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Abstract. The “timeline-based” is a particular paradigm of temporal
planning that has been successfully applied in many real-world scenar-
ios. Different timeline-based planning systems have been developed, each
using its own planning specification language and solving techniques.
An analysis of the differences between such kind systems has not been
addressed yet. In previous work we have developed Epsl a planning
tool successfully applied in real-world manufacturing scenarios. During
subsequent projects our tool achieved a level of stability and a relative
maturity. In this paper we start addressing the problem of compari-
son with other timeline-based planners and presents an analysis that
concerns the Europa2 framework which can be considered the de-facto
standard for timeline-based planning. In the present work we analyze the
modeling and solving capabilities of the two frameworks. This phase of
our study identifies differences and discusses strengths and weaknesses
when solving the same problem.

Keywords: Timeline-based planning · Planning and Scheduling ·
Constraint-based planning

1 Introduction

Timeline-based planning is an approach to temporal planning research which
has been successfully applied to real-world problems [1–4] where time consti-
tutes a crucial factor to deploy effective planning applications. The main feature
of the approach stems in the capacity of modeling and dealing with temporal
constraints and in the capability of integrating planning and scheduling (P&S)
in a unified solving approach. Indeed, a lot of the reasons for its success stay in
the modeling capability of the systems that support such applications. Several
applications are supported by various timeline-based general purpose architec-
tures, some of the most known are Europa2 [5], IxTeT [6], Aspen [7] and
Apsi [8]. Despite the practical success there is not a uniform shared view of
what timeline-based planning is. Thus each existing framework applies its own
interpretation of the planning approach. In contrast to action-based planning,
theoretical aspects of timeline-based planning were not investigated until very
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recently. A formal description of the problem has been proposed in [9], while a
formalization in terms of flexible timelines appeared in [10], later extended in
[11] to account also for plan controllability issues. Meanwhile, the connection
between timelines and Timed Game Automata has been investigated for the
purpose of plan verification [12,13] and robust plan execution [14]. Also, initial
steps for a complexity-theoretic characterization of the planning problem has
been recently proposed in [15].

As a counterpart of the formal work presented in [11], we have developed
a general purpose timeline-based planning architecture, called Epsl (Extensi-
ble Planning and Scheduling Library), proposing a hierarchy-based approach for
modeling and solving timeline-based problems [16]. Such system has been suc-
cessfully tested during subsequent research projects to support a manufacturing
plant (see [4,17,18]) and an industrial robotics scenario [19]. Through the use in
these projects the Epsl tool has achieved both a level of stability and a relative
maturity.

In this paper, we start addressing the problem of comparing Epsl with other
timeline-based planners and present an analysis that concerns Europa2, a plan-
ning framework developed at Nasa [5] which, given also the wide spectrum of
missions that have used it, can be considered a de-facto state of the art for
timeline-based planning systems. The goal of the paper is to provide the reader
with an initial report about the differences between the two frameworks tak-
ing into account their modeling and solving capabilities. Namely, rather than
focusing on a comparison of performances, we aim at understanding the differ-
ent features of the frameworks in order to highlight weak and strength points
of the approach we are pursuing. A general interesting result is that the devel-
opment of Europa2 seems to have led the NASA’s framework to assimilate
some features of “classical” PDDL-like approach to planning. Conversely, Epsl
framework maintains a modeling and solving approach inspired by the original
idea of timeline-based planning as introduced in [1].

Plan of the Paper. The next section of the paper provides a brief description of
the timeline-based approach also introducing a general formal framework. Then,
we describe the features of the Epsl planning tool and the Europa2 framework.
We also introduce a Rover planning domain exploited as the case study for the
comparison. The following section goes into details for the comparison consid-
ering the planning domain models, the solving approaches and some features of
the generated plans. Finally, the paper ends with some conclusions concerning
the overall work and future developments.

2 Timeline-Based Planning

The modeling assumption underlying the timeline-based planning approach is
inspired by classical Control Theory: the problem is modeled by identifying a
set of relevant features whose behavior over time is to be controlled in order to
obtain a desired set of goals. In this respect, the domain features under control
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are modeled as a set of temporal functions whose values have to be decided
over a temporal horizon. Such functions are synthesized during problem solving
by posting planning decisions. The evolution of a single temporal feature over
a time horizon is called the timeline of that feature. The temporal behavior
of an element of the domain is described in shape of a timeline, which is a
sequence of values (states or actions) the related element of the domain can
assume over time. Thus the set of the timelines of a domain (called the “timeline-
based plan”) describes the behavior of the overall system. A planner synthesizes
timeline-based plans by posting temporal constraints between states or actions
according to some domain rules that model the physical and logical constraints
of the system and its elements.

2.1 Planning with Flexible Timelines

Despite the practical success of timeline-based approach to solve real world prob-
lems, a shared view and a well-defined formalization of the main planning con-
cepts were missing (but see pointers in the introduction). For the purpose of this
paper, we refer to the generic timeline-based planning framework presented by
Cialdea Mayer et al. [11]. A timeline-based planning domain is composed by a set
of features to be controlled over time. These features are modeled by means of
multi-valued state variables that specify causal and temporal constraints charac-
terizing the allowed temporal behavior of such domain features. A state variable
describes the set of values v ∈ V the related feature may assume over time with
their flexible duration. For each value vi ∈ V the state variable describes also
the set of values vj ∈ V (where i �= j) that are allowed to follow vi and the
related controllability property. If a value v ∈ V is tagged as controllable then
the system can decide the actual duration of the value. If a value v ∈ V is tagged
as uncontrollable instead, the system cannot decide the duration of the value,
the value is under the control of the environment. The behavior of state variables
may be further restricted by means of synchronization rules that allow to spec-
ify temporal constraints between different values. Namely, while state variables
specify local rules for the single features of the domain, synchronizations rep-
resent global rules specifying how different features of the domain must behave
together. A planning domain is composed by a set of state variables and a set
of synchronization rules. Specifically, there are two types of state variable in a
planning domain. The planned variables that model the domain features the sys-
tem can control (or partially control). The external variables that model domain
features completely outside the control of the system. External state variables
model features of the environment the system cannot control but that must care
about in order to successfully carry out activities.

Planning with timelines usually entails considering sequence of valued inter-
vals and time flexibility is taken into account by requiring that the durations of
valued intervals, called tokens, range within given bounds. In this regard, a flexi-
ble plan represents a whole set of non-flexible timelines, whose tokens respect the
(flexible) duration constraints. However a set of flexible timelines do not convey
enough information to represent a flexible plan. The representation of a flexible
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plan must include also information about the relations that must hold between
tokens in order to satisfy the synchronization rules of the planning domain. A
flexible plan Π over the horizon H is defined by a set of flexible timelines FTL
and a set of temporal relations R representing a possible choice to satisfy the
synchronization rules. Given the concepts above, a planning problem is defined
by a temporal horizon H, a planning domain D, a planning goal G which spec-
ifies a set of tokens and constraints to satisfy and the observations O which
completely describes the flexible timelines for all the external variables of the
domain. Consequently a flexible plan Π is a solution for a planning problem
if it satisfies the planning goal and if it does not make any hypothesis on the
behavior of the external variables (i.e. the plan does not change the observation
of the problem).

Moreover, given a solution plan Π, it is important to check the controllability
properties of Π in order to verify the executability of the plan. The controllability
problem aims at verifying if there exists a way to execute a plan according to the
possible (temporal) evolutions of the environment [20]. Namely controllability
properties are to define a set of decisions (i.e., a feasible temporal allocation of
all plan’s controllable events/intervals - schedule) that guarantee the execution
of a plan according to the known possible evolutions of the environment (i.e.,
uncontrollable events/intervals of a plan). Different controllability properties
have been introduced differing for the assumptions made on the known evolutions
of the environment [20]. The most relevant property is the dynamic controllability
of a plan which entails that a dynamic execution strategy exists to dynamically
decide the schedule of the controllable intervals/events of a plan by reasoning
on the perceived evolution of the environment. From a planning point of view,
it is also important to check that partial plans maintain such property overall
the solving process.

2.2 EPSL: A General-Purpose P&S Framework

The Extensible Planning and Scheduling Library (Epsl) [16] is the result of a
research effort started after the analysis of different timeline-based systems (e.g.,
[5,6,21]) as well as some previous experiences in deploying timeline-based solvers
for real world domains [22]. Epsl relies on the Apsi framework [8] which provides
the modeling capabilities to represent timeline-based domain. In particular, Epsl
extends the Apsi framework in order to comply with the semantics proposed in
[11]. Epsl provides a modular software library which allows users to easily define
timeline-based planners by specifying strategies and heuristics to be applied in
a specific application.

The key point of Epsl modularity is the planner interpretation. A planner
is a compound element whose solving process is affected by the specific set of
modules applied. Indeed, a Epsl-based planner implements a plan refinement
search by combining several modules responsible for managing different aspects
of the search: (i) a search strategy for managing the fringe of the search space;
(ii) a set of resolvers for detecting and solving different types of flaws on the plan;
(iii) a selection heuristics for analyzing the flaws detected on the current plan
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and selecting the best flaw to solve for plan refinement. Thus the actual behavior
of the solving process of a Epsl-based planner is determined by the particular
strategy, the heuristics and the resolvers set in the configuration of the P&S
application. In this regard, the set of resolvers determines the expressivity of the
framework. Adding new resolvers allows the framework to manage new types of
feature of the domain (e.g., different type of resources) and detect/solve a wider
range of flaws of a plan. Heuristics affect the performances of the solving process
by encapsulating a flaw-selection criteria which guides the plan-refinement pro-
cedure to select the most promising flaw to solve at each iteration. Finally, the
strategies may affect the qualities of the generated plans by encapsulating plan
evaluation criteria that estimate some desired properties of the (partial) plans
(e.g. plan cost).

Several Epsl-based solvers have been deployed in the real-world scenarios
mentioned before [4,18,19]. Specifically, we have applied a hierarchy-based mod-
eling and solving approach which identifies two types of state variables (in addi-
tion to the external ones described in the formalization) [16]. The primitive vari-
ables model the set of low-level tasks that can be directly executed by the system
to control. The functional variables model the complex tasks that can be per-
formed by combining the available primitive ones. Namely functional variables
abstract the behavior of the system by modeling the functional capabilities it
can perform. Synchronization rules define a hierarchical task decomposition which
decomposes the values of functional variables in terms of temporal constraints
between values of primitive variables (complex domains may have several func-
tional layers between the top of the hierarchy and the primitive layer). The
resulting hierarchical structure of the domain is then exploited by the solving
process by means of a domain independent heuristics which allows to improve
the performance of the framework as shown in [16]. During its solving process,
Epsl also performs a pseudo-controllability check of partial plans as a necessary
but not sufficient requirement for guaranteeing dynamic controllability.

The modular architecture of Epsl allows to easily extend the solving capa-
bilities of the framework by adding new modules (e.g. heuristics or resolvers).
Thus Epsl provides an enhanced framework for developing applications in which
designers may focus on single aspects of the solving process without dealing with
all the details related to timeline-based planner implementation.

2.3 The EUROPA2 Framework

With this paper, we start addressing the problem of comparing Epsl with other
timeline-based planners. The natural starting point is to focus on the Europa2
framework which can be considered the de-facto standard for timeline-based
planning. Europa2 is one of the most known timeline-based tools in the liter-
ature, its most known incarnation has been in the DS1 mission [2], attempts
of formalization are given in [23,24], the more recent, public domain version is
described in [5].

Similarly to Epsl, Europa2 models a planning domain by identifying a set
of features to control over time. The modeling approach in Europa2 relies on an
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object-oriented language, the New Domain Description Language – Nddl. An
object models a specific feature of the domain. The behavior of an object can be
described by means of predicates and/or actions that represent respectively states
or operations the related feature can assume or perform over time. However not
all objects behave in the same way. Indeed some types of objects may have
specific rules that constrain their temporal evolutions. A timeline is a particular
type of object whose temporal behavior is constrained to be a sequence of not
overlapping values (i.e. predicates) over time.

Europa2 allows to model also renewable resources and consumable resources
in addition to general objects and timeline objects. Renewable resources represent
shared features of the domain with a limited capacity that can be consumed over
time (e.g., a pool of workers in a manufacturing environment, or a communication
channel). Namely no production of the resource is needed because the amount
of resource consumed by an activity is restored as soon as the activity ends.
Consumable resources represent shared features of the domain with a limited
capacity that can be either consumed or produced over time (e.g., a battery).
In this case production activities are needed in order to restore the capacity of
the resource after consumptions. Objects of the domain declare the predicates or
actions they can assume over time. The temporal behaviors of domain objects
are constrained by means of compatibilities. Broadly speaking a compatibility
represents a general rule composed by the head which represents the predicate
or action the rule applies to, and a body which specifies a set of predicates/values
of other objects together with a set of temporal and parameter constraints that
must hold between the head of the rule and the target of the constraint.

Given a domain specification, a planning problem is composed by a temporal
horizon and an initial configuration. The initial configuration describes the initial
(partial) plan in terms of a set of predicates on the timelines and a set of goals
that can be either actions to perform or predicates to achieve (i.e., a desired final
state). Note that the term timeline is used to refer either to the domain objects
or the temporal evolutions of all the objects of the domain. Europa2 applies
an action-based modeling approach where general objects specify actions to con-
strain the predicates of the timelines of the domain. Thus given a set of domain
objects and compatibilities, the solving process generates the temporal behaviors
of the timelines according to the compatibilities of the planning domain and the
specified goals. The Europa2 solving process relies on a constraint-based engine
to encode a partial-plan refinement procedure. As described in [25], the planner
implements a plan refinement search which starts from the initial configuration
and incrementally refines the related plan by adding and ordering predicates or
actions to the timelines until a final consistent configuration is found. Namely
the refinement process consists of detecting and solving flaws on the current
partial plan. Europa2 is able to manage three types of flaw during the solving
process: (i) open condition flaws represent (sub)goals generated during the plan-
ning process; (ii) ordering flaws represent overlapping predicates of a timeline;
(iii) unbound variable flaws represent variables of the underlying CSP engine
that must be instantiated.
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A feature of Europa2 solver worth being mentioned is that a planning goal
can be either an action to perform or a desired state to reach. In the latter case
the solving process applies all the actions defined in the model to support the
desired state. Namely the solver acts like in PDDL planning where operators are
applied to preconditions according to the desired effects.

3 Comparing EPSL and EUROPA2

In order to assess the actual maturity of Epsl, here an initial comparison with
Europa2 is performed evaluating different aspects. Indeed, the objective is to
compare the two timeline-based frameworks by taking into account aspects con-
cerning the modeling approach, the expressiveness, the solving capabilities and
the features of the generated plans. In this regard, the comparison between Epsl
and Europa2 entails two steps: first, an analysis of different modeling capabil-
ities considering the features of the planning domain models exploited by the
systems; then, a comparison of the differences in the solving approaches shown
by the two planners. To this aim, we consider a well known planning domain,
i.e., a Rover planning domain, as a reference domain to analyze the different
modeling features as well as to discuss the main differences on the planning
processes also considering planning problems of growing complexity.

The Rover planning domain has been extracted from the scenario described
on the Europa2’s web site concerning an autonomous exploration rover1. This
scenario represents a well known application context in AI [26,27]. Specifically,
a rover is a robotic device endowed with a wheeled base to explore the envi-
ronment, an instrument to sample rocks and collect scientific data that can be
communicated back to Earth. The domain consists of a rover which must nav-
igate between known points of interest and collect scientific data by means of
payload instruments (e.g., camera) and communicate such data to Earth. Usu-
ally, some requirements are to be satisfied during the execution of a mission in
order to successfully carry out tasks and guarantee the operational requirements
of the rover. In the Rover domain, the mission plans must satisfy the following
requirements: (i) the instruments of the rover must be set in a safe position (i.e.,
stowed) while the rover is moving; (ii) the rover must be still at a requested
location and place the instrument accordingly in order to take a sample of the
target (e.g., a rock); (iii) the rover must not move when communicating data to
Earth.

3.1 Comparing Modeling Capabilities

Although following the same planning approach, Apsi and Europa2 use differ-
ent ways for modeling the domain features. They rely on two different domain
specification languages to model planning domains, i.e., DDL and Nddl respec-
tively. And, given the Rover planning domain, two different models are then

1 https://github.com/nasa/europa/tree/master/examples/Rover.

https://github.com/nasa/europa/tree/master/examples/Rover
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Fig. 1. Epsl model of the Rover planning domain

analyzed according to the features of the specific languages. A preliminary analy-
sis of the modeling capabilities suggests some main relevant differences concern-
ing the expressiveness of the two frameworks. Indeed, Europa2 allows to model
a wider range of domain features than Epsl. Europa2 can model consumable
resources while Epsl cannot. For instance, Epsl is not able to model the bat-
tery of the Rover planning domain. On the other hand, Europa2 does not
allow to model uncontrollable features in a planning domain while Epsl allows
to specify external variables to model features of the environment to monitor.
Namely, Epsl can model a visibility window with a ground station on Earth in
order to allow the rover control system to plan scientific data communication
tasks within given time periods. For comparison purposes, a revised version of
the Rover scenario is defined in order to obtain planning models of equiva-
lent complexity for the two planners. Thus, the original Rover planning domain
has been simplified by not considering battery management and communication
activities2.

A model of the Rover domain in Epsl. Epsl allows to define planning domain
by defining a set of state variables to be controlled over time and a set of syn-
chronization rules to coordinate their temporal behaviors. Figure 1 shows the
set of state variables defined to model the Rover domain. The figure shows
also temporal constraints entailed by the synchronization rules of the domain
that allow to satisfy the goals (i.e., take samples). In general, Epsl allows to
follow a hierarchical approach to domain modeling which starts by identifying a
set of primitive variables that model the primitive/atomic tasks the system may
directly execute. Then, functional variables are defined to model complex tasks,
called functions, the system can perform over time by composing the primi-
tive ones. Namely, functions represent complex tasks that cannot be directly

2 Examples of the Ddl and Nddl planning specification files for the Rover domain
considered in this paper can be found at the following link: http://tinyurl.com/
TLRoverDomains-zip.

http://tinyurl.com/TLRoverDomains-zip
http://tinyurl.com/TLRoverDomains-zip
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Fig. 2. Europa2-based model of the Rover planning domain

performed by a single component of the system. Rather functions entail a coor-
dination among system’s (internal) devices (i.e., the primitive variables of the
planning domain). Synchronization rules describe the hierarchical decomposi-
tion of the agent’s functions in terms of primitive tasks the system’s devices
can directly handle. Complex domains may require different hierarchical levels.
Then, a hierarchical decomposition may involve both primitive tasks and other
functions. Thus, the Epsl modeling approach uses synchronizations to perform
hierarchical task decomposition similarly to classical HTN planning.

In Fig. 1, the Navigator is a primitive variable which models the navigation
facility of the rover. The At and GoingTo values represent that the rover can
either be still at a known location or moving towards another location. Similarly,
the Instrument State is a primitive variable which models the operating state
of the rover’s instrument. The Rover component of the domain is a functional
variable which models the set of functions the rover may perform. The associated
TakeSample value represents a high-level task (i.e., a function) the rover must
perform by coordinating the behaviors of Navigation, Instrument Location and
Instrument State variables. A dedicated synchronization rule specifies the set of
temporal constraints that must hold to perform the TakeSample function (see
the black dotted arrows in Fig. 1). Then, a consistent (temporal) behavior for
taking a sample (i.e., Sampling value of Instrument State variable) requires that
the rover is located at the target’s location (i.e., At), the instrument is active
(i.e., Unstowed value of Instrument Location variable).
A model of the Rover domain in Europa2. Figure 2 depicts the Europa2
model generated for the Rover planning domain. Europa2 uses an object-
oriented modeling language to represent the features of a planning domain. The
objects of the domain are described in terms of predicates and actions. Pred-
icates represent the states that objects can assume over time. Actions repre-
sents the operations that objects can perform over time. There are two types of
objects that compose a planning domain. Timeline Objects model the features
of a domain that may change over time, e.g. the physical position of the rover
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or the state of an instrument. Objects model the set of actions that can be per-
formed to change the state of one or a set of Timeline Objects, e.g. the action
for moving the rover from an initial position to a destination position. Then,
for each action, compatibilities specifies the set of constraints that allow to build
the plan. Namely, compatibilities specify the constraints affecting the temporal
evolutions of one (or more) Timeline Object(s), e.g. a compatibility for a move
action specifies that the rover must be at the initial position before the action
start, and that must be at the destination position after the execution of the
action.

Considering the model in Fig. 2, the instrument facility is modeled by means
of two timelines, i.e., the InstrumentState and the InstrumentLocation timelines.
They model the set of states and positions the instrument may assume over time.
The Instrument object provides actions for controlling the device. The predicates
of the InstrumentState timeline model the “operational status” of the device over
time. The predicate Placed means that the instrument is placed on target. The
predicate Sampling means that the instrument is sampling a particular target.
Similarly the predicates of InstrumentLocation timeline model the position of
the device over time. The predicate Stowed means that the instrument is stowed
and it cannot perform sampling operations. The predicate Unstowed means that
the instrument is ready to use. The actions of Instrument object model oper-
ations needed to properly manage the device. The action Unstow represents
the operation which allows to “activate” the device by changing the position
of the instrument from Stowed to Unstowed. Similarly the action TakeSample
represents the operation which allows the device to actually take a sample of a
desired target. The black dotted arrows in Fig. 2 represent some of the temporal
constraints required by the compatibilities defined on the corresponding actions
of the domain. In this regard it is important to point out that actions have
conditions and effects that must hold to apply and execute the action. Effects
represent predicates that the execution of the action adds to the plan. Condi-
tions represent predicates that must be part of the plan in order to “execute” the
action. This is an important aspect to take into account while modeling planning
problems with Europa2. Indeed, an action-based planning perspective is actu-
ally pursued while solving problems (see next section for further considerations).
That is, the Europa2 planner checks conditions and effects of actions in order
to find a suitable sequence of actions that allow to build timelines and satisfy
the desired goals.

Also, some differences can be noted between the formalization of Europa2
given in [24] and its actual implementation. These differences mainly concern
the compatibility specification and their expressiveness w.r.t. synchronizations of
Epsl. Indeed, from a theoretical point of view, compatibilities are less expressive
than synchronizations because they do not allow to specify constraints between
tokens of the rule’s body. Namely, a compatibility can only specify constraints
between the head of the rule and tokens in the rule’s body. Moreover, unlike
Epsl, Europa2 does not use quantified Allen’s temporal relations. However, the
“concrete implementation” of the framework overcomes all these (theoretical)
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limitations by exploiting the underlying CSP engine. Indeed, it is possible to
explicitly constrain compatibilities’ tokens by specifying CSP’s linear constraints
between the tokens’ temporal variables (i.e., tokens time point and duration
variables). For instance, it is possible to specify a before temporal constraint
between two tokens in the body of a compatibility by adding a linear constraint
between the end time of the first token and the start time of the second token
(e.g. endT ime(a) < startT ime(b) where a and b are tokens declared into the
body of a compatibility).

3.2 Comparing Solving Capabilities and Generated Plans

Both Epsl and Europa2 apply a plan refinement procedure which starts with
an initial partial plan and some goals to plan for. The solving process itera-
tively refines the plan by solving flaws until a complete and valid plan is found
[16,25]. However there are some relevant differences worth to be underscored
(also related to the different modeling approaches). Given the Rover plan-
ning models described in the previous section, we have defined several problem
instances by considering an increasing number of planning goals (i.e., the number
of targets to sample) to compare the solving capabilities of Epsl and Europa2.
On these problems, the collected results show that Epsl performs rather better
than Europa2 in terms of deliberation time. Obviously, this is not sufficient to
support any general claim about the actual effectiveness of the planning systems.
Providing a complete analysis entails to refer a set of benchmark domains with
multiple problem instances for timeline-based planning and, to the best of our
knowledge, such benchmark is still missing. Thus, a thorough comparison of the
solving performances provided by the two frameworks is kept outside the scope of
this work and left as future work. In this paper, the main objective of the exper-
iments is to check the suitability of the defined models and assess the features
of the plans generated by the two frameworks. Therefore, the most important
result elicited from the comparison concerns, again, the different interpretation
of timeline-based planning in Europa2 and Epsl frameworks. Indeed, despite
they share the same conceptual origin (see [1]), they have developed two different
ways of handling timeline-based problems.

The experimental campaign shows a first difference between Epsl and
Europa2 concerning the interpretation of a solution plan. Namely, Epsl gener-
ates plans providing a set of timelines as a continuous sequences of (temporally)
ordered tokens and a set of temporal constraints that relate their start and end
times, while Europa2 interprets timelines as “discrete” sequence of ordered val-
ues. Namely, timelines may contain gaps according to Europa2’s interpretation.
The actual presence of gaps on the plans generated by Europa2 depends from
the planning model specification provided as input. The user is then responsible
for specifying a set of compatibilities that avoid gaps in the solution plans. On
the contrary, the responsibility of filling gaps in Epsl is on the planning algo-
rithm. Then, Epsl exploits state variables of the planning domain to guarantee
consistent behaviors of the domain features. And every time a gap (i.e., a tem-
poral interval with no value) is detected between two tokens, the Epsl solving



Steps in Assessing a Timeline-Based Planner 519

algorithm checks the state variable specification to extract the allowed transition
between the values involved. This interpretation relies on the assumption that a
gap represent an uncertainty about the actual behavior of the feature because it
could assume any value in the related unbounded temporal intervals. A key point of
this aspect is that the planner is not only responsible for applying the constraints
specified by the user but it is also responsible for ensuring consistent transitions
between the values according to state variable specification. In Europa2 such a
behavior must be achieved by specifying a set of actions and related compatibil-
ities that model the possible transitions of the objects. Such an operation is not
always simple and, thus, the correctness of the generated plans strongly relies on
the expertise of the user actually modeling the planning domain.

An interesting feature of the Europa2 modeling approach is the use of general
objects to model actions of the domain. Objects can be seen as relaxed timelines
where tokens are allowed to overlap in time. Thus, Europa2 planner can gener-
ate plans with parallel actions if they do not violate the related compatibilities’
constraints. On the contrary, Epsl relies on state variables to model functional
variables and the related tasks. Thus, complex tasks cannot overlap in time even
if the related synchronization rules would allow parallelism. Let us suppose, for
example, that the rover of the planning domain is endowed with two instruments
and that the rover must sample two targets at the same location. In such a sce-
nario, the rover should be able to perform the two TakeSample tasks in parallel.
Europa2 models the TakeSample as an action of an object. Thus, the planner can
generate plans where the rover performs the two planning goals (i.e., two Take-
Sample actions) in parallel by allowing the related tokens to overlap. Conversely,
Epsl models TakeSample as a value of a functional variable (i.e., a function of the
rover) and the related tokens of the timeline are not allowed to overlap. Thus, the
planner can only generate plans where the two goals are in sequence.

3.3 Easy of Use

As discussed above, a main general comment is that Europa2 seems to have
been influenced by “classical” PDDL-like planning techniques that lead the
framework move towards an action-based approach rather than a “behavior-
based” approach to planning with timelines. This mainly affect the modeling
approach of Europa2 framework. The user must be aware of the solving process
of the framework defining a suitable set of actions (and compatibilities) that
allow the planner to build a valid plan. As a consequence, the user is sup-
posed to completely specify how the planner can build the timelines of the plan.
Conversely Epsl approach is compliant with the original idea of timeline-based
planning where the focus is on the temporal behavior of the domain features to
control. Indeed, state variables model the features of the domain by describing
how they can autonomously evolve over time. Synchronizations allow the user
to constrain these possible evolutions (i.e., temporal behaviors) to coordinate
components and realize some complex operations. Thus the user is supposed
to “simply” declare the values the domain components must assume over time
in order to realize the desired (complex) behavior. The Epsl solving process is
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then responsible for building the timelines according to the requirements of the
domain and the desired goals.

As an example, in the Rover domain, the Europa2 user is supposed to
provide a complete specification while the Epsl user can simply declare that the
rover must be at the target’s location during sampling operations in order to suc-
cessfully perform a TakeSample task. Then, in Epsl it is not necessary to declare
the “rule” which allows the rover to reach the target’s locations. Such a rule is
encoded by the Navigator state variable. And the Epsl planner is responsible
for checking whether the rover must move or not towards the desired location,
and building the related timeline accordingly. In other words, as envisioned in
the original idea of timeline-based planning [1], the crucial point is that users of
the planning framework are not supposed to be aware of the internal function-
ing of the particular planning algorithm/technique adopted to deploy effective
P&S applications. Users can be an expert of the particular application domain
without being forced to know the details of the solving mechanism of the plan-
ner. This is a very important feature of a planning framework and it represent a
long-term goal we are pursuing in order to design a general purpose tool which
can be easily exploited by end-users. Thus most of the Europa2 modeling and
solving capabilities rely on the expertise of the user and, as a consequence, a deep
knowledge of the solving mechanism of the Europa2 framework is requested in
order to develop effective P&S applications. Consequently we may argue that
Europa2 approach to timeline-based planning seems to be harder to apply than
the Epsl approach. However it is important to point out that Europa2 gives
to the (skilled) users a total control of the plan generation process.

4 Conclusions

In this paper we have summarized some recent results in the development of a
general-purpose timeline-based planning framework, called Epsl. Then we have
described the approach followed to compare Epsl with Europa2, the most
known timeline-based planning framework in the literature. We have analyzed
the modeling and solving capabilities of the frameworks by taking into account a
Rover domain, which represents a “classical” planning domain extracted from
a real-world application scenario. Despite Epsl and Europa2 share the same
origin of timeline-based planning [1], the evaluation has pointed out some rele-
vant differences between the two frameworks. Indeed, we have found significant
differences in terms of both the modeling capabilities and the solving approach.
After the assessment, we can conclude that the most relevant difference between
the frameworks concerns the usage and the level-of-expertise needed to develop
effective P&S applications. In our opinion, Epsl unlike Europa2, does not
require a deep understanding of the solving process to design P&S applications.
Thus Epsl seems to be easier to use than Europa2 for end-users that may have
a deep knowledge of the specific application domain but not a good background
in AI planning and the related planner applied. However the assessment has also
pointed out some deficiencies in Epsl that we are going to address in the next
future to improve the framework (e.g., introducing consumable resources and
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taking into account functional variables concurrency issue). This paper provides
an initial report that aims at starting an evaluation of the features and capa-
bilities of the Epsl framework we are developing. Future work will extend the
evaluation by addressing performance features with other timeline-based plan-
ning systems and taking into account also the “new generation” of planning
frameworks like Chimp [28] and Fape [29].
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