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ABSTRACT

Hallucinations in autoregressive models arise in two stages: an initial deviation
from the truth and its continued propagation during decoding. Existing work
addresses the first stage with empirical or diagnostic methods, but there is no
fundamental account of the second stage. We give the first structural analysis of
how paired continuations of the same prompt evolve inside pre-LayerNorm residual
transformers, which form the backbone of most modern LLMs. By examining the
residual stack and decoder, we show that their dynamics contain no built-in pull that
suppresses deviations and no push that amplifies them. This neutrality is necessary,
but not sufficient, for semantic hallucinations: it permits deviations to continue,
yet a model can still correct the meaning even when predictive differences persist.
Neutrality also yields an explicit upper bound, a separation between deterministic
and stochastic effects, and a statistical validation rule at finite sample sizes. A
population-level version follows by treating the small deviations across many
continuations as agents in a mean-field average, showing that neutrality persists
at scale without requiring access to individual weights. Experiments on GPT2
variants and Qwen2.5 models from 0.5B to 3B match the theoretical predictions.

1 INTRODUCTION

Large language models generate text by predicting the next token, and small errors can accumulate
into large departures from the truth. A core challenge is that research on hallucinations is largely
empirical. Surveys note the reliance on empirical methods and the resulting uncertainty about full
elimination (Huang et al., 2025), and point out that such studies “cannot answer the fundamental
question: can hallucination be completely eliminated?” (Xu et al., 2024). Reviews of training
pipelines add that “pre-training primarily optimizes for completion,” providing no pressure to correct
deviations once they arise (Huang et al., 2025). Recent work furthermore notes that LLMs remain
largely static after pre-training, with knowledge confined to the immediate context and existing
remedies often limited or lacking generalization (Behrouz et al., 2025).

Most direct mitigation strategies focus on onset. Methods such as scheduled sampling (Bengio et al.,
2015), sequence-level objectives (Ranzato et al., 2015), retrieval augmentation (Lewis et al., 2020),
reinforcement learning with human feedback (Ouyang et al., 2022), and tool use (Schick et al., 2023)
reduce the likelihood of the first onset-error by improving grounding or training stability. However,
these methods do not specify how a deviation evolves once present, since they leave the internal
update rule of the residual backbone untouched.

Diagnostics provide complementary insight. Measures based on inconsistency, contradiction or
semantic uncertainty highlight when hallucinations occur (Farquhar et al., 2024; Lin et al., 2021;
Manakul et al., 2023; Chen et al., 2024; Mündler et al., 2023), and human evaluation remains
important for assessing factuality (Maynez et al., 2020; Kryściński et al., 2020; Ji et al., 2023; Huang
et al., 2025). But these methods capture symptoms, not mechanisms, and leave it unclear whether the
architecture suppresses deviations, amplifies them, or lets them persist.

This gap has two consequences. First, it obscures why models lose earlier information quickly. If
the architecture provides no corrective tendency, then once two continuations differ, the difference
can simply persist. This means that nothing in the architecture forces the two paths to reconverge,
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allowing deviations introduced at onset to survive step by step. Second, it limits the scope of existing
mitigation strategies. Techniques that adjust sampling or provide external tools can influence onset,
but if persistence is governed by a structural property of the residual backbone, addressing onset
alone cannot prevent deviations from propagating internally.

This leads to the central question of this paper: Once a deviation is present, what structural law
governs how it moves through the residual architecture of a pre-LayerNorm transformer?

Answering this requires a formal stepwise description of how two slightly different continuations
evolve. Section 3 develops the framework and analytical tools for this.

CONTRIBUTION AND NOVELTY

We show that pre-LayerNorm residual transformers operate under neutral dynamics, a structural
property independent of specific learned weights from which we derive three results:

Architectural neutrality. Differences between two continuations neither shrink nor grow on average.
This identifies the architectural condition under which a deviation can persist.

Predictive control and validation. Neutrality gives an explicit limit on how far two continuations
can move apart at each step and separates the systematic part of this movement from random variation,
which enables a test that works with finite samples. Using this test, we provide empirical evidence on
GPT2 models that vary in depth and width and on Qwen2.5-0.5B. Our results support the theoretical
prediction that neutrality follows from the residual architecture itself and therefore does not depend
on scale.

Population-level behaviour. A mean-field average over many continuations shows that this same
neutral behaviour appears at larger scales without needing access to individual weights.

To our knowledge, this provides the first structural account of persistence in autoregressive trans-
formers. It reframes persistence as an architectural property and makes explicit which parts of
hallucination behaviour arise from the backbone dynamics themselves.

2 BACKGROUND

Autoregressive transformer decoders generate text one token at a time. At each step the model
maintains a hidden state and maps it to a next-token distribution. Small differences in these hidden
states can lead to different predictions, and whether such differences persist depends on how the
architecture propagates them, which we formalize here.

2.1 CONTINUATIONS AND PREDICTIVE BEHAVIOUR

Consider two continuations that start from the same prompt and evolve under the same autoregressive
model. At decoding step t the model holds hidden states (h(1)

t , h
(2)
t ), and applies the same decoder

to obtain next-token distributions, where S denotes the model’s decoder

pt = S(h(1)
t ), qt = S(h(2)

t ).

Any difference between pt and qt reflects a structural difference between the hidden states. Comparing
them provides a direct lens on how the architecture transports small deviations forward across
successive decoding steps. To quantify predictive separation we use the Jensen–Shannon divergence
Dt = JS(pt, qt) (see Appendix A.2 for properties). In this work Dt is used purely as a structural
measure of predictive difference, as it does not measure semantic correctness.

2.2 AUTOREGRESSIVE DYNAMICS

Modern transformer decoders, including recent LLMs, commonly use a pre–LayerNorm residual
design. In this configuration, LayerNorm is applied before the attention or feed-forward sublayer.
This placement is widely adopted because it improves optimization stability and produces well-
behaved gradients at depth, as shown in analyses comparing pre– and post–LayerNorm architectures
(Xiong et al., 2020; Matarazzo & Torlone, 2025).
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A pre–LayerNorm residual block has the form Hℓ(x) = x+Gℓ(LN(x)), where LN(x) is LayerNorm
applied to x including its learnable scale and shift parameters, Gℓ is the sublayer consisting of attention
and feedforward components of the transformer, and the residual connection adds the transformed
and normalized input back to the original signal.

Composing L blocks yields the residual stack F = HL ◦ · · · ◦ H1. The decoder maps hidden
states to predictive distributions through S(h) = softmaxT (Wh + b), where Wh + b are the pre-
softmax scores (logits), W is the learned output projection matrix, and b is the learned bias. The
temperature-scaled softmax converts these scores into a distribution over the vocabulary.

Under autoregression a continuation evolves according to

ht+1 = F (ht), pt = S(ht), τt ∼ pt.

The combined map (F, S) therefore determines how differences in hidden states are turned into
differences in predictive distributions and how these differences propagate across time.

2.2.1 SEMANTIC CONVERGENCE VERSUS PREDICTIVE SEPARATION

Because Dt measures the difference between predictive distributions rather than semantic correctness,
semantic self–correction does not imply that Dt decreases. Even if the two continuations move
toward the same correct answer in meaning, their next–step predictive distributions

pt+1 = S(h(1)
t+1), qt+1 = S(h(2)

t+1)

may still differ. Our analysis therefore concerns how predictive differences propagate through (F, S).

2.3 STEPWISE EVOLUTION OF Dt

Persistence of any deviation requires that a difference present at step t is not automatically eliminated
at step t+1. The stepwise evolution of Dt captures exactly this behaviour. At a structural level there
are three possible regimes for the map from hidden states to predictive distributions:

• Contractive: Dt+1 < Dt (growing deviations).
• Expansive: Dt+1 > Dt (suppressing deviations).
• Neutral: Dt+1 ≈ Dt in expectation (persisting deviations).

Contractive behaviour would eliminate deviations, preventing persistence, while expansive behaviour
would amplify them in a way inconsistent with the empirical stability of modern transformers/LLMs
(Xiong et al., 2020). Neutral behaviour is therefore the structural condition under which predictive
deviations can persist through decoding. Furthermore, as seen in Section 2.2.1, two continuations may
converge toward the same correct answer in meaning while their next-step predictive distributions
pt+1 and qt+1 still differ. Hence, neutrality is an architectural necessary, but not sufficient condition
for the persistence of any deviation, including (semantic) hallucinations.

3 NEUTRALITY, PREDICTABLE DRIFT, AND INFERENCE

This section analyzes how predictive deviation evolves from one decoding step to the next. We
compare paired autoregressive continuations under the closed an open regimes.

A rollout is a full autoregressive continuation, consisting of a sequence of hidden states, decoded
distributions, and token draws. A paired rollout consists of two continuations that start from the same
prompt and evolve under the same model. At step t they have hidden states (ht, h̃t) and predictive
distributions (pt, qt). Predictive separation is measured by Dt = JS(pt, qt), and the associated
one-step change in predictive deviation is the drift increment

Xt = Dt+1 − Dt.

Since JS divergence is bounded (Lemma 3), |Xt| ≤ log 2. To study the evolution over multiple steps
we also consider the cumulative drift, which forms the sequence SN =

∑N
t=1 Xt, N ≥ 1.
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3.1 CLOSED AND OPEN DECODING REGIMES

The drift increment Xt depends on two factors: how the residual architecture transforms the hidden
states, and how stochastic differences arise from drawing different tokens during autoregressive
sampling. To separate these two sources we use controlled comparisons (open versus closed). In
the closed regime both continuations consume the same tokens, removing sampling variability and
isolating the architectural update. In the open regime they sample independently, matching natural
autoregressive decoding. Both regimes use the same autoregressive transformer and differ only in
how the next token is chosen.

Closed decoding. In this regime, both continuations consume the same next token τt ∼ pt. This
removes stochastic branching: the only source of change in predictive separation is the architecture
itself. The corresponding increment is Xclosed

t = Dclosed
t+1 −Dt, which gives the architectural baseline.

Appendix A.3 (Lemma 5) shows that in this regime the conditional expectation is zero,

µclosed
t = E[Xclosed

t | Ft] = 0, (1)

which we refer to as closed neutrality. It formalizes the idea that pre-LN residual transformers neither
contract nor expand predictive differences when no sampling mismatch is introduced.

Open decoding. Here, each continuation samples its next token independently: τt ∼ pt, τ̃t ∼ qt.
This introduces stochastic branching in addition to the architectural update. The corresponding
increment is Xopen

t = Dopen
t+1 − Dt. Appendix A.2 (Lemma 4) shows that in this case, the conditional

expectation µt = E[Xopen
t | Ft], which we call the predictable drift, decomposes as

µt = E[Xclosed
t | Ft] + ∆t = µclosed

t + ∆t,

where ∆t is the systematic effect of token mismatch. By eq 1, this reduces to µt = ∆t. Thus the
predictable part of open drift is entirely due to token mismatch arising from independent sampling.

3.2 THE CONTROLLED RANDOMIZATION NETWORK (CRN)

To obtain unbiased and architecturally faithful measurements of drift we use the controlled random-
ization network (CRN) defined in Appendix A.4. The CRN evolves three coupled continuations, or
arms, all sharing the same non-token randomness. Each arm is a full continuation of the same prompt
and model, differing only in a prescribed perturbation. The baseline, positive and negative arms are
mathematical mirror-image modifications of one another.

At each decoding step the CRN records the JS divergences Dt, D+
t and D−

t and forms the antisym-
metric increment

Xt = 1
2

[
(D+

t+1 − D+
t ) − (D−

t+1 − D−
t )

]
.

The conditional expectation of the drift increment, µt = E[Xt | Ft], equals zero in the closed regime
(architectural neutrality) and quantifies the predictable effect of token mismatch in the open regime.

The CRN has two structural features. First, the (+) and (−) arms are mathematical mirror images
under the same non-token randomness, such that each step compares sign-reversed versions of the
same continuation. Second, the conditional expectation of the drift increment, µt = E[Xt | Ft],
separates the closed-regime contribution from the additional effect caused by sampling different
tokens, written as ∆±

t . The symmetry condition ∆+
t = ∆−

t holds when this sampling effect is the
same for both mirror arms. In that case µt = 0, making architectural neutrality experimentally
verifiable rather than purely theoretical. All details and proofs are given in Appendix A.3 (Lemma 5).

Finally, to estimate the CRN conditional mean, we use sibling rollouts: independent repeats of the
same CRN obtained by resampling only the random seeds. Siblings give repeated evaluations of Xt

under the same state Ft. Their average estimates E[Xt | Ft], which is zero in the closed regime. To
separate this systematic component from sampling variability we write

Xt = µt + Yt, µt := E[Xt | Ft], Yt := Xt − µt.

The term µt is fixed once the current hidden state and token distributions are fixed, while Yt contains
the remaining randomness (martingale fluctuations). In the next section we bound µt, since only this
systematic part is determined by the architecture and can be controlled.
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3.3 PREDICTABLE DRIFT, DRIFT IDENTITY, AND THE DRIFT CORRIDOR

For paired continuations, the one-step change in predictive divergence is Xt = Dt+1 − Dt. The
conditional mean is given by the drift identity (Appendix D, Lemma 13):

µt = Ei∼pt, j∼qt

[
Dt+1(i, j) − Dt+1(i, i)

]
, (2)

where i and j are the next tokens drawn from pt and qt. The inner term compares two possible next
steps, same token versus different tokens. Taking the expectation over the two next token draws gives
the exact drift. Thus µt captures the deterministic effect of token mismatch. The drift identity shows
that the value of µt depends only on how much the next-step update changes when the token changes,
so obtaining a bound for µt requires a bound on the sensitivity of this update to its token input.

3.4 PREDICTABLE DRIFT CORRIDOR

As discussed previously, bounding µt reduces to bounding how sensitive the one-step update is to the
token that enters it. The update map Φ̃t(·) is Lipschitz in the token embeddings. If Ei and Ej are the
embeddings of tokens i and j, then the one-step update Φ̃t(·) satisfies

∥Φ̃t(j) − Φ̃t(i)∥2 ≤ Lker,t ∥Ej − Ei∥2. (3)

Combining eq. 3 with the Lipschitz bounds for JS divergence, softmax, and the decoder yields
a deterministic interval. We refer to this interval as the predictable drift corridor, which implies
µt ∈ [−ct, ct] and is formalized below:
Proposition 1 (Predictable drift corridor). For each step t,

|µt| ≤ LJS,t Lsm,t ∥W∥2 Lker,t Ei,j∥Ej − Ei∥2 =: ct, (4)

with E the embedding matrix and Ei its token vectors. If decoder matrix W has σmin(W ) > 0, then

|µt| ≤ LJS,t Lsm,t κ2(W ) Lker,t Ei,j∥Mj − Mi∥2, (5)

where κ2(W ) = ∥W∥2/σmin(W ) and M = WE denotes the logit embeddings.

Proof sketch. Lemma 8 in Appendix B bounds the JS change in equation 3 by LJS,t∥Φ̃t(j)−Φ̃t(i)∥2.
Lemma 9 in Appendix B bounds the one-step update by Lker,t∥W∥2Lsm,t∥Ej − Ei∥2, which gives
equation 4. If σmin(W ) > 0, distances may be measured in logit space via M = WE, yielding
equation 5. Full derivations appear in Appendix D, Theorem 6.

Consequently, the corridor specifies the maximal deterministic magnitude of predictable drift allowed
by the architecture. It does not fix the direction of drift but guarantees that even under open sampling,
the systematic effect of token mismatch is bounded.

3.5 MARTINGALE STRUCTURE, WE HAVE THE DECOMPOSITION AND CUMULATIVE DRIFT

Recall that we can write Xt = µt + Yt, where Yt contains the martingale fluctuations. This
decomposition induces cumulative predictable and centered components:

BN =
∑
t≤N

µt, MN =
∑
t≤N

Yt, SN = BN + MN .

A full inference rule must account for both terms. The corridor bounds ct control the predictable
contribution BN , while deviation inequalities control the centered term MN . Neither component is
sufficient on its own, as ct does not describe fluctuations from sampling, and the deviation bounds
do not restrict the predictable part. Hence, the two components require different analytical tools,
combined in the blended neutrality theorem:

Theorem 1 (Blended neutrality reporting). Let X̄N = 1
N

∑N
t=1 Xopen

t and ct as above. Then∣∣E[X̄N ]
∣∣ ≤ min

{
1
N

N∑
t=1

ct,
∣∣X̄N − 1

N

N∑
t=1

µt

∣∣ + z0.975
ŝN√

N

}
, (6)

with ŝ2
N = 1

N

∑N
t=1(Xopen

t − X̄N )2. If 1
N

∑
ct → 0, then 1

N

∑
µt → 0 and the standard error

band applies directly to X̄N .
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Proof sketch. The deterministic control bounds E[X̄N ] by 1
N

∑
ct (Lemma 10). Boundedness of

JS divergence ensures that every increment satisfies |Xt| ≤ log 2, and therefore Yt = Xt − µt

is also uniformly bounded (Appendix D). Freedman’s inequality provides finite-sample control of
the cumulative fluctuation MN =

∑
t≤N Yt, and the martingale central limit theorem describes its

asymptotic behaviour, which gives the Gaussian limit with standard error (Theorem 3 and Theorem 4).
The combined statement leads to Theorem 5 in Appendix C.

The blended reporting rule combines these controls into a finite-sample criterion. It makes neutrality
testable in paired rollouts: if the observed drift lies within both bounds, neutrality cannot be rejected.

3.6 AGENTS AND THE MEAN FIELD LIFT

The drift framework developed so far treats each one-step increment Xt as arising from a single
paired rollout. To understand neutrality beyond a single rollout, we can interpret Xt as many small
agents whose empirical average, or mean-field, forms the observed drift. Mean-field models originate
in stochastic finance and control theory (Lasry & Lions, 2007; Huang et al., 2006; Yang et al., 2017;
Carmona & Delarue, 2018), where large populations of interacting agents are approximated by their
empirical distribution. The key principle is that when agents are exchangeable and individually
negligible, the empirical law of their actions converges to a deterministic population law. This
provides the bridge from finite-sample neutrality to structural neutrality at scale.

3.6.1 AGENTS

We formalize the agent model by defining an agent to be one elementary contribution to drift at a
fixed step t (Appendix E). We use two agent views:

1. Trajectory agents: token pairs (i, j) sampled from (pt, qt), each producing one increment Xopen
t,a .

2. Layerwise agents: residual blocks Hℓ contributing finite difference drifts across depth.

Agents are exchangeable: their joint law is invariant under permutations (Appendix E, Definition 4).
Furthermore, neutrality at the agent level is immediate from the drift identity and closed-regime
neutrality: for each agent a, E[Xopen

t,a | Ft] = 0. Because each Xt,a is bounded, and the empirical
mean of M agents satisfies a conditional law of large numbers, as stated in the following proposition:
Proposition 2 (Finite-agent neutrality). For M exchangeable agents,

X̄
(M)
t = 1

M

M∑
a=1

Xt,a
a.s.−−→ 0 (M → ∞).

Proof. Linearity of conditional expectation gives E
[
X̄

(M)
t | Ft

]
= 1

M

∑M
a=1 E[Xt,a | Ft] = 0.

3.6.2 POPULATION LIMIT

In the mean-field limit, where the number of agents M tends to infinity, the empirical distribution of
agent actions converges to a deterministic law. Because each finite-agent system is neutral, the limit
inherits neutrality, which is formalized below:

Theorem 2 (Mean-field neutrality). Building on Proposition 2, assume the agent actions {X
(a)
t }M

a=1
are exchangeable and satisfy E[X(a)

t | Ft] = 0 with bounded second moment. Then

X̄
(M)
t = 1

M

M∑
a=1

X
(a)
t

a.s.−−−−→
M→∞

0,

so the population law inherits neutrality. Moreover, the predictable corridor ct and the blended
reporting rule (Theorem 1) extend to the mean-field limit without modification.

Proof sketch. By Proposition 2, each finite-agent system has E[X̄(M)
t | Ft] = 0. Exchangeability

then allows a de Finetti representation, and the law of large numbers for exchangeable sequences
implies X̄

(M)
t → 0 almost surely as M → ∞. Bounded increments guarantee that the martingale

6
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(A) Controlled probes & CRN coupling

Choose tokens & share randomness

(B) Pre-LN residual stack & decoder

Pre-LN residuals propagate to logits and softmax

(C) Drift, corridor, & blended reporting

Compute drift, bound predictable bias, add martingale part

(D) Mean-field lift

Population limit under exchangeability

prompt / context

closed

open

CRN: shared non-token randomness

LN H1 H2 H3 W softmax

LN H1 H2 H3 W softmax

pt+1

qt+1

Dt = JS(pt, qt) Xopen
t = Dt+1 −Dt Yt = Xopen

t − µt

µt = E[Xopen
t | Ft] |µt| ≤ ct

∣∣E[X̄N ]
∣∣ ≤ min

{
1
N

∑

t≤N

ct,
∣∣X̄N − 1

N

∑

t≤N

µt

∣∣+ z0.975
ŝN√
N

}
X̄

(M)
t =

1

M

M∑

a=1

Xopen
t,a

X̄
(M)
t

a.s.−−−→ 0 (exchangeable agents)

Figure 1: Neutrality audit framework. (A) Closed versus open regime. (B) Residual stack propagates
hidden states into token distributions. (C) Drift decomposition: closed increments (martingale
differences), open increments (µt bounded by ct and a centered martingale part). (D) Mean-field lift:
neutrality aggregates to the population level.

concentration and corridor bounds apply uniformly, so both carry over to the mean-field limit. See
Appendix E, Theorem 7 for the full proof.

Viewing drift contributions as agents makes two points explicit. First, neutrality is not limited to a
single paired continuation but remains present when many contributors are combined. Second, the
predictable corridor and the blended reporting rule have the same interpretation at population scale,
because the architecture still bounds the deterministic part of drift and the random part continues to
satisfy the same martingale controls.

4 EXPERIMENTS

In this section, we empirically test the neutrality predictions of Section 3 using the open and closed
probes defined in Section 3.1. For each model and each of K = 32 prompts with three master seeds,
we generate a two-arm CRN pair, expand each arm into M = 16 siblings, and decode for N = 32
steps at temperature T = 1.0. At every step we compute Xt = Dt+1 − Dt. Pooling over prompts,
seeds, and siblings yields one closed and one open increment sample per model.

We evaluate these predictions across four GPT2 models (sshleifer/tiny-gpt2,
distilgpt2, gpt2-medium, gpt2-large), reporting results at both the trajectory and layer-
level.

Hypotheses. We define the following hypotheses, consistent with the open and closed regime:

H1 (closed): E[Xclosed
t | Ft] = 0, H2 (open): |µopen

t | ≤ ct.

Tests and controls. H1 is assessed by a one-sample mean t-test on the pooled closed increments
and by Azuma Hoeffding bands for the cumulative sum. H2 is assessed by estimating µt from open
increments and checking that all values remain within corridor bounds. The blended neutrality rule
(Theorem 1) provides the joint criterion we use in interpretation: open increments must remain
within the deterministic corridor ct, and their fluctuations must agree with the martingale behaviour
quantified by the Azuma–Hoeffding and anytime e-process bounds. Placebo and label randomized
CRN pairs serve as controls and should show no systematic drift.

Population summaries. Trajectory level summaries use the exchangeability structure required for
the mean-field lift in Section 3.6.2. We report the pooled trajectory mean and its confidence bands.
Block-level bootstrap intervals are included only as an internal diagnostic.

Robustness. The audit is repeated for temperatures {0.5, 1.0, 1.7, 2, 5} and sibling counts {4, 8, 16},
with the same protocol applied to all models. These ablation studies are reported in Appendix F.

4.1 MAIN RESULTS

As our results confirm, closed probes behave as bounded martingale differences. The increments are
centered, yet as martingales they wander, which produces variability on the scale of the square root of
the horizon. In Figure 2, this behavior is visible in the wide spread of trajectories for gpt2-large.
The black mean line remains centered while individual paths fluctuate within the Azuma–Hoeffding
envelope. Table 1 confirms that the mean drift is close to zero, the t-tests across prompts are non-
significant with p ≥ 0.14, and the Azuma coverage is complete. These results validate the theoretical
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claim that closed probes should show neutrality in expectation while still displaying substantial
pathwise variance.

Open probes differ in that their increments may contain predictable drift, bounded in theory by the
corridor. Figure 2 shows that this drift is numerically tiny. The mean path remains flat and the grey
confidence ribbon collapses around zero, even though some individual trajectories diverge as expected
when tokens are decoupled. The aggregate results in Table 1 show mean drifts of order 10−8 to 10−10,
with all values well inside the corridor. The only marginal case appears for distilgpt2, where the
prompt-level t-test reports p = 4.46 × 10−2. This effect disappears under the anytime e-test, which
returns Emax = 1.000 and pe = 0.906, indicating no sustained deviation from neutrality.

Across model scales the evidence is consistent. The smallest variant, tiny, and the largest, large,
both satisfy the neutrality predictions in closed and open configurations. The intermediate models
distil and medium follow the same pattern. Table 1 shows that mean drifts remain negligible,
t-tests do not reject, and e-test maxima remain close to one across all cases. This stability across
scale indicates that neutrality is a structural feature of the GPT-2 residual architecture rather than a
property that depends on parameter count.

Layer-level diagnostics add another perspective. When each residual block is treated as an agent, the
estimates of drift remain centered near zero with confidence intervals that cover both positive and
negative values. Table 6 shows this explicitly for tiny and distil. The intervals are wide, which
reflects the limited sample size at this granularity, but the absence of systematic deviation suggests
that no individual block introduces consistent bias.

Model Params (M) Probe Mean drift 95% CI t-test p Azuma coverage Emax / pe

tiny-gpt2 15 Closed 3.022e−11 [−1.877e−10, 3.468e−07] 9.980e−01 1/1 (100%) 1.000 / 0.794
Open −1.281e−11 – 9.990e−01 – 1.000 / 1.000

distilgpt2 82 Closed 1.385e−04 [−1.839e−02, 1.843e−02] 9.700e−01 5/5 (100%) 1.117 / 0.969
Open −1.496e−08 – 3.900e−01 – 1.000 / 1.000

gpt2-medium 345 Closed −8.917e−04 [−1.687e−02, 1.630e−02] 1.560e−01 174/174 (100%) 1.049 / 0.148
Open 1.477e−09 – 4.710e−01 – 1.000 / 1.000

gpt2-large 774 Closed 6.467e−06 [−2.851e−02, 2.788e−02] 9.860e−01 193/193 (100%) 1.792 / 0.982
Open −6.038e−10 – 3.240e−01 – 1.000 / 1.000

Table 1: Trajectory level neutrality audit results for four GPT2 model scales. The table95% CIs,
prompt level t tests, Azuma coverage for closed trajectories, and anytime e test statistics for both
closed and open probes.

Model Block µ̂ SE 95% CI

tiny-gpt2 All (4) 1.157e−07 9.729e−08 (−1.877e−10, 3.468e−07)
distilgpt2 All (4) −2.833e−04 9.159e−03 (−1.839e−02, 1.843e−02)
gpt2-medium All (4) −2.844e−04 8.178e−03 (−1.687e−02, 1.630e−02)
gpt2-large All (4) 1.221e−04 1.341e−02 (−2.851e−02, 2.788e−02)

Table 2: Layer-as-agent diagnostics for prompt 1. Reported are the mean action µ̂, its standard error,
and a 95% CI aggregated across residual blocks. Entries marked (–) indicate that estimates were not
computed for that model in this run.

For gpt2-large, the contrast between closed and open probes is clear in Figure 2. Closed probes
force both trajectories to consume the same tokens, so increments are martingale differences with
E[Xclosed

t |Ft] = 0. As martingales, they wander: over N = 32 steps the cumulative drift fluctuates
on the

√
N scale, and Azuma–Hoeffding only guarantees a loose pathwise envelope. Nevertheless,

every trajectory remains inside this envelope, so the wide fluctuations seen in the closed panel are
consistent with neutrality and not evidence of bias.

Open probes decouple token draws, introducing a predictable drift µt. Theory bounds this drift by
the corridor ct, and in practice, it is much smaller than the variance of closed wandering. Because we
average over K = 32 prompts, three seeds, and M = 16 siblings (more than 1500 paths per step),
these small biases nearly cancel. The result is that the mean cumulative drift is extremely stable, with
a confidence interval on the order of 10−7 that visually collapses onto the black curve. Individual
open trajectories may diverge, as expected, but what matters is that the mean remains neutral within
the predictable corridor. This pattern matches the predictions of Section 3: closed probes reveal
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Closed probe. Open probe.

Figure 2: Neutrality audits for gpt2-large. Closed probes remain within the Azuma–Hoeffding
envelope, while open probes yield an extremely stable mean drift whose confidence band is visually
indistinguishable from the curve.

martingale fluctuations, while open probes confirm that structural drift is negligible once averaged.
Ablation studies varying T and M (Appendix F) further confirm the neutrality results.

4.2 SCALING PREDICTIVE NEUTRALITY BEYOND GPT-2

The neutrality analysis does not rely on properties specific to the GPT-2 family. It uses only the
residual update rule shared across modern pre-LN transformers. The audit of Qwen2.5 models
spanning 0.5B to 3B parameters in Table 3 demonstrates this directly. Although Qwen is trained with
a separate data pipeline and training procedure, it reproduces all neutrality signatures: closed probe
drifts remain statistically indistinguishable from zero under the prompt level t–test, every trajectory
stays within its Azuma envelope, and the anytime e–test shows no systematic growth. The open
regime exhibits the same pattern.

Model Params (M) Probe Mean drift 95% CI t test p Azuma coverage Emax / pe

Qwen2.5-0.5B-Instruct 500 Closed −2.611e−03 [−6.813e−03, 1.591e−03] 2.040e−01 45/45 (100%) 1.000 / 0.173
Open −3.792e−04 [−6.282e−03, 5.523e−03] 8.924e−01 – 1.176 / 0.867

Qwen2.5-1.5B-Instruct 1500 Closed −1.102e−03 [−4.366e−03, 2.161e−03] 4.807e−01 45/45 (100%) 1.741 / 0.572
Open −2.321e−04 [−4.438e−03, 3.974e−03] 9.075e−01 – 1.013 / 0.907

Qwen2.5-3B-Instruct 3000 Closed −9.170e−04 [−4.611e−03, 2.777e−03] 6.028e−01 45/45 (100%) 1.014 / 0.544
Open −5.840e−04 [−3.786e−03, 2.618e−03] 7.015e−01 – 1.290 / 0.801

Table 3: Trajectory level neutrality audit results for Qwen2.5 0.5-3B models using 3 seeds and 15
prompts. The table reports mean drift estimates, 95% CIs, prompt level t tests, Azuma coverage for
closed trajectories, and anytime e test statistics for both closed and open probes.

Evaluation of Hypotheses For the closed probes, Figure 2 shows centered but wandering paths, and
Table 1 and Table 3 confirm that drifts stay near zero with full Azuma coverage and flat e-process.
Hypothesis 1 holds: increments act as martingale differences, neutral in expectation. For the open
probes, trajectories may diverge, yet their mean drift is small. The results report values below the
corridor constants and non-rejections under e-tests. Hypothesis 2 holds: predictable drift remains
bounded and negligible across scales.

5 DISCUSSION

Neutrality. Our experiments confirm the neutrality properties proven in Section 3. Closed probes
behave as bounded martingales: they show no systematic drift. Open probes admit predictable
drift, but the observed values remain several orders of magnitude below corridor bounds. Together
the results in Figures 2 and Tables 1–3 establish that the residual architecture neither contracts nor
expands deviations in expectation.

Mean–field dynamics. The mean–field formulation explains why these results scale. At the trajectory
level, increments behave as martingale differences, and under exchangeability this neutrality law
lifts to the population of token–agents. At the layer level, residual blocks act as agents through their
finite–difference contributions, and bootstrap intervals show that these actions fluctuate but remain
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centered. In both cases the collective dynamics are neutral rather than adversarial, so the population
equilibrium is persistence. The novelty is that neutrality is not confined to single increments but
survives the mean–field lift, turning a local property into a system–level invariant.

Hallucination persistence. The central question in this paper was what structural rule governs how
two continuations evolve once a deviation is already present. The experiments give a consistent
answer. The closed probes show that predictive differences wander without a restoring force, and the
open probes show that this wandering is not driven by systematic expansion because the predictable
drift remains inside the corridor. The same pattern appears across all GPT2 scales, and the block
summaries do not reveal any consistent source of bias. At the trajectory-level a similar conclusion
holds for the Qwen 2.5 model. These findings describe predictive behaviour only. Neutrality is
necessary, but not sufficient, for semantic hallucinations to persist after onset. It is necessary because
it allows predictive differences to continue rather than collapse, yet not sufficient because a model
can still correct the meaning even when the predictive distributions differ. The results also shed
light on why LLMs often appear to have a short memory. If predictive differences are allowed to
persist without a contracting pull, then earlier context cannot reliably influence later tokens, and small
mismatches can remain visible even when the output appears fluent.

Implications. The consequence is that hallucination persistence is an architectural invariant rather
than a byproduct of training. Approaches that control onset, such as entropy reduction, retrieval
augmentation, or reinforcement learning with human feedback, cannot by themselves eliminate
persistence, since the backbone dynamics remain neutral once a deviation has occurred. Mitigation
therefore requires structural interventions: architectures that introduce contraction or external anchor-
ing mechanisms that continuously re-ground the generation. By combining statistical probes with a
mean–field lift, we provide a non-anthropomorphic language to describe this mechanism, framing
hallucinations as a structural feature of residual transformers that persists across scales.

5.1 LIMITATIONS

Our empirical scope is limited by the requirement that models expose full control over sampling.
GPT-2 variants satisfy this constraint, and the audit of Qwen2.5 –0.5-3B shows that neutrality extends
beyond the GPT-2 family to an independently trained, mid scale modern architecture. The main
limitations are practical: larger models require many more trajectories and seeds, and proprietary
systems do not expose the interfaces needed for controlled probes.

The horizon was set to N = 32 for computational reasons. The neutrality theorem is time uniform
and does not depend on N , and this length already shows neutral wandering and bounded drift. It is
however, too short to study very long generations, so larger N would provide an additional empirical
check without affecting the theoretical claim.

At the architectural level, the trajectory results follow from formal martingale arguments. The
mean-field lift uses exchangeability of paired increments along a trajectory. The layer-level diag-
nostic inspects individual blocks, which are not exchangeable because they have different positions,
functions, and scales. Bootstrap intervals therefore give only a rough internal check. The audit
isolates architectural neutrality. It does not examine how this interacts with training procedures such
as reinforcement learning from human feedback or retrieval augmented generation.

6 CONCLUSION

We showed that persistence follows from a simple architectural fact: pre-LayerNorm residual
transformers do not pull paired rollouts together or push them apart in expectation. The stepwise
drift identity makes this explicit, and the operator bounds for LayerNorm, the residual stack, and the
decoder give a predictable drift corridor that limits how much systematic separation can occur at each
step. The blended reporting rule links this structural limit to finite sample estimates, providing a direct
test for neutrality. A mean field lift then shows that the same neutral behaviour appears when many
local drift contributions are combined, which explains the stability of the effect across prompts and
model scales. Empirically, GPT2 and Qwen 2.5 audits align with these predictions. Interventions that
do not modify the residual backbone can curb onset but cannot eliminate persistence once deviations
arise. In this sense, trajectories may wander, but under neutrality their drift remains bounded and
unbiased—reminding us that not all who wander are lost (Tolkien, 1954).
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REPRODUCIBILITY STATEMENT

The experimental protocol is defined in Section 4, which specifies the closed and open probes, the
controlled–randomization coupling, the decoding horizon, sibling structure, and the statistical tests
used in the neutrality audit. The accompanying Colab scripts implements this protocol and is adapted
to support a broader set of open models beyond GPT–2.

Entry point The main results of the paper are reproduced with:

neutrality_audit.py

This script runs the full neutrality protocol. It produces results.csv and msgs.csv together
with the ablation outputs reported in Appendix F.

For completeness, we also provide a second script,

model_agnostic_neutrality_audit.py,

which offers a modular model-independent implementation of the closed and open probes. This
lighter script is used for the Qwen 2.5 runs in Section 4. It omits the layer-as-agent diagnostic and the
ablation sweeps because of the costly computations.

Models. All GPT–2 models used in the paper are loaded directly from HuggingFace without
modification. The script generalizes automatically to any HuggingFace CausalLM model with
standard cache semantics, including Qwen and Llama.

For Qwen, the scaling experiments with 1.5 and 3 billion parameters, load the weights in float16
rather than float32 because of model size constraints. Although Qwen is loaded in float16,
the neutrality audit uses matched fp16 forward passes (baseline, +ε, -ε), which cancels first order
quantisation effects. The remaining fp16 noise is far smaller than the empirical variability across
prompts and seeds, so the drift estimates and statistical tests are unaffected.

Evaluating Llama models requires accepting Meta’s model license on a HuggingFace account before
access is granted. Once downloaded, the same probe definitions and statistical tests apply unchanged.
Larger models may require a reduced decoding horizon or prompt count for runtime feasibility.

Prompts and configuration. Prompts are defined explicitly inside the scripts as a Python list. The
scripts expose all core parameters (number of steps, siblings, temperature, seeds, and prompts) at the
top. Setting them to the values in Section 4 yields the behaviour reported in the main tables. The
scripts include a lightweight pilot run that estimates variance and required sample size under a small
closed probe configuration. This pilot is used only for compute management and debugging when
resources are limited, and it is not part of the theoretical protocol or the reported results.

The Qwen experiments use a fixed set of 3 seeds and 15 prompts for computational management
purposes.

Randomness control. NumPy and PyTorch RNGs are seeded deterministically. Closed probes
reuse the same token draws across both arms, implementing the CRN requirement. Open probes use
independent draws. Re–running with the same master seed reproduces the printed statistics.

Dependencies and hardware. The scripts depends on PyTorch, Transformers, NumPy, and SciPy.
It runs on standard Colab GPUs (e.g. T4, A100), with CPU fallback supported for smaller models. No
proprietary APIs or external services are required. All models are loaded through the HuggingFace
hub. Open models require no additional services, while Llama weights require accepting Meta’s
license before download.

STATEMENT USE OF LLM

Large language models were used for polishing language, fixing minor coding errors, and triaging
related work. The proofs, analyses, and results were developed by the authors, and all cited references,
including linked sources when available, were manually verified.
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SYMBOLS AND NOTATION

Symbol Meaning

V Vocabulary size. Index set [V ] = {1, . . . , V }.
∆V −1 Probability simplex over V tokens.
µ(x), σ(x) Coordinate mean and standard deviation of x used by LayerNorm.
ε LayerNorm stabilizer, strictly positive.
γ, β LayerNorm gain and bias, with ∥γ∥∞ = maxi |γi|.
LN LayerNorm map γ ⊙ (x − µ(x)1)/σ(x) + β.
JLN(x) Jacobian of LayerNorm at x.
S or sT Softmax map. With temperature T , sT (z)i = exp(zi/T )/

∑
j exp(zj/T ).

T Sampling temperature controlling softmax sharpness and entropy.
z ∈ RV Logit vector.
p, q ∈ ∆V −1 Paired next token distributions.
KL(p∥q) Kullback Leibler divergence.
JS(p, q) Jensen Shannon divergence bounded by log 2.
m Mixture m = 1

2 (p + q) used in JS definitions.
t Decoding step index.
ht, h̃t Paired hidden states at step t for the two arms.
pt, qt Paired decoded next token distributions at step t.
Dt Predictive divergence at step t, Dt = JS(pt, qt).
Ft Filtration up to step t generated by states, tokens, and couplings.
ξt+1 Exogenous randomness for the one step transition, shared across arms.
Gt Enlarged sigma algebra σ(Ft, ξt+1).
τt, τ̃t Tokens consumed at step t by the two arms.
K(ht, i; ξt+1) One step kernel mapping token i to the next hidden state.
Dt+1(i, j; ξt+1) Next step divergence if arm one takes i and arm two takes j.
Xclosed

t , Xopen
t Closed and open increment.

µt Predictable drift E[Xopen
t | Ft].

∆t Token mismatch drift term defined in Lemma 4.
D±

t Divergences for the + and − CRN arms.
Xt CRN antisymmetric increment.
X±

t,closed Closed increments in each CRN arm.
M Sibling count used for variance reduction.
X

(m)
t , Xt Increment from sibling m ∈ {1, . . . , M} and sibling average.

W Decoder matrix mapping hidden state to logits.
∥W∥2, σmin(W ) Spectral norm of W , smallest singular value of W .
κ2(W ) Condition number ∥W∥2/σmin(W ).
E Embedding matrix. Column Ei is the embedding of token i.
M = WE Logit space embeddings, with columns Mi.
Φt(i), Φ̃t(j) Decoded distributions after one-step kernel updates.
Lsm,t Softmax Lipschitz constant at step t, bounded by 1/(2T ).
LJS,t Local Lipschitz constant of JS in its second argument at step t.
Lker,t Kernel Lipschitz constant up to step t, product of block constants.
Hℓ(x) Residual block x + Gℓ(LN(x)).
Lℓ Lipschitz constant of block ℓ.
ct Corridor radius bounding |µt|, defined in Proposition 3.
Yt Centered increment Xopen

t − µt.
MN , BN Martingale sum

∑N
t=1 Yt, drift sum

∑N
t=1 µt.

VN Predictable quadratic variation
∑N

t=1 E[Y 2
t | Ft−1].

X̄N Empirical mean drift 1
N

∑N
t=1 Xopen

t .
ŝN Sample standard deviation of open increments.
z0.975 Standard normal quantile for 95 percent two sided bands.
Emax, α Maximum of the anytime e process. Test size, rejection when Emax ≥ 1/α.
Ak Generic exchangeable agent variable in Appendix E.
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A PRELIMINARIES

A.1 AUTOREGRESSIVE COMPONENTS

Lemma 1 (LayerNorm operator norm). Let LN : Rd → Rd be

LN(x) = γ ⊙ x − µ(x)1
σ(x) + β, µ(x) = 1

d

d∑
i=1

xi, σ(x) =

√√√√ 1
d

d∑
i=1

(xi − µ(x))2 + ε,

with ε > 0 and ∥γ∥∞ = maxi |γi|. Then, for all x ∈ Rd,∥∥JLN(x)
∥∥

2 ≤ ∥γ∥∞√
ε

.

Proof. Define c(x) = x − µ(x)1 and P = I − 1
d 11⊤, so that c(x) = Px and ∥P∥2 = 1. Then

x̂ = c(x)
σ(x) = Px

σ(x) , LN(x) = Diag(γ) x̂ + β.

Thus JLN(x) = Diag(γ) Jx̂(x), and therefore

∥JLN(x)∥2 ≤ ∥ Diag(γ)∥2 ∥Jx̂(x)∥2 = ∥γ∥∞ ∥Jx̂(x)∥2.

It remains to show ∥Jx̂(x)∥2 ≤ 1/σ(x). For v ∈ Rd, using µ′(x)[v] = 1
d 1⊤v and

σ2(x) = 1
d ∥Px∥2

2 + ε, (σ2)′[v] = 2
d (Px)⊤(Pv), σ′(x)[v] = (Px)⊤(Pv)

d σ(x) ,

we compute

Jx̂(x) v = Pv

σ(x) − Px

σ(x)2 σ′(x)[v] = 1
σ(x)

(
I − Px (Px)⊤

d σ(x)2

)
Pv.

Set

u = Px√
d σ(x)

,

so that ∥u∥2
2 = ∥P x∥2

2
dσ(x)2 = 1 − ε

σ(x)2 ≤ 1, and

Px (Px)⊤

d σ(x)2 = uu⊤.

Hence

Jx̂(x) = 1
σ(x) (I − uu⊤) P.

Now P is an orthogonal projector, so ∥P∥2 = 1. The matrix I − uu⊤ is symmetric with eigenvalues
1 on u⊥ and 1 − ∥u∥2

2 on span{u}, all in [0, 1]. Thus ∥I − uu⊤∥2 = 1. Therefore

∥Jx̂(x)∥2 ≤ 1
σ(x) ∥I − uu⊤∥2 ∥P∥2 ≤ 1

σ(x) .

Combining the estimates gives

∥JLN(x)∥2 ≤ ∥γ∥∞

σ(x) ≤ ∥γ∥∞√
ε

,

since σ(x) ≥
√

ε.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Remark. If Px ̸= 0 and γ = γ01, then Jx̂(x) acts as v 7→ v/σ(x) on the subspace{
v ∈ range(P ) : v ⊥ Px

}
,

so ∥JLN(x)∥2 = ∥γ∥∞/σ(x) and the scaling in σ(x) and ε is sharp.
Lemma 2 (Softmax Lipschitz constant). Let sT (z) = softmaxT (z) with temperature T > 0, so that
p = sT (z) and

sT (z)i = ezi/T∑
j ezj/T

.

Then the Jacobian satisfies, for all z ∈ RV ,∥∥∇sT (z)
∥∥

2 = 1
T

∥∥Diag(p) − pp⊤∥∥
2 ≤ 1

2T
.

Moreover, the constant 1/(2T ) is tight (attained for V = 2, p = ( 1
2 , 1

2 )).

Proof. Differentiating directly gives

∂sT (z)i

∂zk
= 1

T

(
pi δik − pipk

)
,

hence
∇sT (z) = 1

T

(
Diag(p) − pp⊤)

.

The matrix Diag(p) − pp⊤ is symmetric positive semidefinite, so∥∥∇sT (z)
∥∥

2 = 1
T

λmax
(
Diag(p) − pp⊤)

.

For any unit vector v ∈ RV ,

v⊤(
Diag(p) − pp⊤)

v =
∑

i

piv
2
i −

(∑
i

pivi

)2
= Varp(v),

the variance of the random variable that takes value vi with probability pi.

Let α = mini vi and β = maxi vi. By Popoviciu’s inequality,

Varp(v) ≤ (β − α)2

4 .

Moreover, by Cauchy–Schwarz,

(β − α)2 = (|β| + |α|)2 ≤ 2(β2 + α2) ≤ 2
∑

i

v2
i = 2,

since ∥v∥2 = 1. Combining gives

Varp(v) ≤ 1
4(β − α)2 ≤ 1

2 .

Taking the supremum over unit vectors v shows

λmax
(
Diag(p) − pp⊤)

≤ 1
2 .

Tightness. For V = 2, p = ( 1
2 , 1

2 ), the matrix

Diag(p) − pp⊤ =
[

1
4 − 1

4

− 1
4

1
4

]
has eigenvalues 0 and 1/2. Thus

∥∇sT (z)∥2 = 1
T

· 1
2 = 1

2T
,

so the bound is attained.
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A.2 DIVERGENCES

Lemma 3 (JS divergence). For all p, q ∈ ∆V −1 and natural logarithm,

0 ≤ JS(p, q) ≤ log 2.

Proof. Nonnegativity follows from convexity of KL and symmetry. For the upper bound, let m =
1
2 (p + q). By Gibbs’ inequality, KL(p∥m) ≤ log

∑
i

p2
i

mi
≤ log 2, and similarly for q; averaging

yields the claim. Standard proofs appear in Endres & Schindelin (2003).

A.3 PROBE KERNELS

Lemma 4 (Open-probe kernel). Fix t ≥ 0 and let Ft be the natural filtration up to step t, so
(ht, h̃t, pt, qt) are Ft–measurable and Dt = JS(pt, qt). Let ξt+1 denote all exogenous random
variables used by the one–step kernel at time t+1, coupled across the two arms and independent of
(τt, τ̃t) given Ft, and set Gt := σ(Ft, ξt+1). For tokens (τ, τ̃) define

Dt+1(τ, τ̃ ; ξt+1) := JS
(

S
(
K(ht, τ ; ξt+1)

)
, S

(
K(h̃t, τ̃ ; ξt+1)

))
.

Let Xclosed
t = Dclosed

t+1 − Dt be the increment when both arms consume the same token τt ∼ pt, and
Xopen

t = Dopen
t+1 − Dt the increment when τt ∼ pt and τ̃t ∼ qt are independent. Then

E[Xopen
t | Ft] = E

[
Xclosed

t | Ft

]
+ ∆t,

where
∆t = E[Dt+1(τt, τ̃t; ξt+1) − Dt+1(τt, τt; ξt+1) | Ft] .

Proof. All statements are conditional on Ft. First note that Dt = JS(pt, qt) depends only on (pt, qt),
hence it is Ft–measurable. Therefore E[Dt | Ft] = Dt in both probe regimes.

Let ξt+1 denote all exogenous randomness used at time t+1, independent of (τt, τ̃t) given Ft and
coupled across both arms, and set Gt := σ(Ft, ξt+1). For fixed ξt+1, the map

(τ, τ̃) 7→ Dt+1(τ, τ̃ ; ξt+1)

is deterministic and measurable.

In the open probe,

E[Xopen
t | Gt] = E[Dt+1(τt, τ̃t; ξt+1) | Gt] − Dt =

∑
i,j

pt(i)qt(j) Dt+1(i, j; ξt+1) − Dt,

with τt ∼ pt and τ̃t ∼ qt independent. In the closed probe,

E
[
Xclosed

t | Gt

]
= E[Dt+1(τt, τt; ξt+1) | Gt] − Dt =

∑
i

pt(i) Dt+1(i, i; ξt+1) − Dt.

Subtracting these two displays cancels the common −Dt term (this is exactly why we needed to note
Dt is Ft–measurable). Thus

E[Xopen
t | Gt] − E[Xclosed

t | Gt] =
∑
i,j

pt(i)qt(j) Dt+1(i, j; ξt+1) −
∑

i

pt(i) Dt+1(i, i; ξt+1).

Finally, apply the tower property E[· | Ft] = E(E[· | Gt] | Ft) to obtain

E[Xopen
t | Ft] − E[Xclosed

t | Ft] = E[Dt+1(τt, τ̃t; ξt+1) − Dt+1(τt, τt; ξt+1) | Ft] ,

which by definition is ∆t.
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A.4 CONTROLLED RANDOMIZATION NETWORK

Lemma 5 (CRN antisymmetry and conditional mean). Let the three–arm CRN evolve rollouts
(+, −, 0) with a common coupling of all non–token randomness. For a token pair (a, b) let D±

t+1(a, b)
denote the divergence at time t + 1 when the ± trajectory consumes (a, b) at time t. Assume D±

t and
D±

t+1(a, b) are integrable and Ft–measurable as functions of (a, b). Let τ±
t ∼ p±

t and τ̃±
t ∼ q±

t be
conditionally independent given Ft. By convention,

D±
t+1 := D±

t+1(τ±
t , τ̃±

t ).
Define

D±
t+1,closed := D±

t+1(τ±
t , τ±

t ), ∆±
t := E

[
D±

t+1(τ±
t , τ̃±

t ) − D±
t+1(τ±

t , τ±
t )

∣∣ Ft

]
,

and the CRN increments

Xt := 1
2

[
(D+

t+1 − D+
t ) − (D−

t+1 − D−
t )

]
, X±

t,closed := D±
t+1,closed − D±

t .

Then:

(i) Antisymmetry. Swapping + ↔ − maps Xt to −Xt.

(ii) Conditional mean.

E[Xt | Ft] = 1
2

(
E[X+

t,closed | Ft] − E[X−
t,closed | Ft]

)
+ 1

2
(
∆+

t − ∆−
t

)
.

(iii) Neutrality and symmetry. If closed–probe neutrality holds, meaning

E[X±
t,closed | Ft] = 0,

then the first bracket in (ii) vanishes and one obtains

E[Xt | Ft] = 1
2 (∆+

t − ∆−
t ).

If in addition the open kernel is sign–symmetric, so that ∆+
t = ∆−

t , then the right–hand
side is zero and hence

E[Xt | Ft] = 0.

Proof. (i) is immediate: swapping + ↔ − exchanges the two terms in Xt, hence Xt 7→ −Xt.

For (ii), D±
t are Ft–measurable, so

E[Xt | Ft] = 1
2

(
E[D+

t+1 | Ft] − E[D−
t+1 | Ft]

)
− 1

2 (D+
t − D−

t ).

By Lemma 4 applied separately to {+, −}, we have

E[D±
t+1 | Ft] = E[D±

t+1,closed | Ft] + ∆±
t .

Substituting gives

E[Xt | Ft] = 1
2

(
E[D+

t+1,closed | Ft] − E[D−
t+1,closed | Ft]

)
+ 1

2 (∆+
t − ∆−

t ) − 1
2 (D+

t − D−
t )

= 1
2

(
E[D+

t+1,closed − D+
t | Ft] − E[D−

t+1,closed − D−
t | Ft]

)
+ 1

2 (∆+
t − ∆−

t ),

since D±
t are Ft–measurable. Recognizing X±

t,closed = D±
t+1,closed − D±

t , we obtain

E[Xt | Ft] = 1
2

(
E[X+

t,closed | Ft] − E[X−
t,closed | Ft]

)
+ 1

2 (∆+
t − ∆−

t ),

which is the claimed identity.

For (iii), under closed–probe neutrality both expectations E[X±
t,closed | Ft] vanish, so only the

difference of open–kernel terms remains:

E[Xt | Ft] = 1
2 (∆+

t − ∆−
t ).

If moreover the open kernel is sign–symmetric, then ∆+
t = ∆−

t and the conditional mean vanishes.
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Lemma 6 (Sibling averaging). Let {X
(m)
t }M

m=1 be conditionally i.i.d. CRN increments given Ft with
E[|X(1)

t | | Ft] < ∞. Then

Xt = 1
M

M∑
m=1

X
(m)
t

a.s.−−→ E[X(1)
t | Ft] as M → ∞.

Proof. Condition on Ft. Given Ft, the X
(m)
t are i.i.d. with finite mean. By the strong law of large

numbers (see (Kallenberg, 1997) for a more detailed proof), Xt → E[X(1)
t | Ft] almost surely for

the conditional law, hence almost surely under P.

A.5 FILTRATION AND MEAN-FIELD PRELIMINARIES

Definition 1 (Filtration). Ft is the σ-algebra generated by hidden states, token draws, and CRN
couplings up to step t.

Lemma 7 (Exchangeability). If {X
(i)
t }i≥1 is exchangeable with E[X(i)

t | Ft] = 0 and E[|X(i)
t |] <

∞, then

1
N

N∑
i=1

X
(i)
t

a.s.−−→ 0 as N → ∞.

Proof. By de Finetti’s representation, exchangeable sequences are mixtures of i.i.d.; apply the SLLN
inside the mixture and integrate (Kallenberg, 1997, Sec. 14).

B PREDICTABLE DRIFT CORRIDOR

Lemma 8 (Mean value theorem (JS)). Fix t and i, j ∈ [V ]. Define gt,i(r) := JS(Φt(i), r) for
r ∈ ∆V −1. Then for some θ ∈ [0, 1],

JS(Φt(i), Φ̃t(j)) − JS(Φt(i), Φ̃t(i)) =
〈
∇gt,i(rθ), Φ̃t(j) − Φ̃t(i)

〉
,

with rθ = (1 − θ)Φ̃t(i) + θΦ̃t(j). Hence∣∣JS(Φt(i), Φ̃t(j)) − JS(Φt(i), Φ̃t(i))
∣∣ ≤ LJS,t ∥Φ̃t(j) − Φ̃t(i)∥2,

where
LJS,t := sup

i,j∈[V ]
θ∈[0,1]

∥∇2JS(Φt(i), rθ)∥2.

Lemma 9 (Lipschitz decoder and kernel). For any i, j ∈ [V ],

∥Φ̃t(j) − Φ̃t(i)∥2 ≤ Lsm,t ∥W∥2 Lker,t ∥Ej − Ei∥2.

If σmin(W ) > 0, then

∥Φ̃t(j) − Φ̃t(i)∥2 ≤ Lsm,t κ2(W ) Lker,t ∥Mj − Mi∥2, M = WE, κ2(W ) = ∥W ∥2
σmin(W ) .

Proposition 3 (Predictable drift corridor). Let µt = E[Xopen
t | Ft]. Then

|µt| ≤ LJS,t Lsm,t Lker,t Ei,j∥Ej − Ei∥2 =: ct. (7)

If σmin(W ) > 0, then

|µt| ≤ LJS,t Lsm,t κ2(W ) Lker,t Ei,j∥Mj − Mi∥2. (8)

Proof. Combine Lemma 8 with Lemma 9, then take expectation over i ∼ pt, j ∼ qt. This yields
equation 4. The strengthened form equation 5 follows from ∥Wv∥2 ≥ σmin(W )∥v∥2.
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C BLENDED REPORTING RULE

We collect here a complete derivation of the blended neutrality reporting bound used in the main text.
Definition 2 (Centered increments, quadratic variation). Let Xopen

t := Dt+1 − Dt, µt := E[Xopen
t |

Ft], and Yt := Xopen
t − µt. Define

MN :=
N∑

t=1
Yt, BN :=

N∑
t=1

µt, VN :=
N∑

t=1
E[Y 2

t | Ft−1],

and X̄N := 1
N

∑N
t=1 Xopen

t .

C.1 DETERMINISTIC EXPECTATION CONTROL

Lemma 10 (Deterministic expectation control). With ct as in equation 4,

∣∣E[X̄N ]
∣∣ ≤ 1

N

N∑
t=1

ct.

Proof. We have SN :=
∑N

t=1 Xopen
t = MN + BN by definition, so E[SN ] = E[BN ]. Therefore

∣∣E[X̄N ]
∣∣ = 1

N

∣∣E[BN ]
∣∣ ≤ 1

N

N∑
t=1

E[ |µt| ] ≤ 1
N

N∑
t=1

ct,

using equation 4.

C.2 FREEDMAN PREREQUISITES AND DEVIATION

Lemma 11 (Freedman prerequisites). Under Lemma 3 and equation 4 there exists c < ∞ with
|Yt| ≤ c a.s., and MN is a martingale with predictable quadratic variation VN .

Proof. By Lemma 3, |Xopen
t | ≤ log 2 a.s. and by equation 4, |µt| ≤ ct. Let c := log 2 + sups cs <

∞. Then |Yt| ≤ |Xopen
t | + |µt| ≤ c. Measurability and E[Yt | Ft−1] = 0 are by definition of µt, so

{Mt, Ft} is a martingale and VN is its predictable quadratic variation.

Theorem 3 (Two-sided high-probability deviation). For any δ ∈ (0, 1),

|MN | ≤
√

2VN log(2/δ) + c
3 log(2/δ) with probability at least 1 − δ,

where c is from Lemma 11. Equivalently,∣∣∣∣X̄N − BN

N

∣∣∣∣ ≤
√

2VN log(2/δ)
N2 + c

3
log(2/δ)

N
. (9)

Proof. Apply Freedman’s inequality to the martingale MN with bounded increments |Yt| ≤ c
(Lemma 11). Divide by N .

Lemma 12 (Lindeberg condition). Assume VN → ∞ in probability. Then for every ϵ > 0,

1
VN

N∑
t=1

E
[
Y 2

t 1{|Yt| > ϵ
√

VN }
∣∣∣ Ft−1

]
P−→ 0.

Proof. Since |Yt| ≤ c, on {
√

VN ≥ c/ϵ} each indicator vanishes. As VN → ∞ in probability, the
event holds with probability tending to one, so the normalized sum converges to 0 in probability.

Theorem 4 (Martingale Central Limit Theorem). If VN /N → σ2 ∈ (0, ∞) in probability, then

MN√
VN

⇒ N (0, 1),
√

N

(
X̄N − BN

N

)
⇒ N (0, σ2).
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Proof. By Lemma 12, Lindeberg’s condition holds. The martingale central limit theorem yields
MN /

√
VN ⇒ N (0, 1); Slutsky gives the second convergence.

Theorem 5 (Blended neutrality). With ct from equation 4,

∣∣E[X̄N ]
∣∣ ≤ min

{
1
N

N∑
t=1

ct,

∣∣∣∣∣X̄N − 1
N

N∑
t=1

µt

∣∣∣∣∣ + z0.975
ŝN√

N

}
,

where ŝ2
N = 1

N

∑N
t=1(Xopen

t − X̄N )2. If 1
N

∑N
t=1 ct → 0, then 1

N

∑N
t=1 µt → 0 and the standard

error band applies directly to X̄N .

Proof. The first term inside the minimum is Lemma 10. For the second term, apply Theorem 3 to
bound |X̄N − BN /N | in finite samples, or Theorem 4 to obtain the asymptotic normal band; replace
the (unknown) variance by ŝ2

N under the usual consistency. If 1
N

∑
ct → 0, then BN /N → 0, hence

the band centers on X̄N itself.

D MARKOV KERNEL DRIFT AND CORRIDOR BOUNDS

This appendix collects the kernel-level derivations underlying Proposition 1 in Section 3.4. We
assume that each residual block Hℓ(x) = x + Gℓ(LN(x)) is Lipschitz with constant Lℓ, so that the
cumulative kernel constant satisfies Lker,t =

∏
ℓ≤t Lℓ. This assumption is standard in theoretical

analyses of residual networks (Hardt & Ma, 2017; Hayou et al., 2019; Tian, 2017) and is used only as
a structural input to the corridor bound.

Definition 3 (Open probe kernel). At step t, condition on Ft, which fixes the paired hidden states
(ht, h̃t) and decoded distributions (pt, qt). Let ξt+1 denote the exogenous randomness used by the
one–step transition. The open-probe kernel acts on a token pair (i, j) ∈ [V ]2 as

Dt+1(i, j; ξt+1) := JS
(
S(WK(ht, i; ξt+1)), S(WK(h̃t, j; ξt+1))

)
,

with S the softmax, W the decoder, and K the kernel map.

Lemma 13 (Drift identity). For the open probe increment Xopen
t = Dt+1 − Dt, the predictable

mean satisfies
µt = Ei∼pt, j∼qt

[
Dt+1(i, j; ξt+1) − Dt+1(i, i; ξt+1)

∣∣ Ft

]
. (10)

Proof. Condition on Ft and expand the definition of Xopen
t . The baseline term corresponds to both

arms sampling i ∼ pt; the open probe uses independent i ∼ pt, j ∼ qt. Subtracting and taking
conditional expectation yields equation 10.

Theorem 6 (Expected drift bound). With notation as in Lemma 13,

|µt| ≤ LJS,t Lsm,t ∥W∥2 Lker,t Ei,j∥Ej − Ei∥2.

If σmin(W ) > 0, the strengthened logit–space version

|µt| ≤ LJS,t Lsm,t κ2(W ) Lker,t Ei,j∥Mj − Mi∥2, κ2(W ) = ∥W ∥2
σmin(W ) ,

also holds.

Proof. Fix i, j and apply the mean value theorem to r 7→ JS(Φt(i), r) with Φt(i) = S(WK(ht, i)),
Φ̃t(j) = S(WK(h̃t, j)). This yields

|JS(Φt(i), Φ̃t(j)) − JS(Φt(i), Φ̃t(i))| ≤ LJS,t ∥Φ̃t(j) − Φ̃t(i)∥2.

Bound the difference Φ̃t(j) − Φ̃t(i) by the composition of Lipschitz constants for softmax, decoder,
and kernel (Appendix A.1–A.1). Taking expectation over i ∼ pt, j ∼ qt gives the bound. If
σmin(W ) > 0, replace ∥Ej − Ei∥2 by ∥Mj − Mi∥2 to obtain the strengthened form.
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E MEAN-FIELD LIFT OF NEUTRALITY

This appendix provides the rigorous proof of Theorem 2, showing that neutrality and the blended
reporting rule persist in the mean-field limit.

Definition 4 (Exchangeability). A collection of random variables {Ak}N
k=1 is exchangeable if its

joint distribution is invariant under finite permutations. In our setting, the “agents” Ak are either:

1. token pairs (i, j) drawn from (pt, qt) at a fixed step t (trajectory view), or

2. residual blocks Hℓ contributing finite-difference drifts (layerwise view).

Lemma 14 (Law of large numbers for exchangeable agents). Let {Ak}N
k=1 be exchangeable with

E[A1] = 0 and Var(A1) < ∞. Then

1
N

N∑
k=1

Ak
P−−−→ 0 as N → ∞.

Proof. By de Finetti’s representation, exchangeable sequences are mixtures of i.i.d. sequences. Apply
the strong law of large numbers conditionally, then integrate over the mixing measure to obtain
convergence in probability.

Theorem 7 (Mean-field neutrality). Fix a time t. Let {Xopen
t,a }M

a=1 be the agent actions (either in the
trajectory or layerwise view), assumed exchangeable and integrable, with |Xopen

t,a | ≤ b almost surely
(cf.Lemma 3). If agent-level neutrality holds, i.e.

E[Xopen
t,a | Ft] = 0 for all a,

then
1

M

M∑
a=1

Xopen
t,a

a.s.−−−−→
M→∞

0.

Consequently, the population law inherits neutrality. Moreover, because |Xopen
t,a | ≤ b and |µt| ≤ ct

(Theorem 6), the predictable-corridor and blended-reporting bounds (Theorem 1; Appendix C) hold
unchanged in the mean-field limit.

Proof. By exchangeability of {Xopen
t,a }a≥1 there exists a directing random measure Λt such that,

conditional on Gt := σ(Ft, Λt), the sequence is i.i.d. (de Finetti; cf. Lemma 7). Since |Xopen
t,a | ≤ b

and E[Xopen
t,a | Ft] = 0 by assumption, we also have E[Xopen

t,a | Gt] = 0. Applying the strong law of
large numbers conditionally on Gt yields

1
M

M∑
a=1

Xopen
t,a

a.s.−−−−→
M→∞

E[Xopen
t,1 | Gt] = 0.

Thus, the empirical mean converges almost surely to zero, and the population law inherits neutrality.
Finally, the corridor bound |µt| ≤ ct depends only on architectural constants and embeddings, so it is
unaffected by averaging. Uniform boundedness of the increments (Lemma equation 3) ensures that
the Freedman/CLT arguments in Appendix C apply unchanged, so the blended reporting rule extends
to the mean-field limit.

F ABLATION STUDIES

To test the robustness of our neutrality results we vary two key hyperparameters: the sampling
temperature T and the number of siblings M . Lower and higher temperatures alter output entropy,
while M controls the variance reduction from sibling averaging. Across all settings, closed probes
continue to behave as martingale differences, and open probes remain corridor-bounded. The reported
Emax values in Tables 5 stay close to one, which indicates flat e-processes. Importantly, neutrality
is only rejected if Emax exceeds 1/α ≈ 20 at α = 0.05, so values such as Emax = 1.353 are well
within the neutrality region and reflect no systematic drift.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Setting Model Probe Mean drift t-test p Emax

T=0.5, M=16 gpt2-medium Closed −4.026e−9 3.17e−01 1.022
T=0.5, M=16 gpt2-medium Open 3.060e−9 3.17e−01 1.022
T=1, M=16 gpt2-medium Closed −2.742e−2 6.34e−01 1.118
T=1, M=16 gpt2-medium Open −8.534e−9 6.34e−01 1.118
T=2, M=16 gpt2-medium Closed −9.122e−4 7.70e−02 1.186
T=2, M=16 gpt2-medium Open 1.510e−9 7.70e−02 1.186
T=5, M=16 gpt2-medium Closed 6.957e−4 9.90e−02 1.004
T=5, M=16 gpt2-medium Open 3.861e−8 9.90e−02 1.004
T=1.7, M=8 gpt2-medium Closed −3.176e−4 7.94e−01 1.005
T=1.7, M=8 gpt2-medium Open −1.127e−8 7.94e−01 1.005
T=1.7, M=4 gpt2-medium Closed 1.985e−3 9.79e−01 2.025
T=1.7, M=4 gpt2-medium Open 5.077e−9 9.79e−01 2.025

Table 5: Ablation neutrality audits for gpt2-medium under varying temperature T and sibling count
M . Closed probes show centered but wandering cumulative drift; open probes remain numerically
tiny by comparison. Emax values near 1 indicate no evidence of sustained bias; for context, an
anytime e-test would only approach rejection around Emax≳20 at α=0.05.

Model Block µ̂ SE 95% CI

tiny-gpt2 All (4) 1.157e−07 9.729e−08 (−1.877e−10, 3.468e−07)
distilgpt2 All (4) −2.833e−04 9.159e−03 (−1.839e−02, 1.843e−02)
gpt2-medium All (4) −2.844e−04 8.178e−03 (−1.687e−02, 1.630e−02)
gpt2-large All (4) 1.221e−04 1.341e−02 (−2.851e−02, 2.788e−02)

Table 6: Layer-as-agent diagnostics aggregated across residual blocks. Reported are the mean action
µ̂, its standard error, and a 95% confidence interval. Intervals cover zero throughout, indicating no
systematic bias at the block level.

F.1 LAYER PERSPECTIVE.

F.2 TRAJECTORY-LEVEL NEUTRALITY AUDITS WITH RESPECT TO T

Closed probe. Open probe.

Figure 3: Neutrality audit for gpt2-medium with T = 1, M = 16.

Remark regarding T = 5. At high temperature the softmax flattens, increasing token entropy
and branching variance in the open probe; closed increments remain martingale differences, but
their step variance also grows because re-embeddings explore more of the state space. In Table 5
(T=5, M=16) the prompt-level t-test is marginal (p = 3.20×10−2) around a very small mean drift
(6.19×10−5), yet the anytime e-test stays near one (Emax = 1.005), far below rejection thresholds
(e.g., ≥ 20 at α=0.05), indicating no sustained deviation. Trajectories therefore look more volatile
(variance inflation) but remain neutral in expectation. Moreover, theory predicts a smaller corridor at
higher T (softmax Lipschitz 1/(2T )), consistent with the absence of bias despite noisier paths.
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Closed probe. Open probe.

Figure 4: Neutrality audit for gpt2-medium with T = 2, M = 16.

Closed probe. Open probe.

Figure 5: Neutrality audit for gpt2-medium with T = 5, M = 16.

F.3 TRAJECTORY-LEVEL NEUTRALITY AUDITS WITH RESPECT TO M

Closed probe. Open probe.

Figure 6: Neutrality audit for gpt2-medium with T = 1.7, M = 8.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Closed probe. Open probe.

Figure 7: Neutrality audit for gpt2-medium with T = 1.7, M = 4.
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