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ABSTRACT

We separate onset from persistence and prove that persistence follows from the
neutral dynamics of pre-LayerNorm residual transformers. Exact operator norms
for LayerNorm, residual blocks, and the softmax decoder yield conservative upper
bounds showing the absence of contractive or expansive bias at the decoded level.
These bounds are sharpened by working with corridor constants that remain explicit
and falsifiable. For open probes, drift decomposes into a predictable component
bounded by the sharpened corridor and a centered martingale component con-
trolled by concentration and central limit arguments. Neutrality is then lifted from
paired rollouts to populations by casting trajectories or blocks as exchangeable
agents in a mean-field game, yielding a population-invariant stable under depth
and width scaling. Predictions are tested with controlled randomization audits
up to GPT2-large: closed probes are centered and behave as bounded martin-
gale differences, while open probe drift stays within the predicted corridor with
magnitudes consistent with the sharper constants. Together, these theoretical and
empirical results provide the first structural account of persistence, explaining why
hallucinations persist across model scales without re-auditing hundreds of millions
of parameters, and showing that interventions, which do not alter the residual
backbone, cannot eliminate it once onset has occurred.

1 INTRODUCTION

Hallucinations remain one of the most persistent challenges for large language models. They arise in
two phases: onset, when entropy or misspecification produces the first divergence between trajectories,
and persistence, when that divergence continues to propagate step after step through autoregressive
decoding. Recent advances have tackled onset through training and inference interventions such as
scheduled sampling (Bengio et al., 2015; Mihaylova & Martins, 2019), sequence-level objectives
(Ranzato et al., 2015), retrieval augmentation (Lewis et al., 2020), reinforcement learning with human
feedback (Ouyang et al., 2022), and tool use (Schick et al., 2023). These methods improve factual
accuracy and reduce exposure bias, but the deeper structural question remains open: once a deviation
has occurred, why does it persist? Since training- and inference-time fixes do not alter residual
dynamics, neutrality means onset errors inevitably persist, limiting what such strategies can achieve.

Existing diagnostics shed light on symptoms but not laws. Surface inconsistencies and semantic
entropy provide useful signals (Farquhar et al., 2024; Lin et al., 2021; Manakul et al., 2023; Chen et al.,
2024; Mündler & colleagues, 2024), and surveys emphasize the importance of human evaluation for
factuality (Maynez et al., 2020; Kryściński et al., 2020; Ji et al., 2023; Huang et al., 2025). Yet these
approaches remain empirical: they indicate when hallucinations happen, but they do not explain what
the residual transformer backbone predicts about their evolution. The distinction between diagnostic
cues and structural invariants is crucial. In this paper we ask: what dynamical law governs divergence
inside autoregressive transformers?
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OUR CONTRIBUTION AND NOVELTY

We show that persistence is the consequence of neutral dynamics in pre–LayerNorm residual trans-
formers. Our approach combines exact architectural analysis, statistical inference, and a mean-field
lift:

• We prove that the residual stack is neutral: paired rollouts exhibit neither contractive pull
nor expansive push in expectation. This neutrality is certified by explicit Lipschitz constants
for LayerNorm, the residual kernel, and the softmax decoder.

• We establish a blended inference rule: drift decomposes into a predictable corridor deter-
mined by architecture and a centered martingale part controlled by concentration inequalities.
This makes neutrality a falsifiable claim with finite-sample guarantees.

• We lift neutrality from local probes to the population level by recasting trajectories or residual
blocks as agents in a mean-field game. Under exchangeability, neutrality propagates to the
limit, showing that persistence is scale-stable without re-auditing billions of parameters.

This integration of operator analysis, martingale inference, and mean-field scaling is, to our knowl-
edge, the first structural account of hallucination persistence. It reframes the problem from an
empirical irregularity into an architectural invariant, providing a principled explanation for why
hallucinations endure across model scales.

Relation to prior work. Our perspective complements three active research fronts. First, detection
and mitigation methods address onset by exploiting inconsistencies, semantic entropy, or external
anchoring (Ranzato et al., 2015; Lewis et al., 2020; Ouyang et al., 2022; Schick et al., 2023; Farquhar
et al., 2024). Second, stability analyses of residual networks and normalization layers provide the
operator-theoretic tools we rely on (He et al., 2016; Haber & Ruthotto, 2017; Chen et al., 2018; Xiong
et al., 2020; Miyato et al., 2018; Gouk et al., 2021). Third, mean-field methods from economics and
probability (Lasry & Lions, 2007; Huang et al., 2006; Sznitman, 1991; Carmona & Delarue, 2018)
have recently been adapted to neural networks and transformers (Yang et al., 2018; Fabian et al.,
2024; ?; Tembine et al., 2024). Our novelty lies in combining these strands into a unified framework
that turns architectural constants into predictive laws, links them to falsifiable probe designs, and
scales them through a mean-field lift.

2 BACKGROUND

To analyze persistence we formalize the autoregressive setting of pre–LayerNorm transformers and
define how divergence between paired rollouts is measured, where a rollout is a sequence of hidden
states and decoded tokens generated under autoregression.

Autoregressive dynamics. Large language models generate sequences by autoregression. Hidden
states are ht ∈ Rd, and decoded token distributions are pt living on the probability simplex

∆V −1 =
{

p ∈ RV : pi ≥ 0,

V∑
i=1

pi = 1
}

.

A pre–LayerNorm (LN) residual stack applies blocks of the form
Hℓ(x) = x + Gℓ(LN(x)), F = HL ◦ · · · ◦ H1,

where LN(x) = γ ⊙ x−µ(x)1
σ(x) + β denotes LayerNorm (normalize to zero mean and unit variance,

then rescale by γ and shift by β) (Ba et al., 2016). The decoder is affine plus a temperature–T
softmax,

S(h) = softmaxT (Wh + b), softmaxT (z)i = ezi/T∑
j ezj/T

.

Together, (F, S) define a Markov autoregression
ht+1 = F (ht), pt = S(ht), τt ∼ pt,

which is the state space setting for our analysis in Section 3. For paired rollouts we maintain a second
arm (h̃t, qt) evolving under the same kernel, with qt = S(h̃t) and τ̃t ∼ qt. Formal derivations are
given in Appendices A.1–A.1.
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Divergence and drift. To track how paired rollouts separate, we measure decoded divergence using
the Jensen–Shannon (JS) divergence

Dt = JS(pt, qt) = 1
2
[
KL(pt∥mt) + KL(qt∥mt)

]
, mt = 1

2 (pt + qt),

where KL(p∥q) =
∑

i pi log pi

qi
denotes the Kullback–Leibler divergence (Murphy, 2012).

Its change across one step defines the drift increment Xt = Dt+1 − Dt, which captures how
divergence evolves. The sequence {Xt} is adapted to the natural filtration {Ft} of the rollouts.
Bounds for Dt and stability properties of JS are given in Appendix A.

Probes as diagnostic tools. To connect these dynamics to hallucination persistence we introduce
probes, i.e. controlled comparisons of paired rollouts. The idea is that persistence should be visible in
how two nearly identical trajectories diverge over time. By choosing which tokens the paired rollouts
consume, we obtain two probe types:

• Closed probe. Both trajectories consume the same tokens, so drift reflects only the hidden
state dynamics. In practice, the code couples token draws with shared randomness, yielding
unbiased Monte Carlo estimates whose variance shrinks with the number of siblings. Here,
a sibling denotes an independent rollout of the same probe with fresh randomness, so
averaging across M siblings lowers Monte Carlo variance.

• Open probe. Each trajectory samples its own tokens, so drift also propagates through
branching and re–embedding. We analyze this by an expected kernel with a linear correction
term (Lemma 4, Appendix D). Under neutrality, this correction vanishes in expectation
(Lemma 5).

Controlled randomization network. To implement these probes we use a controlled randomization
network (CRN), which couples a baseline rollout with perturbed rollouts using shared random seeds.
At each step, three arms are evolved (+, −, and baseline), and the antisymmetric increment is defined
as

Xt = 1
2

[
(D+

t+1 − D+
t ) − (D−

t+1 − D−
t )

]
.

By construction, CRN increments are antisymmetric under swapping + and −, and provide unbiased
estimates of drift under neutrality (Lemma 5, Appendix A).

3 NEUTRALITY, PREDICTABLE DRIFT, AND INFERENCE

Having introduced autoregressive dynamics and probe constructions, we now develop the statistical
framework that links architectural structure to observable drift. The guiding question is whether paired
rollouts exhibit systematic contractive or expansive bias, or whether—as the neutrality hypothesis
suggests—they fluctuate around zero with only bounded predictable slack. Our analysis proceeds by
embedding probe increments into a martingale framework, establishing deterministic and probabilistic
control, and preparing the lift to a population law via mean field games.

3.1 DRIFT INCREMENTS

To quantify how divergences evolve along paired rollouts, we track the one–step increment

Dt = JS(pt, qt), Xopen
t = Dt+1 − Dt, µt = E[Xopen

t | Ft],

together with the cumulative sums SN =
∑N

t=1 Xopen
t and X̄N = 1

N SN . Because JS is bounded
between 0 and log 2 (Lemma 3), every increment is uniformly bounded,

|Xopen
t | ≤ log 2 =: b almost surely, (1)

which is the key prerequisite for the concentration and limit theorems we invoke later.

The interpretation of these increments depends on the probe type. For closed probes, the controlled
randomization network (CRN) antisymmetrizes the + and − arms, ensuring that

E[Xt | Ft] = 0 for all t. (2)

3
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Thus closed probes form a genuine martingale difference sequence, giving provable neutrality.

For open probes, the situation is subtler: increments retain a nonzero predictable component. Ap-
pendix B establishes the exact identity

µt = Eτt∼pt, τ̃t∼qt

[
Dt+1(τt, τ̃t) − Dt+1(τt, τt)

∣∣ Ft

]
, (3)

showing that the deviation from neutrality arises only through the branching correction relative to the
closed probe. This correction is precisely what the Lipschitz corridor bound of Proposition 1 will
control.

3.2 PREDICTABLE-DRIFT CORRIDOR

The predictable component µt introduced in equation 3 can be bounded using architectural Lipschitz
constants. A change of token propagates through the kernel, the decoder, and the softmax layer,
and each stage contributes multiplicatively to the possible growth. The resulting control of µt is
summarized in the following proposition.
Proposition 1 (Predictable-drift corridor). For every step t,

|µt| ≤ LJS,t Lsm,t ∥W∥2 Lker,t Ei,j∥Ej − Ei∥2 =: ct, (4)

where LJS,t is the local Lipschitz constant of JS in its second argument, Lsm,t the Lipschitz constant
of softmax with temperature T , ∥W∥2 the operator norm of the decoder, and Lker,t the Lipschitz
constant of the kernel map K.

If, in addition, the decoder matrix W has spectral gap σmin(W ) > 0, then the strengthened logit-
space form

|µt| ≤ LJS,t Lsm,t κ2(W ) Lker,t Ei,j∥Mj − Mi∥2, κ2(W ) = ∥W∥2

σmin(W ) , (5)

also holds, where M = WE denotes the logit embeddings.

Proof sketch. By the mean value theorem, the change in JS between same-token and different-token
inputs is controlled by LJS,t applied to Φ̃t(j) − Φ̃t(i). This difference propagates through kernel,
decoder, and softmax, giving equation 4. If σmin(W ) > 0, embeddings can be measured in logit
space, yielding equation 5. See Appendix B for the full derivation of the constants.

The quantity ct is the predictable-drift corridor: it sets the maximal bias that open probes can
accumulate in expectation at step t. This corridor depends only on architectural constants and
embeddings, and provides the link from structural neutrality to the inference bounds developed next.

3.3 BLENDED REPORTING RULE

The corridor bound of Proposition 1 controls the deterministic predictable component, while the
martingale difference Yt = Xopen

t − µt contributes stochastic fluctuations. Combining the two yields
the blended reporting rule.

Theorem 1 (Blended neutrality reporting). Let X̄N = 1
N

∑N
t=1 Xopen

t and ct as above. Then

∣∣E[X̄N ]
∣∣ ≤ min

{
1
N

N∑
t=1

ct,
∣∣X̄N − 1

N

N∑
t=1

µt

∣∣ + z0.975
ŝN√

N

}
, (6)

with ŝ2
N = 1

N

∑N
t=1(Xopen

t − X̄N )2. If 1
N

∑
ct → 0, then 1

N

∑
µt → 0 and the standard error

band applies directly to X̄N .

Proof sketch. The deterministic control is Lemma 10 in Appendix C.1, bounding E[X̄N ] by 1
N

∑
ct.

Finite-sample deviations are handled by Freedman’s inequality applied to Yt = Xopen
t − µt (Ap-

pendix C.2), yielding deviation bounds of the form equation 9. Asymptotically, the bounded-
increment Lindeberg condition (Lemma 12) ensures that the martingale CLT applies (Theorem 4),
giving the Gaussian limit with standard error. The combined statement is Theorem 5.

4
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The blended reporting rule therefore shows that neutrality is not an assumption but a testable
structural invariant: the expected drift of open probes is confined within a predictable corridor
determined entirely by architectural constants, while stochastic fluctuations obey standard martingale
concentration. This establishes a rigorous bridge between model structure and statistical inference.

3.4 MEAN-FIELD INTERPRETATION

The stepwise analysis above suggests a natural population-level perspective. Each increment Xopen
t

can be decomposed into a predictable bias µt bounded by the corridor ct and a martingale fluctuation.
Interpreting the contributors to this decomposition as agents leads directly into a mean-field game
formulation.

Mean-field models originate in stochastic finance and control theory (Lasry & Lions, 2007; Huang
et al., 2006; Carmona & Delarue, 2018), where large populations of interacting agents are approxi-
mated by their empirical distribution. The key principle is that when agents are exchangeable and
individually negligible, the empirical law of their actions converges to a deterministic population law.
This provides the bridge from finite-sample neutrality to structural neutrality at scale.
Definition 1 (Agent model). At each step t we define a finite-agent system as follows:

• State space: the autoregressive pair (ht, τt) evolving under the Markov kernel K.

• Agents: either (i) token pairs (i, j) sampled from (pt, qt) (trajectory view), or (ii) residual
blocks Hℓ (layerwise view).

• Action space: finite-difference contributions X
(a)
t to the drift increment Xopen

t .

• Payoff: the expected action, with neutrality corresponding to zero expected payoff.

• Population law: the empirical distribution µM
t = 1

M

∑M
a=1 δ

X
(a)
t

of agent actions.

This formalizes the intuition that probe increments can be viewed as the collective actions of many
small agents. The first step is to check that neutrality indeed extends from individual agents to their
empirical average.
Proposition 2 (Finite-agent neutrality). In the finite-agent system of Definition 1, if each agent action
satisfies E[X(a)

t | Ft] = 0, then the empirical average X̄
(M)
t = 1

M

∑M
a=1 X

(a)
t is also neutral:

E[X̄(M)
t | Ft] = 0.

Proof. Linearity of conditional expectation gives E
[
X̄

(M)
t | Ft

]
= 1

M

∑M
a=1 E[X(a)

t | Ft] = 0.

By exchangeability (Lemma 7, App. A.5)., the empirical mean X̄
(M)
t converges almost surely to 0 as

M → ∞, so neutrality lifts from finite collections of agents to the population law. This is formalized
in Theorem 2.
Theorem 2 (Mean-field neutrality). Building on Proposition 2, assume the agent actions {X

(a)
t }M

a=1
are exchangeable and satisfy E[X(a)

t | Ft] = 0 with bounded second moment. Then

X̄
(M)
t = 1

M

M∑
a=1

X
(a)
t

a.s.−−−−→
M→∞

0,

so the population law inherits neutrality. Moreover, the predictable corridor ct and the blended
reporting rule (Theorem 1) extend to the mean-field limit without modification. See Appendix E,
Theorem 7 for the full proof.

Proof sketch. By Proposition 2, each finite-agent system has E[X̄(M)
t | Ft] = 0. Exchangeability

then allows a de Finetti representation (Sznitman, 1991; Carmona & Delarue, 2018), and the law of
large numbers for exchangeable sequences (Lemma 7) implies X̄

(M)
t → 0 almost surely as M → ∞.

Bounded increments (equation 1) guarantee that the martingale concentration and corridor bounds

5
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(A) Controlled probes & CRN coupling

Choose tokens & share randomness

(B) Pre-LN residual stack & decoder

Pre-LN residuals propagate to logits and softmax

(C) Drift, corridor, & blended reporting

Compute drift, bound predictable bias, add martingale part

(D) Mean-field lift

Population limit under exchangeability

prompt / context

closed

open

CRN: shared non-token randomness

LN H1 H2 H3 W softmax

LN H1 H2 H3 W softmax

pt+1

qt+1

Dt = JS(pt, qt) Xopen
t = Dt+1 −Dt Yt = Xopen

t − µt

µt = E[Xopen
t | Ft] |µt| ≤ ct

∣∣E[X̄N ]
∣∣ ≤ min

{
1
N

∑

t≤N

ct,
∣∣X̄N − 1

N

∑

t≤N

µt

∣∣+ z0.975
ŝN√
N

}
X̄

(M)
t =

1

M

M∑

a=1

Xopen
t,a

X̄
(M)
t

a.s.−−−→ 0 (exchangeable agents)

Figure 1: Neutrality audit framework. (A) Closed probes couple token draws, while open probes
branch independently. (B) Residual stack propagates hidden states into token distributions. (C)
Drift decomposition: closed increments form martingale differences, open increments split into
predictable drift µt bounded by the corridor ct and a centered martingale part. (D) Mean-field lift:
under exchangeability, sibling trajectories act as agents whose neutrality aggregates to the population
level.

(Theorem 6, App. D; Theorems 3–5, App. C.2) apply uniformly, so both carry over to the mean-field
limit.

This mean-field framing elevates neutrality from a finite-agent property (Proposition 2) to a structural
population law (Theorem 2), clarifying why persistence is robust under scaling. In our setting agents
can be instantiated either as trajectories, where each token pair (i, j) contributes to drift, or as residual
blocks, where each layer’s finite–difference contribution is treated as an action. For trajectory agents
the lift follows rigorously from exchangeability, while for residual blocks it remains a heuristic
interpretation that we evaluate in Section 4.

4 EXPERIMENTS

In this section we test empirically the neutrality properties established in Section 3. Closed probes
should behave as martingale differences with no systematic drift, while open probes may drift
but only within the predictable corridor. We evaluate these predictions across four GPT2 variants
(sshleifer/tiny-gpt2, distilgpt2, gpt2-medium, gpt2-large), reporting results
at both the trajectory and layer level and including placebo and randomization probes as controls.

4.1 EXPERIMENTAL SETTING

Each model is audited with horizon N = 32, temperature T = 1.0, three master seeds, M = 16
siblings, and K = 32 prompts. This configuration yields n = N × K × M × seeds increments per
test, comfortably above the sample size required by a pilot variance estimate to achieve 80% power at
α = 0.05 for detecting small drifts.

Probes: Closed probes rely on controlled randomization networks with antisymmetrized arms,
which guarantees E[Xclosed

t | Ft] = 0. Here, each prompt–seed pair is expanded into M sibling
rollouts, whose average reduces Monte Carlo variance without affecting expectation. Open probes
branch independently and can admit predictable drift µt, which theory bounds by the corridor ct.
Hence, we test two neutrality claims:

• Closed (H1): increments are martingale differences with zero mean.
• Open (H2): increments may drift predictably, but must remain inside the corridor |µt| ≤ ct.

Tests: One sample t-tests across prompts provide a first check of unconditional neutrality at α =
0.05. For closed probes we also track Azuma Hoeffding bands on cumulative sums as a diagnostic
for bounded martingale differences. In both settings we apply an anytime e-test, implemented
through the e-process with ε = 0.1, which remains valid under optional stopping. Placebo and label
randomization probes are run in parallel and both should yield uniform p−values.

Mean–field views: At the trajectory level, each token pair is treated as an agent, and exchangeability
lifts neutrality to the population law. At the layer level, each residual block is treated as an agent via

6
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its drift contribution. We summarize this view with bootstrap confidence intervals, which provide an
exploratory diagnostic complementing the formal trajectory-level analysis.

Controls and extensions: We vary temperature across {0.7, 1.0, 1.3} and sibling count across
{8, 16, 32}. The same protocol is applied unchanged across all four models so that results remain
structurally comparable.

4.2 MAIN RESULTS

As our results confirm, closed probes behave as bounded martingale differences. The increments are
centered, yet as martingales they wander, which produces variability on the scale of the square root of
the horizon. In Figure 2, this behavior is visible in the wide spread of trajectories for gpt2-large.
The black mean line remains centered while individual paths fluctuate within the Azuma–Hoeffding
envelope. Table 1 confirms that the mean drift is close to zero, the t-tests across prompts are non-
significant with p ≥ 0.14, and the Azuma coverage is complete. These results validate the theoretical
claim that closed probes should show neutrality in expectation while still displaying substantial
pathwise variance.

Open probes differ in that their increments may contain predictable drift, bounded in theory by the
corridor. Figure 2 shows that this drift is numerically tiny. The mean path remains flat and the grey
confidence ribbon collapses around zero, even though some individual trajectories diverge as expected
when tokens are decoupled. The aggregate results in Table 1 show mean drifts of order 10−8 to 10−10,
with all values well inside the corridor. The only marginal case appears for distilgpt2, where the
prompt-level t-test reports p = 4.46 × 10−2. This effect disappears under the anytime e-test, which
returns Emax = 1.000 and pe = 0.906, indicating no sustained deviation from neutrality.

Across model scales the evidence is consistent. The smallest variant, tiny, and the largest, large,
both satisfy the neutrality predictions in closed and open configurations. The intermediate models
distil and medium follow the same pattern. Table 1 shows that mean drifts remain negligible,
t-tests do not reject, and e-test maxima remain close to one across all cases. This stability across
scale indicates that neutrality is a structural feature of the GPT-2 residual architecture rather than a
property that depends on parameter count.

Layer-level diagnostics add another perspective. When each residual block is treated as an agent, the
estimates of drift remain centered near zero with confidence intervals that cover both positive and
negative values. Table 4 shows this explicitly for tiny and distil. The intervals are wide, which
reflects the limited sample size at this granularity, but the absence of systematic deviation suggests
that no individual block introduces consistent bias.

Model Params (M) Probe Mean drift 95% CI t-test p Azuma coverage Emax / pe

tiny-gpt2 15 Closed 3.022e−11 [−1.877e−10, 3.468e−07] 9.980e−01 1/1 (100%) 1.000 / 0.794
Open −1.281e−11 – 9.990e−01 – 1.000 / 1.000

distilgpt2 82 Closed 1.385e−04 [−1.839e−02, 1.843e−02] 9.700e−01 5/5 (100%) 1.117 / 0.969
Open −1.496e−08 – 3.900e−01 – 1.000 / 1.000

gpt2-medium 345 Closed −8.917e−04 [−1.687e−02, 1.630e−02] 1.560e−01 174/174 (100%) 1.049 / 0.148
Open 1.477e−09 – 4.710e−01 – 1.000 / 1.000

gpt2-large 774 Closed 6.467e−06 [−2.851e−02, 2.788e−02] 9.860e−01 193/193 (100%) 1.792 / 0.982
Open −6.038e−10 – 3.240e−01 – 1.000 / 1.000

Table 1: Trajectory-level neutrality audits for four GPT2 scales. Closed probes behave as bounded
martingale differences: their mean drifts are indistinguishable from zero, t-tests show no evidence
against neutrality, and all trajectories remain within Azuma–Hoeffding envelopes. Open probes admit
predictable drift but remain numerically tiny and corridor-consistent. The anytime e-test never rejects
neutrality: observed maxima Emax stay close to 1 and the calibrated pe values are non-significant.

For gpt2-large, the contrast between closed and open probes is clear in Figure 2. Closed probes
force both trajectories to consume the same tokens, so increments are martingale differences with
E[Xclosed

t |Ft] = 0. As martingales, they wander: over N = 32 steps the cumulative drift fluctuates
on the

√
N scale, and Azuma–Hoeffding only guarantees a loose pathwise envelope. Nevertheless,

every trajectory remains inside this envelope, so the wide fluctuations seen in the closed panel are
consistent with neutrality and not evidence of bias.
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Model Block µ̂ SE 95% CI

tiny-gpt2 All (4) 1.157e−07 9.729e−08 (−1.877e−10, 3.468e−07)
distilgpt2 All (4) −2.833e−04 9.159e−03 (−1.839e−02, 1.843e−02)
gpt2-medium All (4) −2.844e−04 8.178e−03 (−1.687e−02, 1.630e−02)
gpt2-large All (4) 1.221e−04 1.341e−02 (−2.851e−02, 2.788e−02)

Table 2: Layer-as-agent diagnostics for prompt 1. Reported are the mean action µ̂, its standard error,
and a 95% confidence interval aggregated across residual blocks. Entries marked (–) indicate that
estimates were not computed for that model in this run.

Closed probe. Open probe.

Figure 2: Neutrality audits for gpt2-large. Closed probes remain within the Azuma–Hoeffding
envelope, while open probes yield an extremely stable mean drift whose confidence band is visually
indistinguishable from the curve.

Open probes decouple token draws, introducing a predictable drift µt. Theory bounds this drift by
the corridor ct, and in practice, it is much smaller than the variance of closed wandering. Because we
average over K = 32 prompts, three seeds, and M = 16 siblings (more than 1500 paths per step),
these small biases nearly cancel. The result is that the mean cumulative drift is extremely stable, with
a confidence interval on the order of 10−7 that visually collapses onto the black curve. Individual
open trajectories may diverge, as expected, but what matters is that the mean remains neutral within
the predictable corridor. This pattern matches the predictions of Section 3: closed probes reveal
martingale fluctuations, while open probes confirm that structural drift is negligible once averaged.
Furthermore, ablation studies applied by varying T and M (Appendix F) further support that closed
probes remain neutral, open-probe drift stays corridor-bounded, and all Emax values lie deep inside
the non-rejection region.

4.3 EVALUATION OF HYPOTHESES

For the closed probes, Figure 2 shows centered but wandering paths, and Table 1 confirms that drifts
stay near zero with full Azuma coverage and flat e-process. Hypothesis 1 holds: increments act as
martingale differences, neutral in expectation. For the open probes, trajectories may diverge, yet their
mean drift is tiny. Table 1 reports values far below the corridor constants and non-rejections under
e-tests. Hypothesis 2 holds: predictable drift remains corridor-bounded and negligible across scales.

5 DISCUSSION

Neutrality. Our experiments confirm the neutrality properties proven in Section 3. Closed probes
behave as bounded martingales: they show no systematic drift, yet they wander on the scale of

√
N .

Open probes admit predictable drift, but the observed values remain several orders of magnitude
below corridor bounds. Together the results in Figures 2 and Tables 1–4 establish that the residual
architecture neither contracts nor expands deviations in expectation.

Mean–field dynamics. The mean–field formulation explains why these results scale. At the
trajectory level, increments behave as martingale differences, and under exchangeability this neutrality
law lifts to the population of token–agents. At the layer level, residual blocks act as agents through
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their finite–difference contributions, and bootstrap intervals show that these actions fluctuate but
remain centered. In both cases the collective dynamics are neutral rather than adversarial, so
the population equilibrium is persistence. The novelty is that neutrality is not confined to single
increments but survives the mean–field lift, turning a local property into a system–level invariant.

Hallucination persistence. This structural neutrality clarifies why hallucinations, once triggered
at onset, continue during decoding. Closed probes show how deviations wander without collapse,
as seen in the spread of trajectories in Figure 2, while open probes demonstrate that persistence is
not caused by expansive bias since their predictable drift remains negligible. The same pattern holds
from tiny to large, and block–level diagnostics in Table 4 show that no single component drives
the effect. In mean–field terms, once an onset deviation enters the population, neutrality ensures that
it propagates forward rather than being suppressed.

Implications. The consequence is that hallucination persistence is an architectural invariant rather
than a byproduct of training. Approaches that control onset, such as entropy reduction, retrieval
augmentation, or reinforcement learning with human feedback, cannot by themselves eliminate
persistence, since the backbone dynamics remain neutral once a deviation has occurred. Mitigation
therefore requires structural interventions: architectures that introduce contraction or external anchor-
ing mechanisms that continuously re-ground the generation. By combining statistical probes with a
mean–field lift, we provide a non-anthropomorphic language to describe this mechanism, framing
hallucinations as a structural feature of residual transformers that persists across scales.

5.1 LIMITATIONS

Our analysis is anchored in theory, but its empirical scope is constrained. We focused on GPT-2
variants because they are open source and permit full control over token sampling and randomization.
This enables exact implementation of the closed and open probes, but prevents direct extension to
proprietary models such as GPT-3.5 or GPT-4.

Furthermore, the horizon length was limited to N = 32, which is long enough to observe neutral
wandering and bounded drift yet too short to study very long generations. Extending audits to larger
N would test how neutrality scales with sequence length.

At the architectural level, our trajectory results rest on formal martingale proofs, while the layer-as-
agent view is heuristic. Bootstrap intervals confirm that block-level contributions fluctuate around
zero, but without exchangeability, these cannot be stated as full mean–field laws. Our probes isolate
the neutrality of the residual backbone. However, they do not yet capture interactions with training
regimes such as reinforcement learning from human feedback or retrieval augmentation.

Finally, these constraints do not weaken the central claim: neutrality is a structural invariant that can
be measured directly. They simply mark the boundary of what has been demonstrated, and point
toward future audits across longer horizons, larger models, and alternative training setups.

6 CONCLUSION

We proved that persistence is a consequence of neutral dynamics in pre-LayerNorm residual trans-
formers. Exact operator bounds for LayerNorm, the residual kernel, and the softmax decoder yield
an explicit predictable drift corridor for open probes, while closed probes form bounded martingale
differences. The blended reporting rule connects these structural bounds to finite sample tests and
asymptotic normal limits, and a mean field lift propagates neutrality from paired rollouts to pop-
ulations, explaining scale stability without parameter re-auditing. Empirically, GPT2 audits align
with these predictions. Interventions that do not modify the residual backbone can curb onset but
cannot eliminate persistence once deviations arise. In this sense, trajectories may wander, but under
neutrality their drift remains bounded and unbiased—reminding us that not all who wander are lost
(Tolkien, 1954).

9
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REPRODUCIBILITY STATEMENT

Code and notebooks We provide the complete audit script neutrality_audit.py together
with Colab notebooks. The code implements closed and open probes through a controlled ran-
domization network with shared seeds, sibling averaging, and trajectory batching. It includes
trajectory-as-agent pooled tests (anytime e-values and fixed-horizon p-values), placebo and label-
randomization checks, and layer-as-agent diagnostics. All outputs are written to CSV, and figure/table
scripts consume only these machine-readable logs. Package versions are pinned in the requirements
and environment files.

Models All experiments use HuggingFace implementations of GPT-2 variants:
sshleifer/tiny-gpt2, distilgpt2, gpt2-medium, and gpt2-large. Weights
are not modified. Models are downloaded via the Transformers hub under their original licenses.

Prompts The evaluation set Q contains 32 prompts (synthetic and natural). The exact JSON used
in the paper is released with the repository. The loader only shuffles when explicitly requested.

Default configuration Unless noted otherwise, we use N = 16 decoding steps, temperature
T = 1.7, two master seeds, and M = 16 siblings per prompt–seed pair. These values match the main
tables and figures. Ablations vary T ∈ {0.5, 1.0, 2.0, 5.0} and M ∈ {4, 8, 32, 64}, with results saved
as separate CSV files.

Randomness control NumPy, Python, and PyTorch RNGs are seeded, and deterministic backends
are enabled where available. The CRN couples token draws under closed probes and uses independent
seeds for open probes. All pooled results in the paper can be reproduced by re-running the script with
the same master seeds.

Statistical procedures The script computes pilot power plans, one-sample t-tests across prompts,
Azuma–Hoeffding bands for closed cumulative sums, and an anytime e-test by tracking the e-process.
Placebo probes (ε = 0) and label randomization checks are included. Layer-as-agent diagnostics
report µ̂, a bootstrap standard error, and 95% confidence intervals. No additional statistical tests are
performed.

Entry point The main results can be reproduced with:

python neutrality_audit.py

This produces results.csv and msgs.csv containing all test statistics and messages. Ablations
are run automatically for the temperatures and sibling counts reported in Appendix F.

Hardware Experiments run on standard GPUs (e.g. T4, A10) within Colab quotas. CPU-only runs
are supported for smaller models (tiny, distil) but are slower. Memory usage and wall-clock
times for representative runs are listed in Appendix F.

Determinism and logs Each run writes per-step increments and summary statistics (mean, sd,
Emax, Z, p). All figures and tables in the paper regenerate directly from these logs. Rerunning with
the same seeds reproduces the reported numbers.

External dependencies We use Python, NumPy, SciPy, PyTorch, and Transformers. Exact versions
are pinned in the environment files. No proprietary APIs or private services are required.

Ethics and licensing All models are used under their original HuggingFace licenses. Prompts are
released for research use, and no personal data is included.

STATEMENT USE OF LLM

Large language models were used only for polishing language, fixing minor coding errors, and
triaging related work. The proofs, analyses, and results are by the authors, and every cited reference
was verified directly.
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A PRELIMINARIES

A.1 AUTOREGRESSIVE COMPONENTS

Lemma 1 (LayerNorm operator norm). Let LN : Rd → Rd be

LN(x) = γ ⊙ x − µ(x)1
σ(x) + β, µ(x) = 1

d

d∑
i=1

xi, σ(x) =

√√√√ 1
d

d∑
i=1

(xi − µ(x))2 + ε,

with ε > 0 and ∥γ∥∞ = maxi |γi|. Then, for all x ∈ Rd,∥∥JLN(x)
∥∥

2 ≤ ∥γ∥∞√
ε

.

Proof. Define c(x) = x − µ(x)1 and P = I − 1
d 11⊤, so that c(x) = Px and ∥P∥2 = 1. Then

x̂ = c(x)
σ(x) = Px

σ(x) , LN(x) = Diag(γ) x̂ + β.

Thus JLN(x) = Diag(γ) Jx̂(x), and therefore
∥JLN(x)∥2 ≤ ∥ Diag(γ)∥2 ∥Jx̂(x)∥2 = ∥γ∥∞ ∥Jx̂(x)∥2.

It remains to show ∥Jx̂(x)∥2 ≤ 1/σ(x). For v ∈ Rd, using µ′(x)[v] = 1
d 1⊤v and

σ2(x) = 1
d ∥Px∥2

2 + ε, (σ2)′[v] = 2
d (Px)⊤(Pv), σ′(x)[v] = (Px)⊤(Pv)

d σ(x) ,

we compute

Jx̂(x) v = Pv

σ(x) − Px

σ(x)2 σ′(x)[v] = 1
σ(x)

(
I − Px (Px)⊤

d σ(x)2

)
Pv.

Set
u = Px√

d σ(x)
,

so that ∥u∥2
2 = ∥P x∥2

2
dσ(x)2 = 1 − ε

σ(x)2 ≤ 1, and

Px (Px)⊤

d σ(x)2 = uu⊤.

Hence
Jx̂(x) = 1

σ(x) (I − uu⊤) P.

Now P is an orthogonal projector, so ∥P∥2 = 1. The matrix I − uu⊤ is symmetric with eigenvalues
1 on u⊥ and 1 − ∥u∥2

2 on span{u}, all in [0, 1]. Thus ∥I − uu⊤∥2 = 1. Therefore

∥Jx̂(x)∥2 ≤ 1
σ(x) ∥I − uu⊤∥2 ∥P∥2 ≤ 1

σ(x) .

Combining the estimates gives

∥JLN(x)∥2 ≤ ∥γ∥∞

σ(x) ≤ ∥γ∥∞√
ε

,

since σ(x) ≥
√

ε.
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Remark. If Px ̸= 0 and γ = γ01, then Jx̂(x) acts as v 7→ v/σ(x) on the subspace{
v ∈ range(P ) : v ⊥ Px

}
,

so ∥JLN(x)∥2 = ∥γ∥∞/σ(x) and the scaling in σ(x) and ε is sharp.
Lemma 2 (Softmax Lipschitz constant). Let sT (z) = softmaxT (z) with temperature T > 0, so that
p = sT (z) and

sT (z)i = ezi/T∑
j ezj/T

.

Then the Jacobian satisfies, for all z ∈ RV ,∥∥∇sT (z)
∥∥

2 = 1
T

∥∥Diag(p) − pp⊤∥∥
2 ≤ 1

2T
.

Moreover, the constant 1/(2T ) is tight (attained for V = 2, p = ( 1
2 , 1

2 )).

Proof. Differentiating directly gives

∂sT (z)i

∂zk
= 1

T

(
pi δik − pipk

)
,

hence
∇sT (z) = 1

T

(
Diag(p) − pp⊤)

.

The matrix Diag(p) − pp⊤ is symmetric positive semidefinite, so∥∥∇sT (z)
∥∥

2 = 1
T

λmax
(
Diag(p) − pp⊤)

.

For any unit vector v ∈ RV ,

v⊤(
Diag(p) − pp⊤)

v =
∑

i

piv
2
i −

(∑
i

pivi

)2
= Varp(v),

the variance of the random variable that takes value vi with probability pi.

Let α = mini vi and β = maxi vi. By Popoviciu’s inequality,

Varp(v) ≤ (β − α)2

4 .

Moreover, by Cauchy–Schwarz,

(β − α)2 = (|β| + |α|)2 ≤ 2(β2 + α2) ≤ 2
∑

i

v2
i = 2,

since ∥v∥2 = 1. Combining gives

Varp(v) ≤ 1
4(β − α)2 ≤ 1

2 .

Taking the supremum over unit vectors v shows

λmax
(
Diag(p) − pp⊤)

≤ 1
2 .

Tightness. For V = 2, p = ( 1
2 , 1

2 ), the matrix

Diag(p) − pp⊤ =
[

1
4 − 1

4

− 1
4

1
4

]
has eigenvalues 0 and 1/2. Thus

∥∇sT (z)∥2 = 1
T

· 1
2 = 1

2T
,

so the bound is attained.
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A.2 DIVERGENCES

Lemma 3 (JS divergence). For all p, q ∈ ∆V −1 and natural logarithm,

0 ≤ JS(p, q) ≤ log 2.

Proof. Nonnegativity follows from convexity of KL and symmetry. For the upper bound, let m =
1
2 (p + q). By Gibbs’ inequality, KL(p∥m) ≤ log

∑
i

p2
i

mi
≤ log 2, and similarly for q; averaging

yields the claim. Standard proofs appear in Endres & Schindelin (2003).

A.3 PROBE KERNELS

Lemma 4 (Open-probe kernel). Fix t ≥ 0 and let Ft be the natural filtration up to step t, so
(ht, h̃t, pt, qt) are Ft–measurable and Dt = JS(pt, qt). Let ξt+1 denote all exogenous random
variables used by the one–step kernel at time t+1, coupled across the two arms and independent of
(τt, τ̃t) given Ft, and set Gt := σ(Ft, ξt+1). For tokens (τ, τ̃) define

Dt+1(τ, τ̃ ; ξt+1) := JS
(

S
(
K(ht, τ ; ξt+1)

)
, S

(
K(h̃t, τ̃ ; ξt+1)

))
.

Let Xclosed
t = Dclosed

t+1 − Dt be the increment when both arms consume the same token τt ∼ pt, and
Xopen

t = Dopen
t+1 − Dt the increment when τt ∼ pt and τ̃t ∼ qt are independent. Then

E[Xopen
t | Ft] = E

[
Xclosed

t | Ft

]
+ ∆t,

where
∆t = E[Dt+1(τt, τ̃t; ξt+1) − Dt+1(τt, τt; ξt+1) | Ft] .

Proof. All statements are conditional on Ft. First note that Dt = JS(pt, qt) depends only on (pt, qt),
hence it is Ft–measurable. Therefore E[Dt | Ft] = Dt in both probe regimes.

Let ξt+1 denote all exogenous randomness used at time t+1, independent of (τt, τ̃t) given Ft and
coupled across both arms, and set Gt := σ(Ft, ξt+1). For fixed ξt+1, the map

(τ, τ̃) 7→ Dt+1(τ, τ̃ ; ξt+1)

is deterministic and measurable.

In the open probe,

E[Xopen
t | Gt] = E[Dt+1(τt, τ̃t; ξt+1) | Gt] − Dt =

∑
i,j

pt(i)qt(j) Dt+1(i, j; ξt+1) − Dt,

with τt ∼ pt and τ̃t ∼ qt independent. In the closed probe,

E
[
Xclosed

t | Gt

]
= E[Dt+1(τt, τt; ξt+1) | Gt] − Dt =

∑
i

pt(i) Dt+1(i, i; ξt+1) − Dt.

Subtracting these two displays cancels the common −Dt term (this is exactly why we needed to note
Dt is Ft–measurable). Thus

E[Xopen
t | Gt] − E[Xclosed

t | Gt] =
∑
i,j

pt(i)qt(j) Dt+1(i, j; ξt+1) −
∑

i

pt(i) Dt+1(i, i; ξt+1).

Finally, apply the tower property E[· | Ft] = E(E[· | Gt] | Ft) to obtain

E[Xopen
t | Ft] − E[Xclosed

t | Ft] = E[Dt+1(τt, τ̃t; ξt+1) − Dt+1(τt, τt; ξt+1) | Ft] ,

which by definition is ∆t.
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A.4 CONTROLLED RANDOMIZATION NETWORK

Lemma 5 (CRN antisymmetry and conditional mean). Let the three–arm CRN evolve rollouts
(+, −, 0) with a common coupling of all non–token randomness. For a token pair (a, b) let D±

t+1(a, b)
denote the divergence at time t + 1 when the ± trajectory consumes (a, b) at time t. Assume D±

t and
D±

t+1(a, b) are integrable and Ft–measurable as functions of (a, b). Let τ±
t ∼ p±

t and τ̃±
t ∼ q±

t be
conditionally independent given Ft. By convention,

D±
t+1 := D±

t+1(τ±
t , τ̃±

t ).
Define

D±
t+1,closed := D±

t+1(τ±
t , τ±

t ), ∆±
t := E

[
D±

t+1(τ±
t , τ̃±

t ) − D±
t+1(τ±

t , τ±
t )

∣∣ Ft

]
,

and the CRN increments

Xt := 1
2

[
(D+

t+1 − D+
t ) − (D−

t+1 − D−
t )

]
, X±

t,closed := D±
t+1,closed − D±

t .

Then:

(i) Antisymmetry. Swapping + ↔ − maps Xt to −Xt.

(ii) Conditional mean.

E[Xt | Ft] = 1
2

(
E[X+

t,closed | Ft] − E[X−
t,closed | Ft]

)
+ 1

2
(
∆+

t − ∆−
t

)
.

(iii) Neutrality and symmetry. If closed–probe neutrality holds, meaning

E[X±
t,closed | Ft] = 0,

then the first bracket in (ii) vanishes and one obtains

E[Xt | Ft] = 1
2 (∆+

t − ∆−
t ).

If in addition the open kernel is sign–symmetric, so that ∆+
t = ∆−

t , then the right–hand
side is zero and hence

E[Xt | Ft] = 0.

Proof. (i) is immediate: swapping + ↔ − exchanges the two terms in Xt, hence Xt 7→ −Xt.

For (ii), D±
t are Ft–measurable, so

E[Xt | Ft] = 1
2

(
E[D+

t+1 | Ft] − E[D−
t+1 | Ft]

)
− 1

2 (D+
t − D−

t ).

By Lemma 4 applied separately to {+, −}, we have

E[D±
t+1 | Ft] = E[D±

t+1,closed | Ft] + ∆±
t .

Substituting gives

E[Xt | Ft] = 1
2

(
E[D+

t+1,closed | Ft] − E[D−
t+1,closed | Ft]

)
+ 1

2 (∆+
t − ∆−

t ) − 1
2 (D+

t − D−
t )

= 1
2

(
E[D+

t+1,closed − D+
t | Ft] − E[D−

t+1,closed − D−
t | Ft]

)
+ 1

2 (∆+
t − ∆−

t ),

since D±
t are Ft–measurable. Recognizing X±

t,closed = D±
t+1,closed − D±

t , we obtain

E[Xt | Ft] = 1
2

(
E[X+

t,closed | Ft] − E[X−
t,closed | Ft]

)
+ 1

2 (∆+
t − ∆−

t ),

which is the claimed identity.

For (iii), under closed–probe neutrality both expectations E[X±
t,closed | Ft] vanish, so only the

difference of open–kernel terms remains:

E[Xt | Ft] = 1
2 (∆+

t − ∆−
t ).

If moreover the open kernel is sign–symmetric, then ∆+
t = ∆−

t and the conditional mean vanishes.
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Lemma 6 (Sibling averaging). Let {X
(m)
t }M

m=1 be conditionally i.i.d. CRN increments given Ft with
E[|X(1)

t | | Ft] < ∞. Then

Xt = 1
M

M∑
m=1

X
(m)
t

a.s.−−→ E[X(1)
t | Ft] as M → ∞.

Proof. Condition on Ft. Given Ft, the X
(m)
t are i.i.d. with finite mean. By the strong law of large

numbers (see (Kallenberg, 1997) for a more detailed proof), Xt → E[X(1)
t | Ft] almost surely for

the conditional law, hence almost surely under P.

A.5 FILTRATION AND MEAN-FIELD PRELIMINARIES

Definition 2 (Filtration). Ft is the σ-algebra generated by hidden states, token draws, and CRN
couplings up to step t.

Lemma 7 (Exchangeability). If {X
(i)
t }i≥1 is exchangeable with E[X(i)

t | Ft] = 0 and E[|X(i)
t |] <

∞, then

1
N

N∑
i=1

X
(i)
t

a.s.−−→ 0 as N → ∞.

Proof. By de Finetti’s representation, exchangeable sequences are mixtures of i.i.d.; apply the SLLN
inside the mixture and integrate (Kallenberg, 1997, Sec. 14).

B PREDICTABLE DRIFT CORRIDOR

Lemma 8 (Mean value theorem (JS)). Fix t and i, j ∈ [V ]. Define gt,i(r) := JS(Φt(i), r) for
r ∈ ∆V −1. Then for some θ ∈ [0, 1],

JS(Φt(i), Φ̃t(j)) − JS(Φt(i), Φ̃t(i)) =
〈
∇gt,i(rθ), Φ̃t(j) − Φ̃t(i)

〉
,

with rθ = (1 − θ)Φ̃t(i) + θΦ̃t(j). Hence∣∣JS(Φt(i), Φ̃t(j)) − JS(Φt(i), Φ̃t(i))
∣∣ ≤ LJS,t ∥Φ̃t(j) − Φ̃t(i)∥2,

where
LJS,t := sup

i,j∈[V ]
θ∈[0,1]

∥∇2JS(Φt(i), rθ)∥2.

Lemma 9 (Lipschitz decoder and kernel). For any i, j ∈ [V ],

∥Φ̃t(j) − Φ̃t(i)∥2 ≤ Lsm,t ∥W∥2 Lker,t ∥Ej − Ei∥2.

If σmin(W ) > 0, then

∥Φ̃t(j) − Φ̃t(i)∥2 ≤ Lsm,t κ2(W ) Lker,t ∥Mj − Mi∥2, M = WE, κ2(W ) = ∥W ∥2
σmin(W ) .

Proposition 3 (Predictable drift corridor). Let µt = E[Xopen
t | Ft]. Then

|µt| ≤ LJS,t Lsm,t Lker,t Ei,j∥Ej − Ei∥2 =: ct. (7)

If σmin(W ) > 0, then

|µt| ≤ LJS,t Lsm,t κ2(W ) Lker,t Ei,j∥Mj − Mi∥2. (8)

Proof. Combine Lemma 8 with Lemma 9, then take expectation over i ∼ pt, j ∼ qt. This yields
equation 4. The strengthened form equation 5 follows from ∥Wv∥2 ≥ σmin(W )∥v∥2.
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C BLENDED REPORTING RULE

We collect here a complete derivation of the blended neutrality reporting bound used in the main text.
Definition 3 (Centered increments, quadratic variation). Let Xopen

t := Dt+1 − Dt, µt := E[Xopen
t |

Ft], and Yt := Xopen
t − µt. Define

MN :=
N∑

t=1
Yt, BN :=

N∑
t=1

µt, VN :=
N∑

t=1
E[Y 2

t | Ft−1],

and X̄N := 1
N

∑N
t=1 Xopen

t .

C.1 DETERMINISTIC EXPECTATION CONTROL

Lemma 10 (Deterministic expectation control). With ct as in equation 4,

∣∣E[X̄N ]
∣∣ ≤ 1

N

N∑
t=1

ct.

Proof. We have SN :=
∑N

t=1 Xopen
t = MN + BN by definition, so E[SN ] = E[BN ]. Therefore

∣∣E[X̄N ]
∣∣ = 1

N

∣∣E[BN ]
∣∣ ≤ 1

N

N∑
t=1

E[ |µt| ] ≤ 1
N

N∑
t=1

ct,

using equation 4.

C.2 FREEDMAN PREREQUISITES AND DEVIATION

Lemma 11 (Freedman prerequisites). Under equation 1 and equation 4 there exists c < ∞ with
|Yt| ≤ c a.s., and MN is a martingale with predictable quadratic variation VN .

Proof. By equation 1, |Xopen
t | ≤ log 2 a.s. and by equation 4, |µt| ≤ ct. Let c := log 2 + sups cs <

∞. Then |Yt| ≤ |Xopen
t | + |µt| ≤ c. Measurability and E[Yt | Ft−1] = 0 are by definition of µt, so

{Mt, Ft} is a martingale and VN is its predictable quadratic variation.

Theorem 3 (Two-sided high-probability deviation). For any δ ∈ (0, 1),

|MN | ≤
√

2VN log(2/δ) + c
3 log(2/δ) with probability at least 1 − δ,

where c is from Lemma 11. Equivalently,∣∣∣∣X̄N − BN

N

∣∣∣∣ ≤
√

2VN log(2/δ)
N2 + c

3
log(2/δ)

N
. (9)

Proof. Apply Freedman’s inequality to the martingale MN with bounded increments |Yt| ≤ c
(Lemma 11). Divide by N .

Lemma 12 (Lindeberg condition). Assume VN → ∞ in probability. Then for every ϵ > 0,

1
VN

N∑
t=1

E
[
Y 2

t 1{|Yt| > ϵ
√

VN }
∣∣∣ Ft−1

]
P−→ 0.

Proof. Since |Yt| ≤ c, on {
√

VN ≥ c/ϵ} each indicator vanishes. As VN → ∞ in probability, the
event holds with probability tending to one, so the normalized sum converges to 0 in probability.

Theorem 4 (Martingale Central Limit Theorem). If VN /N → σ2 ∈ (0, ∞) in probability, then

MN√
VN

⇒ N (0, 1),
√

N

(
X̄N − BN

N

)
⇒ N (0, σ2).
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Proof. By Lemma 12, Lindeberg’s condition holds. The martingale central limit theorem yields
MN /

√
VN ⇒ N (0, 1); Slutsky gives the second convergence.

Theorem 5 (Blended neutrality). With ct from equation 4,

∣∣E[X̄N ]
∣∣ ≤ min

{
1
N

N∑
t=1

ct,

∣∣∣∣∣X̄N − 1
N

N∑
t=1

µt

∣∣∣∣∣ + z0.975
ŝN√

N

}
,

where ŝ2
N = 1

N

∑N
t=1(Xopen

t − X̄N )2. If 1
N

∑N
t=1 ct → 0, then 1

N

∑N
t=1 µt → 0 and the standard

error band applies directly to X̄N .

Proof. The first term inside the minimum is Lemma 10. For the second term, apply Theorem 3 to
bound |X̄N − BN /N | in finite samples, or Theorem 4 to obtain the asymptotic normal band; replace
the (unknown) variance by ŝ2

N under the usual consistency. If 1
N

∑
ct → 0, then BN /N → 0, hence

the band centers on X̄N itself.

D MARKOV KERNEL DRIFT AND CORRIDOR BOUNDS

This appendix collects the kernel-level derivations underlying Proposition 1 in Section 3. We assume
that each residual block Hℓ(x) = x+Gℓ(LN(x)) is Lipschitz with constant Lℓ, so that the cumulative
kernel constant satisfies Lker,t =

∏
ℓ≤t Lℓ. This assumption is standard in theoretical analyses of

residual networks (Hardt & Ma, 2017; Hayou et al., 2019; Tian, 2017) and is used only as a structural
input to the corridor bound.

Definition 4 (Open probe kernel). At step t, condition on Ft, which fixes the paired hidden states
(ht, h̃t) and decoded distributions (pt, qt). Let ξt+1 denote the exogenous randomness used by the
one–step transition. The open-probe kernel acts on a token pair (i, j) ∈ [V ]2 as

Dt+1(i, j; ξt+1) := JS
(
S(WK(ht, i; ξt+1)), S(WK(h̃t, j; ξt+1))

)
,

with S the softmax, W the decoder, and K the kernel map.

Lemma 13 (Drift identity). For the open probe increment Xopen
t = Dt+1 − Dt, the predictable

mean satisfies
µt = Ei∼pt, j∼qt

[
Dt+1(i, j; ξt+1) − Dt+1(i, i; ξt+1)

∣∣ Ft

]
. (10)

Proof. Condition on Ft and expand the definition of Xopen
t . The baseline term corresponds to both

arms sampling i ∼ pt; the open probe uses independent i ∼ pt, j ∼ qt. Subtracting and taking
conditional expectation yields equation 10.

Theorem 6 (Expected drift bound). With notation as in Lemma 13,

|µt| ≤ LJS,t Lsm,t ∥W∥2 Lker,t Ei,j∥Ej − Ei∥2.

If σmin(W ) > 0, the strengthened logit–space version

|µt| ≤ LJS,t Lsm,t κ2(W ) Lker,t Ei,j∥Mj − Mi∥2, κ2(W ) = ∥W ∥2
σmin(W ) ,

also holds.

Proof. Fix i, j and apply the mean value theorem to r 7→ JS(Φt(i), r) with Φt(i) = S(WK(ht, i)),
Φ̃t(j) = S(WK(h̃t, j)). This yields

|JS(Φt(i), Φ̃t(j)) − JS(Φt(i), Φ̃t(i))| ≤ LJS,t ∥Φ̃t(j) − Φ̃t(i)∥2.

Bound the difference Φ̃t(j) − Φ̃t(i) by the composition of Lipschitz constants for softmax, decoder,
and kernel (Appendix A.1–A.1). Taking expectation over i ∼ pt, j ∼ qt gives the bound. If
σmin(W ) > 0, replace ∥Ej − Ei∥2 by ∥Mj − Mi∥2 to obtain the strengthened form.
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E MEAN-FIELD LIFT OF NEUTRALITY

This appendix provides the rigorous proof of Theorem 2, showing that neutrality and the blended
reporting rule persist in the mean-field limit.

Definition 5 (Exchangeability). A collection of random variables {Ak}N
k=1 is exchangeable if its

joint distribution is invariant under finite permutations. In our setting, the “agents” Ak are either:

1. token pairs (i, j) drawn from (pt, qt) at a fixed step t (trajectory view), or

2. residual blocks Hℓ contributing finite-difference drifts (layerwise view).

Lemma 14 (Law of large numbers for exchangeable agents). Let {Ak}N
k=1 be exchangeable with

E[A1] = 0 and Var(A1) < ∞. Then

1
N

N∑
k=1

Ak
P−−−→ 0 as N → ∞.

Proof. By de Finetti’s representation, exchangeable sequences are mixtures of i.i.d. sequences. Apply
the strong law of large numbers conditionally, then integrate over the mixing measure to obtain
convergence in probability.

Theorem 7 (Mean-field neutrality). Fix a time t. Let {Xopen
t,a }M

a=1 be the agent actions (either in the
trajectory or layerwise view), assumed exchangeable and integrable, with |Xopen

t,a | ≤ b almost surely
(cf. equation 1). If agent-level neutrality holds, i.e.

E[Xopen
t,a | Ft] = 0 for all a,

then
1

M

M∑
a=1

Xopen
t,a

a.s.−−−−→
M→∞

0.

Consequently, the population law inherits neutrality. Moreover, because |Xopen
t,a | ≤ b and |µt| ≤ ct

(Theorem 6), the predictable-corridor and blended-reporting bounds (Theorem 1; Appendix C) hold
unchanged in the mean-field limit.

Proof. By exchangeability of {Xopen
t,a }a≥1 there exists a directing random measure Λt such that,

conditional on Gt := σ(Ft, Λt), the sequence is i.i.d. (de Finetti; cf. Lemma 7). Since |Xopen
t,a | ≤ b

and E[Xopen
t,a | Ft] = 0 by assumption, we also have E[Xopen

t,a | Gt] = 0. Applying the strong law of
large numbers conditionally on Gt yields

1
M

M∑
a=1

Xopen
t,a

a.s.−−−−→
M→∞

E[Xopen
t,1 | Gt] = 0.

Thus, the empirical mean converges almost surely to zero, and the population law inherits neutrality.
Finally, the corridor bound |µt| ≤ ct depends only on architectural constants and embeddings, so it is
unaffected by averaging. Uniform boundedness of the increments (eq. equation 1) ensures that the
Freedman/CLT arguments in Appendix C apply unchanged, so the blended reporting rule extends to
the mean-field limit.

F ABLATION STUDIES

To test the robustness of our neutrality results we vary two key hyperparameters: the sampling
temperature T and the number of siblings M . Lower and higher temperatures alter output entropy,
while M controls the variance reduction from sibling averaging. Across all settings, closed probes
continue to behave as martingale differences, and open probes remain corridor-bounded. The reported
Emax values in Tables 3 stay close to one, which indicates flat e-processes. Importantly, neutrality
is only rejected if Emax exceeds 1/α ≈ 20 at α = 0.05, so values such as Emax = 1.353 are well
within the neutrality region and reflect no systematic drift.
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Setting Model Probe Mean drift t-test p Emax

T=0.5, M=16 gpt2-medium Closed −4.026e−9 3.17e−01 1.022
T=0.5, M=16 gpt2-medium Open 3.060e−9 3.17e−01 1.022
T=1, M=16 gpt2-medium Closed −2.742e−2 6.34e−01 1.118
T=1, M=16 gpt2-medium Open −8.534e−9 6.34e−01 1.118
T=2, M=16 gpt2-medium Closed −9.122e−4 7.70e−02 1.186
T=2, M=16 gpt2-medium Open 1.510e−9 7.70e−02 1.186
T=5, M=16 gpt2-medium Closed 6.957e−4 9.90e−02 1.004
T=5, M=16 gpt2-medium Open 3.861e−8 9.90e−02 1.004
T=1.7, M=8 gpt2-medium Closed −3.176e−4 7.94e−01 1.005
T=1.7, M=8 gpt2-medium Open −1.127e−8 7.94e−01 1.005
T=1.7, M=4 gpt2-medium Closed 1.985e−3 9.79e−01 2.025
T=1.7, M=4 gpt2-medium Open 5.077e−9 9.79e−01 2.025

Table 3: Ablation neutrality audits for gpt2-medium under varying temperature T and sibling count
M . Closed probes show centered but wandering cumulative drift; open probes remain numerically
tiny by comparison. Emax values near 1 indicate no evidence of sustained bias; for context, an
anytime e-test would only approach rejection around Emax≳20 at α=0.05.

Model Block µ̂ SE 95% CI

tiny-gpt2 All (4) 1.157e−07 9.729e−08 (−1.877e−10, 3.468e−07)
distilgpt2 All (4) −2.833e−04 9.159e−03 (−1.839e−02, 1.843e−02)
gpt2-medium All (4) −2.844e−04 8.178e−03 (−1.687e−02, 1.630e−02)
gpt2-large All (4) 1.221e−04 1.341e−02 (−2.851e−02, 2.788e−02)

Table 4: Layer-as-agent diagnostics aggregated across residual blocks. Reported are the mean action
µ̂, its standard error, and a 95% confidence interval. Intervals cover zero throughout, indicating no
systematic bias at the block level.

F.1 LAYER PERSPECTIVE.

F.2 TRAJECTORY-LEVEL NEUTRALITY AUDITS WITH RESPECT TO T

Closed probe. Open probe.

Figure 3: Neutrality audit for gpt2-medium with T = 1, M = 16.

Remark regarding T = 5. At high temperature the softmax flattens, increasing token entropy
and branching variance in the open probe; closed increments remain martingale differences, but
their step variance also grows because re-embeddings explore more of the state space. In Table 3
(T=5, M=16) the prompt-level t-test is marginal (p = 3.20×10−2) around a very small mean drift
(6.19×10−5), yet the anytime e-test stays near one (Emax = 1.005), far below rejection thresholds
(e.g., ≥ 20 at α=0.05), indicating no sustained deviation. Trajectories therefore look more volatile
(variance inflation) but remain neutral in expectation. Moreover, theory predicts a smaller corridor at
higher T (softmax Lipschitz 1/(2T )), consistent with the absence of bias despite noisier paths.
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Closed probe. Open probe.

Figure 4: Neutrality audit for gpt2-medium with T = 2, M = 16.

Closed probe. Open probe.

Figure 5: Neutrality audit for gpt2-medium with T = 5, M = 16.

F.3 TRAJECTORY-LEVEL NEUTRALITY AUDITS WITH RESPECT TO M

Closed probe. Open probe.

Figure 6: Neutrality audit for gpt2-medium with T = 1.7, M = 8.
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Closed probe. Open probe.

Figure 7: Neutrality audit for gpt2-medium with T = 1.7, M = 4.
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