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Abstract

Neural scene representations, both continuous and discrete, have recently emerged as a
powerful new paradigm for 3D scene understanding. Recent efforts have tackled unsupervised
discovery of object-centric neural scene representations. However, the high cost of ray-
marching, exacerbated by the fact that each object representation has to be ray-marched
separately, leads to insufficiently sampled radiance fields and thus, noisy renderings, poor
framerates, and high memory and time complexity during training and rendering. Here,
we propose to represent objects in an object-centric, compositional scene representation as
light fields. We propose a novel light field compositor module that enables reconstructing
the global light field from a set of object-centric light fields. Dubbed Compositional Object
Light Fields (COLF), our method enables unsupervised learning of object-centric neural
scene representations, state-of-the-art reconstruction and novel view synthesis performance
on standard datasets, and rendering and training speeds at orders of magnitude faster than
existing 3D approaches.

1 Introduction

A critical aspect of scene understanding is parsing the scene into its composite parts. On the highest level,
these are the static scene elements as well as rigid objects. It is this scene decomposition that enables us to
quickly understand and subsequently interact with our environment, and it is relevant to downstream tasks
ranging from robotics to autonomous navigation to generative modeling.

A recent exciting avenue of research leverages generative modeling to learn scene decomposition in an
unsupervised manner. One line of work accomplishes this by modeling objects in 2D images (Eslami et al.,
2016; |Crawford & Pineaul [2019; [Kosiorek et al.l |2018}; [Lin et al.| |2020; |[Jiang et al.l |2019; Burgess et al.|
2019; |Greff et al., |2019; [2016} [2017; [Engelcke et al.l 2019; [Locatello et all, [2020). However, these models
lack a critical aspect of scene understanding, which is the reconstruction of the underlying 3D structure.
A recent line of work has instead proposed to model objects directly in 3D via object-centric neural scene
representations (Yu et all 2021} |Stelzner et al., [2021). Leveraging differentiable rendering, these models can
be trained just from 2D image observations, offering exciting new perspectives on the unsupervised learning
of visual representations useful to downstream tasks such as robotics, tracking, and scene understanding.

While promising, a fundamental limitation of these models is that they suffer from the high computational
complexity of volume rendering. Rendering images from a single neural radiance field is computationally
costly as it requires dense sampling of 3D points along each ray (Mildenhall et al., [2020). Rendering of
object-centric representations is more expensive yet, as each object radiance field needs to be ray-marched
separately and rendering cost thus scales with the number of objects in the scene. This high computational
complexity prevents existing methods from achieving real-time rendering, and further limits the number
of objects in each scene to about 10 objects. It further limits the number of samples per ray, leading to
low-quality renderings due to insufficiently sampled object radiance fields. Though recent progress has been
made in speeding up volume rendering in the case of reconstructing a single scene, applying similar techniques
to the domain of generalization and prior-based reconstruction is an open problem.



Under review as submission to TMLR

L . Slot Attention Object LFNs Light Field Compositor
9sc . E Object Color,
Nﬁ’f’\ o, ", Codes Ordering Unordered Ray-Ordered
: o © Quéry View Q @ DBI - (I:\:\:\:D,I)—» - (I:I,OBG) - I:I —_ I:I
’ o BG BG

......... . Ny
.‘ ‘ o @ - (e=m, T) — - ([0.) =~ = >< |

e (7 JHY | - )~ -~ (@o)~| | I

VContext View

Figure 1: Overview. We represent scenes as Compositional Object Light Fields (COLF). Given an image, we first
use slot attention to infer a set of object codes describing detected objects in the scene. Each object code is queried
for a color, as well as an ordering value (related to the camera depth) observed at the first intersection of the object
and a novel ray r. Our Light Field Compositor module then determines ray-visibility weights and yields the color
observed by 7.

In this work, we overcome this limitation. We propose modeling a scene not as a composition of 3D elements,
but as a composition of neural object light fields. Rendering a neural object light field only requires sampling
the neural representation exactly once per ray. However, in contrast to volume rendering, compositing of
object-centric light fields is not analytical, as their per-ray depth order is unknown. Thus, we propose a
novel light field compositor module that learns to estimate soft visibility for each object ray query, enabling
us to compose a set of object-centric light fields into the light field of the complete scene. We demonstrate
that our method not only enables critical speed-up and memory reduction, but also outperforms previous
state-of-the-art methods in terms of reconstruction quality, and enables editing to compose and render
unbounded scenes with tens of objects.

In summary, we make the following contributions:

o We propose a novel method that leverages neural light fields for the unsupervised discovery of objects.

o We address the challenge of non-analytical compositing of partial light fields by proposing a parametric
light field compositing module.

e Our method significantly reduces the memory requirement and time complexity, enabling real-time
rendering at state-of-the-art reconstruction quality.

2 Related Work

Neural Scene Representation and Rendering: Our method is related to recent work on inferring latent
parameters of 3D scenes from images. |Eslami et al. (2018) proposed to encode several image observations of
a scene into a latent code that can subsequently be decoded into novel views with a convolutional neural
network. 3D voxelgrids, combined with differentiable ray-marching, first allowed self-supervised discovery
of shape and appearance from images (Sitzmann et al., 2019a; [Lombardi et all |2019). Inspired by neural
implicit shape representations (Park et al.,|2019; Mescheder et al., 2019; (Chen & Zhang, |2019)), neural-field
based representations, combined with neural rendering, lifted limitations of resolution (Sitzmann et al., 2019b}
[Niemeyer et al., 2020; Mildenhall et al., 2020} [Yariv et all [2020; [Xie et al.| [2021). By conditioning on latent
variables, this enables 3D reconstruction from just a single observation (Sitzmann et al., 2019b; Niemeyer|
2020). By conditioning locally on image features (Saito et al., [2019) and constraining ourselves to
learning about local patches instead of object-centric or scene-centric representations, we may generalize to
scenes with unseen numbers of objects (Yu et all [2020; [Trevithick & Yang] [2020). Most recently, light fields
have been proposed as an alternative to 3D-structured representations to address the extraordinary cost of
rendering (Sitzmann et al., 2021)): Instead of mapping a 3D coordinate to whatever exists at that coordinate
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and thus requiring ray-marching for rendering, they directly map an oriented ray to whatever is observed by
that oriented ray, therefore rendering with a single evaluation of the neural network per ray. However, these
approaches do not infer object-centric representations, lacking semantic 3D scene understanding.

2D Compositional Scene Representations: Deep-learning based inference of object-centric representations
was first addressed by factorizing 2D images into 2D components, either represented as localized object-centric
patches (Eslami et al., 2016} |Crawford & Pineau, 2019; Kosiorek et all [2018; [Lin et al., 2020} [Jiang et al.|
[2019) or scene mixture components (Burgess et al.| 2019; |Greff et al.| 2019; [2016; 2017, [Engelcke et al., [2019).
Locatello et al.| (2020) proposed Slot Attention as an inference model for such object-centric representations,
which we also rely on in the present work. Though slot attention has in the past been limited to toy scenes,
recent, concurrent work has demonstrated extensions to more complex scenarios. Improvements include
leveraging weak supervision in the form of optical flow and object bounding-boxes , geometry
supervision in the form of depth maps (Elsayed et all, [2022)), or attention-based instead of mixture-based
decoding (Singh et all [2022)). Our work is orthogonal: we do not propose any improvements to the inference
algorithm, but rather, propose an alternative object rerpresentation in the form of 3D object light fields,
enabling 3D object-centric representation learning. Improvements in inference as discussed in this concurrent
work might thus also benefit the proposed method.

3D Compositional Scene Representations: Recent work has addressed unsupervised 3D scene decompo-
sition. [Elich et al.| (2020) infer object shapes from a single scene image, but require ground-truth shapes for
pre-training. |Chen et al| (2020)) extend the Generative Query Network (Eslami et al. [2018) to decompose
3D scenes, but require multi-view observations during inference. [Bear et al.| (2020) model a scene as a
scene graph and infer parametric object-centric shapes. Block-GAN and GIRAFFE (Nguyen-Phuoc et al.)
[2020; Niemeyer & Geiger}, 2020) build unconditional generative models for compositions of 3D-structured
representations, but only tackle generation, not reconstruction. Closest to our method are [Stelzner et al.
and 7 who use slot-based encoders for unsupervised discovery of objects. However,
both approaches use volumetric neural scene representations (Mildenhall et al. [2020]) - due to the severe cost
of rendering at both training and test time, these approaches cannot render at real-time frame-rates and
require either single-digit batch-sizes or ground-truth depth to accelerate training
, and even then suffer from rendering artifacts due to insufficient volumetric sampling. While
recent work has achieved impressive progress in accelerating the reconstruction and rendering of radiance
fields for single scenes (Miiller et al. |2022} [Fridovich-Keil and Yu et al., 2022; |Garbin et al., 2021; Neff et al.|
, applying these principles to the regime of prior-based reconstruction from few observations is an open
problem. That is, because these methods leverage sparsity-based techniques, such as skipping empty space
or using sparse data structures, directly inferring the scene structure in a feedforward inference setting is
difficult or at least has not yet been demonstrated. Our method not only significantly outperforms prior
object-centric approaches in terms of reconstruction quality, but also addresses the computation and memory
complexity of volumetric rendering.

Layered Representations for View Synthesis: Prior works leverage the multiplane image scene
representation, a set of fronto-parallel RGBA planes predicted at various depth values, for the task of
novel view synthesis (Zhou et al. [2018} [Srinivasan et all, [2019)). While this line of work is similar in the spirit
of combining scene decomposition and novel view synthesis, our decomposition is semantic (into objects),
whereas their decomposition is geometric (into depth planes), and our view synthesis supports full 360-degree
scenes, whereas theirs only supports front-facing scenes.

Light Field Compositing: Some prior work has investigated the composition of light fields parameterized
as multi-plane images (Mildenhall et al., 2019; DuVall et al., 2019)). |Chen et al| (2006) generalize the
image alpha-compositing operator to light fields. However, both of these techniques are incompatible with
object-centric light fields, as they assume front-facing (i.e. not 360-degree) scenes, and, critically, that
the depth order along a ray is known. Alas, this is not the case when a scene is described by a set of
object-centric light field networks that can be rendered from arbitrary 360-degree perspectives, which we
address by introducing the light field compositor module.
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Figure 2: Light Field Compositor. Our light field compositor reasons about the relative order of surface-ray
intersections for each of the object light fields, producing a set of softmax-weighted visibility scores. We then composite
the contributions from each object light field into a single color while respecting occlusions. See Sec. @ for details.

3 Method

Our goal is to build and train a model that, given a single image of a 3D scene, can parse it into a set of K
object-centric, 3D-aware representations and enables us to re-render from novel views. In Sec. [3.1] we review
the light field networks (Sitzmann et al. |2021]) neural scene representation. In Sec. we introduce our
new light field compositor that enables rendering of a 3D scene from novel view points via occlusion-aware
compositing of K light field networks. In Sec. [3:3] we describe our new end-to-end auto-encoder model, the
encoder, the losses, and the training strategy that enables us to learn to decompose scenes into object light
fields. Fig. [I] gives an overview over the proposed model.

3.1 Light Field Networks (LFNs)

Recently, Sitzmann et al.| (2021)) proposed to represent a 3D scene by directly parameterizing its 360-degree
light field (Levoy & Hanrahanl 1996} [Gortler et all [1996; [Adelson et all [1991) via a neural network. A
scene is then parameterized as an MLP & that maps every 6-dimensional oriented ray r directly to the color
observed by that ray: ®(r) = c. Instead of sampling & hundreds or thousands of times as in 3D-structured
scene representations, rendering in light field networks reduces to a single sample of ® per pixel, achieving a
dramatic speed-up and reduction in memory complexity of rendering. Since ®, as an MLP, is differentiable, it
can be trained by minimizing the L2 loss between the rendered colors ®(r) and the colors of the training image
I(r), ie., L = |®(r) —Z(r)||3. We may also learn a prior over light fields that enables reconstruction from only
a single observation by generalizing over a set of 3D scenes, where each 3D scene is represented by a latent
code z, and conditioning the light field network on that latent code, which we denote as ®(r;z) (Sitzmann

ot L} [2021).

3.2 Compositing LFNs

We wish to decompose 3D scenes into their object parts by representing each object via a separate Light Field
Network (LFN). A scene is then represented as a set of K LENs @1, @, ..., &, . To formulate a differentiable
rendering algorithm, we require a function that maps from a given ray r to the color ¢ observed by that
ray. We consider scenes without transparency, where the color of a given ray is determined only by the first
surface it intersects, and therefore, only by one of the K LFNs. We must thus formulate an algorithm that
composites the set of LFNs according to their relative depth ordering, such that we yield the color c; of the
object with index j exactly if that object was hit by the ray r first, occluding the color obtained from other
LFNs.

In the case of neural radiance fields (Yu et al., [2021} [Stelzner et al., 2021)), composition is an analytical,
non-parametric computation. This is because volume rendering samples points along a ray, and therefore
is aware of the order of the densities along the ray. This allows an analytical alpha-compositing rendering
function even in the case of compositing several object-centric representations to a single scene representation
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(Yu et al., [2021)). At first glance, an equivalent approach in the compositing of light fields might have each
object-centric light field map a ray to a color ¢; and an alpha value «;, and then alpha-composite the colors
to obtain the final color of the ray, as previously proposed in |Chen et al.| (2006). However, this assumes that
the order of the object light fields along the ray r is known. This is not the case: sampling an LFN does not
yield depth, and thus, the relative order of the surfaces observed in each of the LFNs is unknown. While it is
possible to compute depth via the derivatives of the light field (Sitzmann et al., [2021)), this depth is sparse,
and thus cannot be used for compositing at every pixel.

We thus propose a Light Field Compositor model - please see Fig. |2 for an overview. First, we extend LFNs
to encode additional information in each of the object light fields ®; that allows us to compute their relative
ordering. Specifically, we now map each ray r to a tuple of color ¢; and ordering value o;:

;R = R3 xR &,(r) = (c;,04) (1)

We note that the ordering value is not equivalent to camera depth in the conventional sense. This is because
the output of the LFN is invariant to the query camera’s position along the query ray (Sitzmann et al., |2021)).
Therefore, the standard notion of regressing a depth value which increases as the query camera moves further
away from the scene intersection is not possible, as the output of the LFN by design does not change as the
query camera moves along that ray. Rather, the ordering value can intuitively be understood as the signed
distance of each light field’s ray-intersection relative to the projection of a global reference point, such as the
world origin or the context camera position, onto the query ray r.

Given a set of K light field networks and a ray r, we query each LFN to obtain color and ordering values
(¢ciy0;) = ®;(r). We then use the minimum of the ordering values oyi, = min(oy,...,0x) to map the i’th
light field’s ordering value to a visibility value v; = V(0;, 0min — 0;), where V' is a small MLP. The difference
Omin — 0; intuitively corresponds to how far behind the light field i’s intersection is from the first estimated
intersection. The visibility scores are then softmax-normalized and used to determine the color contribution
from each light field, allowing us to obtain the final ray color as a weighted sum of the per-slot radiances:

exp(v;)

T'(r) = £K ¢je W)
(x) = i exp(vy)

(2)

We considered explicitly making the ordering values relative to the projection of the context camera position
onto the query ray, achieved by subtracting from each ordering value the distance from the camera’s projection
point to the query ray origin. However, because such a shifting would preserve the relative ordering-value
differences between objects, and given that the visibility scores are softmax-normalized, the projection-based
shifting is unnecessary.

Our compositor is related to prior work on differentiable mesh renderers, such as (Liu et al, 2019; Kato et al.
2018)), which use a handcrafted distance kernel to assign higher visibility to the frontmost ray-intersecting
face than subsequent faces along the ray. These handcrafted kernels, however, are tuned for the depth range
and amount of gradient support needed by the application (Liu et al., [2019)). We instead employ a learned
weighting kernel, implemented by the small network V. This learned weighting kernel allows the network to
adapt to the depth range of each dataset, whereas a handcrafted kernel requires fine-tuning for these two
considerations.

We visualize the predicted raw and minimum-subtracted ordering values on our city-block dataset in Fig. [
Note how in the minimum-subtracted ordering value plot, the subject of each slot has a value of zero and all
other subjects have a value below zero, yielding an easier task for the occlusion kernel.

3.3 Learning to Represent Scenes as Sets of LFNs

We now describe a full encoder-decoder architecture that will enable us to learn, in an unsupervised manner,
a model capable of decomposing a scene into a set of object-centric Light Field Networks (LFNs) given a
single image. An overview can be seen in Fig. [I The encoder module will map a context image Z.:,+ to a set
of K latent codes z1,29, ...,2x. Each of these latent codes will be used to condition an object-centric light
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Figure 3: Qualitative Scene Decomposition Results. We show light field decompositions on four scenes. For
each scene, the leftmost column shows the model input (top) and one novel (bottom) view. To the right of each scene,
the first row shows the RGB prediction from a set of slots, and the bottom row shows the corresponding visibility
mask, which filter out occluded rays prior to their composition into the final image. Please see the supplemental
material for video results.

field network ®,(r) = ®(r;z;), defined in the coordinate frame of the context image Z.,;. Following
, we further introduce a background light field ® o (r) = ®(r;zp¢), whose latent is inferred by a
separate encoder, and which is defined in a canonical world coordinate frame. Given a query image Zgyery Of
the same 3D scene, we parameterize the per-pixel camera rays via the explicit and implicit camera parameters,
and sample each ®,(r) and P (r) to yield a set of colors and ordering values (cq,01), (c2,02), ..., (Cx, 0K )
and background values (cpg,0p¢). Finally, we leverage our compositor module to render a color for each
ray, compute a reconstruction loss, and backpropagate that loss to train our model end-to-end.

Encoder: Our encoder maps an image to the set of latent vectors {z;}X, parameterizing the object-centric
light field networks that exist in the scene. We first concatenate fixed pixel coordinates to the image color
channels and encode the image into a feature map using a U-net (Ronneberger et all 2015) encoder. We
follow the convention of uORF (Yu et all [2021)) and concatenate constant pixel coordinates without camera
information, opposed to how (Stelzner et al. [2021)) adds camera position and ray direction channels, to
describe the objects in camera space rather than world space, which has shown to generalize more robustly
to novel viewpoints and objects (Tatarchenko et al) 2019). To map the feature grid to a set of latent
vectors describing the objects in the image, we use the Slot Attention module (Locatello et al., 2020), which
achieves this by sampling a set of latent vectors, or “slots”, from a learned slot distribution, and having them
dynamically specialize to image entities via recurrent competition to explain parts of the image. The previous
work uORF leverages the observation that the geometry and appearance of background and
foreground elements in images are significantly different and that the model could benefit from disentangling
their latent spaces by using a separate slot distribution for each. This modification of sampling one slot from
a background slot distribution and the remaining slots from a foreground slot distribution enabled their
work to be the first to reconstruct scenes with textured backgrounds of significant complexity; we adopt this
architectural change as well. The pseudo-code describing the background-aware slot encoding is the same as
in uORF, but exists in the supplemental material for reference.

Background Light Field: Following uORF (Yu et all [2021)), we represent the background via a conditional
light field network ®pa(r) = ®(r;zpg). Ppe(r) is defined in world space, while all foreground scene
components ®; are defined in camera space. The intuition for this design choice is that since the background
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Figure 4: Predicted ordering values (per-slot) for a city-block scene and its minimum-subtracted comparison.

geometry is always canonicalized in world space, it is easier for the model to learn the background geometry
and appearance in world space, whereas since the foreground elements are randomly rigidly transformed in
world space, it is easier for the foreground components to be queried in camera space rather than have the
model perform an implicit camera to world space transformation.

Losses: Our model encodes an input image and renders novel views Z’ of the underlying scene at a set of
query camera positions. We supervise the model with the L2 reconstruction loss ||Zyuery —Z'||?, where Zyyery
are the ground truth views. We use a deep-feature based perceptual loss (Zhang et al., 2018) on both chair
datasets to avoid inherent ambiguities in estimating lighting and geometry at occluded views. Lastly, we
impose a small penalty ||z||? on each object regressed code z to enforce a Gaussian prior.

Curriculum Schedule: Empirically, slot encoders are limited in the complexity of scenes that they can
disentangle into parts, leading to a prevalance of scenes consisting of simple geometric shapes of uniform
color (Eslami et al., 2018; Burgess et al., [2019; Lin et al., 2020)). This can by explained by two factors. One is
how the difficulty of learning additional components which define a factorized slot representation increases
with the object complexity and variance. These factorized scene components include the slot distribution
parameters to accurately describe the space of objects, decoder weights to reconstruct the factorized objects,
and the compositing of the decoded objects into the original domain. And second, there is no principled
reason for a factorized scene representation to emerge other than compression, i.e., the difficulty of encoding
a complex scene with a monolithic description, and encourage the model to escape this local minima. We
observe that when the state-of-the-art model is evaluated on a dataset of textured chairs,
rather than the uniformly colored chairs they report success on, decomposition fails to emerge as a result of
the increased object complexity complicating some combination of the first two factorized-representation
components discussed. This shortcoming is exacerbated in our model, which has fewer constraints on
multi-view consistence as 3D-structured representations and has to learn additional parameters of a neural
compositor, due to the nature of neural light fields (Sitzmann et al., [2021)). We observe that our model
similarly has high variance in learning factorized representations on a dataset of uniformly colored chairs.
However, similar to prior work, our model consistently and reliably learns a factorized representation on
the CLEVR-567 dataset, due to the decreased object complexity. We thus propose a curriculum learning
strategy, where we use the CLEVR-567 to learn a prior of a factorized representation before training on
more complex scenes. We find that this factorized prior is strong and leads to immediate convergence of
a factorized representation on each subsequent dataset evaluation. This strategy, given the datasets we
evaluate on (see Sec. , is to initialize the models for Room-Chair, Room-Diverse, and City-Block with the
weights of a model that has been trained on the CLEVR-567 dataset. We note that this incremental learning
curriculum is likely a viable strategy to advance the scene complexity bound of slot-based auto-encoders in
general. Lastly, we initially render and supervise images at 64 x 64 resolution to efficiently learn the coarse
structure and decomposition of scenes, and subsequently supervise at 128 x 128 to learn more fine object
structure. Note however, that we do not need to employ higher-resolution supervision via cropped images, as

the baseline (Yu et al.,|2021)) does, thanks to the efficiency of the light field decoder.

4 Experiments

We demonstrate that compositional neural light fields, unconstrained by the sampling requirements of
volumetric rendering, outperform prior work on unsupervised learning of object-centric 3D representations
while dramatically reducing time and memory complexity. We further demonstrate that object-centric light
fields admit scene editing in the from of translation and composing, and allow rendering of scenes with tens of
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Figure 5: Qualitative Comparison. In (a), from top to bottom, we compare reconstructions of the input view,
a novel view, as well as the novel view segementation by the state-of-the-art baseline uORF and
our method, across CLEVR, chairs-simple, and chairs-diverse. We achieve higher reconstruction quality across each
dataset while being orders of magnitude more efficient. Interestingly, our method (arguably correctly) assigns shadows
to their object slots rather than the background slot and reconstructs them significantly better, as highlighted in (b).
For video results, please see the supplement.

Table 1: Quantitative Comparison. Our method outperforms state-of-the-art baselines (Yu et al 2021) across all

reconstruction quality metrics, while being orders of magnitude faster and requiring less memory. We also find that
COLF often captures shadows where uORF does not.

‘ CLEVR-567 ‘ Room-Chair ‘ Room-Diverse
Model | LPIPS | SSIM{ PSNR{ | LPIPS| SSIM+ PSNR? | LPIPS| SSIM{ PSNR 1
NeRF-AE (Yu et al| 0.1288  0.8658  27.16 0.1166  0.8265 28.13 0.2458  0.6688  24.80
uORF (Yu et al.[[2021) 0.0859  0.8971 29.28 0.0821  0.8722 29.60 0.1729  0.7094 25.96
COLF (ours 0.0608  0.9346  31.81 | 0.0485 0.8934  30.93 | 0.1274 0.7308  26.02

objects at interactive frame-rates. Please find further qualitative results, including video, in the supplemental
material.
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Table 2: Quantitative Segmentation metrics. On segmentation metrics of room-scenes, our method performs
approximately on par with uORF while being orders of magnitude faster and achieving better reconstruction quality.
Note that on CLEVR, COLF performs worse because it more accurately reconstructs shadows, assigning those
“background" pixels to the foreground; this is reflected in the FG-ARI comparison

‘ CLEVR-567 ‘ Room-Chair ‘ Room-Diverse
Model ‘ ARI1T NV-ARIt FG-ARI?t ‘ ARI1T NV-ARIt FG-ARI T ‘ ARIt NV-ARIT FG-ARI 1
Slot Attention (Locatello et al.||2020) 3.5 - 93.2 38.4 - 40.2 17.4 - 43.8
uORF (Yu et al.|[2021) 86.3 83.8 87.4 78.8 74.3 88.8 65.6 56.9 67.9
COLF (ours) 59.5 46.6 92.6 83.9 83.5 92.4 70.7 54.5 717

4.1 Setup

Baselines. On both tasks of scene decomposition and novel view synthesis, we compare to the state-of-the-
art method uORF (Yu et al.l 2021)). Since the proposed method and uORF are the only two models in this
unsupervised 3D-aware object discovery regime, we also provide a reference point to models without these
inductive biases — the 2D state-of-the-art Slot Attention model (no 3D inductive bias) (Locatello et al.l
2020) on the task of scene decomposition, and a NeRF (Mildenhall et al.| [2020)) autoencoder without any
compositionality inductive bias dubbed “NeRF-AE". Note that the recently proposed GIRAFFE (Niemeyer
& Geiger}, 2020) is an unconditional generative model and can thus not serve as a competitive baseline, as it
cannot reconstruct a multi-object scene from a given image (Yu et al., [2021]).

Datasets. We use four datasets. First, to compare our model with uORF on the tasks of scene segmentation
and novel view synthesis, we evaluate models on their proposed three room-scene datasets of increasing scene
complexity. Further, to demonstrate compositing of multiple scenes and rendering of resulting scenes with
many objects, we also introduce a new synthetic dataset of a long city block scene with two lanes of car
traffic.

CLEVR-657: The first room-scene dataset proposed by (Yu et all |[2021)) is a 3D extension to the CLEVR
(Johnson et al., |2017) dataset. A textureless room is populated with five to seven simple geometric shapes
(cubes, cylinders, and spheres) and “Rubber" material without specularity. There are 1,000 scenes for training
and 500 for testing.

Room-Chair: The second room-scene dataset is populated with three to four chairs of the same geometry,
and the room features three different floor textures. There are 1,000 scenes for training and 500 for testing.
Views of each scene are captured with a camera at fixed elevation and randomly sampled azimuth, pointed at
the room center.

Room-Diverse: The third room-scene dataset is populated with three to four chairs of the geometry sampled
from 1,200 ShapeNet chairs (Chang et al., [2015]), and the room features fifty different floor textures. There
are 5,000 scenes for training and 500 for testing. Views of each scene are captured with a camera at fixed
elevation and randomly sampled azimuth, pointed at the room center.

City-Block: To demonstrate editing and composition of scenes with many objects and large depth range,
we place instances of four car geometries from the ShapeNet (Chang et al., [2015]) dataset on a two-lane city
block. A natural difficulty here is to provide the model sufficient context of all cars placed through the city
block at once. To address this, we offer several context views per scene, captured in front of each row of
cars placed. At train time, we populate the scene with two rows of cars (two context views). The camera is
always facing forwards and varies in height from the car height to just above the ground and depth-wise from
the beginning to end of the city block. There are 500 scenes for training and we render out one scene for
qualitative demonstration.

Implementation Details. On CLEVR-567, we set the background latent vector to 0, since the model needs
no information about the unchanging background. This leads to faster model convergence. On City-Block,
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we discard the background latent and instead use a dedicated background light field network. We pretrain
this network on all training images.

4.2 Unsupervised Scene Decomposition

Setup: For each test scene in all three room-scene datasets, we encode one of the scene’s four captured
images as the input view and use the remaining three for evaluation on novel views. We render novel views at
the camera positions of the three ground truth query views, and infer segmentation masks for evaluation from
the compositor module’s slot masks. Specifically, we map a pixel p in the rendered view to one of the model’s
slots by assigning it the slot to which the compositor has yielded the highest contribution weight at p.

Metrics: We use the Adjusted Rand Index (ARI) metric to evaluate our inferred segmentation masks against
ground truth segmentation masks. To quantitatively compare with the baseline (Yu et al,, 2021)), we evaluate
with three versions of the ARI: (1) ARI on only the input view , (2) ARI on only the three novel views
(ARI-NV), and (3) ARI on only the foreground elements (ARI-FG).

Results: We report quantitative comparisons to the baseline (Yu et al., 2021) in Tbl. [2| and illustrate
qualitative comparisons in Fig. [4 The results in Tbl. 2] show that our architecture performs well on the task
of unsupervised scene decomposition — often outperforming the baseline (Yu et al., 2021)) and is competitive
when otherwise. The glaring exceptions are the FG-ARI and NV-ARI scores on the CLEVR-567 dataset,
where we benchmark significantly worse. However, as can be seen in the qualitative comparison on the
CLEVR-567 scene in Fig. [4 our model performs “worse” when compared to the ground truth segmentation
results because our model better reconstructs the shadows of foreground objects than (Yu et al.l |2021)), which
is penalized since the ground truth object masks do not include their shadows. Although some may regard
this behavior of assigning shadows to the object inducing them as “incorrect” segmentation, particularly
when compared to typical segmentation datasets where shadows are manually assigned to the background,
note there is no principled way for the model to decide whether shadows are assigned to the background or
foreground unless we hand-craft a prior. Especially when considering that the only training signal is novel
view synthesis, we argue our model’s behavior is more correct, as the rendered shadows are causally related to
the objects — if the object inducing the shadow was removed, the shadow should be removed as well. Thus
we want to stress this low score is not evidence that our model cannot form disentangled representations.
In fact, we outperform the baseline (Yu et al.,|2021) considerably when only considering foreground pixels,
confirming that despite this questionable metric, our model indeed forms factorized representations which
segment objects in the scene well.

4.3 Novel View Synthesis

Setup: Similar to the scene decomposition setup, for each test scene in all three room-scene datasets, we
reserve one view as an input view and use the remaining three to evaluate the novel view reconstructions.
We render novel views at the query camera positions and compare the reconstructed images with the metrics
listed below.

Metrics: We evaluate our model’s novel view reconstructions with the same metrics as (Yu et all |[2021): the
learned perceptual image patch similarity (LPIPS) metric (Zhang et al 2018]), structural similarity index
(SSIM) (Wang et all |2004)), and the peak signal-to-noise ratio (PSNR).

Results: We report quantitative comparisons in Thl. [If and qualitative comparisons in Fig. Quantita-
tively, we outperform the baseline (Yu et all 2021)) on all metrics despite being orders of magnitude more
efficient. Potential contributing factors for their lower-fidelity reconstructions include an insufficient latent
dimensionality imposed by their memory constraints and coarser volumetric sampling yielding less detailed
reconstruction.
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Table 3: Memory Consumption and Performance Comparison. We compare the memory consumption and
rendering speed of COLF and uORF in rendering a single image of an encoded scene at 128x 128 resolution for various
numbers of slots. Our light field decoder yields over an order of magnitude faster rendering and significantly reduced
memory overhead. ‘-’ entries indicate results that exceeded available memory.

2 Slots 7 Slots 60 Slots
COLF (ours) uORF (Yu et al.I, 2021)) COLF uORF COLF  uORF
Memory Consumption 2.4 GB 7.2 GB 50GB 32.0GB 31.6 GB -
Rendering Speed 166 FPS 6.6 FPS 50.0 FPS 1.4 FPS 6.2 FPS -
(a) Scene Editing: Object Manipulation (b) Scene Editing: Cross-Scene Composition
Object Translation Source Views Novel Views of Combined Scene
z z Scene | =
1 By)
Combine,
chne = Composite
&
Render
Scene
10

Figure 6: Editing and rendering of an unbounded scene with many objects. COLF enables compositing and
real-time rendering of unbounded scenes with many objects. (a) We edit the scene by translating two cars along the
road. (b) We composite ten different scenes reconstructed from views throughout the city block into a single scene
with twenty objects.

4.4 Rendering Speed and Memory Consumption

Real-time rendering and memory-efficiency are important properties for downstream applications such as
augmented reality. Thus, we compare memory consumption and rendering speed with uORF
in Thbl. [3|to show how our method yields important gains on those dimensions. The results highlight
that employing a volumetric decoder for object-centric scene representations is considerably expensive and
renders any potential downstream applications infeasible — even using a modest number of objects pushes
the capacity of even large GPUs (seven objects consumes 32GB of memory, e.g.). While uORF
2021)) establishes the direction of combining object-centric representation with 3D-aware representations, an
implementation with reasonable support for downstream tasks and applications with larger object sets is
important as well. Using the light field as our decoder facilitates such applications, requiring only 5GB of
memory to render a scene with seven objects. Even rendering of scenes with up to 60 objects is feasible
without any further optimization.

Memory consumption is often not the only concern, but rendering speed as well. Consider a potential
application where the rendering speed is of primary concern, such as interactively manipulating objects in
virtual reality: iteratively rendering out 100 frames of a scene with four objects at 128x128 resolution takes

1.3 seconds with COLF vs 31.2 seconds with uORF (Yu et al.| 2021, making our model uniquely suitable for
such applications.

4.5 Application: Scene Editing and Composition
We demonstrate editing and composition of an unbounded scene with many objects. The scene features a city

block populated with rows of car models, placed randomly throughout the block’s length. The large range
in depth from the beginning to the end of the block is a challenge for volume rendering-based approaches,

11
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which would require setting near and far planes that enclose the full scene, while also sampling along the ray
densely enough to guarantee sufficient sampling of objects along the ray. As seen in Fig. [f, COLF succeeds in
decomposing the city-block scene into background and foreground car light fields.

Subsequently, we may edit the scene by transforming the object-centric light field networks and placing
additional objects into the scene. Figure [f] visualizes the editing results. By transforming the input coordinates
for an object-centric light field, we may translate the corresponding object throughout the scene. By collecting
object codes across scenes and compositing them together, we can generate a scene with twenty cars that can
still be rendered at interactive frame-rates. Please see the supplemental material for a baseline comparison
and further results, including an analysis of the cost of attempting to render these scenes at the same fidelity
using prior approaches.

5 Discussion

In summary, we have proposed COLF, a novel compositional neural scene representation that parameterizes
the 360-degree, 4D light field of a 3D scene by composing it from object-centric neural light fields, thereby
enabling the unsupervised discovery of object-centric 3D representations. COLF outperforms previous
state-of-the-art approaches in unsupervised scene decomposition, while being two orders of magnitude faster
and significantly less memory-intensive. Several exciting directions for future work remain. While COLF
improves over the previous state-of-the-art in scene decomposition and compositional novel view synthesis,
nevertheless, the scenes we reconstruct are still limited to simple, synthetic scenes. As discussed in the
related work, concurrent work improving the performance of the slot attention inference algorithm offers
promising directions for extending our object-light-field based representation to more complex 3D scenes.
These concurrent works improving the robustness of slot-attention based encoders are rapidly converging
on real-world scenes, with a few approaching real-world driving scenes. Yet, equipped with only 2D-based
image decoders, these models struggle to reconstruct scenes well and have no explicit 3D understanding.
COLF offers a tractable 3D representation to plug-and-play into their architectures. Prior to our contribution,
extending these emerging object-centric architectures with 3D representations via the prior SOTA in 3D object
representations (Yu et al.,[2021)) would prove difficult to scale to large real-world datasets due to the expensive
cost of volume-rendering. COLF’s computational advantage over |[Yu et al.| (2021) would be particularly
significant in the application of object-centric learners to real-world driving scenes, where the number of cars
in a given scene can be large. With respect to improving COLF’s rendering quality, higher-resolution LFNs
may be learned by leveraging neural networks with periodic activation functions (Sitzmann et al., [2020) or
Fourier Features (Tancik et al.l 2020). Incorporating motion into learning and inference may improve the
scene decomposition quality and robustness (Kipf et al., |2021). We believe that such improved inference
algorithms for compositional scene representations are the next important step toward applying these models
to real-world scenes.
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