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Abstract

Neural networks are most often trained under the assumption that data come
from a stationary distribution. However, settings in which this assumption is
violated are of increasing importance; examples include supervised learning with
distributional shifts, reinforcement learning, continual learning and non-stationary
contextual bandits. Here, we introduce a novel learning approach that automatically
models and adapts to non-stationarity by linking parameters through an Ornstein-
Uhlenbeck process with an adaptive drift parameter. The adaptive drift draws
the parameters towards the distribution used at initialisation, so the approach can
be understood as a form of soft parameter reset. We show empirically that our
approach performs well in non-stationary supervised, and off-policy reinforcement
learning settings.

1 Introduction

Neural networks (NNs) are typically trained using algorithms such as stochastic gradient descent
(SGD), which implicitly assume that the data come from a stationary distribution. This assumption is
incorrect for scenarios such as continual learning, reinforcement learning, non-stationary contextual
bandits, and supervised learning with distribution shifts [20, 53]. Although the parameters can be
updated online as new data are encountered, this approach often leads to a loss of plasticity [12, 2, 13],
manifesting either as a failure to generalise to new data despite reduced training loss [4, 2], or as an
inability to reduce training error as the data distribution changes [13, 37, 1, 42, 34].

In [38], the authors argue for two factors that lead to loss of plasticity: shifts in the distribution of
preactivations, leading to dead or dormant neurons [47], and growth in the parameter norm, causing
training instabilities. These problems are often addressed using hard resets based on heuristics such
as detecting dormant units [47], assessing unit utility [13, 12], or simply after a fixed number of steps
has elapsed[43]. Although effective at increasing plasticity, hard resets can be inefficient as they can
discard valuable knowledge captured by the parameters.
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We propose an algorithm that instead implements a form of soft parameter reset, avoiding the pitfalls
associated with hard resets. A soft reset moves the parameters in the direction of the initial-value
distribution, while maintaining dependence on their previous values. It also increases the learning rate
applied to gradient-based updates, allowing new parameters to adapt faster to the changing data. The
magnitude of the soft reset is governed by an Ornstein-Uhlenbeck drift process linking the parameters
in time, with the scale of the drift itself chosen adaptively. In effect, the model approximates the
action of a dynamical Bayesian prior over the NN parameters, which is adapted online to new data.

Our contributions can be summarised as follows. We provide an explicit formalisation of the model
for the drift in NN parameters as sketched above, and derive a procedure to estimate the parameters
of the drift model online. Second, we use the learnt drift model to modify the NN parameter update
algorithm. Third, we explore the effectiveness of the approach in supervised learning experiments,
showing that it avoids the challenge of plasticity loss, as well as in an off-policy reinforcement
learning setting.

2 Non-stationary learning with Online SGD

Consider a non-stationary supervised learning setting with changing data distributions pt(x, y), where
x ∈ RL and y ∈ RK (y may be restricted to "one-hot" categorical indicator vectors). Given a
single-point loss L(θ, x, y), we define the time-dependent expected loss function for parameters
θ ∈ RD to be

Lt(θ) = E(xt,yt)∼pt
L(θ, xt, yt) . (1)

Our goal is to find a parameter sequence Θ = (θ1, . . . , θT ) that reduces the dynamic regret

RT (Θ,Θ
⋆) = 1

T

∑T
t=1 (Lt(θt)− Lt(θ

⋆
t )) , (2)

relative to an oracular reference sequence Θ⋆ = (θ⋆1 , . . . , θ
⋆
T ) satisfying θ⋆t ∈ argminθ Lt(θ). One

common approach to online learning employs online stochastic gradient descent (SGD) [23]. An
initial parameter value θ0 is updated sequentially for each batch of data Bt = {(xit, yit)}Bi=1 s.t.
(xit, y

i
t) ∼ pt(xt, yt). The update rule is:

θt = θt−1 − αt∇θL̂t(θt−1),

where L̂t(θ) =
1
B

∑B
i=1 L(θ, xit, yit) is the empirical loss on the batch, and αt is a learning rate. See

also Appendix G for the connection of SGD to proximal optimization.

Convex settings. For convex losses, online SGD with a fixed learning rate α can track non-
stationarity [56]. By selecting α appropriately—potentially using additional knowledge about the
reference sequence—we can optimise the dynamic regret in (2). In general, algorithms that adapt to
the observed level of non-stationarity can outperform standard online SGD. For example, in [29], the
authors propose to adjust the learning rate αt, while in [21] and in [29], the authors suggest modifying
the starting point of SGD from θt to an adjusted θ′t proportional to the level of non-stationarity.

Non-convex settings. Non-stationary learning with NNs is more complex, since now there is a
changing set of local minima as the data distribution changes. Such changes can lead to a loss of
plasticity and other pathologies. Alternative optimization methods like Adam [30], do not fully
resolve this issue [13, 37, 1, 42, 34]. Parameter resets [13, 48, 12] partially mitigate the problem, but
may be too aggressive if the data distributions are similar.

3 Online non-stationary learning with learned soft parameter resets

Notation. We denote by N (θ;µ, σ2) a Gaussian distribution on θ with mean µ and variance σ2.
We denote by θj the j-th component of the vector θ = (θ1, . . . , θD). We assume that the NN
outputs define a distribution over targets y, so that the single-point loss is the negative log likelihood
L(θ, x, y) = − log p(y|x, θ). As above, Bt = {(xit, yit)}Bi=1 is a batch of data sampled from pt(x, y)

with a fixed batch size B (which could be 1) and L̂t(θ) = log p(Bt|θ) = 1
B

∑B
i=1 L(θ, xit, yit) is the

average negative log likelihood on batch Bt. Element-wise product is denoted by ◦.

Our proposed soft reset scheme tracks changes in the distribution of non-stationary data using an
explicit drift model for the parameters p(θt+1|θt, γt). Specifically, the drift model we adopt assumes
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Graphical model

(c) Stationary case (d) Non-stationary case 
without dynamical model

(e) Non-stationary case with 
dynamical model

(a) i.i.d. assumption (b) non i.i.d. assumption

Toy Bayesian Inference example

Figure 1: Left: graphical model for data generating process in the (a) stationary case and (b) non-
stationary case with drift model p(θt+1|θt, γt). Right: (c) In a stationary online learning regime, the
Bayesian posterior (red dashed circles) in the long run will concentrate around θ∗ (red dot). (d) In a
non-stationary regime where the optimal parameters suddenly change from current value θ∗t to new
value θ∗t+1 (blue dot) online Bayesian estimation can be less data efficient and take time to recover
when the change-point occurs. (e) The use of p(θ|θt, γt) and the estimation of γt allows to increase
the uncertainty, by soft resetting the posterior to make it closer to the prior (green dashed circle), so
that the updated Bayesian posterior pt+1(θ) (blue dashed circle) can faster track θ∗t+1.

that the parameters change in the direction of the initialization distribution at each time t. The amount
of change, and thus the strength of reset, is controlled by non-stationary hyperparameters γt. These
hyperparameters are themselves estimated online from the data.

From a probabilistic standpoint, the drift model implies an empirical Bayesian prior on parameters
θt+1, which is displaced from the posterior on θt towards the prior distribution, and has increased
variance (controlled by γt). As we argue below, the effect can also be interpreted in the context of
SGD learning, as an adjustment in the starting point for batch Bt+1 to a point θ̃t(γt) between the
previous estimate θt and the mean of initializing distribution, with a corresponding increase in the
learning rate. This approach is inspired by prior work in online convex optimization for non-stationary
environments [e.g., 25, 21, 8, 18, 29].

3.1 Toy illustration of the advantage of drift models

Consider online Bayesian inference with 2-D observations yt = θ⋆ + ϵt , where θ⋆ ∈ R2 are
unknown true parameters and ϵt ∼ N (0;σ2I) is Gaussian noise with variance σ2. Starting from
a Gaussian prior p0(θ) = N (θ;µ0,Σ0), the posterior distribution pt+1(θ) = p(θ|y1, . . . , yt+1) =
N (θ;µt+1,Σt+1) is updated using Bayes’ rule

pt+1(θ) ∝ p(yt+1|θ)pt(θ). (3)

The posterior update (3) arises from assumption that data are i.i.d. (Figure 1a), since then pt+1(θ) ∝
p0(θ)

∏t+1
s=1 p(ys|θ). By the Central Limit Theorem, the posterior mean µt converges to θ⋆ and the

covariance matrix Σt shrinks to zero (the radius of red circle in Figure 1c).

Suppose now that the true parameters θ⋆t (which were fixed up to time t) change to new parameters
θ⋆t+1 at time t + 1. The i.i.d. assumption is thus violated and the update (3) becomes problematic
because the low uncertainty (small radius of red dashed circle in Figure 1d) in pt(θ) causes the
posterior pt+1(θ) (see blue circle) to adjust slowly towards θ⋆t+1 (blue dot) as illustrated in Figure 1d.

The issue is addressed by allowing explicitly for the possibility that, before observing new data, the
parameters drift according to p(θt+1|θt, γt). The corresponding conditional independence structure
is shown in Figure 1b. The posterior update then becomes:

pt+1(θ) ∝ p(yt+1|θ)
∫
p(θ|θ′t, γt)pt(θ′t)dθ′t. (4)

For a suitable choice of drift model p(θt+1|θt, γt), this modification allows pt+1(θ) (blue circle) to
adjust more rapidly towards the new θ⋆t+1 (blue dot), see Figure 1e. This is because the new prior∫
p(θ|θ′t, γt)pt(θ′t)dθ′t has larger variance (green circle) than pt(θ) and its mean is closer to the center

of the circle. Ideally, the parameter γt should capture the underlying non-stationarity in the data
distribution in order to control the impact of the prior

∫
p(θ|θ′t, γt)pt(θ′t)dθ′t. For example, if at some

point the non-stationarity disappears, we want the drift model to adaptively eliminate changes and
recover the stationary posterior update (3). This highlights the importance of the adaptive nature of
the drift model.
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3.2 Ornstein-Uhlenbeck parameter drift model

We motivate a specific choice of drift model which is useful for maintaining plasticity. Assume that
the NN is flexible enough to capture any stationary dataset in a fixed number of iterations starting
from a good initialization θ0 ∼ p0(θ) [see, e.g., 24, 16]. Informally, we refer to the region of high
probability under p0 as a plastic region.

In a non-stationary data setting, learning for the batch Bt+1 is initialized based on the learnt parameter
at the previous time step, θt. Empirically, if this parameter is far from the initial plastic region, the
NN may suffer from a loss of plasticity with SGD and similar online methods failing to adapt to the
new data. In this case, a hard reset of the parameters to θ0 (or an alternative draw from p0) may be
helpful. However, if changes in the data distribution are gradual then performance may be improved
by retaining information about θt. Furthermore, since θ is high-dimensional, each dimension might
benefit from different updates.

Drift model. A drift model p(θt+1|θt, γt) which captures these desiderata is given by

p(θ|θt, γt) =
∏

j N (θj ; γjt θ
j
t + (1− γjt )µ

j
0,
(
1− γjt

2
)
σj
0
2), (5)

defined independently for each parameter dimension θj , where p0(θj0) = N (θj0;µ
j
0;σ

j
0
2) is the per-

parameter prior distribution and γt = (γ1t , . . . , γ
D
t ) controls drift in each parameter separately. The

model is a discretized Ornstein-Uhlenbeck (OU) process [50] (see Appendix B for the derivation).

The parameters γjt ∈ [0, 1] control the degree to which each parameter is reset. When γjt = 1, the
model has θjt+1 and θjt equal, and the data in Bt+1 are used to refine the estimate of the common
parameter. When γjt = 0, θjt+1 is drawn from the prior p0 independently of θjt , and so Bt+1 is used
independently of previous data. A value of γjt ∈ (0, 1) interpolates between these two extremes.
The process (5) has the property that for any current parameter θt and γjt ∈ [0, 1), as T → ∞
the distribution of p(θT |θt) will converge to the prior p(θ0). This behaviour depends on interplay
between the mean shrinkage and the variance. Other choices of drift variance would result in the
variance of p(θT |θt) either going to 0 or growing to ∞, harming learning. Thus, the model (5)
encourages parameters to move towards the plastic region (initialization). In Appendix C, we discuss
this further and other potential choices for the drift model.

3.3 Online estimation of drift

The parameters γt can themselves be selected within the empirical Bayesian framework by opti-
mizing the predictive likelihood, which quantifies the probability of new data under the current
parameters and drift model. We derive the drift estimation procedure in the context of approxi-
mate online variational inference [7] with Bayesian Neural Networks (BNN). Let Γt = (γ1, . . . , γt)
be the history of observed parameters of the drift model and St = {B1, . . . ,Bt} be the history
of observed data. The objective of approximate online variational inference is to propagate an
approximate posterior qt(θ|St,Γt−1) over parameters, such that it is constrained to some fam-
ily Q of probability distributions. In the context of BNNs, it is typical [5] to assume a family
Q = {q(θ) : q(θ) ∼

∏D
j=1 N (θj ;µj , σj2); θ = (θ1, . . . , θD)} of Gaussian mean-field distributions

over parameters θ ∈ RD (separate Gaussian per parameter). Let qt(θ) ≜ qt(θ|St,Γt−1) ∈ Q be the
Gaussian approximate posterior at time t with mean µt and variance σ2

t for every parameter. The
new approximate posterior qt+1(θ) ∈ Q is found by

qt+1(θ) = argminq KL [q(θ)||p(Bt+1|θ)qt(θ|γt)] , (6)
where the prior term is the approximate predictive look-ahead prior given by

qt(θ|γt) =
∫
qt(θt)p(θ|θt, γt)dθt = N (θ; µ̃t(γt), σ̃

2
t (γt)) (7)

that has parameters µ̃ = (µ̃1, . . . , µ̃D) and σ̃2 = (σ̃12, . . . , σ̃D2) such that µ̃j
t (γt) = γjtµ

j
t + (1 −

γjt )µ
j
0, σ̃

j
t
2(γt) = γjt

2σj
t
2 + (1− γjt

2)σj
0
2, see Appendix E.1 for derivation. The form of this prior

qt(θ|γt) comes from the non i.i.d. assumption (see Figure 1b) and the form of the drift model (5).
For new batch of data Bt+1 at time t+ 1, the approximate predictive log-likelihood equals to

log qt(Bt+1|γt) = log
∫
p(Bt+1|θ)qt(θ|γt)dθ. (8)

The log-likelihood (8) allows us to quantify predictions on batch of data Bt+1 given our current
distribution qt(θ) and the drift model from (5). We find such γ⋆t that

γ⋆t ≈ argmaxγt
log qt(Bt+1|γt) (9)
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Using γ⋆t in (5) modifies the prior distribution (7) to fit the most recent observations the best by
putting more mass on the region where the new parameter could be found (see Figure 1,right).

Gradient-based optimization for γt. The approximate predictive prior in (7) is Gaussian which
allows us to use the so-called reparameterisation trick to optimize (8) via gradient descent. Starting
from an initial value of drift parameter γ0t at time t, we perform K updates with learning rate ηγ

γt,k+1 = γt,k + ηγ∇γ log
∫
p(Bt+1|µ̃t(γt,k) + ϵ ◦ σ̃t(γt,k))N (ϵ; 0, I)dϵ, (10)

The integral is evaluated by Monte-Carlo (MC) using M samples ϵi ∼ N (ϵ; 0, I), i = 1, . . . ,M∫
p(Bt+1|µ̃t(γt,k) + ϵ ◦ σ̃t(γt,k))N (ϵ; 0, I)dϵ ≈ 1

M

∑M
i=1 p(Bt+1|µ̃t(γt,k) + ϵi ◦ σ̃t(γt,k)) (11)

Inductive bias in the drift model is captured by γ0t , where γt,0 = 1 encourages stationarity, while
γt,0 = γt−1,K promotes temporal smoothness. In practice, we found γt,0 = 1 was the most effective.

Structure in the drift model. The drift model can be defined to be shared across different subsets of
parameters which reduces the expressivity of the drift model but also provides regularization to (10).
We consider γt to be either defined for each parameter or for each layer. See Section 5 for details as
well as corresponding results in Appendix K.

Interpretation of γt. By linearising log p(Bt+1|θ) around µt and denoting gt+1 = ∇L̂t+1(µt), we
compute (8) in a closed form and get the following loss for γt (see Appendix F) optimizing (9)

F(γt) = 0.5(σ̃2
t (γt) ◦ gt+1)

⊤gt+1 − (γt ◦ µt + (1− γt) ◦ µ0)
⊤gt+1, (12)

Adding the ℓ2 penalty 1
2λ||γt − γ0t ||2 encoding the starting point γ0t , gives us the closed form for γt

γt =
ḡT
t+1(µ̄t−µ̄0)+Kλγt,0

(ḡt+1◦(σ̄0
2−σ̄t

2
))T ḡt+1+Kλ

, (13)

where we assumed that γt is shared for a subset of K parameters (see paragraph about structure in
drift model) indexed by JK = (j1, . . . , jK) and x̄ = (xj1 , . . . , xjK ) denotes a vector defined on this
subset. We also clip parameters γt to [0, 1]. The expression (13) gives us the geometric interpretation
for γt. The value of γt depends on the angle between (µ̄t − µ̄0) and ḡt+1 When these vectors are
aligned, γt is high and is low otherwise. When these vectors are orthogonal or the gradient ḡt+1 ≈ 0,
the value of γt is heavily influenced by γ0t . Moreover, when ḡt+1 ≈ 0, we can interpret it as being
close to a local minimum, i.e., stationary, which means that we want γt ≈ 1, therefore adding the ℓ2
penalty is important. Also, when the norm of the gradients ḡt+1 is high, the value of γt is encouraged
to decrease, introducing the drift. This means that using γt in the parameter update (see Section 3.5)
encourages the norm of the gradient to stay small. In practice, we found that update (13) was unstable
suggesting that linearization of the log-likelihood might not be a good approximation for learning γt.

3.4 Approximate Bayesian update of posterior qt(θ) with BNNs

The optimization problem (6) for the per-parameter Gaussian q(θ) =
∏

j N (θj ;µj , σj2) with a prior
qt(θ) =

∏
j N (θj ;µj

t , σ
j
t
2) can be written (see Appendix E.1) to minimize the following loss

F̃t(µ, σ, γt) = Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵ ◦ σ)

]
+
∑D

j=1 λ
j
t

[
(µj−µ̃j

t(γt))
2+[σj]

2

2[σ̃j
t (γt)]

2 − 1
2 log

[
σj
]2]

,

(14)
where λjt > 0 are per-parameter temperature coefficients. The use of a small temperature parameter
λ > 0 (shared for all NN parameters) was shown to improve the empirical performance of Bayesian
Neural Networks [54]. Given that in (14), the variance σ̃j

t
2(γt) can be small, in order to control the

strength of the regularization, we propose to use the temperature per parameter λjt = λ
[
σj
t

]2
, where

λ > 0 is a global constant. This leads to the following objective

F̂t(µ, σ, γt) = Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵ ◦ σ)

]
+λ

2

∑
j r

j
t

[
(µj − µ̃j

t (γt))
2 + [σj ]2 −

[
σ̃j
t (γt)

]2
log[σj ]2

]
,

(15)
where the quantity rjt = [σj

t ]
2/[σj

t (γt)]
2 is a relative change in the posterior variance due to the

drift. The ratio rjt = 1 when γjt = 1. For γjt < 1 since typically σj
t
2 < σj

0
2, the ratio is rjt < 1.
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Algorithm 1 Soft-Reset algoritm
Input: Data-stream ST = {Bt}Tt=1
Neural Network (NN) initializing distribution pinit(θ) and specific initialization θ0 ∼ pinit(θ)
Learning rate αt for parameters and ηγ for drift parameters
Number of gradient updates Kγ on drift parameter γt
NN initial standard deviation (STD) scaling ν ≤ 1 (see (24)) and ratio s defining σt

νσ0
.

for step t = 0, 1, 2, . . . , T do
Receive batch of data Bt+1

Initialize drift parameters γt,0 = 1
for step k = 0, 1, 2, . . . ,Kγ do

Sample θ′0 ∼ pinit(θ)
Stochastic update (22) on drift parameter using specific initialization (26)
γt,k+1 = γt,k + ηγ∇γ

[
log p(Bt+1|γtθt + (1− γt)θ0 + θ′0 ◦ ν

√
1− γ2t + γ2t s

2)
]
γt=γt,k

end for
Get θ̃t(γt,K) with (18) and α̃t(γt,K) with (19)
Update parameters θt+1 = θ̃t(γt,K)− α̃t(γt,K) ◦ ∇θL̂t+1(θ̃t(γt,K))

end for

Thus, as long as the non stationarity is detected (γjt < 1), the objective (15) favors the data term
Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵ ◦ σ)

]
allowing the optimization to respond faster to changes in the data

distribution. Let µt+1,0 = µ̃t(γt) and σt+1,0 = σ̃t(γt), and perform updates K on (15)

µt+1,k+1 = µt+1,k − αµF̂t(µt+1,k, σt+1,k, γt), σt+1,k+1 = σt+1,k − ασF̂t(µt+1,k, σt+1,k, γt),
(16)

where αµ and ασ are learning rates for the mean and for the standard deviation correspondingly. All
derivations are provided in Appendix E.1. The full procedure is described in Algorithm 2.

3.5 Fast MAP update of posterior qt(θ)

As a faster alternative to propagating the posterior (6), we do MAP updates with the prior p0(θ) =∏
j N (θj ;µj

0;σ
j
0
2) and the approximate posterior qt(θ) =

∏
j N (θj ; θjt ;σ

j
t
2 = s2σj

0
2), where s ≤ 1

is a hyperparameter controlling the variance of qt(θ). Since a fixed s may not capture the true
parameters variance, using a Bayesian method (see Section 3.4) is preferred but comes at a high
computational cost (see Appendix I for discussion). The MAP update is given by (see Appendix E.2
for derivations) finding a minimum of the following proximal objective

Ĝt+1(θ) = L̂t+1(θ) +
1
2

∑D
j=1

|θj−θ̃j
t (γt)|2

α̃j
t(γt)

(17)

where the regularization target for the parameter dimension i is given by

θ̃jt (γt) = γjt θ
j
t + (1− γjt )µ

j
0 (18)

and the per-parameter learning rate is given as (assuming that αt the base SGD learning rate)

α̃j
t (γt) = αt

(
(γjt )

2 +
1−(γj

t )
2

s2

)
. (19)

Linearising L̂t+1(θ) around θ̃t(γt) and optimizing (17) for θ leads to (see Appendix E.2)

θt+1 = θ̃t(γt)− α̃t(γt) ◦ ∇θL̂t+1(θ̃t(γt)), (20)

For γjt = 1, we recover the ordinary SGD update, while the values γjt < 1 move the starting point of
the modified SGD closer to the initialization as well as increase the learning rate. In Appendix D we
describe additional practical choices made for the Soft Resets algorithm. Algorithm 1 describes the
full procedure. Similarly to the Bayesian approach (16), we can do multiple updates on (17). This
Soft Resets Proximal algorithm is given in Appendix E.2. Algorithm 3 describes the full procedure.
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4 Related Work

Plasticity loss in Neural Networks. Our model shares similarities with reset-based approaches such
as Shrink & Perturb (S&P) [2] and L2-Init [33]; however, whereas we learn drift parameters from
data, these methods do not, leaving them vulnerable to mismatch between assumed non-stationarity
and the actual realized non-stationarity in the data. Continual Backprop [13] or ReDO [47] apply
resets in a data-dependent fashion, e.g. either based on utility or whether units are dead. But they
use hard resets, and cannot amortize the cost of removing entire features. Interpretation (13) of γt
connects to the notion of parameters utility from [14], but this quantity is used to prevent catastrophic
forgetting by decreasing learning rate for high γt. Our method increases the learning rate for low γt
to maximize adaptability, and is not designed to prevent catastrophic forgetting.

Non-stationarity. Non-stationarity arises naturally in a variety of contexts, the most obvious being
continual and reinforcement learning. The structure of non-stationarity may vary from problem to
problem. At one extreme, we have a piece-wise stationary setting, for example a change in the
location of a camera generating a stream of images, or a hard update to the learner’s target network in
value-based deep RL algorithms. This setting has been studied extensively due to its propensity to
induce catastrophic forgetting [e.g. 31, 45, 51, 10] and plasticity loss [13, 39, 38, 34]. At the other
extreme, we can consider more gradual changes, for example due to improvements in the policy of
an RL agent [40, 46, 42, 13] or shifts in the data generating process [36, 55, 20, 53]. Further, these
scenarios might be combined, for example in continual reinforcement learning [31, 1, 13] where the
reward function or transition dynamics could change over time.

Non-stationary online convex optimization. Non-stationary prediction has a long history in online
convex optimization, where several algorithms have been developed to adapt to changing data [see,
e.g., 25, 8, 22, 17, 21, 18, 29]. Our approach takes an inspiration from these works by employing a
drift model as, e.g., [25, 21] and by changing learning rate as [29, 52]. Further, our OU drift model
bears many similarities to the implicit drift model introduced in the update rule of [25] (see also
[8, 17]), where the predictive distribution is mixed with a uniform distribution to ensure the prediction
could change quickly enough if the data changes significantly, where in our case p0 plays the same
role as the uniform distribution.

Bayesian approaches to non-stationary learning. A standard approach is Variational Continual
Learning [41], which focuses on preventing catastrophic forgetting and is an online version of “Bayes
By Backprop” [5]. This method does not incorporate dynamical parameter drift components. In [35],
the authors applied variational inference (VI) on non-stationary data, using the OU-process and
Bayesian forgetting, but unlike in our approach, their drift parameter is not learned. Further, in [49],
the authors considered an OU parameter drift model similar to ours, with an adaptable drift scalar
γ and analytic Kalman filter updates, but is applied over the final layer weights only, while the
remaining weights of the network were estimated by online SGD. In [28], the authors propose to deal
with non-stationarity by assuming that each parameter is a finite sum of random variables following
different OU process. They derive VI updates on the posterior of these variables. Compared to this
work, we learn drift parameters for every NN parameter rather than assuming a finite set of drift
parameters. A different line of research assumes that the drift model is known and use different
techniques to estimate the hidden state (the parameters) from the data: in [9], the authors use Extended
Kalman Filter to estimate state and in [3], they propagate the MAP estimate of the hidden state
distribution with K gradient updates on a proximal objective similar to (47), whereas in Bayesian
Online Natural Gradient (BONG) [27], the authors use natural gradient for the variational parameters.

5 Experiments

Soft reset methods. There are multiple variations of our method. We call the method implemented
by Algorithm 1 with 1 gradient update on the drift parameter Soft Reset, while other versions show
different parameter choices: Soft Reset (Kγ = 10) is a version with 10 updates on the drift parameter,
while Soft Reset (Kγ = 10, Kθ = 10) is the method of Algorithm 3 in Appendix E.2 with 10 updates
on drift parameter, followed by 10 updates on NN parameters. Bayesian Soft Reset (Kγ = 10,
Kθ = 10) is a method implemented by Algorithm 2 with 10 updates on drift parameter followed
by 10 updates on the mean µt and the variance σ2

t (uncertainty) for each NN parameter. Bayesian
method performed the best overall but required higher computational complexity (see Appendix I).
Unless specified, γt is shared for all the parameters in each layer (separately for weight and biases).
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Figure 2: Plasticity benchmarks. Left: performance on permuted MNIST. Center: performance on
random-label MNIST (data efficient). Right: performance on random-label CIFAR-10 (memoriza-
tion). The x-axis is the task id and the y-axis is the per-task training accuracy (52).
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Figure 3: Different variants of Soft Resets. Left: performance on permuted MNIST. Center:
performance on random-label MNIST (data efficient). Right: performance on random-label CIFAR-
10 (memorization). The x-axis is the task id and the y-axis is the per-task training accuracy (52).

Loss of plasticity. We analyze the performance of our method on plasticity benchmarks [34, 39, 38].
Here, we have a sequence of tasks, where each task consists of a fixed (for all tasks) subset of 10000
images images from either CIFAR-10 [32] or MNIST, where either pixels are permuted or the label
for each image is randomly chosen. Several papers [34, 39, 38] study a memorization random-label
setting where SGD can perfectly learn each task from scratch. To highlight the data-efficiency of our
approach, we study the data-efficient setting where SGD achieves only 50% accuracy on each task
when trained from scratch. Here, we expect that algorithms taking into account similarity in the data,
to perform better. To study the impact of the non-stationarity of the input data, we consider permuted
MNIST where pixels are randomly permuted within each task (the same task as considered by 34).
As baselines, we use Online SGD and Hard Reset at task boundaries. We also consider L2 init [34],
which adds L2 penalty ||θ − θ0||2 to the fixed initialization θ0 as well as Shrink&Perturb [2], which
multiplies each parameter by a scalar λ ≤ 1 and adds random Gaussian noise with fixed variance σ.
See Appendix H.1 for all details. As metrics, we use average per-task online accuracy (52), which is

At =
1
N

∑N
i=1 a

t
i,

where ati are the online accuracies collected on the task t via N timesteps, corresponding to the
duration of the task. In Figure 5, we also use average accuracy over all T tasks, i.e.

AT = 1
T

∑T
t=1 At

The results are provided in Figure 2. We observe that Soft Reset is always better than Hard Reset
and most baselines despite the lack of knowledge of task boundaries. The gap is larger in the data
efficient regime. Moreover, we see that L2 Init only performs well in the memorization regime, and
achieves comparable performance to Hard Reset in the data efficient one. The method L2 Init could
be viewed as an instantiation of our Soft Reset Proximal method optimizing (17) with γt = 0 at every
step, which is sub-optimal when there is similarity in the data. Bayesian Soft Reset demonstrates
significantly better performance overall, see also discussion below.

In Figure 3, we compare different variants of Soft Reset. We observe that adding more compute for
estimating γt (thus, estimating non-stationarity, Kγ = 10) as well as doing more updates on NN

8



1 2 3 4 5
MLP Layer

0.65

0.70

0.75

0.80

0.85

0.90

M
in

im
um

 

(a) Minimum t encountered

MNIST CIFAR-10

0 20000 40000 60000 80000100000
t

0.5

0.6

0.7

0.8

0.9

1.0
(b) First layer t for Random Label MNIST

0 100000200000300000400000500000600000
t

0.5

0.6

0.7

0.8

0.9

1.0
(c) First layer t for Random Label CIFAR-10

Figure 4: Left: the minimum encountered γt for each layer on random-label MNIST and CIFAR-10.
Center: the dynamics of γt on the first 20 tasks on MNIST. Right: the same on CIFAR-10.

parameters (thus, more accurately adapting to non-staionarity, Kθ = 10) leads to better performance.
All variants of Soft Reset γt parameters are shared for each NN layer, except for the Bayesian method.
This variant is able to take advantage of a more complex per-parameter drift model, while other
variants performed considerably worse, see Appendix K.4. We hypothesize this is due to the NN
parameters uncertainty estimates σt which Bayesian method provide, while others do not, which
leads to a more accurate drift model estimation, since uncertainty is used in this update (10). But, this
approach comes at a higher computational cost, see Appendix I. In Appendix K, we provide ablations
of the structure of the drift model, as well as of the impact of learning the drift parameter.

Qualitative behavior of Soft Resets. For Soft Reset, we track the values of γt for the first MLP
layer when trained on random-label tasks studied above (only 20 tasks), as well as the minimum
encountered value of γt for each layer, which highlights the maximum amount of resets. Figure 4b,c
shows γt as a function of t, and suggests that γt aggressively decreases at task boundaries (red dashed
lines). The range of values of γt depends on the task and on the layer, see Figure 4a. Overall, γt
changes more aggressively for long duration (memorization) random-label CIFAR-10 and less for
shorter (data-efficient) random-label MNIST. See Appendix K.2 for more detailed results.

To study the behavior of Soft Reset under input distribution non-stationarity, we consider a variant of
Permuted MNIST where each image is partitioned into patches of a given size. The non-stationarity
is controlled by permuting the patches (not pixels). Figure 5a shows the minimum encountered γt
for each layer for different patch sizes. As the patch size increases and the problem becomes more
stationary, the range of values for γt is less aggressive. See Appendix K.3 for more detailed results.

Impact of non-stationarity. We consider a variant of random-label MNIST where for each task, an
image has either a random or a true label. The label assignment is kept fixed throughout the task
and is changed at task boundaries. We consider cases of 20%, 40% and 60% of random labels and
we control the duration of each task (number of epochs). In total, the stream contains 200 tasks.
In Figure 5b, we show performance of Online SGD, Hard Reset and in Figure 5c, the one of Soft
Reset and of Bayesian Soft Reset. See Appendix H.2 for more details. The results suggest that for
the shortest duration of the tasks, the performance of all the methods is similar. As we increase the
duration of each of the task (moving along the x-axis), we see that both Soft Resets variants perform
better than SGD and the gap widens as the duration increases. This implies that Soft Resets is more
effective with infrequent data distribution changes. We also observe that Bayesian method performs
better in all the cases, highlighting the importance of estimating uncertainty for NN parameters.

5.1 Reinforcement learning

Reinforcement learning experiments. We conduct Reinforcement Learning (RL) experiments in the
highly off-policy regime, similarly to [43], since in this setting loss of plasticity was observed. We ran
SAC [19] agent with default parameters from Brax [15] on the Hopper-v5 and Humanoid-v4 GYM [6]
environments (from Brax [15]). To reproduce the setting from [43], we control the off-policyness of
the agent by setting the off-policy ratio M such that for every 128 environment steps, we do 128M
gradient steps with batch size of 256 on the replay buffer. As baselines we consider ordinary SAC,
hard-coded Hard Reset where we reset all the parameters K = 5 times throughout training (every
200000 steps), while keeping the replay buffer fixed (similarly to [43]). We employ our Soft Reset
method as follows. After we have collected fresh data from the environment, we do one gradient
update on γt (shared for all the parameters within each layer) with batch size of 128 on this new
chunk of data and the previously collected one, i.e., two chunks of data in total. Then we initialize
θ̃t(γt) and we employ the update rule (47) where the regularization θ̃t(γt) is kept constant for all the
off-policy gradient updates on the replay buffer. See Appendix H.3 for more details.
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Figure 5: (a) the x-axis denotes the layer, the y-axis denotes the minimum encountered γt for each
convolutional and fully-connected layer when trained on permuted Patches MNIST, color is the patch
size. The impact of non-stationarity on performance on random-label MNIST of Online SGD and
Hard Reset is shown in (b) while the one of Soft Resets is shown in (c). The x-axis denotes the
number of epochs each task lasts, while the marker and line styles denote the percentage of random
labels within each task, circle (solid) represents 20%, rectangle(dashed) 40%, while rhombus (dashed
and dot) 60%. The y-axis denotes the average performance (over 3 seeds) on the stream of 200 tasks.
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The results are given in Figure 6. As the off-policy ratio increases, Soft Reset becomes more efficient
than the baselines. This is consistent with our finding in Figure 5b,c, where we showed that the
performance of Soft Reset is better when the data distribution is not changing fast. Figure 8 in
Appendix H.3 shows the value of learned γt. It shows γt mostly change for the value function and
not for the policy indicating that the main source of non-stationarity comes from the value function.

6 Conclusion

Learning efficiently on non-stationary distributions is critical to a number of applications of deep
neural networks, most prominently in reinforcement learning. In this paper, we have proposed a new
method, Soft Resets, which improves the robustness of stochastic gradient descent to nonstationarities
in the data-generating distribution by modeling the drift in Neural Network (NN) parameters. The
proposed drift model implements soft reset mechanism where the amount of reset is controlled by the
drift parameter γt. We showed that we could learn this drift parameter from the data and therefore
we could learn when and how far to reset each Neural Network parameter. We incorporate the drift
model in the learning algorithm which improves learning in scenarios with plasticity loss. The variant
of our method which models uncertainty in the parameters achieves the best performance on plasticity
benchmarks so far, highlighting the promise of the Bayesian approach. Furthermore, we found that
our approach is particularly effective either on data distributions with a lot of similarity or on slowly
changing distributions. Our findings open the door to a variety of exciting directions for future work,
such as investigating the connection to continual learning and deepening our theoretical analysis of
the proposed approach.
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A Organization of the appendix

The appendix is organized as follows. In Appendix B we describe the Ornstein-Uhlenbeck process
and connect it to the drift model (5), we use in the paper. In Appendix C, we discuss other potential
choices for a drift model. In Appendix D, we describe additional practical tricks used for learning the
drift model parameters. In Appendix E, we describe full Bayesian and maximum a-posteriori (MAP)
algorithms to learn both drift parameters and NN parameters. In Appendix F, we provide the proof
for the closed form solution derivation (12). In Appendix G, we briefly review the proximal SGD. In
Appendix H, we provide experimental details. In Appendix I, we describe computational complexity
for all the methods. In Appendix J, we provide sensitivity analysis for different parameters. In
Appendix K, we provide additional ablations and experiments showing qualitative behavior of soft
resets. In Appendix L, we show a toy example for the failure of SGD in the non-stationary regime.
Finally, in Appendix M, we show how the proximal objective can be generalized to use any Gaussian
drift model.

B Ornstein-Uhlenbeck process

We make use that the Ornstein-Uhlenbeck process [50] defines a SDE that can be solved explicitly
and written as a time-continuous Gaussian Markov process with transition density between on RD

p(xt|xs) = N (xt;xse
−(t−s), (1− e−2(t−s))σ2

0I),

for any pair of times t > s. Based on this as a drift model for the parameters θt (so θt is the state xt)
we use the conditional density

p(θt+1|θt, γt) =
∏

j N (θjt+1; θ
j
tγ

j
t , (1− γjt

2)σj
0
2),

where γjt = e−δjt and δjt ≥ 0 corresponds to the learnable discretization time step. In other words,
by learning γjt online we equivalently learn the amount of a continuous “time shift” δjt between two
consecutive states in the OU process. This essentially models parameter drift since e.g. if γjt = 1,
then δjt = 0 and there is no “time shift” which means that the next state/parameter remains the same
as the previous one, i.e. θjt+1 = θjt .

C Other choices of drift model

In this section, we discuss alternative choices of a drift model instead of (5).

Independent mean and variance of the drift. We consider the drift model where the mean and
the variance are not connected, i.e.,

p(θt+1|θt, γt, βt) =
∏

j N (θjt+1, γ
j
t θ

j
t + (1− γjt )µ

j
0;β

j
t
2), (21)

where parameters γjt ∈ [0, 1] control the mean of the distribution and βj
t > 0 control the variance.

When parameters βj
t are fixed to a constant, this would be similar to our experiment in Figure 16

where we assume known task boundaries and we do not estimate the drift parameters but assume it as
a hyperparameter. Figure 16, left corresponds to the case when βj

t are fixed parameters independent

from γjt whereas Figure 16, right corresponds to the case when βj
t =

√
1− γjt

2σj
0, i.e., when we

use the drift model (5). We see from the results, using drift model (5) leads to a better performance.
In case when βj

t are learned, estimating the parameters of this model will likely overfit to the noise
since there is a lot of degrees of freedom.

Shrink & Perturb [2]. When we do not use the mean of the initialization, we can use the following
drift model

p(θt+1|θt, λt, βt) =
∏

j N (θjt+1;λ
j
tθ

j
t , β

j
t
2),

for λjt ∈ [0, 1] and βj
t > 0. Similarly to the case of (21), estimating both parameters λjt and βj

t from
the data will likely overfit to the noise.
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Arbitrary linear model. We can use the arbitrary linear model of the form

p(θt+1|θt, At, Bt) = N (θt+1;Atθt, Bt),

but estimating the parameters At and Bt has too many degrees of freedom and will certainly overfit.

Gaussian Spike & Slab We consider a Gaussian [11] approximation to Spike & Slab [26] prior

p(θt+1|θt, γt) =
∏

j

[
γjt p(θ

j
t+1|θ

j
t ) + (1− γjt )p

j
0(θ

j
t+1)

]
,

with binary variables γjt ∈ {0, 1}, which is a product of mixtures of Gaussian distributions
p(θjt+1|θ

j
t ) = N (θjt+1; θ

j
t , σ

j2) centred around the previous parameter θjt and initializing distri-
butions p0(θ

j
t+1) = N (θjt+1;µ

j
0, σ

j
0
2). This model, however, implements the mechanism of Hard

reset as opposed to the soft ones. Moreover, estimating such a model and incorporating it into a
learning update is more challenging since the mixture of Gaussian is not conjugate with respect to a
Gaussian which will make the KL term (34) to be computed only approximately via Monte Carlo
updates.

D Practical implementations of the drift model estimation

Stochastic approximation for drift parameters estimation In practice, we use M = 1, which
leads to the stochastic approximation

∫
p(Bt+1|µ̃t(γ

k
t ) + ϵ ◦ σt(γkt ))N (ϵ; 0, I)dϵ ≈ p

(
Bt+1|µ̃t(γ

k
t ) + ϵ ◦ σt(γkt )

)
(22)

Using NN initializing distribution. In the drift model (5), we assume that the initial distribution
over parameters is given by p0(θ) =

∏
j N (θj ;µj

0;σ
j
0
2). In practice, we have access to the NN

initializer pinit(θ) =
∏

j N (θj ; 0;σj
0
2) where µj

0 = 0 (for most of the NNs). This means that we can
replace ϵ from (10) by 1

σ0
θ′0 where θ′0 ∼ pinit(θ). This means that the term in (22) can be replaced

by

p
(
Bt+1|µ̃t(γ

k
t ) + ϵ ◦ σt(γkt )

)
= p

(
Bt+1|µ̃t(γ

k
t ) + θ′0 ◦

√
1− γ2t + γ2t

σ2
t

σ2
0

)
, (23)

where we used the fact that σ2
t (γt) = γ2t σ

2
t + (1− γ2t )σ

2
0 . Note that in (23), we only need to know

the ratio σ2

σ2
0

rather than both of these. We will see that in Section 3.5, only this ratio is used for the
underlying algorithm. Finally, in practice, we can tie p0(θ) to the specific initialization θ0 ∼ pinit(θ).
It was observed empricially [34] that using a specific initialization in gradient updates led to better
performance than using samples from the initial distribution. This would imply that

p0(θ) =
∏
j

N (θj ; θj0, σ̃
j
0
2), (24)

with σ̃j
0
2 = ν2σj

0
2. The parameter ν ≤ 1 accounts for the fact that the distribution p0(θ) should have

lower than pinit(θ) variance since it uses the specific initializaiton from the prior. This modification
would imply the following modification on the drift model term (23)

p
(
Bt+1|µt(γ

k
t ) + ϵ ◦ σt(γkt )

)
= p

(
Bt+1|µt(γ

k
t ) + θ′0 ◦ ν

√
1− γ2t + γ2t

σ2
t

ν2σ2
0

)
(25)

If we denote s = σt

νσ0
, then we can re-write (25) to be

p
(
Bt+1|µt(γ

k
t ) + ϵ ◦ σt(γkt )

)
= p

(
Bt+1|µt(γ

k
t ) + θ′0 ◦ ν

√
1− γ2t + γ2t s

2
)

(26)

In practice, we can treat s to be a constant hyperparameter.
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E Learning parameters with estimated drift models

In this section, we provide a Bayesian Neural Network algorithm to learn the distributions of NN
parameters when there is a drift in the data distribution. Moreover, we provide a Maximum a-
Posteriori (MAP) like inference algorithm which does not require to learn the distributions over
parameters, but simply propagates the MAP estimate over these.

E.1 Bayesian Neural Networks algorithm

In this section, we describe an algorithm for parameters update based on Bayesian Neural Networks
(BNN). It is based on the online variational Bayes setting described below.

Let the family of distributions over parameters be

Q = {q(θ) : q(θ) ∼
∏D

j=1 N (θj ;µj , σj2); θ = (θ1, . . . , θD)}, (27)

which is the family of Gaussian mean-field distributions over parameters θ ∈ RD. Let Γt =
(γ1, . . . , γt) be the history of observed parameters of the drift model and St = {B1, . . . ,Bt} be
the history of observed data. We denote by qt(θ) ≜ qt(θ|St,Γt−1) ∈ Q the Gaussian approximate
posterior at time t with mean µt and variance σ2

t for every parameter. The approximate predictive
look-ahead prior is given by

qt(θ|γt) =
∫
qt(θt)p(θ|θt, γt)dθt = N (θ; µ̃t(γt), σ̃

2
t (γt)), (28)

that has parameters

µ̃j
t (γt) = γjtµ

j
t + (1− γjt )µ

j
0

σ̃j
t
2(γt) = γ2t σ

j
t
2 + (1− γjt

2)σj
0
2 (29)

To see this, we will use the law of total expectation and the law total variance. For two random
variables X and Y defined on the same space, law of total expectation says

E[Y ] = E[E[Y |X]]

and the law of total variance says

V[Y ] = E[V[Y |X]] + V[E[Y |X]]

In our case, from the drift model (5), we have the conditional distribution

θj |θjt = γjt θ
j
t + (1− γjt )µ

j
0 + ϵj

√
(1− γjt

2)σj
0
2, ϵj ∼ N (0; 1) (30)

From (30), we have

E[θj |θjt ] = γjt θ
j
t + (1− γjt )µ

j
0

V[θj |θjt ] = (1− γjt
2)σj

0
2

From here, we have that the mean is given by

E[θ] = E[E[θ|θt]] = γjtµ
j
t + (1− γjt )µ

j
0 (31)

and the variance is given by

V[θ] = E[V[θ|θt]] + V[E[θ|θt]]
V[θ] = (1− γjt

2)σ2
0 + γ2t θ

j
t
2 (32)

Now, we note that qt(θ|γt) is a Gaussian and its parameters are given by E[θj ] = γjtµ
j
t + (1− γjt )µ

j
0

from (31) and by V[θj ] = (1− γjt
2)σj

0
2 + γjt

2θjt
2 from (32). Then, for new data Bt+1 at time t+ 1,

the approximate predictive log-likelihood equals to

log qt(Bt+1|γt) = log
∫
p(Bt+1|θ)qt(θ|γt)dθ.

We are looking for a new approximate posterior qt+1(θ) such that

qt+1(θ) = argmin
q

KL [q(θ)||p(Bt+1|θ)qt(θ|γt)] (33)
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The optimization problem (33) can be written as minimization of the following loss

Ft(θ, γt) = Eq

[
L̂t+1(θ)

]
+KL [q(θ)||qt(θ|γt)] , (34)

Using the fact that we are looking for a member q ∈ Q from (27), we can write the objective (34) as

Ft(µ, σ, γt) = Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵ ◦ σ)

]
+KL [q(θ)||qt(θ|γt)] ,

where we used the reparameterisation trick for the loss term. We now expand the regularization term
to get

Ft(µ, σ, γt) = Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵ ◦ σ)

]
+
∑
j

[
(µj − µ̃j

t (γt))
2 + σj2

2σ̃j
t
2(γt)

− 1

2
log σj

2

]
(35)

Since the posterior variance of NN parameters may become small, the optimization of (35) may
become numerically unstable due to division by σ̃j

t
2(γt). It was shown [54] that using small

temperature on the prior led to better empirical results when using Bayesian Neural Networks, a
phenomenon known as cold posterior. Here, we define a temperature per-parameter, i.e., λjt > 0 for
every time-step t, such that the objective above becomes

F̃t(µ, σ, γt; {λjt}j) = Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵ ◦ σ)

]
+
∑
j

λjt

[
(µj − µ̃j

t (γt))
2 + σj2

2σ̃j
t
2(γt)

− 1

2
log σj2

]
(36)

As said above, it is common to use the same temperature λjt = λ for all the parameters. In this work,
we propose the specific choice of the temperature to be

λjt = λσj
t
2, (37)

where λ > 0 is some globally chosen temperature parameter. This leads to the following objective

F̂t(µ, σ, γt; {rjt}j) = Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵ ◦ σ)

]
+
1

2

∑
j

rjt

[
(µj − µ̃j

t (γt))
2 + σj2 − σ̃j

t
2(γt) log σ

j2
]
,

(38)
where the quantity rjt is defined as

rjt =
σj
t

2

σ̃j
t

2
(γt)

=
σj
t

2

γj
t

2
σj
t

2
+(1−γj

t

2
)σj

0

2 , (39)

which represents the relative change in the posterior variance due to the drift. In the exact stationary
case, when γjt = 1, this ratio is rjt = 1 while for γjt < 1 , since typically σj

t
2 < σj

0
2, we have rjt < 1.

This means that in the non-stationary case, the strength of the regularization in (38) in favor of the
data term Eϵ∼N (0;I) [Lt+1(µ+ ϵ ◦ σ)], allowing the optimization to respond faster to the change in
the data distribution. In practice, this data term is approximated via Monte-Carlo, i.e.

Eϵ∼N (0;I)

[
L̂t+1(µ+ ϵσ)

]
∼ 1

M

M∑
i=1

L̂t+1(µ+ ϵiσ) (40)

To find new parameters, µt+1 and σt+1, we let µt+1,0 = µ̃t(γt) and σt+1,0 = σ̃t(γt) where
corresponding quantities are defined in (29) and perform multiple K updates on (38)

µt+1,k+1 = µt+1,k − αµF̂t(µt+1,k, σt+1,k, γt, {rjt}j),
σt+1,k+1 = σt+1,k − ασF̂t(µt+1,k, σt+1,k, γt, {rjt}j),

where αµ and ασ are corresponding learning rates.

Practical considerations. As a prior distribution, we use

p0(θ) =
∏
j

N (θj ; 0, σj
0), (41)
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with some σj
0 > 0. In practice, we often have access to the NN library with pre-defined σ̃j

0. We allow
more flexbility and define

σj
0 = νσ̃j

0, (42)
with some constant ν ∈ (0, 1], allowing to scale the NN library variance.

When using Bayesian Neural Networks (BNN), one question is to how to initialize the variational
posterior q0(θ). We found that using specific initialization θ0 ∼ pinit(θ) as the mean of the variational
posterior q0(θ), where pinit(θ) is the NN initializing distribution, worked significantly better than
using 0 (which is the mean of p0(θ)). Therefore, we propose to initialize q0(θ) as

q0(θ) =
∏
j

N (θj ; θj0, σ
j
init

2),

where θ0 ∼ pinit(θ) and σj
init

2 is defined as

σj
init

2 = π2σj
0
2, (43)

and σj
0 is the variance of the prior distribution p0(θ), see (41). Here, π ∈ (0, 1] is a constant allowing

us to scale down the initial variance of q0(θ) with respect to the prior variance σj
0.

The full algorithm of learning the drift parameters γt as well as learning the Bayesian Neural Network
parameters using the procedure above is given in Algorithm 2.

E.2 Modified SGD with drift model

Instead of propagating the posterior (6), we do MAP updates on (4) with the prior p0(θ) =∏
j N (θj ;µj

0;σ
j
0
2) and the posterior qt(θ) =

∏
j N (θj ; θjt ; s

2σj
0
2), where s ≤ 1 is hyperparam-

eter controlling the variance σ2
t of the posterior qt(θ). Since fixed s may not capture the true

parameters variance, using Bayesian method (see Appendix E.1) is preferred but comes at a high
computational cost. Instead of Bayesian update (33), we consider maximum a-posteriori (MAP)
update

max
θ

log p(Bt+1|θ) + log qt(θ|γt),

with qt(θ|γt) given by (28). Using the definition of qt(θ|γt), we get the following problem

max
θ

−L̂t+1(θ)−
∑
j

λjt

[
(µi − µ̃j

t (γt))
2

2σ̃j
t
2(γt)

]
, (44)

where similarly to (36), we use a per-parameter temperature λjt ≥ 0. We choose temperature to be
equal to

λjt = s2σj
0
2λ,

where λ is some constant. Such choice of temperature is motivated by the same logic as in (37) – it
is a constant multiplied by the posterior variance σj

t
2 = s2σj

0
2. With such choice of temperature,

maximizing (44) is equivalent to minimizing

Ĝt+1(θ;λ) = L̂t+1(θ) +
λ
2

∑D
j=1

|θj−θ̃j
t (γt)|2

rjt (γ)
(45)

where the regularization target for the dimension i is
θ̃jt (γt) = γjt θ

j
t + (1− γjt )µ

j
0 (46)

and the constant rjt (γ) is given by

rjt (γt) =
(
(γjt )

2 +
1−(γj

t )
2

s2

)
We can perform K gradient updates (45) with a learning rate αt starting from θ0t+1 = θ̃t(γt),

θk+1
t+1 = θkt+1 − αt(γt) ◦ ∇θĜt+1(θ

k
t+1;λ), (47)

where the vector-valued learning rate αt(γt) is given by

α̃t(γt) = αtr̃
j
t (γt) = αt

(
(γjt )

2 +
1− (γjt )

2

s2

)
, (48)

with αt the base learning rate. Note that doing one update is equivalent to modified SGD method (20).
Doing multiple updates on (47) allows us to perform multiple computations on the same data. The
corresponding algorithm is given in Algorithm 3.
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Algorithm 2 Bayesian Soft-Reset algorithm
Input: Data-stream ST = {Bt}Tt=1
Global temperature parameter λ ≥ 0.
Learning rate for the mean αµ and for the standard deviation ασ

Number of gradient updates Kθ to be applied on µ and σ
Number of Monte-Carlo samples Mθ for estimating µ and σ in (40)
Number of gradient updates Kγ on drift parameter γt in (10)
Number of Monte-Carlo samples Mγ to estimate γt in (11)
Learning rate ηγ for drift parameters
Initial drift parameters γ0 = 1 for every iteration.
Initialization parameters:
Neural Network initial variance for every parameter σ̃j

0
2 coming from standard NN library

Initial prior variance rescaling ν ∈ (0, 1].
Prior variance σj

0
2 = ν2σ̃j

0
2 given by (42)

Initial NN parameters θ0 ∼ pinit(θ)
Initial posterior variance rescaling π ∈ (0, 1].
Initial posterior variance σj

init
2 = π2σj

0
2 given by (43)

Initialization:
Initialize zero-mean prior distribution (41) as p0(θ) =

∏
j N (θj ; 0, σj

0
2)

Initialize posterior q0(θ) =
∏

j N (θj ; θj0, σ
j
init

2)
for step t = 0, 1, 2, . . . , T do

Receive batch Bt+1

Current posterior is given by qt = N (θ;µt, σ
2
t )

Estimating the drift
Initialize drift parameter γ0t = γ0.
Compute drifted prior mean µ̃j

t (γt) = γjtµ
j
t assuming zero-mean prior µj

0 = 0

Compute drifted prior variance σ̃j2(γt) = γjt
2σj

t
2 + (1− γjt

2)σj
0
2

for k = 0, . . . ,Kγ − 1 do
Sample Gaussian noise ϵi ∼ N (ϵi; 0, I), i = 1, . . . ,Mγ

γk+1
t = γkt + ηγ∇γ log

1
Mγ

∑Mγ

i=1 p(Bt+1|µ̃t(γ
k
t ) + ϵi ◦ σ̃t(γkt ))

end for
Updating variational posterior

Let µj
t+1,0 = γjtµ

j
t , σj

t+1,0 =
√
γjt

2σj
t
2 + (1− γjt

2)σ2
0 , see (29)

Let rjt =
σ2
t,i

σ2
t (γt)

=
σj
t

2

γ2
t σ

j
t

2
+(1−γj

t

2
)σj

0

2 using (39)

for k = 0, . . . ,Kθ − 1 do
Using the definition of F̂t from (38), do
µt+1,k+1 = µt+1,k − αµF̂t(µt+1,k, σt+1,k, γt, {rjt}j , λ)
σt+1,k+1 = σt+1,k − ασF̂t(µt+1,k, σt+1,k, γt, {rjt}j , λ)

end for
end for

F Proof of linearisation

Interpretation of γt. By linearising log p(Bt+1|θ) around µt, we can simplify (8) to get

F(γt) = (γt ◦ µt + (1− γt) ◦ µ0)
T gt+1 − 0.5(σ2

t (γt) ◦ gt+1)
T gt+1 − 1

2λ
∑K

j=1(γ
j
t − γjt,0)

2,

where ◦ denotes elementwise product, gt = ∇L̂t+1(µt) is the negative gradient of the loss (1)
evaluated at µt and we added the ℓ2-penalty 1

2λ||γt − γt,0||2 to take into account the initialization.

Proof. We assume that the following linearisation is correct

log p(Bt+1|θ) ∼ log p(Bt+1|µt) + gTt+1(θ − µt),

where
gt+1 = −∇θ log p(Bt+1|θ = µt) = ∇θL̂t+1(µt)
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Algorithm 3 Proximal Soft-Reset algoritm
Input: Data-stream ST = {Bt}Tt=1
Neural Network (NN) initializing distribution pinit(θ) and specific initialization θ0 ∼ pinit(θ)
Learning rate αt for parameters and ηγ for drift parameters
Number of gradient updates Kγ on drift parameter γt
Number of gradient updates Kθ on NN parameters
Global temperature parameter λ ≥ 0
NN initial standard deviation (STD) scaling ν ≤ 1 (see (24)) and ratio s = σt

νσ0
.

for step t = 0, 1, 2, . . . , T do
Receive batch Bt+1

Initialize drift parameter γ0t = 1
for step k = 0, 1, 2, . . . ,Kγ do

Sample θ′0 ∼ pinit(θ)
Stochastic update (22) on drift parameter using specific initialization (25)
γk+1
t = γkt + ηγ∇γ

[
log p(Bt+1|γtθt + (1− γt)θ0 + θ′0 ◦ ν

√
1− γ2t + γ2t s

2)
]
γt=γk

t

end for
Initialize θ0t+1 = θt(γ

K
t ) with (46) and use αt(γ

K
t ) = αt

(
(γit)

2 +
1−(γi

t)
2

s2

)
with (48)

for step k = 0, 1, 2, . . . ,Kθ do
θk+1
t+1 = θkt+1 − αt(γt) ◦ ∇θĜt+1(θ

k
t+1;λ)

end for
end for

Then, we have
p(Bt+1|θ) ∼ p(Bt+1|µt) exp

gT
t+1(θ−µt)

Let’s write the integral from (8)

log

∫
p(Bt+1|θ) exp−

1
2 (θ−µt(γt))

TΣ−1
t (γt)(θ−µt(γt)) dθ

1√
(2π)D|Σt(γt)|

=

log

∫
p(Bt+1|µt) exp

gT
t+1(θ−µt) exp−

1
2 (θ−µt(γt))

TΣ−1
t (γt)(θ−µt(γt)) dθ

1√
(2π)D|Σt(γt)|

=

log p(Bt+1|µt) + log

∫
expg

T
t+1(θ−µt) exp−

1
2 (θ−µt(γt))

TΣ−1
t (γt)(θ−µt(γt)) dθ

1√
(2π)D|Σt(γt)|

Consider only the exp term inside the integral:

gTt+1(θ − µt)−
1

2
(θ − µt(γt))

TΣ−1
t (γt)(θ − µt(γt)) =

gTt+1θ − gTt+1µt −
1

2
θTΣ−1

t (γt)θ + θTΣ−1
t (γt)µt(γt)−

1

2
µt(γt)

TΣ−1
t (γt)µt(γt) =

−1

2
θTΣ−1

t θ + θT (Σ−1
t (γt)µt(γt) + gt+1)− gTt+1µt −

1

2
µt(γt)

TΣ−1
t (γt)µt(γt) =

−1

2

(
θTΣ−1

t θ − 2θT (Σ−1
t (γt)µt(γt) + gt+1)

)
− gTt+1µt −

1

2
µt(γt)

TΣ−1
t (γt)µt(γt)

Let’s focus on this term

−1

2

(
θTΣ−1

t θ − 2θT (Σ−1
t (γt)µt(γt) + gt+1)

)
=

−1

2

(
θTΣ−1

t θ − 2θTΣ−1
t b(γt)

)
=

−1

2

(
θTΣ−1

t θ − 2θTΣ−1
t b(γt) + b(γt)

TΣ−1
t b(γt)− b(γt)

TΣ−1
t b(γt)

)
=

−1

2

(
θTΣ−1

t θ − 2θTΣ−1
t b(γt) + b(γt)

TΣ−1
t b(γt)

)
+

1

2
b(γt)

TΣ−1
t b(γt) =

−1

2
(θ − b(γt))

TΣ−1
t (θ − b(γt)) +

1

2
b(γt)

TΣ−1
t b(γt)
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where
b(γt) = Σt(γt)

[
Σ−1

t (γt)µt(γt) + gt+1

]
Therefore, the integral could be written as

log

∫
expg

T
t+1(θ−µt) exp−

1
2 (θ−µt(γt))

TΣ−1
t (γt)(θ−µt(γt)) dθ

1√
(2π)D|Σt(γt)|

=

1

2
b(γt)

TΣ−1
t b(γt) + log

∫
exp−

1
2 (θ−b(γt))

TΣ−1
t (θ−b(γt)) dθ

1√
(2π)D|Σt(γt)|

− gTt+1µt −
1

2
µt(γt)

TΣ−1
t (γt)µt(γt) =

1

2
b(γt)

TΣ−1
t (γt)b(γt)− gTt+1µt −

1

2
µt(γt)

TΣ−1
t (γt)µt(γt)

Now, we only keep the terms depending on γt

1

2
b(γt)

TΣ−1
t (γt)b(γt)−

1

2
µt(γt)

TΣ−1
t (γt)µt(γt) =

1

2

[
Σ−1

t (γt)µt(γt) + gt+1

]T
Σt(γt)

[
Σ−1

t (γt)µt(γt) + gt+1

]
− 1

2
µt(γt)

TΣ−1
t (γt)µt(γt) =

1

2
µt(γt)

TΣ−1
t (γt)µt(γt) + gTt+1µt(γt) + gTt+1

1

2
Σt(γt)gt+1 −

1

2
µt(γt)

TΣ−1
t (γt)µt(γt) =

gTt+1µt(γt) +
1

2
gTt+1Σt(γt)gt+1

Since Σt(γt) = diag(σ2
t ◦ γ2t + (1− γ2t ) ◦ σ2

0), we recover

gTt+1(γt ◦ µt + (1− γt) ◦ µ0) +
1

2
gTt+1

(
(σ2

t ◦ γ2t + (1− γ2t ) ◦ σ2
0) ◦ gt+1

)
Now, we add an l2-penalty λ

2 ||γt − γt,0||2 and we get

F (γt) = gTt+1(γt ◦µt+(1−γt)◦µ0)+
1

2
gTt+1

(
(σ2

t ◦ γ2t + (1− γ2t ) ◦ σ2
0) ◦ gt+1

)
− λ

2
||γt−γt,0||2

Let’s take the gradient wrt γjt , we get that the j-the component of the gradient is given by

(∇F (γt))j = gjt+1(µ
j
t − µj

0) + gjt+1

(
(σj

t
2γjt − σj

0
2γjt )g

j
t+1

)
− λ(γjt − γjt,0) =

gjt+1(µ
j
t − µj

0) + λγjt,0 − γjt

[
λ+ gjt+1

(
(σj

0
2 − σj

t
2) ◦ gjt+1

)]
= 0 (49)

We have then,

γjt =
gjt+1(µ

j
t − µj

0) + λγjt,0

λ+ gjt+1
2(σj

0
2 − σj

t
2)

In case when γt are shared for a subset of K parameters, indexes by the index set JK = (j1, . . . , jK),
then, we can sum the gradients (49) and we get∑

j∈JK

gjt+1(µ
j
t − µj

0) + λγt,0 − γt

[
λ+ gjt+1

(
(σj

0
2 − σj

t
2) ◦ gjt+1

)]
= 0,

this gives us

γt =
ḡTt+1(µ̄t − µ̄0) +Kλγt,0

(ḡt+1 ◦ (σ̄02 − σ̄t
2))T ḡt+1 +Kλ

,

where ā is vector defined on the index set JK , i.e., ā = (aj1 , . . . , ajK ).
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G Proximal SGD

Each step of online SGD can be seen in terms of a regularized minimization problem referred to as
the proximal form [44]:

θ̂t+1 = argminθ L̂t+1(θ) +
1

2αt
||θ − θt||2. (50)

In general, we cannot solve (50) directly, so we consider a Taylor expansion of L̂t+1 around θt,
giving

θt+1 = argminθ ∇θL̂t+1(θt)
⊤(θ − θt) +

1
2αt

||θt − θ||2. (51)

Here we see the role of αt > 0 as both enforcing that the Taylor expansion around θt is accurate, and
regularising θt+1 towards the old parameters θt (hence ensuring that the learning from past data is
not forgotten). Solving (51) naturally leads to the well known SGD update:

θt+1 = θt − αt∇θL̂t+1(θt),

where αt can now also be interpreted as the learning rate.

H Experimental details

H.1 Plasticity experiments

Tasks In this section we provide experimental details. As plasticity tasks, we use a randomly
selected subset of size 10000 from CIFAR-10 [32] and from MNIST. This subset is fixed for all
the tasks. Within each task, we randomly permute labels for every image; we call such problems
random-label classification problems. We study two regimes – data efficient, where we do 400 epochs
on a task with a batch size of 128, and memorization, a regime where we do only 70 epochs with a
batch size of 128. As the main backbone architecture, we use MLP with 4 hidden layers each having
a hidden dimension of 256 hidden units. We use ReLU activation function and do not use any batch
or layer normalization. For the incoming data, we apply random crop, for MNIST to produce images
of size 24× 24 and for CIFAR-10 to produce images of size 28× 28. We normalize images to be
within [0, 1] range by dividing by 255. On top of that, we consider permuted MNIST task with a
similar training ragime as in [34] – we consider a subset of 10000 images, with batch size 16 and
each task is one epoch. As a backbone, we still use MLP with ReLU activation and 4 hidden layers.
Moreover, we considered permuted Patch MNIST, where we permute patches, not individual pixels.
In this case, we used a simple 4 layer convolutional neural network with 2 fully connected layers at
the end.

Metrics We use online accuracy as first metric with results reported in Appendix K. Moreover we
use per-task Average Online Accuracy which is

At =
1

N

N∑
i=1

ati, (52)

where ati are the online accuracies collected on the task t via N timesteps.

Baselines First baseline is Online SGD which sequentially learns over the sequence of task, with a
fixed learning rate. Hard Reset is the Online SGD which resets all the parameters at task boundaries.
L2 init [34] adds a regularizer λ||θ − θ0||2 term to each Online SGD update where the regularization
strength λ is a hyperparameter. Shrink & Perturb applies the transformation λθt + σϵ, ϵ ∼ N (ϵ; 0, I)
to each parameter before the gradient update. The hyperparameters are λ and σ.

Soft Reset corresponds to one update (10) starting from 1 using 1 Monte Carlo estimate. We always
use 1 Monte Carlo estimate for updating γt as we found that it worked well in practice on these tasks.
The hyperparameters of the method – σ2

0 initial variance of the prior, which we set to be equal to
ν2 1

N where N is the width of the hidden layer and ν is a constant (hyperparameter). It always equals
to ν = 0.1. On top of that the second hyperparameter is s, such that σt = sσ0, which controls the
relative decrease of the constant posterior variance. This is the hyperparameter over which we sweep
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over. Another hyperparameter is the learning rate for learning γt. For Soft Reset Proximal, we also
have a proximal coefficient regularization constant λ. Besides that, we also sweep over the learning
rate for the parameter. For the Bayesian Soft Reset, we just add an additional learning rate for the
variance ασ and we do 1 Monte Carlo sample for each ELBO update.

Hyper parameters selection and evaluation For all the experiments, we run a sweep over the
hyperparameters. We select the best hyperparameters based on the smallest cumulative error (sum
of all 1− ati throughout the training). We then report the mean and the standard deviation across 3
seeds in all the plots.

Hyperparameter ranges . Learning rate α which is used to update parameters, for all the methods,
is selected from {1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 1e−1, 5e−1, 1.0}. The λinit parameter in
L2 Init, is selected from {10.0, 1.0, 0.0, 1e−1, 5e−1, 1e−2, 5e−2, 1e−3, 5e−3, 1e−4, 5e−4, 1e−
5, 5e−5, 1e−6, 5e−6, 1e−7, 5e−7, 1e−8, 5e−8, 1e−9, 5e−9, 1e−10, }. For S&P, the shrink
parameter λ is selected from {1.0, 0.99999, 0.9999, 0.999, 0.99, 0.9, 0.8, 0.7, 0.5, 0.3, 0.2, 0.1}, and
the perturbation parameter σ is from {1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5, 1e − 6}. As noise
distribution, we use the Neural Network initial distribution. For Soft Resets, the learning rate for γt
is selected from {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}, the constant s is selected from
{1.0, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.3, 0.1}, the temperature λ in (45) is selected from {1.0, 0.1, 0.01},
the same is true for the temperature in the Bayesian method (38). Initial prior std rescaling ν = 0.05.
On top of that for the Bayesian method, we always use ν (see Algorithm 2) equal to ν = 0.05 and
π = 0.9, i.e. the posterior is always slightly smaller than the prior. Finally for the Bayesian method
we had to learn the variance with learning rate from {0.01, 0.1, 1, 10} range.

In practice, we found that there is one learning rate of 0.1, which was always the best in practice
for most of the methods and only proximal Soft Resets on memorization CIFAR-10 required smaller
learning rate 0.01. This allowed us to significantly reduce the hyperparameter sweep.

H.2 Impact of non-stationarity experiments

In this experiment, we consider a subset of 10000 images from MNIST (fixed throughtout all
experiment) and a sequence of tasks. Each task is constructed by assigning either a true or a random
label to each image from MNIST, where the probability of assignment is controlled by the experiment.
The duration of each is controlled by the number of epochs with batch size of 128. As backbone we
use MLP with 4 hidden layers and 256 hidden units and ReLU activation. For all the methods, the
learning rate is 0.1. For Soft Resets, we use s = 0.9 and ν = 1 and ηγ = 0.01. Bayesian method uses
temperature λ = 0.01. Detailed results are given in Figure 7.

H.3 Reinforcement learning experiments

We conduct experiments in the RL environments. We take the canonical implementation of Soft-Actor
Critic(SAC) from Brax [15] repo in github, which uses 2 layer MLPs for both policy and Q-function.
It employs ReLU activation functions for both. On top of that, it uses 2 MLP networks to parameterize
Q-function (see Brax [15]) for more details. To employ Soft Reset, we do the following. After we
have collected a chunk of data (128) time-steps, we do one update (10) on γt starting from 1 at
every update of γt, where γt is shared for all the parameters within each layer of a Neural Network,
separately for weights and biases. On top of that, since we have policy and value function networks,
we have separate γt for each of these. After the update on γt, we compute θt(γt) and αt(γt), see
Section 3.5. After that, we employ the proximal objective (45) with a fixed regularization target θt(γt).
Concretely, we use the update rule (47) where for each update the gradient is estimate on the batch of
data from the replay buffer. This is not exactly the same as what we did with plasticity benchmarks
since there the update was applied to the same batch of data, multiple times. Nevertheless, we found
this strategy effective and easy to implement on top of a SAC algorithm. In practice, we swept over
the parameter s (similar for both, policy and the value function) which controls the relative learning
rate increase in (19). Moreover, we swept over the temperature λ̃ from eqn. (45), which was different
for the policy and for the value function. In practice, we found that using temperature of 0 for the
policy led to the best empirical results. The range for the temperatures λ̃ was {0.1, 0.01, 0.001} and
for s was {0.8, 0.9, 0.95, 0.97, 1.0}. We used ν = 1 for all the experiments. For each experiment,
we used a 3 hours of the A100 GPU with 40 Gb of memory.
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Figure 7: Non-stationarity impact. The x-axis denotes task id, each column denotes the duration,
whereas a row denotes the amount of label noise. Each color denotes the method studied. The y-axis
denotes average over 3 seeds online accuracy.
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Figure 8: Visualization of the γt dynamics for the run on Humanoid environment. Each column
corresponds to the replay ratio studied. First row denotes the γt for the policy π. The second and the
third rows denote the γt for the two Q-functions.

I Computational complexity

We provide the study of computational cost for all the proposed methods. Notations:

• P be the number of parameters in the Neural Network
• L is the number of layers
• O(S) is the cost of SGD backward pass.
• Mγ - number of Monte Carlo samples for the drift model
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• Mθ - number of Monte Carlo samples for the parameter updates (Bayesian Method).

• Kγ - number of updates for the drift parameter

• Kθ - number of NN parameter updates.

Method Comp. cost Memory
SGD O(S) O(P )

Soft resets γ per layer O(KγMγS + S) O(L+ (Mγ + 1)P )
Soft resets γ per param. O(KγMγS + S) O(P + (Mγ + 1)P )

Soft resets γ per layer + proximal (Kθ iters) O(KγMγS +KθS) O(L+ (Mγ + 1)P )
Soft resets γ per param. + proximal (Kθ iters) O(KγMγS +KθS) O(P + (Mγ + 1)P )

Bayesian Soft Reset Proximal (Kθ iters) γ per layer O(KγMγS + 2MθKθS) P (L+ (Mγ + 2)P )
Bayesian Soft Reset Proximal (Kθ iters) γ per param. O(KγMγS + 2MθKθS) P (P + (Mγ + 2)P )

Table 1: Comparison of methods, computational cost, and memory requirements

The general theoretical cost of all the proposed approaches is given in Table 1. In practice, for all
the experiments, we assume that Mγ = 1 and Mθ = 1. Moreover, we used Kγ = 1 and Kθ = 1
for Soft Reset, Kγ = 10 and Kθ = 1 for Soft Reset with more computation. On top of that, for Soft
Reset proximal and all Bayesian methods, we used Kγ = 10 and Kθ = 10. Table 2, quantifying the
complexity of all the methods from Figure 2.

Method Comp. cost Memory
SGD O(S) O(P )

Soft resets γ per layer O(2S) O(L+ 2P )
Soft resets γ per param. O(2S) O(3P )

Soft resets γ per layer + proximal (Kθ = 10 iters) O(20S) O(L+ 2P )
Soft resets γ per param. + proximal (Kθ iters) O(20S) O(3P )

Bayesian Soft Reset Proximal (Kθ iters) γ per layer O(30S) P (L+ 3P )
Bayesian Soft Reset Proximal (Kθ iters) γ per param. O(30S) P (4)

Table 2: Comparison of methods, computational cost, and memory requirements for methods in
Figure 2.

The complexity O(2S) of Soft Resets comes from one update on drift parameter and one updat
eon NN parameters. The memory complexity requires storing O(L) parameters gamma (one for
each layer), parameters θt with O(P ) and sampled parameters for drift model update which requires
O(P ).

Note that as Figure 9 suggests, it is beneficial to spend more computational cost on optimizing gamma
and on doing multiple updates on parameters. However, even the cheapest version of our method Soft
Resets still leads to a good performance as indicated in Figure 2.

The complexity of soft resets in reinforcement learning setting requires only one gradient update on
γ after each new chunk of fresh data from the environment. In SAC, we do G gradient updates on
parameters for every new chunk of data. Assuming that complexity of one gradient update in SAC is
O(S), soft reset only requires doing one additional gradient update to fit γ parameter.

Method Comp. cost Memory
SAC O(GS) O(P )

Soft resets γ per layer O(S +GS) O(L+ 2P )

Table 3: Comparison of methods, computational cost, and memory requirements for methods in for
RL.

The computation complexity of Soft Reset in Reinforcement Learning is marginally higher than SAC
but leads to better empirical performance in a highly off-policy regime, see Appendix H.3.

25



So
ft 

Re
se

t

So
ft 

Re
se

t K
=

10

So
ft 

Re
se

t P
ro

xi
m

al
 K

=
10

, K
=

10

Ba
ye

sia
n 

So
ft 

Re
se

t K
=

10
, K

=
10

Ba
ye

sia
n 

So
ft 

Re
se

t K
=

10
, K

=
10

, 
 p

er
 p

ar
am

et
er

0.81

0.82

0.83

0.84

0.85

0.86

0.87
Permutted MNIST

So
ft 

Re
se

t

So
ft 

Re
se

t K
=

10

So
ft 

Re
se

t P
ro

xi
m

al
 K

=
10

, K
=

10

Ba
ye

sia
n 

So
ft 

Re
se

t K
=

10
, K

=
10

Ba
ye

sia
n 

So
ft 

Re
se

t K
=

10
, K

=
10

, 
 p

er
 p

ar
am

et
er

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Random Label MNIST -- Data Efficient

So
ft 

Re
se

t

So
ft 

Re
se

t K
=

10

So
ft 

Re
se

t P
ro

xi
m

al
 K

=
10

, K
=

10

Ba
ye

sia
n 

So
ft 

Re
se

t K
=

10
, K

=
10

Ba
ye

sia
n 

So
ft 

Re
se

t K
=

10
, K

=
10

, 
 p

er
 p

ar
am

et
er

0.80

0.85

0.90

0.95

Random Label CIFAR-10 -- memorization

Figure 9: Compute-performance tradeoff. The x-axis indicates the method going from the cheapest
(left) to the most expensive (right). See Table 2 for complexity analysis. The y-axis is the average
performance on all the tasks across the stream.

J Sensitivity analysis

We study the sensitivity of Soft Resets where γ is defined per layer when trained on random-label
MNIST (data efficient). We fix the learning rate to α = 0.1. We study the sensitivity of learning rate
for the drift parameter, ηγ , as well as ν – initial prior standard deviation rescaling, and s – posterior
standard deviation rescaling parameter.

On top of that, we conduct the sensitivity analysis of L2 Init [34] and Shrink&Perturb [2] methods.
The x-axis of each plot denotes one of the studied hyperparameters, whereas y-axis is the average
performance across all the tasks (see Experiments section for tasks definition). The standard deviation
is reported over 3 random seeds. A color indicates a second hyperparameter which is studied, if
available. In the title of each plot, we write hyperparameters which are fixed. The analysis is provided
in Figure 10 for Soft Resets and in Figure 11 for the baselines.

The most important parameter is the learning rate of the drift model ηγ . For each method, there
exists a good value of this parameter and performance is sensitive to it. This makes sense since this
parameter directly impacts how we learn the drift model.

The performance of Soft Resets is robust with respect to the posterior standard deviation scaling s
parameter as long as it is s ≥ 0.5. For s < 0.5, the performance degrades. This parameter is defined
from σt = sσ0 and affects relative increase in learning rate given by 1

γ2+(1−γ2)/s2) which could be
ill-behaved for small s.

We also study the sensitivity of the baseline methods. We find that L2 Init [34] is very sensitive to the
parameter λ, which is a penalty term for λ||θ − θ0||2. In fact, Figure 11, left shows that there is only
one good value of this parameter which works. Shrink&Perturb [2] is very sensitive to the shrink
parameter λ. Similar to L2 Init, there is only one value which works, 0.9999 while values 0.999 and
values 0.99999 lead to bad performance. This method however, is not very sensitive to the perturb
parameter σ provided that σ ≤ 0.001.

Compared to the baselines, our method is more robust to the hyperparameters choice. Below, we
also add sensitivity analysis for other method variants. Figure 12 shows sensitivity of Soft Resets,
Kγ = 10, Figure 13 shows sensitivity of Soft Resets, Kγ = 10, Kθ = 10, Figure 14 shows sensitivity
of Bayesian Soft Resets, Kγ = 10, Kθ = 10 with γt per layer, Figure 15 shows sensitivity of
Bayesian Soft Resets, Kγ = 10, Kθ = 10 with γt per parameter.
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Figure 10: Soft Reset, sensitivity analysis of performance with respect to the hyperparameters on
data-efficient random-label MNIST. The x-axis denotes the studied hyperparameter, whereas the
y-axis denotes the average performance across the tasks. The standard deviation is computed over
3 random seeds. The color indicates additional studied hyperparameter. (Left) shows sensitivity
analysis where the x-axis is the posterior standard deviation scaling s and the color indicates the
drift model learning rate ηγ . (Right) shows sensitivity of Soft Reset where the x-axis is the posterior
standard deviation scaling s and the color indicates initial prior standard deviation scaling ν.
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hyperparameters on data-efficient random-label MNIST. The x-axis denotes the studied hyperparame-
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(Left) shows sensitivity of L2 Init with respect to the L2 penalty regularization cost λ applied to
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while the color indicates the shrink parameter λ.
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Figure 12: Soft Reset, Kγ = 10, sensitivity analysis of performance with respect to the hyperparam-
eters on data-efficient random-label MNIST. The x-axis denotes the studied hyperparameter, whereas
the y-axis denotes the average performance across the tasks. The standard deviation is computed
over 3 random seeds. The color indicates additional studied hyperparameter. (Left) shows sensitivity
analysis where the x-axis is the posterior standard deviation scaling s and the color indicates the drift
model learning rate ηγ . (Right) shows sensitivity analysis where the x-axis is the posterior standard
deviation scaling s and the color indicates initial prior standard deviation scaling ν.
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Figure 13: Soft Reset, Kγ = 10,Kθ = 10, sensitivity analysis of performance with respect
to the hyperparameters on data-efficient random-label MNIST. The x-axis denotes the studied
hyperparameter, whereas the y-axis denotes the average performance across the tasks. The standard
deviation is computed over 3 random seeds. The color indicates additional studied hyperparameter.
(Left) shows sensitivity analysis where the x-axis is the posterior standard deviation scaling s and the
color indicates the drift model learning rate ηγ . (Right) shows sensitivity analysis where the x-axis
is the posterior standard deviation scaling s and the color indicates initial prior standard deviation
scaling ν.
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Sensitivity Bayesian Soft-Reset,  per layer (MNIST). Initial prior rescaling p = 0.05
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Figure 14: Bayesian Soft Reset, Kγ = 10,Kθ = 10 with γt per layer, sensitivity analysis of
performance with respect to the hyperparameters on data-efficient random-label MNIST. The x-axis
denotes the studied hyperparameter, whereas the y-axis denotes the average performance across the
tasks. The standard deviation is computed over 3 random seeds. The color indicates additional studied
hyperparameter. (Left) shows sensitivity analysis where the x-axis is the prior standard deviation
initial scaling ν and the color indicates the drift model learning rate ηγ . (Right) shows sensitivity
analysis where the x-axis is the KL divergence coefficient λ while the color indicates the learning
rate ηγ .
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Sensitivity Bayesian Soft-Reset,  per parameter (MNIST). Initial prior rescaling p = 0.05
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Figure 15: Bayesian Soft Reset, Kγ = 10,Kθ = 10 with γt per parameter, sensitivity analysis of
performance with respect to the hyperparameters on data-efficient random-label MNIST. The x-axis
denotes the studied hyperparameter, whereas the y-axis denotes the average performance across the
tasks. The standard deviation is computed over 3 random seeds. The color indicates additional studied
hyperparameter. (Left) shows sensitivity analysis where the x-axis is the prior standard deviation
initial scaling ν and the color indicates the drift model learning rate ηγ . (Right) shows sensitivity
analysis where the x-axis is the KL divergence coefficient λ while the color indicates the learning
rate ηγ .

K Qualitative behavior of soft resets and additional results on Plasticity
benchmarks

K.1 Perfect Soft Resets

To understand the impact of drift model (5), we study the data efficient random-label MNIST setting
where task boundaries are known. We run Online SGD, Hard Reset which resets all parameters at task
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Figure 16: Perfect soft-resets on data-efficient random-label MNIST. Left, Soft Reset method does
not use higher learning rate when γ < 1. Right, Soft Reset increases the learning rate when γ < 1,
see (19). The x-axis represents task id, whereas the y-axis is the average training accuracy on the
task.
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Figure 17: Behaviour of γt for different layers on random-label MNIST (data efficient) for the first
20 tasks.

boundaries, and Hard Reset (only last) which resets only the last layer. We use Soft Reset method (20)
where γt = 1 all the time and becomes γt = γ̂t (with manually chosen γ̂t) at task boundaries. We
consider constant learning rate αt(γt) and increasing learning rate (19) at task boundary for Soft
Reset. On top of that, we run Soft Reset method unaware of task boundaries which learns γt. We
report Average training task accuracy metric in Figure 16. See Appendix H.1 for details. The results
suggest that with the appropriate choice of γ̂t, Soft Reset is much more efficient than Hard Reset and
the effect becomes stronger if the learning rate αt(γt) increases. We also see that Soft Reset could
learn an appropriate γt without the knowledge of task boundary.

K.2 Qualitative Behaviour on Soft Resets on random-label tasks.

We observe what values of γt we get as we train Soft Reset method on random-label MNIST (data-
efficient) and CIFAR-10 (memorization). The results are given in Figure 17 for MNIST and in
Figure 18 for CIFAR-10. We report these for the first 20 tasks.

K.3 Qualitative Behaviour on Soft Resets on permuted patches of MNIST.

We consider a version of permuted MNIST where instead of permuting all the pixels, we permute
patches of pixels with a patch size varying from 1 to 14. The patch size of 1 corresponds to permututed
MNIST and therefore the most non-stationary case, while patch size of 14 corresponds to least non-
stationary case. We use a convolutional Neural Network in this case. In Figure 19, we report the
behavior of γ for different convolutional and fully connected layers on first few tasks.
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Figure 18: Behaviour of γt for different layers on random-label CIFAR-10 (memorization) for the
first 20 tasks.
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Figure 19: Behaviour of γt for different layers on permuted MNIST

K.4 Bayesian method is better than non-Bayesian

As discussed in Section 5, we found that in practice Soft Reset and Soft Reset Proximal where γ is
learned per-parameter, did not perform well on the plasticity benchmarks. However, the Bayesian
variant described in Section E.1, actually benefited from specifying γ for every parameter in Neural
Network. We report these additional results in Figure 20. We see that the non Bayesian variants
where γt is specified per parameter, do not perform well. The fact that the Bayesian method performs
better here suggests that it is important to have a good uncertainty estimate σ2

t for the update (10)
on γt. When, however, we regularize γt to be shared across all parameters within each layer, this
introduces useful inductive bias which mitigates the lack of uncertainty estimation in the parameters.
This is because for non-Bayesian methods, we assume that the uncertainty is fixed, given by a
hyperparameter – assumption which would not always hold in practice.
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Figure 20: Performance of γ per-parameter methods. By default, we use γ per layer and if specified,
we use γ per parameter.

K.5 Qualitative behavior of soft resets

In this section, we zoom-in in the data-efficient experiment on random-label MNIST. We use Soft
Reset Proximal (γ per layer) method with separate γ for layer (different for each weight and for each
bias) and run it for 20 tasks on random-label MNIST. In Figure 21 we show the online accuracy as we
learn over this sequence of tasks. In Figure 22, we visualize the dynamics of parameters γ for each
layer. First of all, we see that γt seems to accurately capture the task boundaries. Second, we see that
the amount by which each γt changes depends on the parameter type – weights versus biases, and
it depends on the layer. The architecture in this setting starts form linear and goes up to linear4,
which represent the 4 MLP hidden layers with a last layer linear4.

K.6 Impact of specific initialization

In this section, we study the impact of using specific initialization θ0 ∼ pinit(θ) in p0(θ) as discussed
in Appendix D. Using the specific initialization in Soft Resets leads to fixing the mean of the p0(θ) to
be θ0, see (24). This, in turn, leads to the predictive distribution (25). In case when we are not using
specific initialization θ0, the mean of p0(θ) is 0 and the predictive distribution is given by (23). To
understand the impact of this design decision, we conduct an experiment on random label MNIST
with Soft Reset, where we either use the specific initialization or not. For each of the variants, we
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Figure 21: Visualization of accuracy when trained on data efficient random-label MNIST task. The
dashed red lines correspond to a task boundary.
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Figure 22: Visualization of γ and task boundaries on data-efficient Random-label MNIST.

do a hyperparameters sweep. The results are given in Figure 23. We see that both variants perform
similarly.
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Figure 23: Impact of specific initialization θ0 as a mean of p0(θ) in Soft Resets. The x-axis represents
task id. The y-axis represents the average task accuracy with standard deviation computed over 3
random seeds. The task is random label MNIST – data efficient.

L Toy illustrative example for SGD underperformance in the non-stationary
regime

Illustrative example of SGD on a non-stationary stream. We consider a toy problem of tracking a
changing mean value. Let the observations in the stream St follow yt = µt + σϵ, where ϵ ∼ N (0, 1),
σ = 0.01. Every 50 timesteps the mean µt switches from −2 to 2. We fit a 3-layer MLP with layer
sizes (10, 5, 1) and ReLU activations, using SGD with two different choices for the learning rate:
α = 0.05 and α = 0.15. Moreover, given that we know when a switch of the mean happens, we
reset (or not reset) all the parameters at every switch as we run SGD. Only during the reset, we use
different learning rate β = 0.05 or β = 0.15. Using higher learning rate during reset allows SGD to
learn faster from new data. We also ran SGD with α = 0.05 and β = 0.15, where the higher learning
rate is used during task switch but we do not reset the parameters. We found that it performed the
same as SGD with α = 0.05, which highlights the benefit of reset.
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Figure 24: Non-stationary mean tracking with SGD.

We report the predicted mean µ̂t for all SGD variants in Figure 24. We see that after the first switch
of the mean, the SGD without reset takes more time to learn the new mean compared to the version
with parameters reset. Increasing the learning rate speeds up the adaptation to new data, but it still
remains slower during the mean change from 2 to −2 compared to the version that resets parameters.
This example highlights that resets could be highly beneficial for improving the performance of SGD
which could be slowed down by the implicit regularization towards the previous parameters θt and
the impact of the regularization strength induced by the learning rate.

M Using arbitrary drift models

The approach described in section 3.5 provides a general strategy of incorporating arbitrary Gaussian
drift models p(θ|θt;ψt) = N (θ; f(θt;ψt); g

2(θt;ψt)) which induces proximal optimization problem

θt+1 = argmin
θ

L̂t+1(θ) +
1

2g(θt;ψt)
||θ − f(θt;ψt)||2 (53)

The choice of f(θt;ψt) and g(θt;ψt) affects the behavior of the estimate θt+1 from (53) and ulti-
mately depends on the problem in hand. The objective function of the form (53) was studied in
context of online convex optimization in [21],[29], where the underlying algorithms estimated the
deterministic drift model online. These worked demonstrated improved regret bounds depending on
model estimation errors. This approach could also be used together with a Bayesian Neural Network
(BNN).
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the works which introduced the publicly available datasets

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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