t)⊤; bk ← bk − L̂m(t)c(t). (3)

3.3 LLM AND BANDIT TRAINING IN LASER

A key aspect of our approach is the generation of new preference training data in each iteration using
the generations of the LLM itself and the RM selected by the MAB. Fig. 1 presents our training
procedure, broken down into three stages: (i) the MAB selects an RM R⋆

t (see Sec. 3.2; Fig. 1
left), generating preference pairs by scoring the LLM’s outputs using the RM (Fig. 1 (top-right)),
and parameter updates to the LLM and MAB. In this way, the model continuously learns from
its own outputs, guided by the selected reward model. After each LLM train step (i.e., one mini-
batch), the MAB’s parameters are updated based on the observed MAB reward, i.e., how much the
LLM’s loss decreased from using the selected RM. In the case of LinUCB, this involves updating the
parameter estimates bk, Ak (see Fig. 1; bottom in green). This entire process – selection of reward

2In order to distinguish between rewards or scores generated by RMs and the rewards used in MAB litera-
ture, we refer to the latter as “MAB rewards”.

3Note that LASER can switch between RMs at the instance level if the batch size is set to 1; however,
for the sake of efficiency, we batch instances together both for LASER and the baselines, as this reduces the
computational overhead associated with loading RMs onto the GPU.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

models, generation of new supervision data, fine-tuning, and bandit updates – repeats for a total of
M iterations (summarized in Algorithm 1).

LASER with Best-of-n Sampling. For settings where finetuning the LLM is not desirable or
feasible, LASER can also be applied to learn the MAB parameters without training the LLM. Rather
than fine-tuning the model with preference data, we employ best-of-n sampling (Lightman et al.,
2023; Sun et al., 2024), where multiple responses are generated, and the best one is selected based on
the RM. The bandit parameters are then updated using equation (3), with the MAB reward calculated
as the negative normalized NLL loss on the train data. This updated bandit can subsequently be
used for inference on the test set. This approach is particularly useful for tasks such as long-context
understanding, where training would be too computationally intensive (example setting in Sec. 4.2).

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Models. We conduct our experiments on the Llama-3-8B base (AI@Meta, 2024) and the Mistral-
7b-v3-instruct (Jiang et al., 2023) models. For training, all models are fine-tuned using Low-Rank
Adaptation (LoRA) (Hu et al., 2021) for efficiency. For both training and inference, we do 0-shot
prompting and sampling n=30 responses per prompt with temperature 0.8 (see Appendix A.1).

Reward models. We select K = 4 strong 7B RMs from RewardBench (Lambert et al., 2024),
which include Zephyr-7B-Alpha, Qwen1.5-7B-Chat, Eurus-7B-KTO, and OLMo-7B-Instruct. Fol-
lowing the pipeline outlined in Lambert et al. (2024), for these models, we compute the reward for
each response as the log likelihood of the RM for that response (details in Appendix A.1).

Datasets and Metrics. Our experiments cover a range of tasks and datasets (see Appendix A.1):

• Reasoning: Evaluating reasoning abilities is crucial for testing the model’s capacity to handle
complex, multi-step tasks and has presented a challenge to iterative preference optimization meth-
ods (Yuan et al., 2024b; Chen et al., 2024b). We train and evaluate on StrategyQA (Geva et al.,
2021), MMLU (Hendrycks et al., 2021b;a), and GSM8K (Cobbe et al., 2021).

• Instruction-Following: We further evaluate our method on heterogeneous tasks without gold
labels. We use user prompts from WildChat dataset (Zhao et al., 2024), which contains a collec-
tion of natural user-chatbot interactions. This dataset has five primary categories of instruction-
following prompts: creative writing, analysis, coding, factual information, and math reasoning.
Due to computational constraints, we randomly subsample 5K prompts from each category for
model training. We compare models trained with LASER against baselines (described below)
using length-controlled AlpacaEval (Dubois et al., 2024) that pairs responses from two different
LLMs and uses GPT-4 as a judge to pick the winner, accounting for the length of both responses.

• Long-Context Understanding: As finetuning LLMs on long-context inputs is computation-
ally intensive, we demonstrate the effectiveness of LASER using Best-of-n sampling on Long-
Bench (Bai et al., 2023) which consists of multiple tasks, such as single-document QA, multi-
document QA, summarization, and few-shot learning. For the QA and few-shot learning tasks, we
measure performance with F1 score, while for summarization we use Rouge-L (Lin, 2004).

Baselines. We compare our models against the following baselines:

• Best RM: From our collection of RMs, we pick the RM that corresponds to the best overall score
on RewardBench (Lambert et al., 2024): Zephyr-7B-Alpha. We use this single RM during training
(c.f. Sec. 3.1). This baseline reflects the performance gain a user could expect when selecting the
best RM from a leaderboard without knowing a priori how it generalizes to a particular domain.

• Avg. RM: Here, we perform single RM training over all the RMs in our collection and report
the average performance. A comparison with this baseline represents an expected gain from a
randomly-picked RM from a leaderboard.

• Random RM Selection: In this baseline, we randomly sample a single RM from the set of
RMs (from a uniform distribution) for each training batch in every iteration. This comparison
demonstrates whether, without prior knowledge of which RM is best suited for a downstream
task, LASER can outperform random sampling of RMs during training.
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Table 1: Performance on reasoning benchmarks. The baselines also include supervised fine-tuning
on human-written responses (SFT) as a reference for performance without preference optimization.
The highest accuracy is shown in bold, and the second-highest accuracy is underlined. Across both
Llama-3-8B and Mistral-7B models, LASER yields the highest accuracy for each task.

Method Llama-3-8B Mistral-7B

StrategyQA GSM8K MMLU Avg. StrategyQA GSM8K MMLU Avg.

SFT 80.41 69.43 65.66 71.83 68.57 43.62 56.48 56.22
Best RM 84.29 73.16 67.15 74.87 70.06 45.81 62.04 59.30
Avg. RM 82.62 71.57 66.67 73.62 69.62 45.47 59.58 58.22
Random RM Selection 84.37 71.99 67.85 74.74 69.97 45.12 59.88 58.32
Sequential RM Selection 83.90 72.94 68.02 74.95 70.59 46.11 59.66 58.79
Classifier Selection 83.13 72.73 67.96 74.60 70.31 45.28 60.35 58.65
RM Score Ensemble 82.96 70.94 67.04 73.65 68.89 44.53 58.23 57.22
RM Agreement Ensemble 84.03 73.85 68.35 75.41 70.26 45.92 61.09 59.09
LASER (Ours) 85.96 74.75 68.24 76.32 73.06 46.89 62.27 60.74

• Sequential RM Selection: In training, this method explores different RM sequentially and based
on a set order in each iteration to examine their impact on model training, demonstrating that,
instead of optimizing with all RMs, LASER can adaptively select the best RM for each batch.

• RM Score Ensemble: We generate multiple responses for each query, which are scored (offline)
using each RM, and the preference dataset is created by averaging the scores across all RMs
(following Coste et al. (2023)); thus, comparing LASER with using all RMs simultaneously.

• RM Agreement Ensemble: Because ensembling scores through averaging is sensitive to the
absolute scores produced (which may differ between RMs), we follow Wang et al. (2024d) in en-
sembling through ranking and agreement. Specifically, we generate 32 responses for each query
and sample 100 pairs from each set of 32. We score each pair with each RM, constructing a pref-
erence dataset by choosing the 10 pairs for each query with the highest agreement of preference
rankings across RMs.

• Classifier Selection: To measure compare against a context-sensitive baseline that does not use
a MAB, we train a K-way classifier to perform RM selection using data from RewardBench (see
Appendix A.1). Specifically, for each query and RM, we compute the RM’s score of the annotated
preferred and disprefered response. The RM that assigns the correct preference ordering with the
highest difference between the scores of the preferred and dispreferred responses is chosen as the
RM label and used to train the classifier. While training the LLM, for each training input xi ∈ D,
we select the RM for building preference pairs based on this trained classifier.

Conceptually, the best RM baseline serves as an “exploit-only” setting that exploits the best avail-
able RM based on aggregate RewardBench scores. On the other hand, the random and sequential
selection baselines are “explore-only” in that they pick a new RM either randomly or via a prede-
fined sequence irrespective of the performance of each arm (RM). We train models for each baseline
to convergence. In particular, LASER, “Best RM”, “Avg. RM”, and RM ensemble baselines were
trained for 10 iterations. For both the sequential and random RM selection, we found LLM training
took longer to converge, and consequently, the model was trained for 25 iterations. The number of
iterations for each approach was chosen based on performance on the dev set (see Appendix A.1).

4.2 MAIN RESULTS

LASER achieves the best average accuracy on reasoning tasks. Table 1 shows our method con-
sistently outperforms the baselines across multiple benchmarks, particularly in the StrategyQA and
GSM8K tasks. For example, using the Llama-3-8B model, LASER yields the highest reasoning
accuracy average across all tasks, with improvements of approximately 2% absolute accuracy over
the sequential baseline on both GSM8K and StrategyQA. On the Mistral-7B model, LASER also
improves average accuracy by roughly 2% over the sequential baseline. Additionally, our method
outperforms the best RM (based on RewardBench) baseline in average accuracy by 1.45% and
1.44% absolute accuracy with Llama-3-8B and Mistral-7B, respectively. In cases where the best
RM is not known beforehand, LASER surpasses the performance of the average RM by 2.7% on
Llama-3-8B and using the RM Score Ensemble for each instance by 2.67% and 3.52% on Llama-
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Llama-3-8B LASeR vs. Best RM
56.34% 43.66%

LASeR vs. Seq. RM Selection
71.45% 29.55%

LASeR vs. Random RM Selection
78.33% 21.67%

LASeR vs. Classifier Selection
69.52% 30.48%

LASeR vs. RM Score Ensemble
72.69% 27.31%

LASeR vs. RM Agree. Ensemble
52.64% 47.36%

Mistral-7B LASeR vs. Best RM
58.72% 41.28%

LASeR vs. Seq. RM Selection
63.72% 36.28%

LASeR vs. Random RM Selection
70.61% 29.39%

LASeR vs. Classifier Selection
60.37% 39.63%

LASeR vs. RM Score Ensemble
73.27% 26.73%

LASeR vs. RM Agree. Ensemble
63.77% 36.23%

LASeR Wins Baseline Wins

Figure 2: Length-controlled AlpacaEval win rates comparing LASER against baselines on the
instruction-following tasks on WildChat using Llama-3-8B and Mistral-7B.
Table 2: LASER outperforms baselines in long-context understanding tasks with Llama-3-8B and
Mistral-7B. Sequential RM selection is not applicable in this setting as only inference is conducted.
For QA and few-shot learning tasks, we report F1 scores, and for summarization, we report Rouge-L.

Method Single-Doc QA Multi-Doc QA Summarization Few-shot Learning

Llama-3 Mistral Llama-3 Mistral Llama-3 Mistral Llama-3 Mistral

Base model 33.89 26.01 32.96 24.06 29.54 26.47 70.23 64.93
Best RM 35.12 28.93 35.83 27.93 34.26 30.42 71.79 68.34
Random RM Selection 34.83 27.44 35.19 25.38 31.57 27.19 70.91 66.72
RM Score Ensemble 34.51 26.75 35.52 25.71 32.38 28.17 70.34 66.97
LASER (Ours) 37.47 29.14 36.94 27.80 34.13 30.08 73.31 68.47

3-8B and Mistral-7B, respectively (in accuracy averaged over the three tasks). Moreover, this lower
performance by the RM Score baseline is not purely due to variance in the scores: LASER also
surpasses the RM Agreement Ensemble by 0.91% and 1.65% on Llama-3-8B and Mistral-7B. Ad-
ditionally, compared to using a frozen classifier for RM selection, training with LASER improves
average reasoning performance by 1.72% for Llama-3-8B and by 2.09% for Mistral-7B. Overall,
LASER provides consistent results while the underlined second-place models show inconsistent
performance across datasets and models. These results also emphasize the benefit of LASER, as it
eliminates the need to choose a different RM in advance or ensemble multiple RMs.

LASER beats baselines at instruction-following. Often, LLMs are used by large numbers of
people with a diverse set of queries, goals, and intentions, and their preferences vary based on
the underlying query. To demonstrate the effectiveness of LASER in such settings, we compare
the instruction-following performance in Fig. 2, i.e., AlpacaEval win rates, of LLMs trained us-
ing LASER with the baselines using WildChat. Specifically, with Llama-3-8B, LASER achieves
substantial win rates compared to the random and sequential baselines, with 78.33%, and 71.45%,
respectively. We also outperform training with the single best RM (per RewardBench) by a 56.34%
win rate. We hypothesize the lower win rate of the baselines stems from the inability of these
baselines to deal with conflicting signals from multiple RMs (see Fig. 5 for further analysis). The
results are also applicable to the Mistral-7B model, which achieved a win rate of 58.72% against the
best-RM baseline and a win rate of 63.72% against the sequential selection baseline. Lastly, across
models, LASER outperforms classifier-based RM selection (by a win rate of at least 60.37%) and
both Score and Agreement-based variants of RM ensembling by a win rate of at least 72.69% and
52.64%, respectively. Overall, these results highlight that LASER excels in tasks without gold la-
bels and performs consistently well at following instructions across various user queries, showcasing
its adaptability to diverse tasks.

LASER’s adaptive RM selection helps long-context understanding. Given the cost of train-
ing long-context systems, for LongBench (Bai et al., 2023), rather than finetuning a model using
RMs, we employ the selected RM to rerank generation in Best-of-n sampling (see Sec. 3.3). In
Table 2, we observe that LASER consistently outperforms the baselines across tasks on Llama-3-
8B and Mistral-7B except on summarization, where we achieve comparable performance. LASER
improves single-doc QA by 3.58 F1 points over the base Llama-3-8B model and 2.64 F1 points over
random RM selection. On multi-doc QA, our approach improves performance over the Llama-3-8B
and Mistral-7B models by ≈ 4 F1 points each, beating out random RM selection by 2.42 F1 points
on Mistral-7B. Furthermore, on few-shot learning tasks, LASER provides over 3 points gain in F1
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compared to the base model for both Llama-3-8B and Mistral-7B, surpassing the average RM per-
formance by up to 2.4 F1 points (on Llama-3-8B) and demonstrating its effectiveness across tasks.
Lastly, Table 2 demonstrates that LASER consistently outperforms the RM Score Ensemble base-
line across different long-context tasks and LLMs, e.g. a ≈ 3 F1 point improvement on single-doc
QA and few-shot learning tasks with the Llama-3-8B model.

5 ADDITIONAL ANALYSIS OF LASER
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Figure 3: Impact of the magnitude of Gaussian
noise on the accuracy of LASER and sequential
baseline on RewardBench.

Robustness to Noisy Rewards.
To examine the robustness of our method in the
presence of noisy or irrelevant rewards, we con-
duct the following analysis using Llama-3-8B
on GSM8K. We add varying amounts of Gaus-
sian noise σ to the rewards generated by RMs
sampled from the distribution N (0, σI), where
I is the identity matrix, to simulate noisy re-
wards when using RMs in out-of-distribution
settings. In addition to LASER using the Lin-
UCB algorithm (c.f. Sec. 3.2), we also use
Exp3 (Auer et al., 2002) designed for adversar-
ial bandit settings. In Fig. 3, we find that even
as the degree of noise in RM scores increases (from σ = 0.1 to 0.4), LASER’s selection strategy
continues to perform robustly, mitigating the effects of noise compared to the sequential baseline.
Specifically, LASER has an average performance drop of only 0.55% accuracy at a noise level of
σ = 0.3, whereas the sequential baseline suffers a 1.6% accuracy drop (3 times as much) under
the same conditions. Furthermore, LASER using Exp3, the most noise-robust method, maintains
consistent performance, with only a 0.26% accuracy drop.

5 10 15
Wall-clock time (hours)

70
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74

76
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Agree. Ensemble

LASeR

Score Ensemble

Classifier

Figure 4: Training efficiency of LASER
vs. different baselines on GSM8K.

Training Efficiency of LASER. As we noted in Sec. 4.1,
standard multi-reward baselines such as sequential and
random RM selection are slow to converge. We now
concretely show the accuracy-training time tradeoff in
Fig. 4 by comparing the GSM8K performance of train-
ing with LASER and different baselines, along with the
corresponding wall clock training time.4 We find that se-
quentially optimizing over each RM performs the worst
in terms of training time (3× of LASER) while RM score
ensemble has the worst accuracy (and takes 2× the train-
ing time of LASER). Moreover, LASER outperforms all
baselines in terms of accuracy while maintaining the low-
est training time, being more than twice as fast as the
second-best baseline, RM Agreement Ensemble.

Qwen Zephyr Eurus Olmo
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1 0.77 0.58 0.43

0.77 1 0.79 0.57

0.58 0.79 1 0.75

0.43 0.57 0.75 1

Qwen Zephyr Eurus Olmo

1 0.69 0.56 0.48

0.69 1 0.67 0.54

0.56 0.67 1 0.71

0.48 0.54 0.71 1

0.4 0.6 0.8 1.0

Figure 5: Agreement in preference rankings of
Llama-3-8B responses between RMs on MMLU
(left) and WildChat (right).

Presence of Conflicting Signals among RMs.
In Sec. 4.2, we find that LASER consistently
outperforms other multi-reward baselines across
a wide variety of tasks. We attribute some of
these performance gains to the inability of the
multi-reward baseline to handle conflicting sig-
nals, resulting in subpar training data from mul-
tiple RMs. To study this, we sample pairs of
outputs generated by Llama-3-8B on MMLU as
well as WildChat and evaluate the consistency
of response preferences measured by multiple
RMs. Since pair-wise preferences are binary,
we compute F1 to measure consistency with one
RM’s preferences serving as the reference. Fig. 5 (left on MMLU) reveals that Qwen and Zephyr

4Wall clock time is measured as the training time of a model (hours), keeping compute resource consistent.
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have the highest agreement rate at 0.77, while Qwen’s agreement with Eurus and Olmo is lower at
0.58 and 0.43, respectively. Zephyr also shows low agreement with Olmo at 0.57. This is expected
as Qwen and Zephyr are the top-performing models in reasoning according to RewardBench, while
Olmo ranks the lowest in reasoning ability among the four models. We observe similar trends in
agreement across RMs on WildChat (albeit with different agreement scores), which contains user
queries asked LLMs in the wild; see Fig. 5 (right). It appears that for more heterogeneous datasets
with more categories, the level of disagreement among RMs (or conflict) increases. This also high-
lights LASER’s advantages over multi-RM baselines that do not address conflicts in RMs and may
explain why choosing one RM in LASER and best RM baseline outperforms multi-RM ensembles.

LASER’s selected RM adjusts to the Query. Fig. 6 shows the rela-
tive utilization rates of each arm (i.e., RM) of the bandit on WildChat.

Creative Analysis Coding Fact Math0

20

40

Ut
iliz

at
io

n 
ra

te
 (%

)

Olmo Eurus Qwen Zephyr

Figure 6: Utilization (%) of each RM on
instruction-following queries from WildChat. The
bars are arranged based on their overall scores on
RewardBench, from lowest to highest. LASER
dynamically selects from different RMs depend-
ing on the nature of the underlying instance.

We observed vastly different RM utilization
rates depending on the underlying query within
the same dataset. We observe a similar trend in
LASER’s RM selection on LongBench in Ap-
pendix B (refer to Fig. 7). On queries requiring
creativity in LLM responses, we find that Olmo
and Eurus RMs are utilized about 20% more of-
ten than Qwen RM, despite Qwen RM being
ranked higher on RewardBench. This can be
explained by the fact that the Qwen RM largely
underperforms on the “chat” subsplit of Re-
wardBench (behind Olmo and Eurus by nearly
40 points in chat score). On the other hand,
Qwen RM is used roughly half the time for user
prompts involving math, while Olmo and Eu-
rus are used sparingly. This is consistent with
Qwen RM’s ranking on the “reasoning” split of
RewardBench, outperforming Eurus and Olmo RMs by 15-20 points. Note that LASER automat-
ically deduces these relative rankings of RMs and uses them depending on the underlying query
without having access to the RewardBench leaderboard. Therefore, RM utilization of LASER can
serve as an analysis tool for future work when assessing performance on untested domains.

Generalization ability of LASER. While recent work focuses on building RMs that reflect pref-
erences across domains, a large body of prior work developed a suite of evaluation metrics catered
to specific domains such as reasoning (Golovneva et al., 2022; Prasad et al., 2023). In Table 5 (Ap-
pendix C), we show that Llama-3-8B trained using LASER, to adaptively select relevant evaluation
metrics, outperforms baselines by 1.62% on average and can effectively filter underperforming met-
rics without degrading performance (c.f. Fig. 8). Furthermore, from Table 6, we observe that on
reasoning datasets LASER outperforms sequential RM optimization under four different choices of
loss functions: NLL, DPO (Rafailov et al., 2024b), DPO + NLL (Pang et al., 2024), and KTO (Etha-
yarajh et al., 2024). Finally, in Table 7, we find that models trained with LASER also exhibit the
highest generalization to out-of-distribution settings such as on CommonsenseQA (Talmor et al.,
2018) and MATH (Hendrycks et al., 2021c), reiterating the broad generalizability of LASER.

6 CONCLUSION

We present LASER, an adaptive method for selecting RMs and iteratively training LLMs using mul-
tiple RMs. We formulate the problem as a contextual multi-armed bandit problem, learning to select
the RM that most improves the LLM conditioned on the given input or query. We test LASER across
diverse settings, showing its utility on reasoning tasks, instruction-following tasks, and long-context
generation. Across domains, we show that LASER consistently results in superior performance,
whereas multi-RM baselines that select RMs using random or fixed strategies or ensemble multiple
RMs uniformly have lower and more variable performance. In our analysis, we show that LASER
is robust to noisy RMs, and flexibly uses different RMs depending on the domain, and generalizes to
multiple settings. Lastly, by selecting one RM at a time, LASER provides the best of both worlds:
consistently outperforming all baselines while still maintaining efficiency by only optimizing for
one model at a time.
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ETHICS STATEMENT

LLMs have been shown to reflect stereotypes, biases, and other negative traits contained in their pre-
training data (Weidinger et al., 2021). Consequently, finetuned LLMs (including those trained with
LASER) may also exhibit such undesirable traits in their generations during inference or training
and exhibit the same potential for misuse as any other finetuned model. While prior work have made
some headway in detecting such harmful content generated by LLMs (Inan et al., 2023), consider-
able research effort is needed in mitigating bias in LLMs. Conceptually, classifiers that detect risky,
harmful, or biased content in the text can also be used as an additional RM in LASER’s training to
reinforce avoiding bias via preference optimization. However, we do not study this in our work and
leave it to future work to explore these directions.

REPRODUCIBILITY STATEMENT

We provide comprehensive descriptions of our experimental setup, including the datasets, models,
hyperparameters in Appendix A.1 and prompts for each dataset in Appendix E used across all ex-
periments. The code for training and evaluation is included in https://anonymous.4open.
science/r/LASeR-5454/. Furthermore, all pre-trained RMs and datasets used in this work are
publicly available (link: MMLU, MATH, GSM8K, StrategyQA, CommonsenseQA, WildChat,
LongBench).
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Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In International conference on algorithmic learning theory, pp. 174–188. Springer,
2011.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies. Transac-
tions of the Association for Computational Linguistics (TACL), 2021.

Olga Golovneva, Moya Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. Roscoe: A suite of metrics for scoring step-by-step reasoning.
arXiv preprint arXiv:2212.07919, 2022.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. Pmlr, 2017.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

12

https://arxiv.org/abs/2305.14233


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference
on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021c.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels
in a changing climate: Enhancing lm adaptation with tulu 2, 2023.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lambert,
Noah A Smith, Yejin Choi, and Hannaneh Hajishirzi. Unpacking dpo and ppo: Disentangling
best practices for learning from preference feedback. arXiv preprint arXiv:2406.09279, 2024.

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer,
Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Per-
sonalized large language model alignment via post-hoc parameter merging. arXiv preprint
arXiv:2310.11564, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. arXiv preprint arXiv:2310.06452, 2023.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pp. 661–670, 2010.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, 2004. Association for Computational Linguistics.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, and Chang
Zhou. # instag: Instruction tagging for diversity and complexity analysis. arXiv preprint
arXiv:2308.07074, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Arjun Panickssery, Samuel R Bowman, and Shi Feng. Llm evaluators recognize and favor their own
generations. arXiv preprint arXiv:2404.13076, 2024.

Ramakanth Pasunuru, Han Guo, and Mohit Bansal. Dorb: Dynamically optimizing multiple rewards
with bandits. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 7766–7780, 2020.

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and Mohit Bansal. Receval: Evaluating reasoning
chains via correctness and informativeness. arXiv preprint arXiv:2304.10703, 2023.

Shanghaoran Quan. Dmoerm: Recipes of mixture-of-experts for effective reward modeling. arXiv
preprint arXiv:2403.01197, 2024.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea
Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment
algorithms. arXiv preprint arXiv:2406.02900, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.
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A EXPERIMENTS

A.1 EXPERIMENTAL SETTING

Training setup. For training with LoRA, we set the rank to 16 and alpha to 32. We fine-tune
the model for 10 iterations using a learning rate of 5e−6 and a batch size of 16. Following Pang
et al. (2024), we generate P = 10 pairs per problem for training with our loss in Sec. 3.1. For
all experiments, we trained each method to converge. The number of iterations for each method
was selected based on the observed convergence, with a performance metric threshold of 0.1 across
training batches on the dev set. The LinUCB algorithm has a total of 1.6M learnable parameters
(including matrix A and bias vector b). Our experiments are run on 4 RTX A6000 with 48G memory
each.

RewardBench. Following Lambert et al. (2024), rewards are computed with no reference model
and only use the log-likelihood of the reward model. For instance, given a reward model πR⋆ , the
reward for an input xi and response yi is calculated as: log πR⋆(yi | xi). There is no need for
normalization since we use this log-likelihood to rank the responses. Specifically, on GSM8K, we
computed the average and standard deviation of the rewards for the chosen responses as −4.2965
and 1.4156, respectively, and for the rejected responses as −5.9861 and 1.6546, respectively.

Details of RMs. We provide details for each chosen RMs:

• Zephyr-7B-Alpha: is a fine-tuned version of Mistral-7B model that was trained on on Ultra-
Chat (Ding et al., 2023) and UltraFeedback (Cui et al., 2023) using DPO.

• Qwen1.5-7B-Chat: is pretrained with human-style conversation data inspired by Ouyang et al.
(2022) along with questions, instructions, and answers in natural language, and post-trained with
both SFT and DPO using diverse prompts (Lu et al., 2023).

• Eurus-7B-KTO: is a fine-tuned version of Eurus-7B-SFT model using KTO loss on UltraInter-
act (Yuan et al., 2024a) and UltraFeedback (Cui et al., 2023).

• OLMo-7B-Instruct: is the instruct version of OLMo-7B base model and was fine-tuned using
UltraFeedback (Cui et al., 2023).

Extracting embeddings for a query using πm. To extract embeddings for a query using πm, we
first process the input query through the policy model πm. We use the embedding of the last token in
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the query as the representation for the query. The embedding is then used as input to the subsequent
bandit algorithm.

Baselines. Here we provide more details for baselines:

• Classifier Selection. We add an additional baseline that uses the RewardBench data to train a
classifier that maps queries to an RM C : Rd → R, whereR = R1, R2, . . . , RK is the set of RMs.
Specifically, to construct a dataset for training C, we take each query in the RewardBench data
along with its corresponding chosen and rejected responses. The RewardBench dataset contains a
total of 2985 examples across several categories including chat, safety, and reasoning. The dataset
is split into a 80/20 ratio for training/development sets, then the classifier is trained on the training
set and and validated on the development set. We use each RM to score these responses. The RM
that assigns the correct score with the highest difference between the chosen and rejected response
is selected to label the RM for that query. After training C, we use this classifier to select the RM
used for training the LLM in our pipeline. In the experiments, we use a three-layer MLP with
hidden dimensions of 2048 and 1024 and an output dimension of 4 (number of RMs), with ReLU
activation in each layer.

• RM Ensembles. While the ensemble methods generate scores from multiple RMs in a single
iteration for a fixed set of responses sampled at the start of the iteration, we still generate new
responses at each training iteration as part of the overall learning process. This ensures that the
training dynamically incorporates updated responses from the LLM.

Table 3: Number of examples in train, val, and test sets.

Task Dataset/Category Train Dev Test Total

Reasoning StrategyQA 1946 278 556 2780
GSM8K 6750 750 1000 8500
MMLU 11135 1591 3182 15908

WildChat Creative 3500 500 1000 5000
Analysis 3500 500 1000 5000
Coding 3500 500 1000 5000
Factual 3500 500 1000 5000
Math 3500 500 1000 5000

LongBench Single-doc QA 3534 505 1010 5049
Multi-doc QA 3500 500 1000 5000
Summarization 3500 500 1000 5000

Few-shot learning 3500 500 1000 5000

Datasets. For StrategyQA, GSM8K, and
MMLU, we divided each dataset into
training and test sets. The model is fine-
tuned on the training set and dev set, then
evaluate on the test set. For WildChat, the
dataset was split into a 70/10/20 ratio for
training, development, and testing. Fol-
lowing Zhao et al. (2024), prompt catego-
rization is done using a small off-the-shelf
classifier.5 For LongBench, we subsam-
ple 5K examples for three tasks: multi-
document QA, summarization, and few-
shot learning. Each category was split into
a 70/10/20 ratio, and the bandit model was
trained and validated on the training and
development sets and then tested on the
test set. We report the detailed number of instances for train, development, and test sets in Table 3.

A.2 DETAILS OF BANDIT ALGORITHMS

Algorithm for Sec. 3.3. We provide the detailed algorithm for Sec. 3.3 in Algorithm 1.

Algorithm 1 Bandit-based Reward Model Selection for LLM Training

1: Input: LLM M, reward models R = {R1, R2, . . . , RK}, dataset D = {x1, x2, . . . , xN},
bandit algorithm (LinUCB)

2: Initialize: Bandit algorithm parameters (e.g., θk for each RM)
3: for each training iteration m = 1, 2, . . . ,M do
4: for each batch or train step t = 1, 2, . . . , T do
5: Select reward model R⋆

t for time step t using equation (2) (LinUCB)
6: Sample a batch of samples from D and generate preference pairs following 3.1
7: Fine-tune πm using preference pairs in Dpref using Lm

8: Update bandit parameters based on equation (3) (LinUCB)
9: end for

10: end for

5Link: https://huggingface.co/valpy/prompt-classification
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Exp3. Exp3 is a non-contextual bandit algorithm designed for adversarial settings. It maintains a
probability distribution over the arms and selects arms based on the exponential weighting of past
rewards. The probability for choosing arm ak at round t is calculated as follows:

pk(t) = (1− γ)
exp(Sk(t))∑

ak∈A exp(Sk(t))
+

γ

K
,

where Sk(t) is the cumulative score for arm a up to time t and γ is a parameter controlling the
exploration rate.

The arm ak is selected by sampling the following categorical distribution

at ∼ Categorical(p1(t), . . . , pK(t)) (4)

The score for arm at is updated based on the observed normalized reward −L̂m(t) and the proba-
bility pk(t) of selecting that arm:

Sk(t+ 1) = Sk(t)−
L̂m(t)

pk(t)
· ⊮(at = ak), (5)

where ⊮(at = ak) is an indicator function that equals 1 if arm ak was selected at time t, and 0
otherwise.

MAB reward normalization. To maintain a consistent scale and magnitude MAB rewards across
training, we apply scaled rewards based on the quantiles of the reward history, following the method
outlined by Graves et al. (2017). Let L = {−Lm(1), . . . ,−Lm(t − 1)} represent the unscaled
reward history up to time step t. This history’s lower and upper quantiles are denoted as qlot and qhit ,
respectively. We set qlo

t and qhi
t to be 20th and 80th quantiles. The scaled reward,−L̂m(t), becomes:

−L̂m(t) =


0 if − Lm(t) < qlo

t

1 if − Lm(t) > qhi
t

−Lm(t)−qlo
t

qhi
t −qlo

t
otherwise.

B ADDITIONAL EMPIRICAL RESULTS

LASER adaptively selects from multiple RMs on LongBench. On LongBench (Fig. 7), we
observe distinct utilization patterns for the QA tasks vs. summarization and few-shot learning.
QA tasks exhibit nearly equal utilization of the top-2 RMs on RewardBench (Zephyr-7B-Alpha and
Qwen1.5-7B-Chat in decreasing order), with the utilization of the Qwen RM even exceeds that of
Zephyr RM for multi-document QA. In contrast, on summarization and few-shot learning the top
RM (Zephyr) is far more preferred by LASER with margins of 59% and 31% over the second-best
RM and the least performant RM being utilized less that 3% of the times.

Detailed results for each RM. Here, we provide detailed reasoning results for each chosen RM
where we use a single RM during training (c.f. Sec. 3.1) in Table 4. These results demonstrate
that Qwen1.5-7B-Chat outperforms other RMs on StrategyQA and MMLU, whereas on GSM8K
Zephyr-7b-alpha has the best performance with Llama-3-8B. However, LASER still yields the best
performance, outperforming all RMs by at least 1% on average across reasoning tasks, without the
knowledge of which RM is most suited for each task a priori.

C GENERALIZATION CAPABILITIES OF LASER

LASER Training with Domain-specific Evaluation Metrics. While recent works focus on build-
ing RMs that reflect preferences across domains, an extensive body of prior work develops a suite
of evaluation metrics catered to specific domains such as reasoning (Golovneva et al., 2022; Prasad
et al., 2023). To show that LASER can be used to select any kind of evaluation metric from a col-
lection of metrics during training, in Table 5, we present results with training LLMs on model-based
metrics from ROSCOE (Golovneva et al., 2022) by replacing RMs with informativeness, faithful-
ness, reasoning alignment, hallucination, common sense error, semantic, coherence and perplexity
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Figure 7: Utilization (%) of each RM on long-context understanding tasks. The bars are arranged
based on their overall scores on LongBench, from lowest to highest. LASER dynamically selects
from different RMs depending on the nature of the underlying instance.

Table 4: Performance of 4 RMs including OLMo, Eurus, Zephyr and Qwen1.5. Best is bolded,
second-best is underlined.

Method Llama-3-8B Mistral-7B

StrategyQA GSM8K MMLU Avg. StrategyQA GSM8K MMLU Avg.

OLMo-7B-Instruct 80.23 68.91 65.74 71.62 68.73 44.96 56.94 56.88
Eurus-7b-kto 81.15 71.13 66.26 72.84 68.64 45.37 56.96 56.99
Zephyr-7b-alpha 84.29 73.16 67.15 74.87 70.06 45.81 62.04 59.30
Qwen1.5-7B-Chat 84.79 73.07 67.53 75.13 71.05 45.74 62.18 59.66
LASER (Ours) 85.96 74.75 68.24 76.32 73.06 46.89 62.27 60.74

Table 5: Comparison of LASER and baselines on ROSCOE. The baselines include supervised fine-
tuning (SFT), sequential optimization, uniform rewards selection, and base model optimized with
one specific evaluation metric (Perplexity, Informativeness).

Method Llama-3-8B Mistral-7B

StrategyQA GSM8K MMLU Avg. StrategyQA GSM8K MMLU Avg.

SFT 80.41 69.43 65.66 71.83 68.57 43.62 56.48 56.22
Perplexity 80.55 69.21 65.62 71.79 68.83 43.47 57.14 56.48
Informativeness 82.87 73.55 66.69 74.37 70.29 44.98 59.29 58.19
Random RM Selection 82.72 70.93 66.10 73.25 69.24 44.05 57.68 56.99
Sequential RM Selection 83.15 73.38 66.17 74.23 70.40 44.79 59.07 58.09
LASER (Ours) 83.54 73.80 66.79 74.71 70.91 44.93 59.63 58.49

in Sec. 3. Llama-3-8B models trained using LASER yield 1.62% accuracy improvement over base-
lines on average across three datasets. These results are also generalized to Mistral-7B, except for
GSM8K, where we achieve comparable performance to the Base + Informativeness baselines. Note
that the perplexity of most responses is nearly identical, making it difficult to distinguish between
them, explaining why perplexity shows little to no improvement compared to the base model.
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Figure 8: Impact of irrelevant metrics from ROSCOE on
the GSM8K accuracy of LASER and sequential baseline.

Robustness to Underperforming
Evaluation Metrics. Similar to
our analysis on noise in rewards in
Sec. 5, we investigate how adding
ROSCOE metrics with poor corre-
lation to human-annotated labels in
meta-evaluation by Golovneva et al.
(2022) impacts the performance of
Llama-3-8B on GSM8K. Once again,
even with ROSCOE metrics, demon-
strates LASER can maintain consistent
performance by adaptively prioritizing
the most relevant reward signals, outperforming the sequential baseline, which fails to filter out
irrelevant information effectively. Fig. 8 shows that as the number of irrelevant metrics increases,
LASER’s selection strategy continues to perform robustly. Specifically, LASER has an average
performance drop of only 0.13%, whereas the sequential baseline suffers a 2.15% accuracy drop
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Figure 9: LASER’s performance is robust to adding weaker RMs to the candidate set to select from.

under the same conditions. Lastly, LASER using Exp3 maintains a consistent performance level
with a 0.4% accuracy drop.

Table 6: Across different training loss functions, optimizing
with multiple RMs via LASER outperforms the sequential
RM selection with Llama-3-8B. SQA denotes StrategyQA.

Loss Method SQA GSM8K MMLU Avg.

NLL Sequential 82.75 71.80 65.41 73.32
LASER 85.11 74.94 67.09 75.71

DPO Sequential 83.26 71.94 65.38 73.53
LASER 84.71 73.94 67.02 75.22

KTO Sequential 83.62 73.07 69.02 75.24
LASER 84.87 73.86 69.05 75.66

NLL+DPO Sequential 83.90 72.94 68.02 74.95
LASER w/. Acc 83.04 73.12 65.46 73.87

LASER 85.96 74.75 68.24 76.24

Generalization to Training Loss
Functions. In Sec. 3.1, we state that
the choice of loss function used to
train the LLM depends on the under-
lying task or domain. Nevertheless,
we always use the training loss as the
MAB reward to update the MAB’s
parameters. Here we study the per-
formance of LASER and baselines
with 4 different loss functions, NLL,
DPO, NLL + DPO (Pang et al.,
2024), and KTO (Ethayarajh et al.,
2024), in the reasoning domain. Re-
sults in Table 6 show that training
LLMs with multiple rewards using
LASER outperforms sequential RM
selection by 2.4%, 1.7%, and 1.3% when using NLL, DPO, NLL+DPO loss functions, respectively;
while both methods yield comparable performance with KTO. Additionally, we found that the most
effective training loss functions are NLL + DPO for StrategyQA, NLL for GSM8K, and KTO for
MMLU. However, irrespective of the choice of the underlying loss function, LASER is more ef-
fective at balancing and adaptively selecting from multiple RMs. Lastly, we compare LASER with
a variant in which we use Acc(yw) − Acc(yl) as the MAB reward, which uses the ground-truth
information about the final answer. We find that using the negative training loss of the LLM is more
effective than using accuracy as the MAB reward.

Generalization to OOD Tasks. We first assess the generalization ability of our method by
training models on specific datasets and evaluating their performance on out-of-distribution
reasoning tasks. Specifically, we train the model on the StrategyQA and MMLU datasets
and evaluate its generalization on the CommonsenseQA (CSQA; Talmor et al., 2019) dataset.

Table 7: Generalization performance of different models trained
on StrategyQA, MMLU, and GSM8K, and evaluated on CSQA
and MATH, respectively.

Method Llama-3-8B Mistral-7B

CSQA MATH Avg. CSQA MATH Avg.

SFT 65.64 29.13 47.39 59.06 16.38 37.72
Best RM 67.59 31.54 49.57 60.46 18.08 39.27
Avg. RM 67.16 30.36 48.76 60.06 17.25 38.66
Random RM Selection 68.31 30.21 49.26 60.19 16.96 38.58
Sequential RM Selection 67.73 30.25 48.99 60.56 17.96 39.26
LASER (Ours) 69.26 31.67 50.47 61.65 18.97 40.31

Similarly, we train on GSM8K
and test on MATH (Hendrycks
et al., 2021c) to assess the
model’s ability to generalize
across different reasoning
datasets. These tasks are de-
signed to capture both general
reasoning ability and OOD
generalization across domains.
We report the results in Table 7,
where we find that across both
Llama-3-8B and Mistral-7B
models, models trained with
LASER yield the best average
accuracy beating training with the best RM by roughly 2% (absolute) on CSQA with Llama-3-8B.
On Mistral-7B, training with LASER outperforms both training with single best RM and sequential
RM selection by slightly over 1%.
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Generalization to the Number of RMs. To study the generalization capability of LASER across
the number of RMs, we expand the candidate set of RMs with up to 4 more RMs from the Reward-
Bench leaderboard, including Tulu-2-DPO-7B (Ivison et al., 2023), Zephyr-7B-Gemma (Tunstall &
Schmid, 2024), Qwen1.5-MoE-A2.7B-Chat (Team, 2024), Archangel-7B (Ethayarajh et al., 2024).
Fig. 9 shows that the accuracy remains consistent across all datasets as the number of RMs varies.
StrategyQA remains near 85.9%, GSM8K around 74.8%, and MMLU close to 68.1%, with minimal
fluctuations, indicating robust performance regardless of the number of RMs.

D ADDITIONAL DISCUSSION

Related Work: Multi-Armed Bandits (MABs). There is a long-standing history of using multi-
armed bandit algorithms for diverse applications in machine learning spanning online advertis-
ing (Chen et al., 2013), recommendation systems (Li et al., 2010), hyperparameter optimization (Li
et al., 2018), curriculum learning (Graves et al., 2017), with some recent work at the intersection
of MABs and language models (Pasunuru et al., 2020; Krishnamurthy et al., 2024; Dwaracherla
et al., 2024, inter alia). In the realm of RLHF specifically, Dwaracherla et al. (2024) use double
Thomson Sampling (Wu & Liu, 2016) to select which of the sampled responses should be annotated
and paired using a single fixed RM, improving LLM performance. In contrast, LASER first selects
which RM (i.e., model of preferences) should be used to annotate LLM’s responses to a query and
then creates multiple preference pairs from these responses. Pasunuru et al. (2020) optimize text
generation models for different evaluation metrics such as ROUGE-L and BLEU via policy gradi-
ents (Williams, 1992) over existing (static) question and data-to-text generation datasets. In contrast,
LASER adopts an iterative training recipe and improves downstream generation performance across
a wide range of tasks from instruction-following to math and commonsense reasoning by selecting
relevant RMs and scoring the LLM’s own generated responses without access to true rewards, i.e.,
gold labels, and without optimizing for the downstream evaluation metric.

LASER with different “kinds” of RMs. In Sec. 4.2, we show that LASER can choose from a
set of candidate RMs, and our analysis in Fig. 3 highlights the fact that LASER is robust to noisy
RMs. In Appendix C, we show that LASER can also be used with metric-based rewards (Golovneva
et al., 2022). These experiments reflect a conceptual split between the generator (the LLM) and the
scorer (the RM or metric). Thus, LASER is applicable to other settings that follow this paradigm,
e.g., using an LLM-as-a-judge (Zheng et al., 2023), where LASER could be used to choose between
different judge models, prompts, or different combinations of RMs and metrics. However, consistent
with the “self-preference” bias of LLMs (Panickssery et al., 2024), we caution that using an RM
that is based on the same model as the LLM used for generating responses could lead to the MAB
spuriously favoring certain RMs. We leave further study on extending LASER to future work.

Quality of RMs used with LASER. Methods that rely on RMs for scoring generally assume that
these RMs have a strong correlation with human judgments. LASER tempers this assumption in
a number of ways: first, by ensembling multiple RMs, LASER weakens the effect of noisy RMs;
this can be seen in Fig. 3, where LASER mitigates the negative impact of a noisy RM even as the
level of noise is increased. Moreover, the fact that LASER can select RMs at an instance-level
means that there need not be a single RM that always correlates well across all instances. However,
LASER does require at least one RM to be positively correlated with human judgments on each
instance. If this assumption is not met (i.e., all RMs are poorly-correlated across all instances), then
optimizing for the RMs will yield poor results. Note that this holds true for any method optimizing
for RMs. Because LASER selects from multiple RMs, its contributions are complementary to
developments in RMs, which can easily be integrated into LASER, as well as improvements to
preference optimization loss functions (see Appendix C). Such RM improvements are likely to be
necessary as LLMs are deployed in domains that are out of scope for existing systems and domains
with heterogeneous requirements (e.g., our generation domains in Sec. 4.2). In these cases, there
will be no single “perfect” existing RM, and successful solutions will likely involve mixing multiple
RMs. A core benefit of LASER is its the ability to automatically filter RMs; in Fig. 6 we see
that utilization differs across domains. This allows users to avoid expensive experimentation with
subsets of RMs: they can simply offload this task to LASER, which will automatically select the
more useful RM(s).
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E PROMPTS

Reasoning

Prompt: Your task is to answer the question below. Give step by step reasoning before you
answer, and when you’re ready to answer, please use the format “Final answer:...”
Question: {input}
Solution:

Long-Context Understanding

Single-Doc QA:
Prompt: You are given a scientific article and a question. Answer the question as concisely
as you can, using a single phrase or sentence if possible. If the question cannot be answered
based on the information in the article, write “unanswerable”. If the question is a yes/no
question, answer “yes”, “no”, or “unanswerable”. Do not provide any explanation.
Article: context Answer the question based on the above article as concisely as you can,
using a single phrase or sentence if possible. If the question cannot be answered based on
the information in the article, write “unanswerable”. If the question is a yes/no question,
answer “yes”, “no”, or “unanswerable”. Do not provide any explanation.
Question: {input}
Answer:

Multi-Doc QA:
Prompt: Answer the question based on the given passages. Only give me the answer and
do not output any other words. The following are given passages.
{context}
Answer the question based on the given passages. Only give me the answer and do not
output any other words.
Question: {input}
Answer:

Summarization:
Prompt: You are given several news passages. Write a one-page summary of all news.
News: {context}
Now, write a one-page summary of all the news.
Summary:

Few-shot Learning:
Prompt: Answer the question based on the given passage. Only give me the answer and do
not output any other words. The following are some examples.
{context}
Question: {input}
Answer:

Instruction-Following

Prompt: You are an assistant capable of assisting users in various tasks, including creative
writing, analysis of texts and data, coding, providing factual information, and solving math
problems. For creative writing, help users brainstorm ideas and develop their narratives. For
analysis, guide users in breaking down concepts and exploring different perspectives. In
coding, assist with programming questions and debugging. When providing factual infor-
mation, ensure accuracy and cite reliable sources. For math reasoning, offer step-by-step
solutions and encourage logical thinking. Maintain a clear, engaging, and supportive tone
throughout your responses to foster learning and creativity.
Question: {input}
Answer:
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