

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NOT ALL WHO WANDER ARE LOST: HALLUCINATIONS AS NEUTRAL DYNAMICS IN RESIDUAL TRANSFORM- ERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Hallucinations in autoregressive models arise in two stages: an initial deviation from the truth and its continued propagation during decoding. Existing work addresses the first stage with empirical or diagnostic methods, but there is no fundamental account of the second stage. We give the first structural analysis of how paired continuations of the same prompt evolve inside pre-LayerNorm residual transformers, which form the backbone of most modern LLMs. By examining the residual stack and decoder, we show that their dynamics contain no built-in pull that suppresses deviations and no push that amplifies them. This neutrality is necessary, but not sufficient, for semantic hallucinations: it permits deviations to continue, yet a model can still correct the meaning even when predictive differences persist. Neutrality also yields an explicit upper bound, a separation between deterministic and stochastic effects, and a statistical validation rule at finite sample sizes. A population-level version follows by treating the small deviations across many continuations as agents in a mean-field average, showing that neutrality persists at scale without requiring access to individual weights. Experiments on GPT2 variants and Qwen2.5 models from 0.5B to 3B match the theoretical predictions.

1 INTRODUCTION

Large language models generate text by predicting the next token, and small errors can accumulate into large departures from the truth. A core challenge is that research on hallucinations is largely empirical. Surveys note the reliance on empirical methods and the resulting uncertainty about full elimination (Huang et al., 2025), and point out that such studies “cannot answer the fundamental question: can hallucination be completely eliminated?” (Xu et al., 2024). Reviews of training pipelines add that “pre-training primarily optimizes for completion,” providing no pressure to correct deviations once they arise (Huang et al., 2025). Recent work furthermore notes that LLMs remain largely static after pre-training, with knowledge confined to the immediate context and existing remedies often limited or lacking generalization (Behrouz et al., 2025).

Most direct mitigation strategies focus on onset. Methods such as scheduled sampling (Bengio et al., 2015), sequence-level objectives (Ranzato et al., 2015), retrieval augmentation (Lewis et al., 2020), reinforcement learning with human feedback (Ouyang et al., 2022), and tool use (Schick et al., 2023) reduce the likelihood of the first onset-error by improving grounding or training stability. However, these methods do not specify how a deviation evolves once present, since they leave the internal update rule of the residual backbone untouched.

Diagnostics provide complementary insight. Measures based on inconsistency, contradiction or semantic uncertainty highlight when hallucinations occur (Farquhar et al., 2024; Lin et al., 2021; Manakul et al., 2023; Chen et al., 2024; Mündler et al., 2023), and human evaluation remains important for assessing factuality (Maynez et al., 2020; Kryściński et al., 2020; Ji et al., 2023; Huang et al., 2025). But these methods capture symptoms, not mechanisms, and leave it unclear whether the architecture suppresses deviations, amplifies them, or lets them persist.

This gap has two consequences. First, it obscures why models lose earlier information quickly. If the architecture provides no corrective tendency, then once two continuations differ, the difference can simply persist. This means that nothing in the architecture forces the two paths to reconverge,

allowing deviations introduced at onset to survive step by step. Second, it limits the scope of existing mitigation strategies. Techniques that adjust sampling or provide external tools can influence onset, but if persistence is governed by a structural property of the residual backbone, addressing onset alone cannot prevent deviations from propagating internally.

This leads to the central question of this paper: *Once a deviation is present, what structural law governs how it moves through the residual architecture of a pre-LayerNorm transformer?*

Answering this requires a formal stepwise description of how two slightly different continuations evolve. Section 3 develops the framework and analytical tools for this.

CONTRIBUTION AND NOVELTY

We show that pre-LayerNorm residual transformers operate under neutral dynamics, a structural property independent of specific learned weights from which we derive three results:

Architectural neutrality. Differences between two continuations neither shrink nor grow on average. This identifies the architectural condition under which a deviation can *persist*.

Predictive control and validation. Neutrality gives an explicit limit on how far two continuations can move apart at each step and separates the systematic part of this movement from random variation, which enables a test that works with finite samples. Using this test, we provide empirical evidence on GPT2 models that vary in depth and width and on Qwen2.5-0.5B. Our results support the theoretical prediction that neutrality follows from the residual architecture itself and therefore does not depend on scale.

Population-level behaviour. A mean-field average over many continuations shows that this same neutral behaviour appears at larger scales without needing access to individual weights.

To our knowledge, this provides the first structural account of persistence in autoregressive transformers. It reframes persistence as an architectural property and makes explicit which parts of hallucination behaviour arise from the backbone dynamics themselves.

2 BACKGROUND

Autoregressive transformer decoders generate text one token at a time. At each step the model maintains a hidden state and maps it to a next-token distribution. Small differences in these hidden states can lead to different predictions, and whether such differences persist depends on how the architecture propagates them, which we formalize here.

2.1 CONTINUATIONS AND PREDICTIVE BEHAVIOUR

Consider two continuations that start from the same prompt and evolve under the same autoregressive model. At decoding step t the model holds hidden states $(h_t^{(1)}, h_t^{(2)})$, and applies the same decoder to obtain next-token distributions, where S denotes the model’s decoder

$$p_t = S(h_t^{(1)}), \quad q_t = S(h_t^{(2)}).$$

Any difference between p_t and q_t reflects a structural difference between the hidden states. Comparing them provides a direct lens on how the architecture transports small deviations forward across successive decoding steps. To quantify predictive separation we use the Jensen–Shannon divergence $D_t = JS(p_t, q_t)$ (see Appendix A.2 for properties). In this work D_t is used purely as a structural measure of predictive difference, as it does not measure semantic correctness.

2.2 AUTOREGRESSIVE DYNAMICS

Modern transformer decoders, including recent LLMs, commonly use a pre-LayerNorm residual design. In this configuration, LayerNorm is applied before the attention or feed-forward sublayer. This placement is widely adopted because it improves optimization stability and produces well-behaved gradients at depth, as shown in analyses comparing pre- and post-LayerNorm architectures (Xiong et al., 2020; Matarazzo & Torlone, 2025).

108 A pre-LayerNorm residual block has the form $H_\ell(x) = x + G_\ell(\text{LN}(x))$, where $\text{LN}(x)$ is LayerNorm
 109 applied to x including its learnable scale and shift parameters, G_ℓ is the sublayer consisting of attention
 110 and feedforward components of the transformer, and the residual connection adds the transformed
 111 and normalized input back to the original signal.

112 Composing L blocks yields the residual stack $F = H_L \circ \dots \circ H_1$. The decoder maps hidden
 113 states to predictive distributions through $S(h) = \text{softmax}_T(Wh + b)$, where $Wh + b$ are the pre-
 114 softmax scores (logits), W is the learned output projection matrix, and b is the learned bias. The
 115 temperature-scaled softmax converts these scores into a distribution over the vocabulary.

116 Under autoregression a continuation evolves according to

117

$$h_{t+1} = F(h_t), \quad p_t = S(h_t), \quad \tau_t \sim p_t.$$

120 The combined map (F, S) therefore determines how differences in hidden states are turned into
 121 differences in predictive distributions and how these differences propagate across time.

123 **2.2.1 SEMANTIC CONVERGENCE VERSUS PREDICTIVE SEPARATION**

125 Because D_t measures the difference between predictive distributions rather than semantic correctness,
 126 semantic self-correction does not imply that D_t decreases. Even if the two continuations move
 127 toward the same correct answer in meaning, their next-step predictive distributions

128

$$p_{t+1} = S(h_{t+1}^{(1)}), \quad q_{t+1} = S(h_{t+1}^{(2)})$$

130 may still differ. Our analysis therefore concerns how predictive differences propagate through (F, S) .

132 **2.3 STEPWISE EVOLUTION OF D_t**

134 Persistence of any deviation requires that a difference present at step t is not automatically eliminated
 135 at step $t+1$. The stepwise evolution of D_t captures exactly this behaviour. At a structural level there
 136 are three possible regimes for the map from hidden states to predictive distributions:

137

- **Contractive:** $D_{t+1} < D_t$ (growing deviations).
- **Expansive:** $D_{t+1} > D_t$ (suppressing deviations).
- **Neutral:** $D_{t+1} \approx D_t$ in expectation (persisting deviations).

141 Contractive behaviour would eliminate deviations, preventing persistence, while expansive behaviour
 142 would amplify them in a way inconsistent with the empirical stability of modern transformers/LLMs
 143 (Xiong et al., 2020). Neutral behaviour is therefore the structural condition under which predictive
 144 deviations can persist through decoding. Furthermore, as seen in Section 2.2.1, two continuations may
 145 converge toward the same correct answer in meaning while their next-step predictive distributions
 146 p_{t+1} and q_{t+1} still differ. Hence, neutrality is an architectural *necessary, but not sufficient* condition
 147 for the persistence of any deviation, including (semantic) hallucinations.

148 **3 NEUTRALITY, PREDICTABLE DRIFT, AND INFERENCE**

151 This section analyzes how predictive deviation evolves from one decoding step to the next. We
 152 compare paired autoregressive continuations under the closed an open regimes.

153 A *rollout* is a full autoregressive continuation, consisting of a sequence of hidden states, decoded
 154 distributions, and token draws. A *paired rollout* consists of two continuations that start from the same
 155 prompt and evolve under the same model. At step t they have hidden states (h_t, \tilde{h}_t) and predictive
 156 distributions (p_t, q_t) . Predictive separation is measured by $D_t = \text{JS}(p_t, q_t)$, and the associated
 157 one-step change in predictive deviation is the *drift increment*

158

$$X_t = D_{t+1} - D_t.$$

159 Since JS divergence is bounded (Lemma 3), $|X_t| \leq \log 2$. To study the evolution over multiple steps
 160 we also consider the cumulative drift, which forms the sequence $S_N = \sum_{t=1}^N X_t$, $N \geq 1$.

162
163

3.1 CLOSED AND OPEN DECODING REGIMES

164
165
166
167
168
169
170

The drift increment X_t depends on two factors: how the residual architecture transforms the hidden states, and how stochastic differences arise from drawing different tokens during autoregressive sampling. To separate these two sources we use controlled comparisons (open versus closed). In the closed regime both continuations consume the same tokens, removing sampling variability and isolating the architectural update. In the open regime they sample independently, matching natural autoregressive decoding. Both regimes use the same autoregressive transformer and differ only in how the next token is chosen.

171
172
173
174

Closed decoding. In this regime, both continuations consume the same next token $\tau_t \sim p_t$. This removes stochastic branching: the only source of change in predictive separation is the architecture itself. The corresponding increment is $X_t^{\text{closed}} = D_{t+1}^{\text{closed}} - D_t$, which gives the architectural baseline. Appendix A.3 (Lemma 5) shows that in this regime the conditional expectation is zero,

175
176

$$\mu_t^{\text{closed}} = \mathbb{E}[X_t^{\text{closed}} \mid \mathcal{F}_t] = 0, \quad (1)$$

177
178

which we refer to as *closed neutrality*. It formalizes the idea that pre-LN residual transformers neither contract nor expand predictive differences when no sampling mismatch is introduced.

179
180
181
182
183
184

Open decoding. Here, each continuation samples its next token independently: $\tau_t \sim p_t$, $\tilde{\tau}_t \sim q_t$. This introduces stochastic branching in addition to the architectural update. The corresponding increment is $X_t^{\text{open}} = D_{t+1}^{\text{open}} - D_t$. Appendix A.2 (Lemma 4) shows that in this case, the conditional expectation $\mu_t = \mathbb{E}[X_t^{\text{open}} \mid \mathcal{F}_t]$, which we call the *predictable drift*, decomposes as

$$\mu_t = \mathbb{E}[X_t^{\text{closed}} \mid \mathcal{F}_t] + \Delta_t = \mu_t^{\text{closed}} + \Delta_t,$$

185
186
187

where Δ_t is the systematic effect of token mismatch. By eq 1, this reduces to $\mu_t = \Delta_t$. Thus the predictable part of open drift is entirely due to token mismatch arising from independent sampling.

188
189

3.2 THE CONTROLLED RANDOMIZATION NETWORK (CRN)

190
191
192
193
194

To obtain unbiased and architecturally faithful measurements of drift we use the controlled randomization network (CRN) defined in Appendix A.4. The CRN evolves three coupled continuations, or *arms*, all sharing the same non-token randomness. Each arm is a full continuation of the same prompt and model, differing only in a prescribed perturbation. The baseline, positive and negative arms are mathematical mirror-image modifications of one another.

195
196

At each decoding step the CRN records the JS divergences D_t , D_t^+ and D_t^- and forms the antisymmetric increment

197
198

$$X_t = \frac{1}{2} \left[(D_{t+1}^+ - D_t^+) - (D_{t+1}^- - D_t^-) \right].$$

199
200

The conditional expectation of the drift increment, $\mu_t = \mathbb{E}[X_t \mid \mathcal{F}_t]$, equals zero in the closed regime (architectural neutrality) and quantifies the predictable effect of token mismatch in the open regime.

201
202
203
204
205
206
207

The CRN has two structural features. First, the (+) and (-) arms are mathematical mirror images under the same non-token randomness, such that each step compares sign-reversed versions of the same continuation. Second, the conditional expectation of the drift increment, $\mu_t = \mathbb{E}[X_t \mid \mathcal{F}_t]$, separates the closed-regime contribution from the additional effect caused by sampling different tokens, written as Δ_t^{\pm} . The symmetry condition $\Delta_t^+ = \Delta_t^-$ holds when this sampling effect is the same for both mirror arms. In that case $\mu_t = 0$, making architectural neutrality experimentally verifiable rather than purely theoretical. All details and proofs are given in Appendix A.3 (Lemma 5).

208
209
210
211

Finally, to estimate the CRN conditional mean, we use *sibling rollouts*: independent repeats of the same CRN obtained by resampling only the random seeds. Siblings give repeated evaluations of X_t under the same state \mathcal{F}_t . Their average estimates $\mathbb{E}[X_t \mid \mathcal{F}_t]$, which is zero in the closed regime. To separate this systematic component from sampling variability we write

212
213

$$X_t = \mu_t + Y_t, \quad \mu_t := \mathbb{E}[X_t \mid \mathcal{F}_t], \quad Y_t := X_t - \mu_t.$$

214
215

The term μ_t is fixed once the current hidden state and token distributions are fixed, while Y_t contains the remaining randomness (martingale fluctuations). In the next section we bound μ_t , since only this systematic part is determined by the architecture and can be controlled.

216 3.3 PREDICTABLE DRIFT, DRIFT IDENTITY, AND THE DRIFT CORRIDOR
217218 For paired continuations, the one-step change in predictive divergence is $X_t = D_{t+1} - D_t$. The
219 conditional mean is given by the drift identity (Appendix D, Lemma 13):

220
$$\mu_t = \mathbb{E}_{i \sim p_t, j \sim q_t} [D_{t+1}(i, j) - D_{t+1}(i, i)], \quad (2)$$

221

222 where i and j are the next tokens drawn from p_t and q_t . The inner term compares two possible next
223 steps, same token versus different tokens. Taking the expectation over the two next token draws gives
224 the exact drift. Thus μ_t captures the deterministic effect of token mismatch. The drift identity shows
225 that the value of μ_t depends only on how much the next-step update changes when the token changes,
226 so obtaining a bound for μ_t requires a bound on the sensitivity of this update to its token input.
227228 3.4 PREDICTABLE DRIFT CORRIDOR
229230 As discussed previously, bounding μ_t reduces to bounding how sensitive the one-step update is to the
231 token that enters it. The update map $\tilde{\Phi}_t(\cdot)$ is Lipschitz in the token embeddings. If E_i and E_j are the
232 embeddings of tokens i and j , then the one-step update $\tilde{\Phi}_t(\cdot)$ satisfies

233
$$\|\tilde{\Phi}_t(j) - \tilde{\Phi}_t(i)\|_2 \leq L_{\text{ker}, t} \|E_j - E_i\|_2. \quad (3)$$

234

235 Combining eq. 3 with the Lipschitz bounds for JS divergence, softmax, and the decoder yields
236 a deterministic interval. We refer to this interval as the *predictable drift corridor*, which implies
237 $\mu_t \in [-c_t, c_t]$ and is formalized below:238 **Proposition 1** (Predictable drift corridor). *For each step t ,*

239
$$|\mu_t| \leq L_{\text{JS}, t} L_{\text{sm}, t} \|W\|_2 L_{\text{ker}, t} \mathbb{E}_{i, j} \|E_j - E_i\|_2 =: c_t, \quad (4)$$

240

241 with E the embedding matrix and E_i its token vectors. If decoder matrix W has $\sigma_{\min}(W) > 0$, then

242
$$|\mu_t| \leq L_{\text{JS}, t} L_{\text{sm}, t} \kappa_2(W) L_{\text{ker}, t} \mathbb{E}_{i, j} \|M_j - M_i\|_2, \quad (5)$$

243

244 where $\kappa_2(W) = \|W\|_2 / \sigma_{\min}(W)$ and $M = WE$ denotes the logit embeddings.
245246 *Proof sketch.* Lemma 8 in Appendix B bounds the JS change in equation 3 by $L_{\text{JS}, t} \|\tilde{\Phi}_t(j) - \tilde{\Phi}_t(i)\|_2$.
247 Lemma 9 in Appendix B bounds the one-step update by $L_{\text{ker}, t} \|W\|_2 L_{\text{sm}, t} \|E_j - E_i\|_2$, which gives
248 equation 4. If $\sigma_{\min}(W) > 0$, distances may be measured in logit space via $M = WE$, yielding
249 equation 5. Full derivations appear in Appendix D, Theorem 6. \square 250 Consequently, the corridor specifies the maximal deterministic magnitude of predictable drift allowed
251 by the architecture. It does not fix the direction of drift but guarantees that even under open sampling,
252 the systematic effect of token mismatch is bounded.

253 3.5 MARTINGALE STRUCTURE, WE HAVE THE DECOMPOSITION AND CUMULATIVE DRIFT

254 Recall that we can write $X_t = \mu_t + Y_t$, where Y_t contains the martingale fluctuations. This
255 decomposition induces cumulative predictable and centered components:

256
$$B_N = \sum_{t \leq N} \mu_t, \quad M_N = \sum_{t \leq N} Y_t, \quad S_N = B_N + M_N.$$

257

258 A full inference rule must account for both terms. The corridor bounds c_t control the predictable
259 contribution B_N , while deviation inequalities control the centered term M_N . Neither component is
260 sufficient on its own, as c_t does not describe fluctuations from sampling, and the deviation bounds
261 do not restrict the predictable part. Hence, the two components require different analytical tools,
262 combined in the blended neutrality theorem:263 **Theorem 1** (Blended neutrality reporting). *Let $\bar{X}_N = \frac{1}{N} \sum_{t=1}^N X_t^{\text{open}}$ and c_t as above. Then*

264
$$|\mathbb{E}[\bar{X}_N]| \leq \min \left\{ \frac{1}{N} \sum_{t=1}^N c_t, \left| \bar{X}_N - \frac{1}{N} \sum_{t=1}^N \mu_t \right| + z_{0.975} \frac{\hat{s}_N}{\sqrt{N}} \right\}, \quad (6)$$

265

266 with $\hat{s}_N^2 = \frac{1}{N} \sum_{t=1}^N (X_t^{\text{open}} - \bar{X}_N)^2$. If $\frac{1}{N} \sum c_t \rightarrow 0$, then $\frac{1}{N} \sum \mu_t \rightarrow 0$ and the standard error
267 band applies directly to \bar{X}_N .
268

270 *Proof sketch.* The deterministic control bounds $\mathbb{E}[\bar{X}_N]$ by $\frac{1}{N} \sum c_t$ (Lemma 10). Boundedness of
 271 JS divergence ensures that every increment satisfies $|X_t| \leq \log 2$, and therefore $Y_t = X_t - \mu_t$
 272 is also uniformly bounded (Appendix D). Freedman's inequality provides finite-sample control of
 273 the cumulative fluctuation $M_N = \sum_{t \leq N} Y_t$, and the martingale central limit theorem describes its
 274 asymptotic behaviour, which gives the Gaussian limit with standard error (Theorem 3 and Theorem 4).
 275 The combined statement leads to Theorem 5 in Appendix C. \square

277 The blended reporting rule combines these controls into a finite-sample criterion. It makes neutrality
 278 testable in paired rollouts: if the observed drift lies within both bounds, neutrality cannot be rejected.
 279

280 3.6 AGENTS AND THE MEAN FIELD LIFT

281 The drift framework developed so far treats each one-step increment X_t as arising from a single
 282 paired rollout. To understand neutrality beyond a single rollout, we can interpret X_t as many small
 283 agents whose empirical average, or *mean-field*, forms the observed drift. Mean-field models originate
 284 in stochastic finance and control theory (Lasry & Lions, 2007; Huang et al., 2006; Yang et al., 2017;
 285 Carmona & Delarue, 2018), where large populations of interacting agents are approximated by their
 286 empirical distribution. The key principle is that when agents are exchangeable and individually
 287 negligible, the empirical law of their actions converges to a deterministic population law. This
 288 provides the bridge from finite-sample neutrality to structural neutrality at scale.
 289

290 3.6.1 AGENTS

291 We formalize the agent model by defining an *agent* to be one elementary contribution to drift at a
 292 fixed step t (Appendix E). We use two agent views:

294 1. *Trajectory agents*: token pairs (i, j) sampled from (p_t, q_t) , each producing one increment $X_{t,a}^{\text{open}}$.
 295 2. *Layerwise agents*: residual blocks H_ℓ contributing finite difference drifts across depth.

296 Agents are exchangeable: their joint law is invariant under permutations (Appendix E, Definition 4).
 297 Furthermore, neutrality at the agent level is immediate from the drift identity and closed-regime
 298 neutrality: for each agent a , $\mathbb{E}[X_{t,a}^{\text{open}} \mid \mathcal{F}_t] = 0$. Because each $X_{t,a}$ is bounded, and the empirical
 299 mean of M agents satisfies a conditional law of large numbers, as stated in the following proposition:

300 **Proposition 2** (Finite-agent neutrality). *For M exchangeable agents,*

$$302 \bar{X}_t^{(M)} = \frac{1}{M} \sum_{a=1}^M X_{t,a} \xrightarrow{\text{a.s.}} 0 \quad (M \rightarrow \infty).$$

305 *Proof.* Linearity of conditional expectation gives $\mathbb{E} \left[\bar{X}_t^{(M)} \mid \mathcal{F}_t \right] = \frac{1}{M} \sum_{a=1}^M \mathbb{E}[X_{t,a} \mid \mathcal{F}_t] = 0$. \square

308 3.6.2 POPULATION LIMIT

309 In the mean-field limit, where the number of agents M tends to infinity, the empirical distribution of
 310 agent actions converges to a deterministic law. Because each finite-agent system is neutral, the limit
 311 inherits neutrality, which is formalized below:

313 **Theorem 2** (Mean-field neutrality). *Building on Proposition 2, assume the agent actions $\{X_t^{(a)}\}_{a=1}^M$
 314 are exchangeable and satisfy $\mathbb{E}[X_t^{(a)} \mid \mathcal{F}_t] = 0$ with bounded second moment. Then*

$$316 \bar{X}_t^{(M)} = \frac{1}{M} \sum_{a=1}^M X_t^{(a)} \xrightarrow[M \rightarrow \infty]{\text{a.s.}} 0,$$

318 *so the population law inherits neutrality. Moreover, the predictable corridor c_t and the blended
 319 reporting rule (Theorem 1) extend to the mean-field limit without modification.*

321 *Proof sketch.* By Proposition 2, each finite-agent system has $\mathbb{E}[\bar{X}_t^{(M)} \mid \mathcal{F}_t] = 0$. Exchangeability
 322 then allows a de Finetti representation, and the law of large numbers for exchangeable sequences
 323 implies $\bar{X}_t^{(M)} \rightarrow 0$ almost surely as $M \rightarrow \infty$. Bounded increments guarantee that the martingale

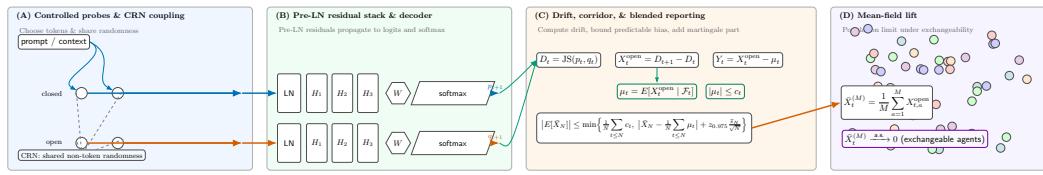


Figure 1: Neutrality audit framework. (A) Closed versus open regime. (B) Residual stack propagates hidden states into token distributions. (C) Drift decomposition: closed increments (martingale differences), open increments (μ_t bounded by c_t and a centered martingale part). (D) Mean-field lift: neutrality aggregates to the population level.

concentration and corridor bounds apply uniformly, so both carry over to the mean-field limit. See Appendix E, Theorem 7 for the full proof. \square

Viewing drift contributions as agents makes two points explicit. First, neutrality is not limited to a single paired continuation but remains present when many contributors are combined. Second, the predictable corridor and the blended reporting rule have the same interpretation at population scale, because the architecture still bounds the deterministic part of drift and the random part continues to satisfy the same martingale controls.

4 EXPERIMENTS

In this section, we empirically test the neutrality predictions of Section 3 using the open and closed probes defined in Section 3.1. For each model and each of $K = 32$ prompts with three master seeds, we generate a two-arm CRN pair, expand each arm into $M = 16$ siblings, and decode for $N = 32$ steps at temperature $T = 1.0$. At every step we compute $X_t = D_{t+1} - D_t$. Pooling over prompts, seeds, and siblings yields one closed and one open increment sample per model.

We evaluate these predictions across four GPT2 models (sshleifer/tiny-gpt2, distilgpt2, gpt2-medium, gpt2-large), reporting results at both the trajectory and layer-level.

Hypotheses. We define the following hypotheses, consistent with the open and closed regime:

$$H1 \text{ (closed): } \mathbb{E}[X_t^{\text{closed}} \mid \mathcal{F}_t] = 0, \quad H2 \text{ (open): } |\mu_t^{\text{open}}| \leq c_t.$$

Tests and controls. H1 is assessed by a one-sample mean t-test on the pooled closed increments and by Azuma-Hoeffding bands for the cumulative sum. H2 is assessed by estimating μ_t from open increments and checking that all values remain within corridor bounds. The blended neutrality rule (Theorem 1) provides the joint criterion we use in interpretation: open increments must remain within the deterministic corridor c_t , and their fluctuations must agree with the martingale behaviour quantified by the Azuma-Hoeffding and anytime ϵ -process bounds. Placebo and label randomized CRN pairs serve as controls and should show no systematic drift.

Population summaries. Trajectory level summaries use the exchangeability structure required for the mean-field lift in Section 3.6.2. We report the pooled trajectory mean and its confidence bands. Block-level bootstrap intervals are included only as an internal diagnostic.

Robustness. The audit is repeated for temperatures $\{0.5, 1.0, 1.7, 2, 5\}$ and sibling counts $\{4, 8, 16\}$, with the same protocol applied to all models. These ablation studies are reported in Appendix F.

4.1 MAIN RESULTS

As our results confirm, closed probes behave as bounded martingale differences. The increments are centered, yet as martingales they wander, which produces variability on the scale of the square root of the horizon. In Figure 2, this behavior is visible in the wide spread of trajectories for gpt2-large. The black mean line remains centered while individual paths fluctuate within the Azuma-Hoeffding envelope. Table 1 confirms that the mean drift is close to zero, the t-tests across prompts are non-significant with $p \geq 0.14$, and the Azuma coverage is complete. These results validate the theoretical

378 claim that closed probes should show neutrality in expectation while still displaying substantial
 379 pathwise variance.
 380

381 Open probes differ in that their increments may contain predictable drift, bounded in theory by the
 382 corridor. Figure 2 shows that this drift is numerically tiny. The mean path remains flat and the grey
 383 confidence ribbon collapses around zero, even though some individual trajectories diverge as expected
 384 when tokens are decoupled. The aggregate results in Table 1 show mean drifts of order 10^{-8} to 10^{-10} ,
 385 with all values well inside the corridor. The only marginal case appears for `distilgpt2`, where the
 386 prompt-level t -test reports $p = 4.46 \times 10^{-2}$. This effect disappears under the anytime e -test, which
 387 returns $E_{\max} = 1.000$ and $p_e = 0.906$, indicating no sustained deviation from neutrality.
 388

389 Across model scales the evidence is consistent. The smallest variant, `tiny`, and the largest, `large`,
 390 both satisfy the neutrality predictions in closed and open configurations. The intermediate models
 391 `distil` and `medium` follow the same pattern. Table 1 shows that mean drifts remain negligible,
 392 t -tests do not reject, and e -test maxima remain close to one across all cases. This stability across
 393 scale indicates that neutrality is a structural feature of the GPT-2 residual architecture rather than a
 394 property that depends on parameter count.
 395

396 Layer-level diagnostics add another perspective. When each residual block is treated as an agent, the
 397 estimates of drift remain centered near zero with confidence intervals that cover both positive and
 398 negative values. Table 6 shows this explicitly for `tiny` and `distil`. The intervals are wide, which
 399 reflects the limited sample size at this granularity, but the absence of systematic deviation suggests
 400 that no individual block introduces consistent bias.
 401

Model	Params (M)	Probe	Mean drift	95% CI	t -test p	Azuma coverage	E_{\max} / p_e
<code>tiny-gpt2</code>	15	Closed	$3.022e-11$	$[-1.877e-10, 3.468e-07]$	$9.980e-01$	1/1 (100%)	1.000 / 0.794
		Open	$-1.281e-11$	—	$9.990e-01$	—	1.000 / 1.000
<code>distilgpt2</code>	82	Closed	$1.385e-04$	$[-1.839e-02, 1.843e-02]$	$9.700e-01$	5/5 (100%)	1.117 / 0.969
		Open	$-1.496e-08$	—	$3.900e-01$	—	1.000 / 1.000
<code>gpt2-medium</code>	345	Closed	$-8.917e-04$	$[-1.687e-02, 1.630e-02]$	$1.560e-01$	174/174 (100%)	1.049 / 0.148
		Open	$1.477e-09$	—	$4.710e-01$	—	1.000 / 1.000
<code>gpt2-large</code>	774	Closed	$6.467e-06$	$[-2.851e-02, 2.788e-02]$	$9.860e-01$	193/193 (100%)	1.792 / 0.982
		Open	$-6.038e-10$	—	$3.240e-01$	—	1.000 / 1.000

402 Table 1: Trajectory level neutrality audit results for four GPT2 model scales. The table 95% CIs,
 403 prompt level t tests, Azuma coverage for closed trajectories, and anytime e test statistics for both
 404 closed and open probes.
 405

Model	Block	$\hat{\mu}$	SE	95% CI
<code>tiny-gpt2</code>	All (4)	$1.157e-07$	$9.729e-08$	$(-1.877e-10, 3.468e-07)$
<code>distilgpt2</code>	All (4)	$-2.833e-04$	$9.159e-03$	$(-1.839e-02, 1.843e-02)$
<code>gpt2-medium</code>	All (4)	$-2.844e-04$	$8.178e-03$	$(-1.687e-02, 1.630e-02)$
<code>gpt2-large</code>	All (4)	$1.221e-04$	$1.341e-02$	$(-2.851e-02, 2.788e-02)$

410 Table 2: Layer-as-agent diagnostics for prompt 1. Reported are the mean action $\hat{\mu}$, its standard error,
 411 and a 95% CI aggregated across residual blocks. Entries marked (—) indicate that estimates were not
 412 computed for that model in this run.
 413

414 For `gpt2-large`, the contrast between closed and open probes is clear in Figure 2. Closed probes
 415 force both trajectories to consume the same tokens, so increments are martingale differences with
 416 $\mathbb{E}[X_t^{\text{closed}} | \mathcal{F}_t] = 0$. As martingales, they wander: over $N = 32$ steps the cumulative drift fluctuates
 417 on the \sqrt{N} scale, and Azuma–Hoeffding only guarantees a loose pathwise envelope. Nevertheless,
 418 every trajectory remains inside this envelope, so the wide fluctuations seen in the closed panel are
 419 consistent with neutrality and not evidence of bias.
 420

421 Open probes decouple token draws, introducing a predictable drift μ_t . Theory bounds this drift by
 422 the corridor c_t , and in practice, it is much smaller than the variance of closed wandering. Because we
 423 average over $K = 32$ prompts, three seeds, and $M = 16$ siblings (more than 1500 paths per step),
 424 these small biases nearly cancel. The result is that the mean cumulative drift is extremely stable, with
 425 a confidence interval on the order of 10^{-7} that visually collapses onto the black curve. Individual
 426 open trajectories may diverge, as expected, but what matters is that the mean remains neutral within
 427 the predictable corridor. This pattern matches the predictions of Section 3: closed probes reveal
 428

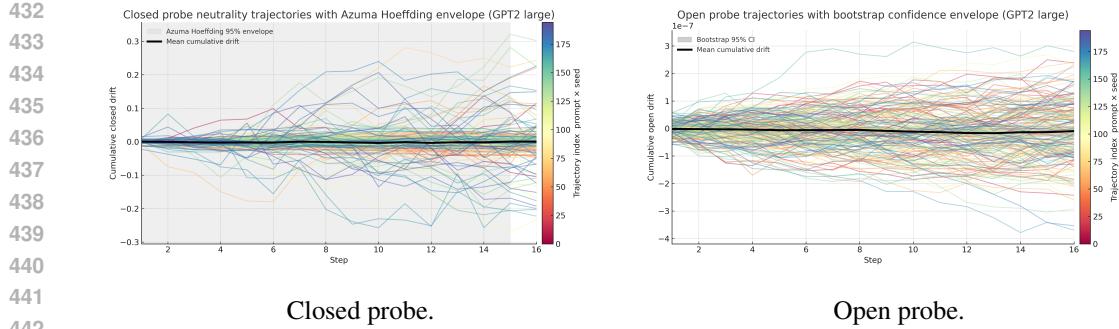


Figure 2: Neutrality audits for gpt2-large. Closed probes remain within the Azuma–Hoeffding envelope, while open probes yield an extremely stable mean drift whose confidence band is visually indistinguishable from the curve.

martingale fluctuations, while open probes confirm that structural drift is negligible once averaged. Ablation studies varying T and M (Appendix F) further confirm the neutrality results.

4.2 SCALING PREDICTIVE NEUTRALITY BEYOND GPT-2

The neutrality analysis does not rely on properties specific to the GPT-2 family. It uses only the residual update rule shared across modern pre-LN transformers. The audit of Qwen2.5 models spanning 0.5B to 3B parameters in Table 3 demonstrates this directly. Although Qwen is trained with a separate data pipeline and training procedure, it reproduces all neutrality signatures: closed probe drifts remain statistically indistinguishable from zero under the prompt level t–test, every trajectory stays within its Azuma envelope, and the anytime e–test shows no systematic growth. The open regime exhibits the same pattern.

Model	Params (M)	Probe	Mean drift	95% CI	t test p	Azuma coverage	E_{\max} / p_e
Qwen2.5-0.5B-Instruct	500	Closed	$-2.611e-03$	$[-6.813e-03, 1.591e-03]$	$2.040e-01$	45/45 (100%)	1.000 / 0.173
		Open	$-3.792e-04$	$[-6.282e-03, 5.523e-03]$	$8.924e-01$	–	1.176 / 0.867
Qwen2.5-1.5B-Instruct	1500	Closed	$-1.102e-03$	$[-4.366e-03, 2.161e-03]$	$4.807e-01$	45/45 (100%)	1.741 / 0.572
		Open	$-2.321e-04$	$[-4.438e-03, 3.974e-03]$	$9.075e-01$	–	1.013 / 0.907
Qwen2.5-3B-Instruct	3000	Closed	$-9.170e-04$	$[-4.611e-03, 2.777e-03]$	$6.028e-01$	45/45 (100%)	1.014 / 0.544
		Open	$-5.840e-04$	$[-3.786e-03, 2.618e-03]$	$7.015e-01$	–	1.290 / 0.801

Table 3: Trajectory level neutrality audit results for Qwen2.5 0.5–3B models using 3 seeds and 15 prompts. The table reports mean drift estimates, 95% CIs, prompt level t tests, Azuma coverage for closed trajectories, and anytime e test statistics for both closed and open probes.

Evaluation of Hypotheses For the closed probes, Figure 2 shows centered but wandering paths, and Table 1 and Table 3 confirm that drifts stay near zero with full Azuma coverage and flat e -process. Hypothesis 1 holds: increments act as martingale differences, neutral in expectation. For the open probes, trajectories may diverge, yet their mean drift is small. The results report values below the corridor constants and non-rejections under e -tests. Hypothesis 2 holds: predictable drift remains bounded and negligible across scales.

5 DISCUSSION

Neutrality. Our experiments confirm the neutrality properties proven in Section 3. Closed probes behave as bounded martingales: they show no systematic drift. Open probes admit predictable drift, but the observed values remain several orders of magnitude below corridor bounds. Together the results in Figures 2 and Tables 1–3 establish that the residual architecture neither contracts nor expands deviations in expectation.

Mean–field dynamics. The mean–field formulation explains why these results scale. At the trajectory level, increments behave as martingale differences, and under exchangeability this neutrality law lifts to the population of token–agents. At the layer level, residual blocks act as agents through their finite–difference contributions, and bootstrap intervals show that these actions fluctuate but remain

486 centered. In both cases the collective dynamics are neutral rather than adversarial, so the population
 487 equilibrium is persistence. The novelty is that neutrality is not confined to single increments but
 488 survives the mean-field lift, turning a local property into a system-level invariant.
 489

490 **Hallucination persistence.** The central question in this paper was what structural rule governs how
 491 two continuations evolve once a deviation is already present. The experiments give a consistent
 492 answer. The closed probes show that predictive differences wander without a restoring force, and the
 493 open probes show that this wandering is not driven by systematic expansion because the predictable
 494 drift remains inside the corridor. The same pattern appears across all GPT2 scales, and the block
 495 summaries do not reveal any consistent source of bias. At the trajectory-level a similar conclusion
 496 holds for the Qwen 2.5 model. These findings describe predictive behaviour only. Neutrality is
 497 necessary, but not sufficient, for semantic hallucinations to persist after onset. It is necessary because
 498 it allows predictive differences to continue rather than collapse, yet not sufficient because a model
 499 can still correct the meaning even when the predictive distributions differ. The results also shed
 500 light on why LLMs often appear to have a short memory. If predictive differences are allowed to
 501 persist without a contracting pull, then earlier context cannot reliably influence later tokens, and small
 502 mismatches can remain visible even when the output appears fluent.

503 **Implications.** The consequence is that hallucination persistence is an architectural invariant rather
 504 than a byproduct of training. Approaches that control onset, such as entropy reduction, retrieval
 505 augmentation, or reinforcement learning with human feedback, cannot by themselves eliminate
 506 persistence, since the backbone dynamics remain neutral once a deviation has occurred. Mitigation
 507 therefore requires structural interventions: architectures that introduce contraction or external anchor-
 508 ing mechanisms that continuously re-ground the generation. By combining statistical probes with a
 509 mean-field lift, we provide a non-anthropomorphic language to describe this mechanism, framing
 510 hallucinations as a structural feature of residual transformers that persists across scales.

510 5.1 LIMITATIONS

511 Our empirical scope is limited by the requirement that models expose full control over sampling.
 512 GPT-2 variants satisfy this constraint, and the audit of Qwen2.5 –0.5-3B shows that neutrality extends
 513 beyond the GPT-2 family to an independently trained, mid scale modern architecture. The main
 514 limitations are practical: larger models require many more trajectories and seeds, and proprietary
 515 systems do not expose the interfaces needed for controlled probes.
 516

517 The horizon was set to $N = 32$ for computational reasons. The neutrality theorem is time uniform
 518 and does not depend on N , and this length already shows neutral wandering and bounded drift. It is
 519 however, too short to study very long generations, so larger N would provide an additional empirical
 520 check without affecting the theoretical claim.

521 At the architectural level, the trajectory results follow from formal martingale arguments. The
 522 mean-field lift uses exchangeability of paired increments along a trajectory. The layer-level diag-
 523 nostic inspects individual blocks, which are not exchangeable because they have different positions,
 524 functions, and scales. Bootstrap intervals therefore give only a rough internal check. The audit
 525 isolates architectural neutrality. It does not examine how this interacts with training procedures such
 526 as reinforcement learning from human feedback or retrieval augmented generation.
 527

528 6 CONCLUSION

529 We showed that persistence follows from a simple architectural fact: pre-LayerNorm residual
 530 transformers do not pull paired rollouts together or push them apart in expectation. The stepwise
 531 drift identity makes this explicit, and the operator bounds for LayerNorm, the residual stack, and the
 532 decoder give a predictable drift corridor that limits how much systematic separation can occur at each
 533 step. The blended reporting rule links this structural limit to finite sample estimates, providing a direct
 534 test for neutrality. A mean field lift then shows that the same neutral behaviour appears when many
 535 local drift contributions are combined, which explains the stability of the effect across prompts and
 536 model scales. Empirically, GPT2 and Qwen 2.5 audits align with these predictions. Interventions that
 537 do not modify the residual backbone can curb onset but cannot eliminate persistence once deviations
 538 arise. In this sense, trajectories may wander, but under neutrality their drift remains bounded and
 539 unbiased—reminding us that not all who wander are lost (Tolkien, 1954).

540 REPRODUCIBILITY STATEMENT
541

542 The experimental protocol is defined in Section 4, which specifies the closed and open probes, the
543 controlled-randomization coupling, the decoding horizon, sibling structure, and the statistical tests
544 used in the neutrality audit. The accompanying Colab scripts implements this protocol and is adapted
545 to support a broader set of open models beyond GPT-2.

546 **Entry point** The main results of the paper are reproduced with:

548 neutrality_audit.py
549

550 This script runs the full neutrality protocol. It produces `results.csv` and `msgs.csv` together
551 with the ablation outputs reported in Appendix F.

552 For completeness, we also provide a second script,

554 model_agnostic_neutrality_audit.py,
555

556 which offers a modular model-independent implementation of the closed and open probes. This
557 lighter script is used for the Qwen 2.5 runs in Section 4. It omits the layer-as-agent diagnostic and the
558 ablation sweeps because of the costly computations.

559 **Models.** All GPT-2 models used in the paper are loaded directly from HuggingFace without
560 modification. The script generalizes automatically to any HuggingFace CausalLM model with
561 standard cache semantics, including Qwen and Llama.

563 For Qwen, the scaling experiments with 1.5 and 3 billion parameters, load the weights in `float16`
564 rather than `float32` because of model size constraints. Although Qwen is loaded in `float16`,
565 the neutrality audit uses matched fp16 forward passes (baseline, $+\varepsilon$, $-\varepsilon$), which cancels first order
566 quantisation effects. The remaining fp16 noise is far smaller than the empirical variability across
567 prompts and seeds, so the drift estimates and statistical tests are unaffected.

568 Evaluating Llama models requires accepting Meta’s model license on a HuggingFace account before
569 access is granted. Once downloaded, the same probe definitions and statistical tests apply unchanged.
570 Larger models may require a reduced decoding horizon or prompt count for runtime feasibility.

571 **Prompts and configuration.** Prompts are defined explicitly inside the scripts as a Python list. The
572 scripts expose all core parameters (number of steps, siblings, temperature, seeds, and prompts) at the
573 top. Setting them to the values in Section 4 yields the behaviour reported in the main tables. The
574 scripts include a lightweight pilot run that estimates variance and required sample size under a small
575 closed probe configuration. This pilot is used only for compute management and debugging when
576 resources are limited, and it is not part of the theoretical protocol or the reported results.

578 The Qwen experiments use a fixed set of 3 seeds and 15 prompts for computational management
579 purposes.

580 **Randomness control.** NumPy and PyTorch RNGs are seeded deterministically. Closed probes
581 reuse the same token draws across both arms, implementing the CRN requirement. Open probes use
582 independent draws. Re-running with the same master seed reproduces the printed statistics.

584 **Dependencies and hardware.** The scripts depends on PyTorch, Transformers, NumPy, and SciPy.
585 It runs on standard Colab GPUs (e.g. T4, A100), with CPU fallback supported for smaller models. No
586 proprietary APIs or external services are required. All models are loaded through the HuggingFace
587 hub. Open models require no additional services, while Llama weights require accepting Meta’s
588 license before download.

589
590 STATEMENT USE OF LLM
591

592 Large language models were used for polishing language, fixing minor coding errors, and triaging
593 related work. The proofs, analyses, and results were developed by the authors, and all cited references,
including linked sources when available, were manually verified.

594 REFERENCES
595

596 Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. Nested learning: The illusion
597 of deep learning architectures. In *The Thirty-ninth Annual Conference on Neural Information
598 Processing Systems*, 2025.

599 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
600 prediction with recurrent neural networks. *Advances in neural information processing systems*, 28,
601 2015.

602 René Carmona and François Delarue. *Probabilistic Theory of Mean Field Games with Applications I
603 & II*, volume 83–84 of *Probability Theory and Stochastic Modelling*. Springer, Cham, Switzerland,
604 2018. ISBN 978-3-319-58920-8.

605 Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and
606 Jieping Ye. Inside: LLMs’ internal states retain the power of hallucination detection.
607 In *International Conference on Learning Representations*, 2024. URL
608 https://proceedings iclr cc/paper_files/paper/2024/file/0d1986a61e30e5fa408c81216a616e20-Paper-Conference.pdf.

609 Dominik Maria Endres and Johannes E Schindelin. A new metric for probability distributions. *IEEE
610 Transactions on Information theory*, 49(7):1858–1860, 2003.

611 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
612 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

613 Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In *International Conference on Learn-
614 ing Representations*, 2017. URL <https://openreview.net/forum?id=ryxB0Rtxx>.

615 Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function on
616 deep neural networks training. In *International conference on machine learning*, pp. 2672–2680.
617 PMLR, 2019.

618 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
619 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
620 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information
621 Systems*, 43(2):1–55, 2025.

622 Minyi Huang, Roland P Malhamé, and Peter E Caines. Large population stochastic dynamic games:
623 closed-loop mckean-vlasov systems and the nash certainty equivalence principle. 2006.

624 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
625 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM
626 computing surveys*, 55(12):1–38, 2023.

627 Olav Kallenberg. *Foundations of modern probability*. Springer, 1997.

628 Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher. Evaluating the factual
629 consistency of abstractive text summarization. In *Proceedings of the 2020 Conference on Empirical
630 Methods in Natural Language Processing (EMNLP)*, pp. 9332–9346, 2020. URL <https://aclanthology.org/2020.emnlp-main.750>.

631 Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. *Japanese journal of mathematics*, 2
632 (1):229–260, 2007.

633 Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. Retrieval-augmented generation for knowledge-
634 intensive nlp tasks. In *Advances in Neural Information Processing Systems (NeurIPS)*, vol-
635 ume 33, pp. 9459–9474, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html>.

636 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
637 falsehoods. *arXiv preprint*, 2021. URL <https://arxiv.org/abs/2109.07958>.

648 Potsawee Manakul, Adian Liusie, and Mark Gales. Selfcheckgpt: Zero-resource black-box hallucination
 649 detection for generative large language models. In *Proceedings of the 2023 conference on*
 650 *empirical methods in natural language processing*, pp. 9004–9017, 2023.

651

652 Andrea Matarazzo and Riccardo Torlone. A survey on large language models with some insights on
 653 their capabilities and limitations. *arXiv preprint arXiv:2501.04040*, 2025.

654

655 Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
 656 in abstractive summarization. In *Proceedings of the 58th Annual Meeting of the Association*
 657 *for Computational Linguistics*, pp. 1906–1919, 2020. URL <https://aclanthology.org/2020.acl-main.173>.

658

659 Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallucinations
 660 of large language models: Evaluation, detection and mitigation. *arXiv preprint arXiv:2305.15852*,
 661 2023.

662

663 Long Ouyang, Jeff Wu, Xu Jiang, et al. Training language models to follow instructions with human
 664 feedback. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp.
 665 27730–27744, 2022. URL <https://proceedings.neurips.cc/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract.html>.

666

667 Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
 668 with recurrent neural networks. *arXiv preprint*, 2015. URL <https://arxiv.org/abs/1511.06732>.

669

670 Timo Schick, Jane Dwivedi-Yu, Roberto Dessimoni, et al. Toolformer: Language models can teach
 671 themselves to use tools. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
 672 URL <https://openreview.net/pdf?id=Yacmpz84TH>.

673

674 Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its
 675 applications in convergence and critical point analysis. In *International conference on machine*
 676 *learning*, pp. 3404–3413. PMLR, 2017.

677

J. R. R. Tolkien. *The Fellowship of the Ring*. George Allen & Unwin, London, 1954.

678

Ruibin Xiong, Yunchang Yang, Di He, et al. On layer normalization in the transformer architecture. In
 679 *Proceedings of the 37th International Conference on Machine Learning (ICML)*, pp. 10524–10533,
 680 2020. URL <https://proceedings.mlr.press/v119/xiong20b.html>.

681

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 682 large language models. *arXiv preprint arXiv:2401.11817*, 2024.

683

Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan Zha. Learning deep mean field
 684 games for modeling large population behavior. *arXiv preprint arXiv:1711.03156*, 2017.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX CONTENTS

1. Appendix A. Preliminaries
 - (a) A.1 Autoregressive components
 - (b) A.2 Divergences
 - (c) A.3 Probe kernels
 - (d) A.4 Controlled randomization network
 - (e) A.5 Filtration and mean field preliminaries
2. Appendix B. Predictable drift corridor
3. Appendix C. Blended reporting rule
 - (a) C.1 Deterministic expectation control
 - (b) C.2 Freedman prerequisites and deviation
4. Appendix D. Markov kernel drift and corridor bounds
5. Appendix E. Mean field lift of neutrality
6. Appendix F. Ablation studies
 - (a) F.1 Layer perspective
 - (b) F.2 Trajectory level audits with respect to T
 - (c) F.3 Trajectory level audits with respect to M

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 SYMBOLS AND NOTATION
757
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	Symbol V Δ^{V-1} $\mu(x), \sigma(x)$ ε γ, β LN $J_{\text{LN}}(x)$ S or s_T T $z \in \mathbb{R}^V$ $p, q \in \Delta^{V-1}$ $\text{KL}(p\ q)$ $\text{JS}(p, q)$ m t h_t, \tilde{h}_t p_t, q_t D_t \mathcal{F}_t ξ_{t+1} \mathcal{G}_t $\tau_t, \tilde{\tau}_t$ $K(h_t, i; \xi_{t+1})$ $D_{t+1}(i, j; \xi_{t+1})$ $X_t^{\text{closed}}, X_t^{\text{open}}$ μ_t Δ_t D_t^{\pm} X_t $X_{t, \text{closed}}^{\pm}$ M $X_t^{(m)}, \bar{X}_t$ W $\ W\ _2, \sigma_{\min}(W)$ $\kappa_2(W)$ E $M = WE$ $\Phi_t(i), \tilde{\Phi}_t(j)$ $L_{\text{sm}, t}$ $L_{\text{JS}, t}$ $L_{\text{ker}, t}$ $H_\ell(x)$ L_ℓ c_t Y_t M_N, B_N V_N \bar{X}_N \hat{s}_N $z_{0.975}$ E_{\max}, α A_k	Meaning Vocabulary size. Index set $[V] = \{1, \dots, V\}$. Probability simplex over V tokens. Coordinate mean and standard deviation of x used by LayerNorm. LayerNorm stabilizer, strictly positive. LayerNorm gain and bias, with $\ \gamma\ _\infty = \max_i \gamma_i $. LayerNorm map $\gamma \odot (x - \mu(x)\mathbf{1})/\sigma(x) + \beta$. Jacobian of LayerNorm at x . Softmax map. With temperature T , $s_T(z)_i = \exp(z_i/T) / \sum_j \exp(z_j/T)$. Sampling temperature controlling softmax sharpness and entropy. Logit vector. Paired next token distributions. Kullback Leibler divergence. Jensen Shannon divergence bounded by log 2. Mixture $m = \frac{1}{2}(p + q)$ used in JS definitions. Decoding step index. Paired hidden states at step t for the two arms. Paired decoded next token distributions at step t . Predictive divergence at step t , $D_t = \text{JS}(p_t, q_t)$. Filtration up to step t generated by states, tokens, and couplings. Exogenous randomness for the one step transition, shared across arms. Enlarged sigma algebra $\sigma(\mathcal{F}_t, \xi_{t+1})$. Tokens consumed at step t by the two arms. One step kernel mapping token i to the next hidden state. Next step divergence if arm one takes i and arm two takes j . Closed and open increment. Predictable drift $\mathbb{E}[X_t^{\text{open}} \mid \mathcal{F}_t]$. Token mismatch drift term defined in Lemma 4. Divergences for the + and - CRN arms. CRN antisymmetric increment. Closed increments in each CRN arm. Sibling count used for variance reduction. Increment from sibling $m \in \{1, \dots, M\}$ and sibling average. Decoder matrix mapping hidden state to logits. Spectral norm of W , smallest singular value of W . Condition number $\ W\ _2/\sigma_{\min}(W)$. Embedding matrix. Column E_i is the embedding of token i . Logit space embeddings, with columns M_i . Decoded distributions after one-step kernel updates. Softmax Lipschitz constant at step t , bounded by $1/(2T)$. Local Lipschitz constant of JS in its second argument at step t . Kernel Lipschitz constant up to step t , product of block constants. Residual block $x + G_\ell(\text{LN}(x))$. Lipschitz constant of block ℓ . Corridor radius bounding $ \mu_t $, defined in Proposition 3. Centered increment $X_t^{\text{open}} - \mu_t$. Martingale sum $\sum_{t=1}^N Y_t$, drift sum $\sum_{t=1}^N \mu_t$. Predictable quadratic variation $\sum_{t=1}^N \mathbb{E}[Y_t^2 \mid \mathcal{F}_{t-1}]$. Empirical mean drift $\frac{1}{N} \sum_{t=1}^N X_t^{\text{open}}$. Sample standard deviation of open increments. Standard normal quantile for 95 percent two sided bands. Maximum of the anytime e process. Test size, rejection when $E_{\max} \geq 1/\alpha$. Generic exchangeable agent variable in Appendix E.

810 **A PRELIMINARIES**
 811

812 **A.1 AUTOREGRESSIVE COMPONENTS**
 813

814 **Lemma 1** (LayerNorm operator norm). *Let $\text{LN} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be*

816
$$\text{LN}(x) = \gamma \odot \frac{x - \mu(x)\mathbf{1}}{\sigma(x)} + \beta, \quad \mu(x) = \frac{1}{d} \sum_{i=1}^d x_i, \quad \sigma(x) = \sqrt{\frac{1}{d} \sum_{i=1}^d (x_i - \mu(x))^2 + \varepsilon},$$

 817
 818

819 *with $\varepsilon > 0$ and $\|\gamma\|_\infty = \max_i |\gamma_i|$. Then, for all $x \in \mathbb{R}^d$,*

821
$$\|J_{\text{LN}}(x)\|_2 \leq \frac{\|\gamma\|_\infty}{\sqrt{\varepsilon}}.$$

 822
 823

824 *Proof.* Define $c(x) = x - \mu(x)\mathbf{1}$ and $P = I - \frac{1}{d}\mathbf{1}\mathbf{1}^\top$, so that $c(x) = Px$ and $\|P\|_2 = 1$. Then

826
$$\hat{x} = \frac{c(x)}{\sigma(x)} = \frac{Px}{\sigma(x)}, \quad \text{LN}(x) = \text{Diag}(\gamma)\hat{x} + \beta.$$

 827
 828

829 Thus $J_{\text{LN}}(x) = \text{Diag}(\gamma)J_{\hat{x}}(x)$, and therefore

830
$$\|J_{\text{LN}}(x)\|_2 \leq \|\text{Diag}(\gamma)\|_2 \|J_{\hat{x}}(x)\|_2 = \|\gamma\|_\infty \|J_{\hat{x}}(x)\|_2.$$

 831

832 It remains to show $\|J_{\hat{x}}(x)\|_2 \leq 1/\sigma(x)$. For $v \in \mathbb{R}^d$, using $\mu'(x)[v] = \frac{1}{d}\mathbf{1}^\top v$ and

834
$$\sigma^2(x) = \frac{1}{d}\|Px\|_2^2 + \varepsilon, \quad (\sigma^2)'[v] = \frac{2}{d}(Px)^\top(Pv), \quad \sigma'(x)[v] = \frac{(Px)^\top(Pv)}{d\sigma(x)},$$

 835
 836

837 we compute

838
$$J_{\hat{x}}(x)v = \frac{Pv}{\sigma(x)} - \frac{Px}{\sigma(x)^2} \sigma'(x)[v] = \frac{1}{\sigma(x)} \left(I - \frac{Px(Px)^\top}{d\sigma(x)^2} \right) Pv.$$

 839
 840

841 Set

843
$$u = \frac{Px}{\sqrt{d}\sigma(x)},$$

 844

845 so that $\|u\|_2^2 = \frac{\|Px\|_2^2}{d\sigma(x)^2} = 1 - \frac{\varepsilon}{\sigma(x)^2} \leq 1$, and

847
$$\frac{Px(Px)^\top}{d\sigma(x)^2} = uu^\top.$$

 848
 849

850 Hence

851
$$J_{\hat{x}}(x) = \frac{1}{\sigma(x)} (I - uu^\top) P.$$

 852

853 Now P is an orthogonal projector, so $\|P\|_2 = 1$. The matrix $I - uu^\top$ is symmetric with eigenvalues
 854 1 on u^\perp and $1 - \|u\|_2^2$ on $\text{span}\{u\}$, all in $[0, 1]$. Thus $\|I - uu^\top\|_2 = 1$. Therefore

856
$$\|J_{\hat{x}}(x)\|_2 \leq \frac{1}{\sigma(x)} \|I - uu^\top\|_2 \|P\|_2 \leq \frac{1}{\sigma(x)}.$$

 857
 858

859 Combining the estimates gives

861
$$\|J_{\text{LN}}(x)\|_2 \leq \frac{\|\gamma\|_\infty}{\sigma(x)} \leq \frac{\|\gamma\|_\infty}{\sqrt{\varepsilon}},$$

 862

863 since $\sigma(x) \geq \sqrt{\varepsilon}$. □

864 **Remark.** If $Px \neq 0$ and $\gamma = \gamma_0 \mathbf{1}$, then $J_{\hat{x}}(x)$ acts as $v \mapsto v/\sigma(x)$ on the subspace

$$865 \quad \{ v \in \text{range}(P) : v \perp Px \},$$

866 so $\|J_{\text{LN}}(x)\|_2 = \|\gamma\|_\infty/\sigma(x)$ and the scaling in $\sigma(x)$ and ε is sharp.

867 **Lemma 2** (Softmax Lipschitz constant). *Let $s_T(z) = \text{softmax}_T(z)$ with temperature $T > 0$, so that*
 868 *$p = s_T(z)$ and*

$$871 \quad s_T(z)_i = \frac{e^{z_i/T}}{\sum_j e^{z_j/T}}.$$

872 *Then the Jacobian satisfies, for all $z \in \mathbb{R}^V$,*

$$875 \quad \|\nabla s_T(z)\|_2 = \frac{1}{T} \|\text{Diag}(p) - pp^\top\|_2 \leq \frac{1}{2T}.$$

877 *Moreover, the constant $1/(2T)$ is tight (attained for $V = 2$, $p = (\frac{1}{2}, \frac{1}{2})$).*

878 *Proof.* Differentiating directly gives

$$880 \quad \frac{\partial s_T(z)_i}{\partial z_k} = \frac{1}{T} (p_i \delta_{ik} - p_i p_k),$$

882 hence

$$883 \quad \nabla s_T(z) = \frac{1}{T} (\text{Diag}(p) - pp^\top).$$

885 The matrix $\text{Diag}(p) - pp^\top$ is symmetric positive semidefinite, so

$$886 \quad \|\nabla s_T(z)\|_2 = \frac{1}{T} \lambda_{\max}(\text{Diag}(p) - pp^\top).$$

889 For any unit vector $v \in \mathbb{R}^V$,

$$891 \quad v^\top (\text{Diag}(p) - pp^\top) v = \sum_i p_i v_i^2 - \left(\sum_i p_i v_i \right)^2 = \text{Var}_p(v),$$

893 the variance of the random variable that takes value v_i with probability p_i .

894 Let $\alpha = \min_i v_i$ and $\beta = \max_i v_i$. By Popoviciu's inequality,

$$896 \quad \text{Var}_p(v) \leq \frac{(\beta - \alpha)^2}{4}.$$

898 Moreover, by Cauchy–Schwarz,

$$900 \quad (\beta - \alpha)^2 = (|\beta| + |\alpha|)^2 \leq 2(\beta^2 + \alpha^2) \leq 2 \sum_i v_i^2 = 2,$$

902 since $\|v\|_2 = 1$. Combining gives

$$904 \quad \text{Var}_p(v) \leq \frac{1}{4}(\beta - \alpha)^2 \leq \frac{1}{2}.$$

906 Taking the supremum over unit vectors v shows

$$907 \quad \lambda_{\max}(\text{Diag}(p) - pp^\top) \leq \frac{1}{2}.$$

909 **Tightness.** For $V = 2$, $p = (\frac{1}{2}, \frac{1}{2})$, the matrix

$$911 \quad \text{Diag}(p) - pp^\top = \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

914 has eigenvalues 0 and $1/2$. Thus

$$916 \quad \|\nabla s_T(z)\|_2 = \frac{1}{T} \cdot \frac{1}{2} = \frac{1}{2T},$$

917 so the bound is attained. □

918 A.2 DIVERGENCES
919920 **Lemma 3** (JS divergence). *For all $p, q \in \Delta^{V-1}$ and natural logarithm,*
921

922
$$0 \leq \text{JS}(p, q) \leq \log 2.$$

923

924 *Proof.* Nonnegativity follows from convexity of KL and symmetry. For the upper bound, let $m =$
925 $\frac{1}{2}(p + q)$. By Gibbs' inequality, $\text{KL}(p\|m) \leq \log \sum_i \frac{p_i^2}{m_i} \leq \log 2$, and similarly for q ; averaging
926 yields the claim. Standard proofs appear in Endres & Schindelin (2003). \square
927928 A.3 PROBE KERNELS
929930 **Lemma 4** (Open-probe kernel). *Fix $t \geq 0$ and let \mathcal{F}_t be the natural filtration up to step t , so
931 $(h_t, \tilde{h}_t, p_t, q_t)$ are \mathcal{F}_t -measurable and $D_t = \text{JS}(p_t, q_t)$. Let ξ_{t+1} denote all exogenous random
932 variables used by the one-step kernel at time $t+1$, coupled across the two arms and independent of
933 $(\tau_t, \tilde{\tau}_t)$ given \mathcal{F}_t , and set $\mathcal{G}_t := \sigma(\mathcal{F}_t, \xi_{t+1})$. For tokens $(\tau, \tilde{\tau})$ define*
934

935
$$D_{t+1}(\tau, \tilde{\tau}; \xi_{t+1}) := \text{JS}\left(S(K(h_t, \tau; \xi_{t+1})), S(K(\tilde{h}_t, \tilde{\tau}; \xi_{t+1}))\right).$$

936

937 Let $X_t^{\text{closed}} = D_{t+1}^{\text{closed}} - D_t$ be the increment when both arms consume the same token $\tau_t \sim p_t$, and
938 $X_t^{\text{open}} = D_{t+1}^{\text{open}} - D_t$ the increment when $\tau_t \sim p_t$ and $\tilde{\tau}_t \sim q_t$ are independent. Then
939

940
$$\mathbb{E}[X_t^{\text{open}} \mid \mathcal{F}_t] = \mathbb{E}[X_t^{\text{closed}} \mid \mathcal{F}_t] + \Delta_t,$$

941

942 where

943
$$\Delta_t = \mathbb{E}[D_{t+1}(\tau_t, \tilde{\tau}_t; \xi_{t+1}) - D_{t+1}(\tau_t, \tau_t; \xi_{t+1}) \mid \mathcal{F}_t].$$

944

945 *Proof.* All statements are conditional on \mathcal{F}_t . First note that $D_t = \text{JS}(p_t, q_t)$ depends only on (p_t, q_t) ,
946 hence it is \mathcal{F}_t -measurable. Therefore $\mathbb{E}[D_t \mid \mathcal{F}_t] = D_t$ in both probe regimes.
947948 Let ξ_{t+1} denote all exogenous randomness used at time $t+1$, independent of $(\tau_t, \tilde{\tau}_t)$ given \mathcal{F}_t and
949 coupled across both arms, and set $\mathcal{G}_t := \sigma(\mathcal{F}_t, \xi_{t+1})$. For fixed ξ_{t+1} , the map
950

951
$$(\tau, \tilde{\tau}) \mapsto D_{t+1}(\tau, \tilde{\tau}; \xi_{t+1})$$

952

953 is deterministic and measurable.
954955 In the open probe,
956

957
$$\mathbb{E}[X_t^{\text{open}} \mid \mathcal{G}_t] = \mathbb{E}[D_{t+1}(\tau_t, \tilde{\tau}_t; \xi_{t+1}) \mid \mathcal{G}_t] - D_t = \sum_{i,j} p_t(i) q_t(j) D_{t+1}(i, j; \xi_{t+1}) - D_t,$$

958

959 with $\tau_t \sim p_t$ and $\tilde{\tau}_t \sim q_t$ independent. In the closed probe,
960

961
$$\mathbb{E}[X_t^{\text{closed}} \mid \mathcal{G}_t] = \mathbb{E}[D_{t+1}(\tau_t, \tau_t; \xi_{t+1}) \mid \mathcal{G}_t] - D_t = \sum_i p_t(i) D_{t+1}(i, i; \xi_{t+1}) - D_t.$$

962

963 Subtracting these two displays cancels the common $-D_t$ term (this is exactly why we needed to note
964 D_t is \mathcal{F}_t -measurable). Thus
965

966
$$\mathbb{E}[X_t^{\text{open}} \mid \mathcal{G}_t] - \mathbb{E}[X_t^{\text{closed}} \mid \mathcal{G}_t] = \sum_{i,j} p_t(i) q_t(j) D_{t+1}(i, j; \xi_{t+1}) - \sum_i p_t(i) D_{t+1}(i, i; \xi_{t+1}).$$

967

968 Finally, apply the tower property $\mathbb{E}[\cdot \mid \mathcal{F}_t] = \mathbb{E}(\mathbb{E}[\cdot \mid \mathcal{G}_t] \mid \mathcal{F}_t)$ to obtain
969

970
$$\mathbb{E}[X_t^{\text{open}} \mid \mathcal{F}_t] - \mathbb{E}[X_t^{\text{closed}} \mid \mathcal{F}_t] = \mathbb{E}[D_{t+1}(\tau_t, \tilde{\tau}_t; \xi_{t+1}) - D_{t+1}(\tau_t, \tau_t; \xi_{t+1}) \mid \mathcal{F}_t],$$

971

972 which by definition is Δ_t . \square

972 A.4 CONTROLLED RANDOMIZATION NETWORK
973

974 **Lemma 5** (CRN antisymmetry and conditional mean). *Let the three-arm CRN evolve rollouts*
 975 *(+, -, 0) with a common coupling of all non-token randomness. For a token pair (a, b) let $D_{t+1}^\pm(a, b)$*
 976 *denote the divergence at time $t + 1$ when the \pm trajectory consumes (a, b) at time t . Assume D_t^\pm and*
 977 *$D_{t+1}^\pm(a, b)$ are integrable and \mathcal{F}_t -measurable as functions of (a, b) . Let $\tau_t^\pm \sim p_t^\pm$ and $\tilde{\tau}_t^\pm \sim q_t^\pm$ be*
 978 *conditionally independent given \mathcal{F}_t . By convention,*

$$979 \quad D_{t+1}^\pm := D_{t+1}^\pm(\tau_t^\pm, \tilde{\tau}_t^\pm). \\ 980$$

981 Define

$$982 \quad D_{t+1, \text{closed}}^\pm := D_{t+1}^\pm(\tau_t^\pm, \tau_t^\pm), \quad \Delta_t^\pm := \mathbb{E}[D_{t+1}^\pm(\tau_t^\pm, \tilde{\tau}_t^\pm) - D_{t+1}^\pm(\tau_t^\pm, \tau_t^\pm) \mid \mathcal{F}_t], \\ 983$$

984 and the CRN increments

$$985 \quad X_t := \frac{1}{2}[(D_{t+1}^+ - D_t^+) - (D_{t+1}^- - D_t^-)], \quad X_{t, \text{closed}}^\pm := D_{t+1, \text{closed}}^\pm - D_t^\pm. \\ 986$$

987 Then:

988 (i) Antisymmetry. *Swapping $+$ $\leftrightarrow -$ maps X_t to $-X_t$.*

989

990 (ii) Conditional mean.

991

$$992 \quad \mathbb{E}[X_t \mid \mathcal{F}_t] = \frac{1}{2}(\mathbb{E}[X_{t, \text{closed}}^+ \mid \mathcal{F}_t] - \mathbb{E}[X_{t, \text{closed}}^- \mid \mathcal{F}_t]) + \frac{1}{2}(\Delta_t^+ - \Delta_t^-). \\ 993$$

994 (iii) Neutrality and symmetry. *If closed-probe neutrality holds, meaning*

$$995 \quad \mathbb{E}[X_{t, \text{closed}}^\pm \mid \mathcal{F}_t] = 0,$$

996 *then the first bracket in (ii) vanishes and one obtains*

$$997 \quad \mathbb{E}[X_t \mid \mathcal{F}_t] = \frac{1}{2}(\Delta_t^+ - \Delta_t^-). \\ 998$$

999 *If in addition the open kernel is sign-symmetric, so that $\Delta_t^+ = \Delta_t^-$, then the right-hand*
 1000 *side is zero and hence*

$$1001 \quad \mathbb{E}[X_t \mid \mathcal{F}_t] = 0. \\ 1002$$

1003 *Proof.* (i) is immediate: swapping $+$ $\leftrightarrow -$ exchanges the two terms in X_t , hence $X_t \mapsto -X_t$.

1004 For (ii), D_t^\pm are \mathcal{F}_t -measurable, so

$$1006 \quad \mathbb{E}[X_t \mid \mathcal{F}_t] = \frac{1}{2}(\mathbb{E}[D_{t+1}^+ \mid \mathcal{F}_t] - \mathbb{E}[D_{t+1}^- \mid \mathcal{F}_t]) - \frac{1}{2}(D_t^+ - D_t^-). \\ 1007$$

1008 By Lemma 4 applied separately to $\{+, -\}$, we have

$$1009 \quad \mathbb{E}[D_{t+1}^\pm \mid \mathcal{F}_t] = \mathbb{E}[D_{t+1, \text{closed}}^\pm \mid \mathcal{F}_t] + \Delta_t^\pm. \\ 1010$$

1011 Substituting gives

$$1012 \quad \mathbb{E}[X_t \mid \mathcal{F}_t] = \frac{1}{2}(\mathbb{E}[D_{t+1, \text{closed}}^+ \mid \mathcal{F}_t] - \mathbb{E}[D_{t+1, \text{closed}}^- \mid \mathcal{F}_t]) + \frac{1}{2}(\Delta_t^+ - \Delta_t^-) - \frac{1}{2}(D_t^+ - D_t^-) \\ 1013 \\ 1014 = \frac{1}{2}(\mathbb{E}[D_{t+1, \text{closed}}^+ - D_t^+ \mid \mathcal{F}_t] - \mathbb{E}[D_{t+1, \text{closed}}^- - D_t^- \mid \mathcal{F}_t]) + \frac{1}{2}(\Delta_t^+ - \Delta_t^-), \\ 1015$$

1016 since D_t^\pm are \mathcal{F}_t -measurable. Recognizing $X_{t, \text{closed}}^\pm = D_{t+1, \text{closed}}^\pm - D_t^\pm$, we obtain

$$1017 \quad \mathbb{E}[X_t \mid \mathcal{F}_t] = \frac{1}{2}(\mathbb{E}[X_{t, \text{closed}}^+ \mid \mathcal{F}_t] - \mathbb{E}[X_{t, \text{closed}}^- \mid \mathcal{F}_t]) + \frac{1}{2}(\Delta_t^+ - \Delta_t^-), \\ 1018$$

1019 which is the claimed identity.

1020

1021 For (iii), under closed-probe neutrality both expectations $\mathbb{E}[X_{t, \text{closed}}^\pm \mid \mathcal{F}_t]$ vanish, so only the
 1022 difference of open-kernel terms remains:

$$1023 \quad \mathbb{E}[X_t \mid \mathcal{F}_t] = \frac{1}{2}(\Delta_t^+ - \Delta_t^-). \\ 1024$$

1025 If moreover the open kernel is sign-symmetric, then $\Delta_t^+ = \Delta_t^-$ and the conditional mean vanishes. \square

1026 **Lemma 6** (Sibling averaging). *Let $\{X_t^{(m)}\}_{m=1}^M$ be conditionally i.i.d. CRN increments given \mathcal{F}_t with
 1027 $\mathbb{E}[|X_t^{(1)}| \mid \mathcal{F}_t] < \infty$. Then*

1029
$$\bar{X}_t = \frac{1}{M} \sum_{m=1}^M X_t^{(m)} \xrightarrow{a.s.} \mathbb{E}[X_t^{(1)} \mid \mathcal{F}_t] \quad \text{as } M \rightarrow \infty.$$

 1030
 1031

1032 *Proof.* Condition on \mathcal{F}_t . Given \mathcal{F}_t , the $X_t^{(m)}$ are i.i.d. with finite mean. By the strong law of large
 1033 numbers (see (Kallenberg, 1997) for a more detailed proof), $\bar{X}_t \rightarrow \mathbb{E}[X_t^{(1)} \mid \mathcal{F}_t]$ almost surely for
 1034 the conditional law, hence almost surely under \mathbb{P} . \square
 1035
 1036

1037 A.5 FILTRATION AND MEAN-FIELD PRELIMINARIES
 1038

1039 **Definition 1** (Filtration). *\mathcal{F}_t is the σ -algebra generated by hidden states, token draws, and CRN
 1040 couplings up to step t .*

1041 **Lemma 7** (Exchangeability). *If $\{X_t^{(i)}\}_{i \geq 1}$ is exchangeable with $\mathbb{E}[X_t^{(i)} \mid \mathcal{F}_t] = 0$ and $\mathbb{E}[|X_t^{(i)}|] <$
 1042 ∞ , then*

1043
$$\frac{1}{N} \sum_{i=1}^N X_t^{(i)} \xrightarrow{a.s.} 0 \quad \text{as } N \rightarrow \infty.$$

 1044
 1045
 1046

1047 *Proof.* By de Finetti's representation, exchangeable sequences are mixtures of i.i.d.; apply the SLLN
 1048 inside the mixture and integrate (Kallenberg, 1997, Sec. 14). \square
 1049
 1050

B PREDICTABLE DRIFT CORRIDOR

1053 **Lemma 8** (Mean value theorem (JS)). *Fix t and $i, j \in [V]$. Define $g_{t,i}(r) := \text{JS}(\Phi_t(i), r)$ for
 1054 $r \in \Delta^{V-1}$. Then for some $\theta \in [0, 1]$,*

1055
$$\text{JS}(\Phi_t(i), \tilde{\Phi}_t(j)) - \text{JS}(\Phi_t(i), \tilde{\Phi}_t(i)) = \langle \nabla g_{t,i}(r_\theta), \tilde{\Phi}_t(j) - \tilde{\Phi}_t(i) \rangle,$$

 1056

1057 with $r_\theta = (1 - \theta)\tilde{\Phi}_t(i) + \theta\tilde{\Phi}_t(j)$. Hence

1058
$$|\text{JS}(\Phi_t(i), \tilde{\Phi}_t(j)) - \text{JS}(\Phi_t(i), \tilde{\Phi}_t(i))| \leq L_{\text{JS},t} \|\tilde{\Phi}_t(j) - \tilde{\Phi}_t(i)\|_2,$$

 1059

1060 where

1061
$$L_{\text{JS},t} := \sup_{\substack{i,j \in [V] \\ \theta \in [0,1]}} \|\nabla_2 \text{JS}(\Phi_t(i), r_\theta)\|_2.$$

 1062
 1063
 1064

1065 **Lemma 9** (Lipschitz decoder and kernel). *For any $i, j \in [V]$,*

1066
$$\|\tilde{\Phi}_t(j) - \tilde{\Phi}_t(i)\|_2 \leq L_{\text{sm},t} \|W\|_2 L_{\text{ker},t} \|E_j - E_i\|_2.$$

 1067

1068 If $\sigma_{\min}(W) > 0$, then

1069
$$\|\tilde{\Phi}_t(j) - \tilde{\Phi}_t(i)\|_2 \leq L_{\text{sm},t} \kappa_2(W) L_{\text{ker},t} \|M_j - M_i\|_2, \quad M = WE, \quad \kappa_2(W) = \frac{\|W\|_2}{\sigma_{\min}(W)}.$$

 1070
 1071

1072 **Proposition 3** (Predictable drift corridor). *Let $\mu_t = \mathbb{E}[X_t^{\text{open}} \mid \mathcal{F}_t]$. Then*

1073
$$|\mu_t| \leq L_{\text{JS},t} L_{\text{sm},t} L_{\text{ker},t} \mathbb{E}_{i,j} \|E_j - E_i\|_2 =: c_t. \quad (7)$$

 1074

1075 If $\sigma_{\min}(W) > 0$, then

1076
$$|\mu_t| \leq L_{\text{JS},t} L_{\text{sm},t} \kappa_2(W) L_{\text{ker},t} \mathbb{E}_{i,j} \|M_j - M_i\|_2. \quad (8)$$

 1077

1078 *Proof.* Combine Lemma 8 with Lemma 9, then take expectation over $i \sim p_t, j \sim q_t$. This yields
 1079 equation 4. The strengthened form equation 5 follows from $\|Wv\|_2 \geq \sigma_{\min}(W)\|v\|_2$. \square

1080 **C BLENDED REPORTING RULE**
 1081

1082 We collect here a complete derivation of the blended neutrality reporting bound used in the main text.
 1083

1084 **Definition 2** (Centered increments, quadratic variation). *Let $X_t^{\text{open}} := D_{t+1} - D_t$, $\mu_t := \mathbb{E}[X_t^{\text{open}} | \mathcal{F}_t]$, and $Y_t := X_t^{\text{open}} - \mu_t$. Define*
 1085

$$1086 \quad M_N := \sum_{t=1}^N Y_t, \quad B_N := \sum_{t=1}^N \mu_t, \quad V_N := \sum_{t=1}^N \mathbb{E}[Y_t^2 | \mathcal{F}_{t-1}],$$

1089 and $\bar{X}_N := \frac{1}{N} \sum_{t=1}^N X_t^{\text{open}}$.
 1090

1091 **C.1 DETERMINISTIC EXPECTATION CONTROL**
 1092

1093 **Lemma 10** (Deterministic expectation control). *With c_t as in equation 4,*

$$1095 \quad |\mathbb{E}[\bar{X}_N]| \leq \frac{1}{N} \sum_{t=1}^N c_t.$$

1098 *Proof.* We have $S_N := \sum_{t=1}^N X_t^{\text{open}} = M_N + B_N$ by definition, so $\mathbb{E}[S_N] = \mathbb{E}[B_N]$. Therefore
 1099

$$1100 \quad |\mathbb{E}[\bar{X}_N]| = \frac{1}{N} |\mathbb{E}[B_N]| \leq \frac{1}{N} \sum_{t=1}^N \mathbb{E}[|\mu_t|] \leq \frac{1}{N} \sum_{t=1}^N c_t,$$

1103 using equation 4. □
 1104

1105 **C.2 FREEDMAN PREREQUISITES AND DEVIATION**
 1106

1107 **Lemma 11** (Freedman prerequisites). *Under Lemma 3 and equation 4 there exists $c < \infty$ with
 1108 $|Y_t| \leq c$ a.s., and M_N is a martingale with predictable quadratic variation V_N .*

1109 *Proof.* By Lemma 3, $|X_t^{\text{open}}| \leq \log 2$ a.s. and by equation 4, $|\mu_t| \leq c_t$. Let $c := \log 2 + \sup_s c_s < \infty$. Then $|Y_t| \leq |X_t^{\text{open}}| + |\mu_t| \leq c$. Measurability and $\mathbb{E}[Y_t | \mathcal{F}_{t-1}] = 0$ are by definition of μ_t , so $\{M_t, \mathcal{F}_t\}$ is a martingale and V_N is its predictable quadratic variation. □

1113 **Theorem 3** (Two-sided high-probability deviation). *For any $\delta \in (0, 1)$,*

$$1115 \quad |M_N| \leq \sqrt{2V_N \log(2/\delta)} + \frac{c}{3} \log(2/\delta) \quad \text{with probability at least } 1 - \delta,$$

1116 where c is from Lemma 11. Equivalently,

$$1118 \quad \left| \bar{X}_N - \frac{B_N}{N} \right| \leq \sqrt{\frac{2V_N \log(2/\delta)}{N^2}} + \frac{c \log(2/\delta)}{N}. \quad (9)$$

1121 *Proof.* Apply Freedman's inequality to the martingale M_N with bounded increments $|Y_t| \leq c$
 1122 (Lemma 11). Divide by N . □

1123 **Lemma 12** (Lindeberg condition). *Assume $V_N \rightarrow \infty$ in probability. Then for every $\epsilon > 0$,*

$$1125 \quad \frac{1}{V_N} \sum_{t=1}^N \mathbb{E}[Y_t^2 \mathbf{1}\{|Y_t| > \epsilon \sqrt{V_N}\} | \mathcal{F}_{t-1}] \xrightarrow{\mathbb{P}} 0.$$

1128 *Proof.* Since $|Y_t| \leq c$, on $\{\sqrt{V_N} \geq c/\epsilon\}$ each indicator vanishes. As $V_N \rightarrow \infty$ in probability, the
 1129 event holds with probability tending to one, so the normalized sum converges to 0 in probability. □

1131 **Theorem 4** (Martingale Central Limit Theorem). *If $V_N/N \rightarrow \sigma^2 \in (0, \infty)$ in probability, then*

$$1133 \quad \frac{M_N}{\sqrt{V_N}} \Rightarrow \mathcal{N}(0, 1), \quad \sqrt{N} \left(\bar{X}_N - \frac{B_N}{N} \right) \Rightarrow \mathcal{N}(0, \sigma^2).$$

1134 *Proof.* By Lemma 12, Lindeberg’s condition holds. The martingale central limit theorem yields
 1135 $M_N/\sqrt{V_N} \Rightarrow \mathcal{N}(0, 1)$; Slutsky gives the second convergence. \square
 1136

1137 **Theorem 5** (Blended neutrality). *With c_t from equation 4,*

$$1139 \quad |\mathbb{E}[\bar{X}_N]| \leq \min \left\{ \frac{1}{N} \sum_{t=1}^N c_t, \left| \bar{X}_N - \frac{1}{N} \sum_{t=1}^N \mu_t \right| + z_{0.975} \frac{\hat{s}_N}{\sqrt{N}} \right\},$$

1142 where $\hat{s}_N^2 = \frac{1}{N} \sum_{t=1}^N (X_t^{\text{open}} - \bar{X}_N)^2$. If $\frac{1}{N} \sum_{t=1}^N c_t \rightarrow 0$, then $\frac{1}{N} \sum_{t=1}^N \mu_t \rightarrow 0$ and the standard
 1143 error band applies directly to \bar{X}_N .
 1144

1145 *Proof.* The first term inside the minimum is Lemma 10. For the second term, apply Theorem 3 to
 1146 bound $|\bar{X}_N - B_N/N|$ in finite samples, or Theorem 4 to obtain the asymptotic normal band; replace
 1147 the (unknown) variance by \hat{s}_N^2 under the usual consistency. If $\frac{1}{N} \sum c_t \rightarrow 0$, then $B_N/N \rightarrow 0$, hence
 1148 the band centers on \bar{X}_N itself. \square
 1149

1150 D MARKOV KERNEL DRIFT AND CORRIDOR BOUNDS

1153 This appendix collects the kernel-level derivations underlying Proposition 1 in Section 3.4. We
 1154 assume that each residual block $H_\ell(x) = x + G_\ell(\text{LN}(x))$ is Lipschitz with constant L_ℓ , so that the
 1155 cumulative kernel constant satisfies $L_{\text{ker},t} = \prod_{\ell \leq t} L_\ell$. This assumption is standard in theoretical
 1156 analyses of residual networks (Hardt & Ma, 2017; Hayou et al., 2019; Tian, 2017) and is used only as
 1157 a structural input to the corridor bound.

1158 **Definition 3** (Open probe kernel). *At step t , condition on \mathcal{F}_t , which fixes the paired hidden states
 1159 (h_t, \tilde{h}_t) and decoded distributions (p_t, q_t) . Let ξ_{t+1} denote the exogenous randomness used by the
 1160 one-step transition. The open-probe kernel acts on a token pair $(i, j) \in [V]^2$ as*

$$1161 \quad D_{t+1}(i, j; \xi_{t+1}) := \text{JS}(S(WK(h_t, i; \xi_{t+1})), S(WK(\tilde{h}_t, j; \xi_{t+1}))),$$

1163 with S the softmax, W the decoder, and K the kernel map.

1164 **Lemma 13** (Drift identity). *For the open probe increment $X_t^{\text{open}} = D_{t+1} - D_t$, the predictable
 1165 mean satisfies*

$$1166 \quad \mu_t = \mathbb{E}_{i \sim p_t, j \sim q_t} [D_{t+1}(i, j; \xi_{t+1}) - D_{t+1}(i, i; \xi_{t+1}) \mid \mathcal{F}_t]. \quad (10)$$

1168 *Proof.* Condition on \mathcal{F}_t and expand the definition of X_t^{open} . The baseline term corresponds to both
 1169 arms sampling $i \sim p_t$; the open probe uses independent $i \sim p_t, j \sim q_t$. Subtracting and taking
 1170 conditional expectation yields equation 10. \square
 1171

1172 **Theorem 6** (Expected drift bound). *With notation as in Lemma 13,*

$$1174 \quad |\mu_t| \leq L_{\text{JS},t} L_{\text{sm},t} \|W\|_2 L_{\text{ker},t} \mathbb{E}_{i,j} \|E_j - E_i\|_2.$$

1175 *If $\sigma_{\min}(W) > 0$, the strengthened logit-space version*

$$1177 \quad |\mu_t| \leq L_{\text{JS},t} L_{\text{sm},t} \kappa_2(W) L_{\text{ker},t} \mathbb{E}_{i,j} \|M_j - M_i\|_2, \quad \kappa_2(W) = \frac{\|W\|_2}{\sigma_{\min}(W)},$$

1179 *also holds.*

1181 *Proof.* Fix i, j and apply the mean value theorem to $r \mapsto \text{JS}(\Phi_t(i), r)$ with $\Phi_t(i) = S(WK(h_t, i))$,
 1182 $\tilde{\Phi}_t(j) = S(WK(\tilde{h}_t, j))$. This yields
 1183

$$1184 \quad |\text{JS}(\Phi_t(i), \tilde{\Phi}_t(j)) - \text{JS}(\Phi_t(i), \tilde{\Phi}_t(i))| \leq L_{\text{JS},t} \|\tilde{\Phi}_t(j) - \tilde{\Phi}_t(i)\|_2.$$

1185 Bound the difference $\tilde{\Phi}_t(j) - \tilde{\Phi}_t(i)$ by the composition of Lipschitz constants for softmax, decoder,
 1186 and kernel (Appendix A.1–A.1). Taking expectation over $i \sim p_t, j \sim q_t$ gives the bound. If
 1187 $\sigma_{\min}(W) > 0$, replace $\|E_j - E_i\|_2$ by $\|M_j - M_i\|_2$ to obtain the strengthened form. \square
 1188

1188 E MEAN-FIELD LIFT OF NEUTRALITY
11891190 This appendix provides the rigorous proof of Theorem 2, showing that neutrality and the blended
1191 reporting rule persist in the mean-field limit.1192 **Definition 4** (Exchangeability). *A collection of random variables $\{A_k\}_{k=1}^N$ is exchangeable if its
1193 joint distribution is invariant under finite permutations. In our setting, the “agents” A_k are either:*
11941195 1. *token pairs (i, j) drawn from (p_t, q_t) at a fixed step t (trajectory view), or*
1196 2. *residual blocks H_ℓ contributing finite-difference drifts (layerwise view).*1198 **Lemma 14** (Law of large numbers for exchangeable agents). *Let $\{A_k\}_{k=1}^N$ be exchangeable with
1199 $\mathbb{E}[A_1] = 0$ and $\text{Var}(A_1) < \infty$. Then*

1200
$$\frac{1}{N} \sum_{k=1}^N A_k \xrightarrow{P} 0 \quad \text{as } N \rightarrow \infty.$$

1201
1202
1203

1204 *Proof.* By de Finetti’s representation, exchangeable sequences are mixtures of i.i.d. sequences. Apply
1205 the strong law of large numbers conditionally, then integrate over the mixing measure to obtain
1206 convergence in probability. \square 1207 **Theorem 7** (Mean-field neutrality). *Fix a time t . Let $\{X_{t,a}^{\text{open}}\}_{a=1}^M$ be the agent actions (either in the
1208 trajectory or layerwise view), assumed exchangeable and integrable, with $|X_{t,a}^{\text{open}}| \leq b$ almost surely
1209 (cf. Lemma 3). If agent-level neutrality holds, i.e.*

1211
$$\mathbb{E}[X_{t,a}^{\text{open}} \mid \mathcal{F}_t] = 0 \quad \text{for all } a,$$

1212

1213 *then*

1214
$$\frac{1}{M} \sum_{a=1}^M X_{t,a}^{\text{open}} \xrightarrow[M \rightarrow \infty]{\text{a.s.}} 0.$$

1215
1216

1217 *Consequently, the population law inherits neutrality. Moreover, because $|X_{t,a}^{\text{open}}| \leq b$ and $|\mu_t| \leq c_t$
1218 (Theorem 6), the predictable-corridor and blended-reporting bounds (Theorem 1; Appendix C) hold
1219 unchanged in the mean-field limit.*1220 *Proof.* By exchangeability of $\{X_{t,a}^{\text{open}}\}_{a \geq 1}$ there exists a directing random measure Λ_t such that,
1221 conditional on $\mathcal{G}_t := \sigma(\mathcal{F}_t, \Lambda_t)$, the sequence is i.i.d. (de Finetti; cf. Lemma 7). Since $|X_{t,a}^{\text{open}}| \leq b$
1222 and $\mathbb{E}[X_{t,a}^{\text{open}} \mid \mathcal{F}_t] = 0$ by assumption, we also have $\mathbb{E}[X_{t,a}^{\text{open}} \mid \mathcal{G}_t] = 0$. Applying the strong law of
1223 large numbers conditionally on \mathcal{G}_t yields
1224

1225
$$\frac{1}{M} \sum_{a=1}^M X_{t,a}^{\text{open}} \xrightarrow[M \rightarrow \infty]{\text{a.s.}} \mathbb{E}[X_{t,1}^{\text{open}} \mid \mathcal{G}_t] = 0.$$

1226
1227

1228 Thus, the empirical mean converges almost surely to zero, and the population law inherits neutrality.
1229 Finally, the corridor bound $|\mu_t| \leq c_t$ depends only on architectural constants and embeddings, so it is
1230 unaffected by averaging. Uniform boundedness of the increments (Lemma equation 3) ensures that
1231 the Freedman/CLT arguments in Appendix C apply unchanged, so the blended reporting rule extends
1232 to the mean-field limit. \square 1234 F ABLATION STUDIES
12351236 To test the robustness of our neutrality results we vary two key hyperparameters: the sampling
1237 temperature T and the number of siblings M . Lower and higher temperatures alter output entropy,
1238 while M controls the variance reduction from sibling averaging. Across all settings, closed probes
1239 continue to behave as martingale differences, and open probes remain corridor-bounded. The reported
1240 E_{max} values in Tables 5 stay close to one, which indicates flat e -processes. Importantly, neutrality
1241 is only rejected if E_{max} exceeds $1/\alpha \approx 20$ at $\alpha = 0.05$, so values such as $E_{\text{max}} = 1.353$ are well
within the neutrality region and reflect no systematic drift.

Setting	Model	Probe	Mean drift	t -test p	Emax
T=0.5, M=16	gpt2-medium	Closed	-4.026e-9	3.17e-01	1.022
T=0.5, M=16	gpt2-medium	Open	3.060e-9	3.17e-01	1.022
T=1, M=16	gpt2-medium	Closed	-2.742e-2	6.34e-01	1.118
T=1, M=16	gpt2-medium	Open	-8.534e-9	6.34e-01	1.118
T=2, M=16	gpt2-medium	Closed	-9.122e-4	7.70e-02	1.186
T=2, M=16	gpt2-medium	Open	1.510e-9	7.70e-02	1.186
T=5, M=16	gpt2-medium	Closed	6.957e-4	9.90e-02	1.004
T=5, M=16	gpt2-medium	Open	3.861e-8	9.90e-02	1.004
T=1.7, M=8	gpt2-medium	Closed	-3.176e-4	7.94e-01	1.005
T=1.7, M=8	gpt2-medium	Open	-1.127e-8	7.94e-01	1.005
T=1.7, M=4	gpt2-medium	Closed	1.985e-3	9.79e-01	2.025
T=1.7, M=4	gpt2-medium	Open	5.077e-9	9.79e-01	2.025

Table 5: Ablation neutrality audits for gpt2-medium under varying temperature T and sibling count M . Closed probes show centered but wandering cumulative drift; open probes remain numerically tiny by comparison. E_{\max} values near 1 indicate no evidence of sustained bias; for context, an anytime e -test would only approach rejection around $E_{\max} \gtrsim 20$ at $\alpha = 0.05$.

Model	Block	$\hat{\mu}$	SE	95% CI
tiny-gpt2	All (4)	1.157e-07	9.729e-08	(-1.877e-10, 3.468e-07)
distilgpt2	All (4)	-2.833e-04	9.159e-03	(-1.839e-02, 1.843e-02)
gpt2-medium	All (4)	-2.844e-04	8.178e-03	(-1.687e-02, 1.630e-02)
gpt2-large	All (4)	1.221e-04	1.341e-02	(-2.851e-02, 2.788e-02)

Table 6: Layer-as-agent diagnostics aggregated across residual blocks. Reported are the mean action $\hat{\mu}$, its standard error, and a 95% confidence interval. Intervals cover zero throughout, indicating no systematic bias at the block level.

F.1 LAYER PERSPECTIVE.

F.2 TRAJECTORY-LEVEL NEUTRALITY AUDITS WITH RESPECT TO T

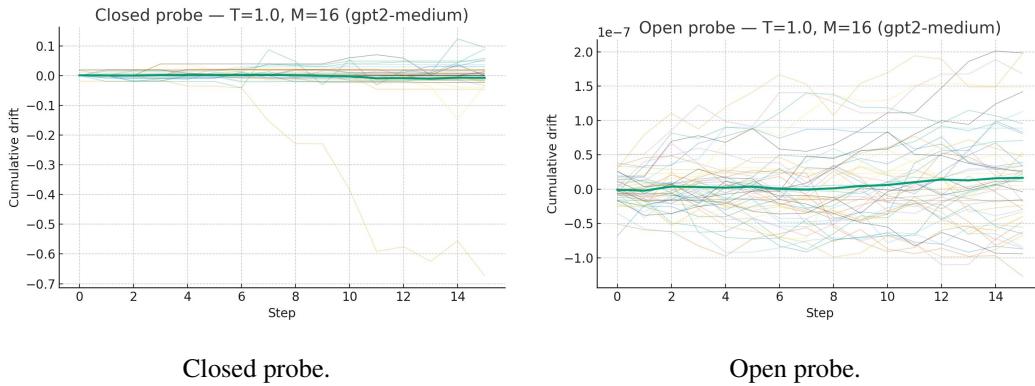
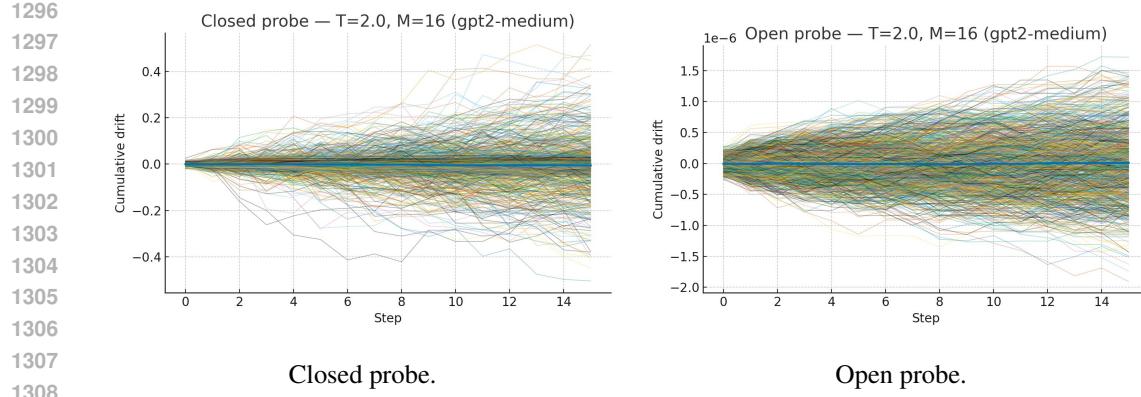
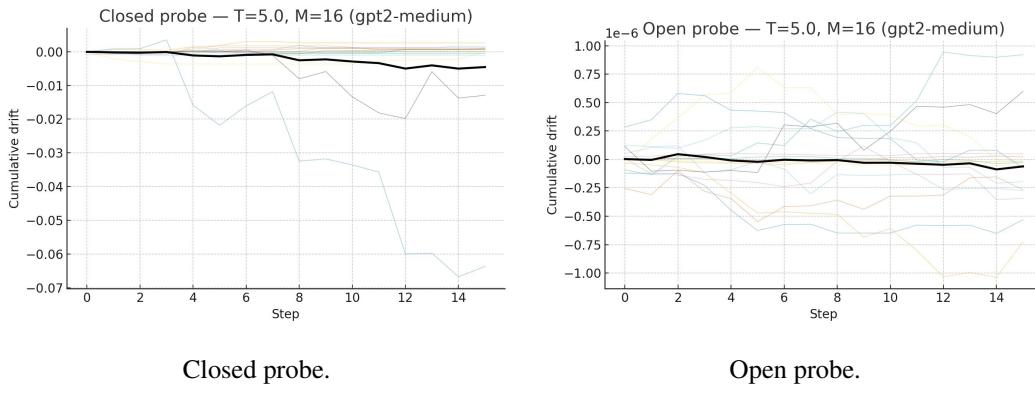
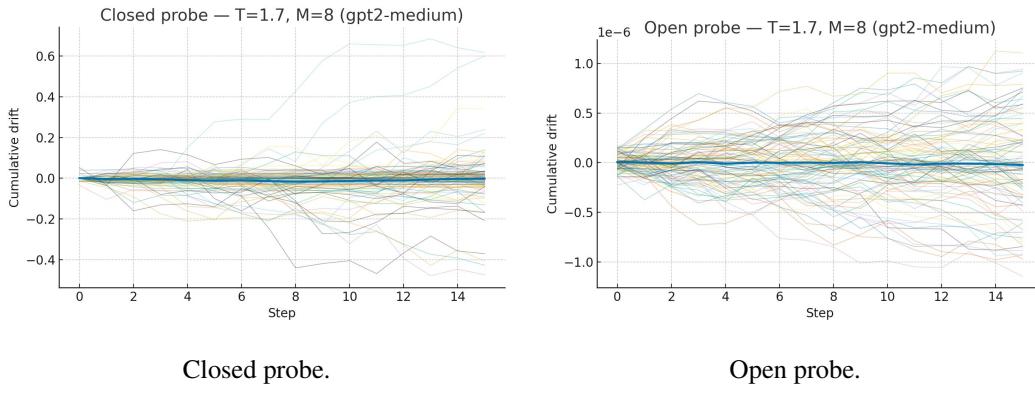


Figure 3: Neutrality audit for gpt2-medium with $T = 1, M = 16$.

Remark regarding $T = 5$. At high temperature the softmax flattens, increasing token entropy and branching variance in the open probe; closed increments remain martingale differences, but their step variance also grows because re-embeddings explore more of the state space. In Table 5 ($T=5, M=16$) the prompt-level t -test is marginal ($p = 3.20 \times 10^{-2}$) around a very small mean drift (6.19×10^{-5}), yet the anytime e -test stays near one ($E_{\max} = 1.005$), far below rejection thresholds (e.g., ≥ 20 at $\alpha = 0.05$), indicating no sustained deviation. Trajectories therefore look more volatile (variance inflation) but remain neutral in expectation. Moreover, theory predicts a smaller corridor at higher T (softmax Lipschitz $1/(2T)$), consistent with the absence of bias despite noisier paths.

Figure 4: Neutrality audit for gpt2-medium with $T = 2, M = 16$.Figure 5: Neutrality audit for gpt2-medium with $T = 5, M = 16$.F.3 TRAJECTORY-LEVEL NEUTRALITY AUDITS WITH RESPECT TO M Figure 6: Neutrality audit for gpt2-medium with $T = 1.7, M = 8$.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

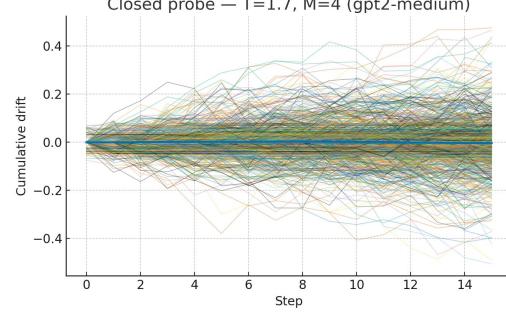
1367

1368

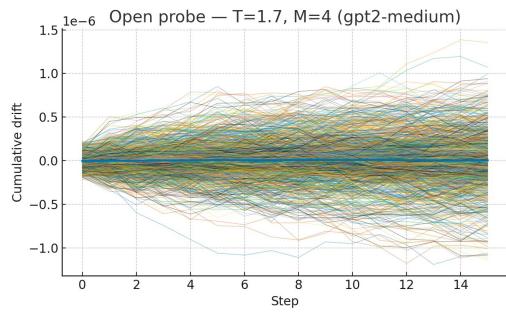
1369

1370

1371



Closed probe.



Open probe.

Figure 7: Neutrality audit for gpt2-medium with $T = 1.7, M = 4$.

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403