
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CO-REWARDING: STABLE SELF-SUPERVISED RL FOR
ELICITING REASONING IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While reinforcement learning with verifiable rewards (RLVR) is effective to im-
prove the reasoning ability of large language models (LLMs), its reliance on human-
annotated labels leads to the scaling up dilemma, especially for complex tasks.
Recent self-rewarding methods investigate a label-free alternative to unlock the
reasoning capabilities of LLMs, yet they frequently encounter the non-negligible
training collapse issue, as the single-view supervision signal easily forms the
self-consistent illusion, yielding the reward hacking. Inspired by the success of
self-supervised learning, we propose Co-rewarding, a novel self-supervised RL
framework that improves training stability by seeking complementary supervision
from another views. Specifically, we instantiate Co-rewarding in two ways: (1) Co-
rewarding-I is a data-side instantiation that derives reward signals from contrastive
agreement across semantically analogous questions; and (2) Co-rewarding-II is a
model-side instantiation that maintains a slowly-updated reference teacher with
pseudo labels to realize self-distillation. Intuitively, such instantiations introduce
different levels of discrepancy to increase the difficulty of training collapse on
trivial reasoning solutions. We also explore their orthogonally combined version to
further boost the performance. Empirically, Co-rewarding exhibits stable training
across various setups, and outperforms other self-rewarding baselines by +3.31%
improvements on average on multiple mathematical reasoning benchmarks, es-
pecially by +7.49% on Llama-3.2-3B-Instruct. Notably, Co-rewarding reaches
or even surpasses RLVR with ground-truth (GT) label in several cases, such as a
Pass@1 of 94.01% on GSM8K with Qwen3-8B-Base remarkably higher than GT.

Qwen3-8B-Base Llama-3.2-3B-Instruct
20

40

60

80

100

G
SM

8K
 P

as
s@

1
(%

)

Before RL
Ground Truth
Self-Certainty
Entropy

Majority-Voting
Co-rewarding-I
Co-rewarding-II

0 50 100 150
Step

20

40

60

M
AT

H
 P

as
s@

1
(%

)

Qwen3-1.7B-Base (MATH)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

80

M
AT

H
 P

as
s@

1
(%

)

Qwen3-8B-Base (DAPO-14k)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Figure 1: Performance overview. Reasoning comparison of Pass@1 value and validation curves.
Our Co-rewarding achieves better and more stable (without collapse) training than other baselines.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Dubey et al., 2024; Qwen et al., 2025) have
demonstrated remarkable general-purpose capabilities in a wide range of linguistic tasks (Hendrycks
et al.). To further elicit their reasoning ability in complex scenarios, reinforcement learning with
verifiable rewards (RLVR) (Shao et al., 2024; Yu et al., 2025) is developed for post-training with
externally verifiable signals like program execution results (Luo et al., 2025) or mathematical
equivalence (Shao et al., 2024). Despite the impressive improvement, the reliance on high-quality
ground-truth (GT) labels of RLVR remains as a major bottleneck (Ouyang et al., 2022; Bai et al.,
2022) in the spirit of the scaling law, which subsequently motivates the emerging exploration of
self-rewarding methods with unlabeled data (Zhao et al., 2025b; Zuo et al., 2025; Zhang et al., 2025b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

One prominent line of such label-free methods leverages the internal signals (e.g., entropy (Zhang
et al., 2025c; Prabhudesai et al., 2025) and self-certainty (Zhao et al., 2025b)) to strengthen the
confidence of the model in reasoning. Another critical line seeks the answer-level consensus (Zuo
et al., 2025; Shafayat et al., 2025) to construct pseudo labels as reward basis. while effective initially,
these self-rewarding approaches frequently exhibit non-negligible training collapse (Zhang et al.,
2025d) (indicated as right of Figure 1), which limits the scalability of such label-free training manners.

The collapse phenomenon stems from reward hacking (Laidlaw et al., 2025) under self-consistent
illusion: the reward signal is internally produced by the policy model from a single-view data
perspective, which is easily trapped by trivial solutions along with training (see Figure 7). Specifically,
for entropy- or certainty-based rewards, the policy model may concentrate probability mass on a small
set of tokens and produce repetitive strings that minimize entropy or maximize self-certainty (Zhang
et al., 2025d). And for consensus-based rewards, the policy model can converge to a consistent yet
incorrect answer that attains high consensus across rollouts (Shafayat et al., 2025). Overall, the policy
model continually reduces uncertainty without sustained gains in correctness, inflating the reward but
eroding exploration and diversity. It ultimately collapses when a persistent hacking strategy emerges.

To this end, we introduce Co-rewarding, a self-supervised RL framework that seeks complementary
supervision from another views, inspired by self-supervised learning (Chen et al., 2020; Grill et al.,
2020; Caron et al., 2021). Conceptually, one fundamental characteristic of self-rewarding methods
lies on that supervision intertwined with current policy on single-view outputs, for which we propose
to seek reasoning invariance across different views (see Figure 2). Specifically, we investigate two
initiations of Co-rewarding: (1) Co-rewarding-I: a data-side initiation that constructs rewards via
contrastive agreement across semantically analogous questions, each providing pseudo labels for
the other; and (2) Co-rewarding-II: a model-side initiation that introduces an extra teacher with
dynamically updated policy and provides stable pseudo-labels insulated from current online policy.
Additionally, we also explore the combined instantiation, Co-rewarding-III, which integrates data-side
cross-supervision with model-side self-distillation to further boost the performance.

By introducing cross-view supervision on data and decoupling the reward signal from the current
policy, Co-rewarding effectively mitigates training collapse and yields stable self-supervised RL
training. Extensive experiments across multiple datasets validate the stability and superiority of
Co-rewarding, compared to several recent baselines across several LLM families including Qwen3/2.5
and Llama. Notably, both Co-rewarding-I and -II reach or exceed training with ground-truth labels in
several settings, such as achieving up to 94.01% Pass@1 on GSM8K. Our main contributions are

• We introduce a new perspective, from self-supervised learning, to elicit reasoning capability via
another views of supervision, which prevents the model from training collapse (Section 3.1).

• We propose Co-rewarding, a novel self-supervised RL framework that is initiated by the data and
model sides to construct self-generate rewards to promote stably reasoning elicitation (Section 3.2).

• We empirically demonstrate the general effectiveness of Co-rewarding to achieve superior reasoning
performance on LLMs, and also present various ablation studies and further analyses (Section 4).

2 PRELIMINARY

Problem Setups. Given a LLM πθ parameterized by θ and a dataset D of question–answer pairs
(x, a), the model generates a response y ∼ πθ(· | x) autoregressively. Let y = (y1, . . . , yn), where
each token is sampled as yt ∼ πθ(· | x, y<t) given the generated prefix y<t. We consider the LLM
outputs a stepbystep reasoning trace and a final answer. A verifiable reward function r(a, y) compares
the extracted answer ans(y) with the ground truth a as follows:

r(a, y) =

{
1 If ans(y) is correct with answer a,
0 If ans(y) is incorrect with answer a.

(1)

Then, the general objective of training LLM for reasoning via RLVR (Shao et al., 2024; Yu et al.,
2025) can be formulated with the policy model πθ as follows:

max
πθ

E(x,a)∈D, y∼πθ(x)[r(a, y)− β ·KL[πθ(y|x)||πref(y|x)]], (2)

where πref is an initial reference policy, and β is a coefficient controlling the KL divergence to prevent
excessive deviation from the reference model. Intuitively, the training target is to maximize the
reward in passing specific reasoning questions while maintaining the general capability of LLM.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of Co-rewarding framework: Unlike single-view methods that rely only on
internal reward signal on original question (a), Co-rewarding introduces complementary supervision.
On the data side (b), paraphrased questions yield pseudo-labels for cross-reference. On the model
side (c), teacher model isolated from current policy provides stabilized pseudo-labels for updates.

Group Relative Policy Optimization (GRPO). In practice, we adopt GRPO (Shao et al., 2024), a
widely used and representative optimization method for objective Eq. (2) that estimates the advantage
by normalizing the reward across multiple sampled outputs for the same question. Specifically, for a
given question x, GRPO samples G outputs from the old policy πold as {yi}Gi=1 ∼ πold(·|x). It then
computes a reward for each output yi via a deterministic reward function, forming a group of rewards
{r(a, yi)}Gi=1 to estimate the advantage Âi as follows:

Âi =
r(a, yi)−mean({r(a, yi)}Gi=1)

std({r(a, yi)}Gi=1)
. (3)

Then, the target policy is optimized by maximizing the advantage while ensuring the policy model
remains close to the reference policy:

JGRPO(θ) = E(x,a)∈D,{yi}G
i=1∼πθold (·|x)

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

(
min

[
ci,t(θ)Âi,t, clip(ci,t(θ), 1− ϵ, 1 + ϵ)Âi,t

]
− βDKL(πθ||πref)

)
︸ ︷︷ ︸

Rθ(Â)

, (4)

where

ci,t(θ) =
πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)
, DKL(πθ||πref) =

πθ(yi,t|x, yi,<t)

πref(yi,t|x, yi,<t)
− log

πref(yi,t|x, yi,<t)

πθ(yi,t|x, yi,<t)
− 1. (5)

Note that the clip(·, 1− ϵ, 1 + ϵ) in Eq. (4) is used to ensure that updates do not deviate excessively
from the old policy by bounding the policy ratio between 1− ϵ and 1+ ϵ in a risk functionR(Â). We
also provide a comprehensive discussion on additional training variants for RLVR, such as DAPO (Yu
et al., 2025) and Dr. GRPO (Liu et al., 2025a), which we leave in Appendix A due to space limits.

3 CO-REWARDING

In the following, we present Co-rewarding in detail, a novel self-supervised RL framework for LLM
to elicit the latent reasoning capability through the intuition of seeking complementary supervision.

3.1 CONCEPTUAL PHILOSOPHY: INVARIANCE BEYOND THE SINGLE-VIEW

At the core of self-rewarding methods lies a fundamental tension: the model derives supervisory
signals from its own outputs, inevitably intertwining supervision with policy and risks collapse. True
reasoning competence, however, cannot be reduced to the mere correctness of isolated answers. It

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

should instead reflect invariance that extends beyond the single-view output for consistency. This calls
for training signals that remain valid across different data views or persist throughout the temporal
evolution of the model, providing a more reliable basis on which self-supervised RL can rely. In this
aspect, stability arises from invariance that prevents reasoning against superficial variations in data
and guides the model towards increasingly valid reasoning trajectories throughout training.

This philosophy yields our Co-rewarding framework, whose core idea is to ground self-supervised
RL in invariance rather than the suspicious single-view feedback.We instantiate it in two orthogonal
ways and one combined version: by enforcing analogy-invariance on the data side (Co-rewarding-I),
by disentangling supervision through temporal invariance on the model side (Co-rewarding-II), and
by integrating both mechanisms in a unified instantiation (Co-rewarding-III).

3.2 TWO INITIATIONS OF CO-REWARDING FRAMEWORK

Co-rewarding-I: on the Data Side. Inspired by contrastive learning, such as SimCLR (Chen et al.,
2020) and InfoNCE (Oord et al., 2018), where two views of the same data are encouraged to have
similar representations, we hypothesize an analogy-invariance inductive property of LLMs in eliciting
reasoning capacity: questions that share the same mathematical essence but differ in surface form (e.g.,
via paraphrasing, background substitution, or reformatting) should elicit the comparably valid and
similar reasoning results. This forms the foundation for a self-referential training signal: contrastive
agreement among different question variants can serve as an optimization proxy. Co-rewarding-I
defines contrastive agreement as a principle that aligns model reasoning outputs, treating consistent
inter-view agreement as a signal for valid inference. This complements single-view self-rewarding
strategies by introducing a form of collective validity verification with broader input consideration.

Building upon the discussed contrastive agreement, we initiate our Co-rewarding-I as illustrated in
Figure 2. Formally, its learning objective can be formulated as follows based on GRPO:

JCo-rewarding-I(θ) = Ex∈D,{yi}G
i=1∼πθold (·|x)

Rθ(Â)︸ ︷︷ ︸
Joriginal(θ)

+ Ex′∈D′,{yi
′}G

i=1∼πθold (·|x′)Rθ(Â
′)︸ ︷︷ ︸

Jrephrased(θ)

,
(6)

where the relative advantages are estimated by the cross-refereed supervision as follows:

Âi =
r(y′v, yi)−mean({r(y′v, yi)}Gi=1)

std({r(y′v, yi)}Gi=1)
, Â′

i =
r(yv, y

′
i)−mean({r(yv, y

′
i)}Gi=1)

std({r(yv, y′i)}Gi=1)
. (7)

Specifically, given a set of original questions, we utilize the rephrased version that keeps the semantical
equivalence for the model to respond, and then collect the self-generated pseudo-labels based on the
majority voting mechanism (Shafayat et al., 2025) as follows to supervise learning on the counterparts,

yv ← argmax
y∗

G∑
i=1

1[ans(yi) = ans(y∗)], y′v ← argmax
y∗

G∑
i=1

1[ans(y′i) = ans(y∗)]. (8)

The overall pipeline can be viewed as a dual-path structure with cross-reference in the reward shaping
process, it may also be compatible with other self-generated feedbacks (Wang et al., 2022) on the
output-side information due to the generality of the core idea. While in the current version, we choose
the majority voting mechanism in the implementation for the empirical effectiveness and simplicity.

We summarize the pseudo code of Co-rewarding-I in Algorithm 1. Our contrastive objective operates
on self-generated reasoning answers, encouraging the model to align its reasoning results to different
questions that share the similar semantic intent. Formally, for each input question, the signal of
Co-rewarding-I increases when the model’s output is consistent with the majority answer obtained
from its analogical counterparts, and decreases when it diverges. This contrastive agreement promotes
semantic invariance, implicitly increasing the difficulty of reaching trivial solutions to obtain the
reward (e.g., achieving the arbitrary answers but consistent on single input) by involving data-side
analogy. We leave a more intuitive case study in the Appendix D.12 to present the rephrased questions.

Co-rewarding-II: on the Model Side. On the data side, our Co-rewarding-I provides complementary
supervision by involving question analogy, while its pseudo-labels are still generated by the current
online policy and may depend on rephrasing quality; consequently, supervision remains partially
entangled with the policy. Inspired by self- or weakly supervised methods like the representative

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

BYOL (Grill et al., 2020), DINO (Caron et al., 2021), and Co-teaching (Han et al., 2018), which share
the common intuition of introducing an auxiliary network to provide supervision beyond the current
model, we initiate Co-rewarding-II from another view of complementary supervision: a model-side
strategy that sources pseudo-labels from a teacher reference, which disentangle the self-supervision
reward from the online policy. To avoid the heavy cost of adding and maintaining another LLM in
training, Co-rewarding-II reuses the GRPO reference model as the teacher to generate the rollouts and
produce pseudo-labels. In particular, the teacher is dynamically updated as an exponential moving
average (EMA) of the student policy to ensure pseudo-label quality improving as the policy improves.

Intuitively, we illustrate Co-rewarding-II in Figure 2. Its learning objective can be formulated as:

J (k)
Co-rewarding-II(θ) = E

x∈D,{yi}Gi=1 ∼ π
(k)
θold

(·|x),︸ ︷︷ ︸
policy student rollout

{ỹj}G̃j=1 ∼ π̃
(k)
ref (·|x)︸ ︷︷ ︸

reference teacher rollout

Rθ(Â
(k)), (9)

where {yi}Gi=1 are policy rollouts and {ỹj}G̃j=1 are reference teacher rollouts at the k-th training step,
and the estimated advantageR(Â(k)) is computed as follows:

Â
(k)
i =

r(ỹ
(k)
v , yi)−mean({r(ỹ(k)v , yi)}Gi=1)

std({r(ỹ(k)v , yi)}Gi=1)
, ỹ(k)v = argmax

y∗

G̃∑
j=1

1[ans(ỹj) = ans(y∗)], (10)

where the pseudo label ỹ(k)v is obtained via majority voting from reference rollouts, and the reference
model is updated via an EMA with the policy to play a role of a slowly updated teacher:

π̃
(k)
ref ← α(k) · π̃(k−1)

ref + (1− α(k)) · π(k)
θold

, α(k) = 1− (αend − αstart)

2

(
1 + cos

(
πk

K

))
(11)

where α(k) ∈ (0, 1) is the EMA weight, updated according to a cosine annealing schedule from
αstart to αend, such that the teacher is updated rapidly at the beginning and progressively more slowly,
thereby evolving smoothly and remaining temporally decoupled from the current online policy.

We summarize the pseudo code of Co-rewarding-II in Algorithm 2. This design can be interpreted
as a kind of self-distillation, in which a slowly updated teacher supervises a faster-moving student.
Such a paradigm breaks the single-step on-policy feedback loop inherent in existing self-rewarding
methods (Zhao et al., 2025b; Prabhudesai et al., 2025; Shafayat et al., 2025), raises the cost of
exploiting trivial low-entropy shortcuts or spurious consensus, and offers a stable reward source
without introducing an additional LLM or optimizer. In this way, it effectively overcomes reward
hacking and prevents training collapse by implicitly seeking a temporal invariance for true reasoning.

Co-rewarding-III: Data-side + Model-side. Given that Co-rewarding-I and Co-rewarding-II provide
two complementary perspectives for constructing stable self-supervised signals, a natural exploration
is to integrate both data-side cross-supervision and model-side self-distillation into a unified instanti-
ation. We introduce Co-rewarding-III, which leverages analogy-invariance between each original
question and its rephrased counterparts while producing pseudo-labels from the EMA-updated refer-
ence teacher. Specifically, the teacher generates rollouts for both original and rephrased questions,
and the resulting pseudo-label from one side is used to supervise the other. This combination further
boosts the resistance of the reward signal to hacking, promoting more stable training dynamics.

Formally, its learning objective can be formulated as:

J (k)
Co-rewarding-III(θ) = E

x∈D, {yi}Gi=1 ∼ π
(k)
θold

(·|x),︸ ︷︷ ︸
policy student rollout from original question

x′∈D′, {ỹ′j}G̃j=1 ∼ π̃
(k)
ref (·|x

′)︸ ︷︷ ︸
reference teacher rollout from rephrased question

Rθ(Â
(k))

+ E
x′∈D′, {y′i}Gi=1 ∼ π

(k)
θold

(·|x′),︸ ︷︷ ︸
policy student rollout from rephrased question

x∈D, {ỹj}G̃j=1 ∼ π̃
(k)
ref (·|x)︸ ︷︷ ︸

reference teacher rollout from original question

Rθ(Â
′(k)), (12)

where the first term supervises the original question via pseudo labels generated from its rephrased
counterpart, and the second term, symmetrically, supervises the rephrased question via pseudo
labels generated from the original question. The estimated advantagesRθ(Â

(k)) andRθ(Â
′(k)) are

computed in the similar way as in Co-rewarding-I and Co-rewarding-II. The reference teacher is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main Results (%) of Co-rewarding and baselines trained on MATH. Cell background
colors indicate relative performance: darker colors denote better results within each model group.
Additional results of Qwen2.5-3B/7B and Qwen3-1.7B-Base trained on MATH refer to Table 7.

Training Set: MATH Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Before RL 72.4 27.82 20.93 3.75 23.41 54.75 50.89 52.92
- GT-Reward (Shao et al., 2024) 82.6 87.26 54.22 17.15 30.52 63.25 52.78 57.11

- Self-Certainty (Zhao et al., 2025b) 80.2 80.74 50.75 15.73 27.20 64.38 50.98 54.17
- Entropy (Prabhudesai et al., 2025) 80.2 87.19 49.54 15.63 29.38 62.00 51.81 54.86
- Majority-Voting (Shafayat et al., 2025) 79.8 89.76 49.09 15.83 30.52 63.38 51.80 56.93
- Co-rewarding-I (Ours) 81.2 93.70 51.20 15.10 30.81 66.00 55.79 59.95
- Co-rewarding-II (Ours) 80.8 92.42 53.46 14.48 30.23 62.83 60.70 57.50
- Co-rewarding-III (Ours) 81.4 90.98 54.07 13.33 30.71 63.75 53.69 59.10

Qwen3-4B-Base
Before RL 71.2 26.15 21.08 4.58 11.00 38.88 46.43 47.23
- GT-Reward (Shao et al., 2024) 78.6 89.76 51.20 15.00 26.07 55.38 47.80 53.96

- Self-Certainty (Zhao et al., 2025b) 71.6 71.79 38.86 11.67 22.37 57.00 48.15 48.93
- Entropy (Prabhudesai et al., 2025) 77.0 88.10 47.44 10.94 25.59 52.88 50.44 49.90
- Majority-Voting (Shafayat et al., 2025) 77.4 90.07 45.33 10.10 26.54 57.50 48.78 54.35
- Co-rewarding-I (Ours) 78.8 91.28 46.08 13.85 26.64 56.50 50.35 53.26
- Co-rewarding-II (Ours) 78.0 88.86 45.93 12.17 26.25 55.00 51.30 53.88
- Co-rewarding-III (Ours) 78.6 90.75 48.80 12.71 26.16 56.00 49.23 53.08

Llama-3.2-3B-Instruct
Before RL 39.2 65.73 10.54 3.75 9.86 25.37 57.32 31.14
- GT-Reward (Shao et al., 2024) 47.0 77.94 22.14 11.67 9.57 31.87 47.51 34.32

- Self-Certainty (Zhao et al., 2025b) 43.4 74.91 18.83 6.88 9.95 25.87 54.88 33.34
- Entropy (Prabhudesai et al., 2025) 43.4 66.19 20.18 6.56 11.66 24.62 54.70 33.52
- Majority-Voting (Shafayat et al., 2025) 46.8 78.77 20.48 9.27 11.00 31.25 47.96 33.18
- Co-rewarding-I (Ours) 50.2 79.45 23.80 10.00 11.28 29.88 48.89 33.77
- Co-rewarding-II (Ours) 49.8 79.30 22.59 10.73 10.80 30.63 49.90 33.61
- Co-rewarding-III (Ours) 51.6 79.91 25.45 10.42 10.43 32.50 46.37 34.50

also updated via EMA, as Eq. (11) in Co-rewarding-II. The other formulations and pseudo code of
Co-rewarding-III are supplemented in Appendix B.1 and Algorithm 3.

Remark 1. Overall, the two instantiations of Co-rewarding embody our core idea from different
perspectives: I leverages data-side analogy-invariance to provide cross supervision, while II employs
model-side self-distillation to stabilize learning. Together, they reflect that stable self-supervised
reasoning elicitation can emerge from both the diversity of data perspectives and the disentanglement
of supervision signals. Co-rewarding-III further explores an orthogonally combined instantiation
of these two sides. Moreover, Co-rewarding offers a flexible framework, in which key components,
such as pseudo-labeling strategies, data rephrasing techniques, teacher model update rules, and policy
optimization, can be seamlessly substituted with other advanced approaches (Yu et al., 2025).

4 EXPERIMENTS

4.1 SETUPS

Backbone Models and Baselines. We employ a diverse set of LLMs from different families and
scales in our experiments, including the Qwen2.5 series (Qwen2.5-3B/7B) (Qwen et al., 2025),
the Qwen3 series (Qwen3-1.7B/4B/8B-Base) (Yang et al., 2025), and the Llama3 series (Llama-
3.2-3B-Instruct) (Meta, 2024). Beyond the vanilla GRPO that utilized the GT label for rewarding,
we compare our Co-rewarding against several recent state-of-the-art (SoTA) self-reward reasoning
approaches, denoted as Self-Certainty (Zhao et al., 2025b), Entropy (Prabhudesai et al., 2025) and
Majority Voting (Shafayat et al., 2025). The details of all baselines are summarized in Appendix C.1.

Implementation Details. We implement our algorithms based on the VeRL framework (Sheng
et al., 2024), and experiments are conducted on 4 × H100-80GB GPUs. For our experiments, we
totally use three training sets: MATH (Hendrycks et al., 2021) (7,500 questions), DAPO-14k (Yu
et al., 2025) (en-version of DAPO-Math-17k, about 14.1k questions), and OpenRS (Dang & Ngo,
2025) (7,000 questions). During RL training, we use a global batch size of 128, set the number of
rollouts to G = G̃ = 8 per question for Co-rewarding-I, II and III, and adopt AdamW with a learning
rate of 3× 10−6. In Co-rewarding-I and III, question rephrasing is performed by the open-source

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Main Results (%) of Co-rewarding and baselines trained on DAPO-14k. Cell background
colors indicate relative performance: darker colors denote better results within each model group.
Additional Results of Qwen3-8B-Base and Qwen3-4B-Base trained on OpenRS refer to Table 8.

Training Set: DAPO-14k Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Before RL 72.4 27.82 20.93 3.75 23.41 54.75 50.89 52.92
- GT-Reward (Shao et al., 2024) 86.6 87.19 61.75 24.58 30.52 63.75 53.11 60.27

- Self-Certainty (Zhao et al., 2025b) 82.0 77.63 49.85 15.00 27.77 60.75 50.58 54.24
- Entropy (Prabhudesai et al., 2025) 79.4 80.82 45.48 15.00 30.14 62.00 51.56 54.57
- Majority-Voting (Shafayat et al., 2025) 78.6 91.66 50.00 11.25 30.33 61.62 51.54 55.65
- Co-rewarding-I (Ours) 78.4 88.02 51.20 11.88 29.38 62.50 50.17 55.39
- Co-rewarding-II (Ours) 80.6 94.01 54.37 16.35 31.66 67.12 53.31 59.83
- Co-rewarding-III (Ours) 81.6 92.27 53.77 17.71 32.70 66.75 55.85 60.02

Qwen3-4B-Base
Before RL 71.2 26.15 21.08 4.58 11.00 38.88 46.43 47.23
- GT-Reward (Shao et al., 2024) 83.6 85.14 52.86 20.63 18.58 56.88 47.70 55.35

- Self-Certainty (Zhao et al., 2025b) 68.4 44.81 35.39 8.85 25.88 50.12 45.58 48.84
- Entropy (Prabhudesai et al., 2025) 76.6 82.79 43.37 12.81 26.35 50.75 48.20 50.22
- Majority-Voting (Shafayat et al., 2025) 73.4 64.06 40.81 9.17 26.16 53.00 48.91 51.06
- Co-rewarding-I (Ours) 73.8 75.89 43.83 10.63 26.25 50.12 46.84 51.51
- Co-rewarding-II (Ours) 77.8 91.89 48.49 14.27 26.64 54.87 48.90 52.83
- Co-rewarding-III (Ours) 79.2 90.45 48.95 15.10 27.58 54.87 50.30 54.79

Llama-3.2-3B-Instruct
Before RL 39.2 65.73 10.54 3.75 9.86 25.37 57.32 31.14
- GT-Reward (Shao et al., 2024) 49.4 78.17 25.90 9.17 10.33 31.37 53.10 33.83

- Self-Certainty (Zhao et al., 2025b) 42.4 74.71 17.32 4.79 11.18 28.38 54.50 33.51
- Entropy (Prabhudesai et al., 2025) 44.0 65.85 17.32 6.56 9.95 25.00 55.78 31.95
- Majority-Voting (Shafayat et al., 2025) 42.8 70.96 17.62 8.74 10.14 29.50 54.07 32.95
- Co-rewarding-I (Ours) 46.0 70.58 20.93 7.08 9.57 27.25 53.04 32.61
- Co-rewarding-II (Ours) 49.8 78.62 19.73 8.02 10.43 32.25 51.92 34.46
- Co-rewarding-III (Ours) 48.6 76.95 21.84 8.13 9.86 30.50 49.92 34.01

0 50 100 150
Step

20

40

60

M
AT

H
 P

as
s@

1
(%

)

Qwen3-1.7B-Base (MATH)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 50 100 150
Step

0

20

40

60

M
AT

H
 P

as
s@

1
(%

)

Qwen2.5-7B (MATH)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

80

M
AT

H
 P

as
s@

1
(%

)

Qwen3-8B-Base (DAPO-14k)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

10

20

30

40

50

M
AT

H
 P

as
s@

1
(%

)

Llama-3.2-3B-Instruct (DAPO-14k)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Figure 3: Performance curves comparison
on validation set. Top: Qwen3-1.7B-Base
and Qwen2.5-7B trained on the MATH set.
Bottom: Qwen3-8B-Base and Llama-3.2-
3B-Instruct trained on the DAPO-14k set.

0 50 100 150 200 250 300
Step

0.2

0.4

0.6

0.8

1.0

M
ea

n
R

ew
ar

d

Ground Truth
Co-rewarding-II
Majority-Voting
Entropy

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

N
eg

at
iv

e
En

tro
py

 R
ew

ar
d

Qwen3-8B-Base

0 100 200 300
Step

500

1000

1500

2000

2500

3000
R

es
po

ns
e

Le
ng

th

Qwen3-8B-Base

Ground Truth
Co-rewarding-II
Entropy
Majority-Voting

0 50 100 150 200 250 300
Step

0.2

0.4

0.6

0.8

1.0

M
ea

n
R

ew
ar

d

Ground Truth
Co-rewarding-II
Majority-Voting
Entropy

2.0

1.5

1.0

0.5

0.0

N
eg

at
iv

e
En

tro
py

 R
ew

ar
d

Llama-3.2-3B-Instruct

0 100 200 300
Step

500

1000

1500

2000

2500

3000

R
es

po
ns

e
Le

ng
th

Llama-3.2-3B-Instruct

Ground Truth
Co-rewarding-II
Entropy
Majority-Voting

Figure 4: Reward (left) and response length (right) of
Qwen3-8B-Base and Llama-3.2-3B-Instruct trained on
DAPO-14k. Due to different reward scale from other
methods, Entropy reward is plotted on the right y-axis
of left panels, where the reward is the negative entropy.

Qwen3-32B model. In Co-rewarding-II and III, the EMA weight is scheduled from αstart = 0.99 to
αend = 0.9999 using cosine annealing. More implementation details are reported in Appendix C.2.

Evaluation Details. To provide a comprehensive evaluation of model capabilities, we utilize a diverse
set of benchmarks spanning mathematical reasoning, code generation, instruction-following, and
general multi-task abilities. Specifically: (1) Mathematical reasoning: MATH500 (Lightman et al.,
2024), GSM8K (Cobbe et al., 2021), AMC (Li et al., 2024a), and AIME24 (Zhang & Math-AI, 2024).
(2) Code generation: LiveCodeBench (Jain et al., 2025) release v6 and CRUX (Gu et al., 2024). (3)
Instruction-following and multi-task abilities: IFEval (Zhou et al., 2023b) and MMLU-Pro (Wang
et al., 2024). Additional evaluation details are provided in Appendix C.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Qwen3-8B-Base
20

40

60

80

100

120

G
SM

8K
 P

as
s@

1
(%

)

Before RL
Ground Truth
Self-Certainty

Entropy
Majority-Voting
Co-rewarding-II

0 100 200 300
Step

0

20

40

60

80

G
SM

8K
 P

as
s@

1
(%

)

Qwen3-8B-Base on GSM8K

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Qwen3-4B-Base
10

20

30

40

50

60

70

A
M

C
 A

vg
@

8
(%

)

Before RL
Ground Truth
Self-Certainty

Entropy
Majority-Voting
Co-rewarding-II

0 100 200 300
Step

0

10

20

30

40

50

A
M

C
 A

vg
@

8
(%

)

Qwen3-4B-Base on AMC

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Figure 5: Performance and Stability on GSM8K and AMC. The gains of Co-rewarding arise from
its training stability, which supports continuous improvements throughout learning.
Table 3: Ablation study of Co-rewarding. For Co-rewarding-I, ablations train only on original or
rephrased data. For Co-rewarding-II, ablation removes EMA updates of the reference teacher.

Training Set Methods MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro

MATH

Qwen3-8B-Base
Co-rewarding-I 81.2 93.70 51.20 15.10 30.81 66.00 55.79 59.95
- Majority-Voting w/ Union 80.2 93.48 49.70 15.63 31.94 64.88 54.25 59.51
- Majority-Voting w/ Original 79.8 89.76 49.09 15.83 30.52 63.38 51.80 56.93
- Majority-Voting w/ Rephrased 79.2 91.51 50.75 14.17 31.66 60.38 52.24 57.26

Co-rewarding-II 80.8 92.42 53.46 14.48 30.23 62.83 60.70 57.50
- w/o Updating Reference 79.2 89.46 51.51 13.96 30.62 61.75 56.93 51.85

Llama-3.2-3B-Instruct
Co-rewarding-I 50.2 79.45 23.80 10.00 11.28 29.88 48.89 33.77
- Majority-Voting w/ Union 48.0 80.52 21.84 9.69 10.14 30.00 43.35 34.05
- Majority-Voting w/ Original 46.8 78.77 20.48 9.27 11.00 31.25 47.96 33.18
- Majority-Voting w/ Rephrased 44.0 78.85 21.23 8.85 10.04 17.25 47.84 33.72

Co-rewarding-II 49.8 79.30 22.59 10.73 10.80 30.63 49.90 33.61
- w/o Updating Reference 47.0 78.92 22.29 9.06 5.50 31.25 47.88 33.32

DAPO-14k

Qwen3-8B-Base
Co-rewarding-II 80.6 94.01 54.37 16.35 31.66 67.12 53.31 59.83
- w/o Updating Reference 78.0 88.40 51.66 15.94 30.62 63.75 52.48 58.01

Llama-3.2-3B-Instruct
Co-rewarding-II 49.8 78.62 19.73 8.02 10.43 32.25 51.92 34.46
- w/o Updating Reference 45.0 76.72 17.92 8.02 10.05 30.63 51.33 33.94

4.2 EXPERIMENTAL RESULTS

4.2.1 MAIN PERFORMANCE OF CO-REWARDING

Superior Performance of Co-rewarding over self-rewarding baselines. Table 1 and Table 2 report
the experimental results trained on MATH and DAPO-14k, respectively. We observe that all three
Co-rewarding instantiations (I, II, and III) occupy more darker cells in the tables, demonstrating
stronger performance than other self-rewarding SoTA baselines. Specifically, Co-rewarding-I achieves
an average relative performance gain of +4.42% over the best baselines across four mathematical
benchmarks and models in Table 1, while Co-rewarding-II achieves a larger average relative gain of
+12.90% in Table 2. Moreover, Co-rewarding-III achieves improvements on average of +7.11% and
1.72% over Co-rewarding-I and Co-rewarding-II, respectively, suggesting that integrating data-side
cross-supervision with model-side self-distillation can further boost performance. Additional results
on other training sets and LLMs are provided in Appendix D.1.

Surpassing GT-Reward on certain benchmarks. Surprisingly, we observe that both all three
Co-rewarding instantiations (I, II, and III) outperform GT-Reward in certain cases. For example,
on GSM8K, they together achieve an average improvement of +2.77% over GT-Reward in Table 1,
while Co-rewarding-II further delivers a larger gain of +5.44% in Table 2. Notably, Co-rewarding-II
reaches a remarkably high Pass@1 of 94.01% with Qwen3-8B-Base. This may be because GSM8K
is a relatively easier benchmark, where self-supervised RL is sufficient to elicit the latent reasoning
abilities of base models without relying on GT labels. Additionally, Co-rewarding also shows
advantages on the coding benchmark CRUX in several cases. This may be attributed to the distribution
difference between the training data and the evaluation benchmarks. Such distribution mismatch
may offer opportunities for self-supervised methods to generalize on par with, or even surpass
GT-supervised methods in some cases. These findings highlight the potential of self-supervised RL
to elicit reasoning capabilities, particularly with Co-rewarding mitigating training collapse.

Code generalization with preserved general performance. Although trained solely on math-
oriented datasets, the models show improvements on coding benchmarks, suggesting a cross-domain
generalization from math to code in self-supervised reasoning elicitation. Moreover, Co-rewarding

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Detailed performance of MMLU-Pro with Qwen3-8B-Base
trained on DAPO-14k. More results refer to Appendix D.10.

MMLU-Pro (Qwen3-8B-Base)
Methods biology business chemistry computer sci. economics health history
- GT-Reward 77.96 70.85 60.42 61.95 71.33 59.79 51.44

- Self-Certainty 75.73 58.05 50.53 56.83 69.31 54.77 50.40
- Entropy 74.76 59.70 51.33 56.10 67.90 55.87 48.04
- Majority-Voting 75.32 61.47 54.24 58.29 69.67 58.20 49.34
- Co-rewarding-I 76.85 61.22 53.45 59.02 66.82 55.62 48.29
- Co-rewarding-II 76.71 68.69 64.58 61.71 68.25 56.85 51.71

Methods law math other philosophy physics psychology engineering
- GT-Reward 31.52 73.28 56.28 52.71 61.97 67.30 46.14

- Self-Certainty 30.43 63.06 51.63 46.29 51.73 66.42 41.07
- Entropy 28.97 63.96 51.51 48.90 53.04 66.80 42.32
- Majority-Voting 31.16 64.62 52.27 48.90 53.27 66.92 40.97
- Co-rewarding-I 30.34 66.17 51.73 48.90 55.19 66.42 39.63
- Co-rewarding-II 31.16 72.17 52.49 52.10 63.21 68.17 47.16

0 100 200 300
Step

0.0

0.2

0.4

0.6

Ps
eu

do
-L

ab
el

 A
cc

ur
ac

y

Qwen3-8B-Base

Co-rewarding-II
w/o Updating Reference
Majority-Voting

0 100 200 300
Step

0.0

0.2

0.4

Ps
eu

do
-L

ab
el

 A
cc

ur
ac

y

Llama-3.2-3B-Instruct

Co-rewarding-II
w/o Updating Reference
Majority-Voting

Figure 6: Pseudo label
accuracy comparison.

Figure 7: Case study: An example comparing the generations from Majority-Voting, Entropy, and our
proposed Co-rewarding. The results clearly reveal the reward hacking behavior exhibited by Majority-
Voting and Entropy, while ours generate the correct answer. Full results refer to Appendix D.13.

preserves general instruction-following and multi-task ability on MMLU-Pro and IFEval. As shown
in Table 4, Co-rewarding-II outperforms other self-rewarding baselines in 12 of 14 MMLU-Pro
categories, demonstrating that its gains do not come at the expense of broader general-domain
performance. More detailed results of MMLU-Pro and IFEval refer to Appendix D.10 and D.11.

Importance of stability for performance gain. As shown in Table 2, self-rewarding baselines exhibit
noticeably limited performance gain in certain cases, such as Self-Certainty with Qwen3-4B-Base on
GSM8K. Figure 5 further reflects this by showing that baselines improve quickly at the beginning but
soon collapse on GSM8K and AMC, whereas Co-rewarding sustains steady progress. This collapse
restricts the baselines to effective training on only a small portion of the data, preventing further
improvements with continued training. These observations underscore the importance of avoiding
training collapse in self-supervised RL to unlock further performance gains.

4.2.2 FURTHER ANALYSIS

Co-rewarding alleviates collapse and provides stable self-supervised RL. We use 5,000 questions
from the MATH test split as a validation set to monitor training process. Figure 3 shows that all three
self-rewarding baselines collapse on both MATH and DAPO-14k. Co-rewarding-I remains stable
on MATH but still collapses on DAPO-14k, suggesting that its stability depends on the property
of training data. A plausible explanation is that the questions in MATH may provide favorable
conditions for promoting diverse rephrasing variability, which is beneficial for the effectiveness of
contrastive agreement in Co-rewarding-I. More discussions are provided in Appendix D.7. In contrast,
Co-rewarding-II consistently maintains stability across datasets, as its design decouples supervision
from the online policy and thus breaks the entanglement between supervision and the policy itself.

Co-rewarding attempts to balance exploration-exploitation. Figure 4 shows reward and response
length curves. Entropy and Majority-Voting quickly reach the highest reward, indicating reward
hacking rather than genuine reasoning improvement. In contrast, GT-Reward and Co-rewarding
exhibit smoother, gradually increasing rewards, reflecting stable training. The response length
curves further illustrate this difference: GT-Reward lengthens responses to explore correct reasoning
paths; Majority-Voting collapses to short outputs, restricting exploration; and Entropy collapses

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

its probability mass onto a small set of tokens, repeatedly generating them until truncation. Co-
rewarding instead maintains moderate response lengths throughout training, suggesting a balanced
exploration–exploitation trade-off. Additional curves for other LLMs are provided in Appendix D.2.

Each part contributes to Co-rewarding. Table 3 summarizes the ablations across two training sets.
For Co-rewarding-I, we observe that it typically outperforms all three variants of Majority-Voting:
models trained only on original questions, only on rephrased questions, or on their union. This
indicates that the cross-supervision between original and rephrased questions plays a key role in
mitigating training collapse, whereas simply adding more data does not resolve the inherent instability
of single-view self-rewarding methods. Notably, training only on the original or rephrased data
yields comparable results, reflecting that the quality of original and rephrased data is similar. For
Co-rewarding-II, removing the EMA update of the reference teacher model causes clear degradation,
highlighting the necessity of teacher updates for improving pseudo-label quality.

EMA is essential in Co-rewarding-II for improving pseudo-label quality. Figure 6 compares
pseudo-label accuracy across Co-rewarding-II, “w/o Updating Reference”, and Majority-Voting.
Co-rewarding-II steadily improves accuracy as training progresses, while “w/o Updating Reference”
remains nearly flat, underscoring the role of EMA updates in allowing the teacher to co-evolve with
the policy and generate higher-quality pseudo labels. By contrast, Majority-Voting briefly improves
but then collapses to near zero, evidencing reward hacking through consistent yet incorrect outputs.

Case Study of the model reasoning with different learning methods. Figure 7 provides a concrete
example to illustrate the qualitative difference between self-rewarding baselines and our Co-rewarding.
Majority-Voting exhibits reward hacking by boxing an incorrect answer “0” to pursue consensus,
even though the reasoning steps are correct. Entropy produces repetitive outputs as its decoding
probability distribution collapses onto a narrow set of tokens during entropy minimization. In contrast,
Co-rewarding generates coherent step-by-step reasoning and correctly boxes the final answer, showing
its capacity to overcome reward hacking and elicit genuine reasoning. Full results are provided in
Appendix D.13 and additional case studies on code benchmark are discussed in Appendix D.14.

5 RELATED WORK

Reinforcement learning with verifiable reward (RLVR) has recently become a mainstream post-
training paradigm for eliciting strong reasoning abilities in LLMs (Guo et al., 2025), achieving
remarkably encouraging success particularly on mathematical (Shao et al., 2024) and coding (Luo
et al., 2025) tasks. However, RLVR fundamentally depends on high-quality and annotated GT
labels to supervise reward signals, which remains a major bottleneck for scalability under the spirit
of the scaling laws. To break this limitation, recent efforts have explored RL without external
reward from multiple perspectives. For instance, methods such as TTRL (Zuo et al., 2025) and
SRT (Shafayat et al., 2025) pursue self-consistency to generate pseudo labels for rewards, where
agreement among multiple rollouts is treated as optimization objective. Additionally, another technical
line such as EMPO (Zhang et al., 2025c), Intuitor (Zhao et al., 2025b) and RENT (Prabhudesai et al.,
2025), enhances the LLM confidence by optimizing internal signals of reasoning, such as entropy
minimization or self-certainty maximization. Different from these studies, Co-rewarding focuses
on mitigating inherent training collapse in existing methods and enables stable self-supervised RL
training. More detailed discussions of related work are in Appendix A.

6 CONCLUSION

In this work, we introduced Co-rewarding, a self-supervised RL framework that elicits the reasoning
capability of LLMs through complementary supervision. Unlike prior self-rewarding methods that
entangle rewards with single-view outputs and risk collapse, Co-rewarding establishes stability by
decoupling the reward signal from the current online policy with the single-view output. Specif-
ically, Co-rewarding-I leverages contrastive agreement across semantically analogous questions;
Co-rewarding-II employs a dynamically updated teacher to provide insulated pseudo-labels; and
Co-rewarding-III combines the data-side cross-supervision from Co-rewarding-I and the model-side
teacher-based pseudo labels from Co-rewarding-II to further boost performance. Together, these
designs construct cross-referable reward signals without explicit labels, aligning RL with invariances
in reasoning rather than the mere correctness of isolated outputs. We hope this work will inspire
further exploration into self-supervised RL for reasoning to advance the development.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work complies with the Code of Ethics. It uses only publicly available datasets, involves no
human or sensitive data, and raises no foreseeable risks related to privacy, security, or fairness issues.
The research is conducted solely for scientific advancement, with no conflicts of interest.

REPRODUCIBILITY STATEMENT

We are committed to ensure the reproducibility of our proposed method. A detailed description of our
approach is provided in the Co-rewarding Framework section, and the corresponding source code has
been submitted in an anonymous repository at https://anonymous.4open.science/r/
Co-rewarding-ICLR26-submission. Both backbone models and datasets used in our work
are publicly available. Furthermore, all parameters, hyper-parameters, and procedural steps required
to reproduce our results are thoroughly recorded in the Implementation Details. We believe that these
components provide the community with details necessary to verify and reproduce our work.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In AAAI, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PmLR, 2020.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
reinforcement learning baseline for model reasoning. arXiv preprint arXiv:2504.02546, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What works and
what doesn’t. arXiv preprint arXiv:2503.16219, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, Kaixuan Chen, Mingli
Song, and Dacheng Tao. Serl: Self-play reinforcement learning for large language models with
limited data. arXiv preprint arXiv:2505.20347, 2025.

11

https://anonymous.4open.science/r/Co-rewarding-ICLR26-submission
https://anonymous.4open.science/r/Co-rewarding-ICLR26-submission

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. In International
Conference on Machine Learning, pp. 16568–16621. PMLR, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
Advances in neural information processing systems, 31, 2018.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In NeurIPS,
2021.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2024.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, 2025.

Seungjae Jung, Gunsoo Han, Daniel Wontae Nam, and Kyoung-Woon On. Binary classifier optimiza-
tion for large language model alignment. arXiv preprint arXiv:2404.04656, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In ICLR,
2023.

Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. Correlated proxies: A new definition and
improved mitigation for reward hacking. In ICLR, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan Oseledets. Confidence
is all you need: Few-shot rl fine-tuning of language models. arXiv preprint arXiv:2506.06395,
2025.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
In ICML, 2024b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR, 2024.

Yen-Ting Lin, Di Jin, Tengyu Xu, Tianhao Wu, Sainbayar Sukhbaatar, Chen Zhu, Yun He, Yun-Nung
Chen, Jason Weston, Yuandong Tian, et al. Step-kto: Optimizing mathematical reasoning through
stepwise binary feedback. arXiv preprint arXiv:2501.10799, 2025a.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
relative policy optimization-based reasoning models. arXiv preprint arXiv:2503.22342, 2025b.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025a.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025b.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level, 2025.

AI Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. Meta AI
Blog. Retrieved December, 20:2024, 2024.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. In ICML, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In NeurIPS, 2022.

Jing-Cheng Pang, Pengyuan Wang, Kaiyuan Li, Xiong-Hui Chen, Jiacheng Xu, Zongzhang Zhang,
and Yang Yu. Language model self-improvement by reinforcement learning contemplation. In The
Twelfth International Conference on Learning Representations, 2024.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. Qwen2.5 technical report, 2025. URL https://arxiv.
org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In NeurIPS,
2023.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train? arXiv preprint arXiv:2505.21444, 2025.

13

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Haoran Wang, Thaleia Zariphopoulou, and Xunyu Zhou. Exploration versus exploitation in reinforce-
ment learning: A stochastic control approach. arXiv preprint arXiv:1812.01552, 2018.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems, 37:
95266–95290, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation
for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models. In
NeurIPS, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In NeurIPS,
2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR, 2023b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao.
R1-vl: Learning to reason with multimodal large language models via step-wise group relative
policy optimization. arXiv preprint arXiv:2503.12937, 2025a.

Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm
reasoning. arXiv preprint arXiv:2506.08745, 2025b.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025c.

Yanzhi Zhang, Zhaoxi Zhang, Haoxiang Guan, Yilin Cheng, Yitong Duan, Chen Wang, Yue Wang,
Shuxin Zheng, and Jiyan He. No free lunch: Rethinking internal feedback for llm reasoning. arXiv
preprint arXiv:2506.17219, 2025d.

Yifan Zhang and Team Math-AI. American invitational mathematics examination (aime) 2024, 2024.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
arXiv preprint arXiv:2505.03335, 2025a.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025b.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. In ICLR, 2023a.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
zero’s” aha moment” in visual reasoning on a 2b non-sft model. arXiv preprint arXiv:2503.05132,
2025.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023b.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

LLM USAGE STATEMENT

Here we clarify the usage of Large Language Models (LLMs) in this work. For the preparation of
this paper, LLMs are limited to the role of a general-purpose writing assistant and are not used for
research ideation or core content generation. For research methodology, LLM is a core component of
our proposed method. Specifically, we utilize the Qwen3-32B model to perform question rephrasing
in Co-rewarding-I, which is thoroughly detailed in the Implementation Details section of the main
paper. The authors take full responsibility for all content written under their name.

A RELATED WORK

Large Language Model Reasoning. LLMs have shown impressive performance on vast tasks that
require reasoning, including solving mathematical problems, writing code, and answering logical
questions. One of the key techniques that has improved LLM reasoning is Chain-of-Thought (CoT)
prompting (Wei et al., 2022). CoT encourages the model to generate intermediate reasoning steps
before producing the final answer, which has been shown to enhance performance on tasks like
arithmetic, commonsense reasoning, and symbolic reasoning. Subsequent work has extended CoT
by integrating it with various strategies, including compositional generalization (Zhou et al., 2023a;
Khot et al., 2023) and employing structural reasoning approaches (Yao et al., 2023a; Besta et al.,
2024; Yang et al., 2024). In addition, CoT serves as a fundamental framework for techniques like
fine-tuninig (Zelikman et al., 2022), argentic workflow (Yao et al., 2023b), and paving the way for
inference-time scaling (Snell et al., 2024).

RL for Large Language Models. Several RL algorithms have been developed primarily for
alignment tasks. Specifically, DPO (Rafailov et al., 2023), CPO (Xu et al., 2024), and their variants (Li
et al., 2024b; Guo et al., 2024; Munos et al., 2024; Hong et al., 2024; Xie et al., 2024) rely on pairs of
outputs labeled by human preference. In contrast, KTO (Ethayarajh et al., 2024) and BCO (Jung et al.,
2024) require only a single binary label (like or dislike) for each output. Besides, the PRM (Uesato
et al., 2022; Lightman et al., 2024) and Step-KTO (Lin et al., 2025a) offer step-by-step guidance
by incorporating feedback at each reasoning step rather than focusing solely on the final outputs.
Recently, the follow-up work of GRPO improves the optimization objective, e.g., DAPO (Yu et al.,
2025), Dr. GRPO (Liu et al., 2025a), REINFORCE++ (Hu, 2025), CPPO (Lin et al., 2025b), and
GPG (Chu et al., 2025). Another line of research generalizes GRPO to broader applications such
as multimodal reasoning (Zhou et al., 2025; Huang et al., 2025; Chu et al., 2025; Liu et al., 2025b;
Zhang et al., 2025a) and logical reasoning (Xie et al., 2025).

RL without External Reward. RL methods have shown promising scaling capabilities to enhance
the reasoning abilities of LLMs (Guo et al., 2025), yet they are often limited by the availability of
training data for reward signals (Gao et al., 2023; Liu et al., 2023). Notably, Wang et al. (Wang
et al., 2025) demonstrate that RL can effectively bootstrap LLM reasoning with as little as a single
training example, highlighting the potential to minimize or even eliminate reliance on external reward
signals during training. Recent efforts leverage distinct strategies for reward assignment. For instance,
SIRLC (Pang et al., 2024) and AZR (Zhao et al., 2025a) utilize an LLM-as-the-judge approach to
assign rewards. In contrast, methods like SRT, TTRL, and their variants (Shafayat et al., 2025; Zuo
et al., 2025; Fang et al., 2025; Zhang et al., 2025b) employ self-consistency (Wang et al., 2022) to
generate pseudo-rewards, reducing dependence on external annotations. Meanwhile, INTUITOR,
RLSC, and RENT (Zhao et al., 2025b; Li et al., 2025; Prabhudesai et al., 2025) harness the internal
confidence scores of LLMs as intrinsic reward signals. Additionally, EMPO and its variants (Zhang
et al., 2025c; Agarwal et al., 2025) promote reasoning by minimizing entropy during the reasoning
process, further diversifying the approaches to incentivize robust LLM performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Co-rewarding-I

1: Input: policy model πθ, learning rate η, training dataset D, rephrased training dataset D′, total
iterations K.

2: Output: trained policy model πθ.
3: for all iteration k = 1, . . . ,K do
4: Sample mini-batch inputs B ⊆ D and B′ ⊆ D′.
5: for all input question x ∈ B and x′ ∈ B′ do
6: Sample rollouts {yi}Gi=1 ∼ πθold(· | x).
7: Sample rollouts {y′i}G

′

i=1 ∼ πθold(· | x′).
8: Obtain pseudo labels by Eq. (8).
9: Estimate relative advantages by Eq. (7).

10: Compute the objective by Eq. (6).
11: Update θ ← θ − η∇θJCo-rewarding-I(θ).
12: end for
13: end for

Algorithm 2 Co-rewarding-II

1: Input: policy model πθ, learning rate η, training dataset D, total iterations K.
2: Output: trained policy model πθ.
3: for iteration k = 1, . . . ,K do
4: Sample mini-batch B ⊆ D.
5: for all x ∈ B do
6: Sample rollouts {yi}Gi=1 ∼ π

(k)
θold

(· | x).
7: Update the reference teacher by Eq. (11).
8: Sample rollouts {ỹj}G̃j=1 ∼ π̃

(k)
ref (· | x).

9: Obtain pseudo label from {ỹj}G̃j=1 by Eq. (10).
10: Estimate the relative advantage by Eq. (10).
11: Compute the objective by Eq. (9).
12: Update θ ← θ − η∇θJ (k)

Co-rewarding-II(θ).
13: end for
14: end for

Algorithm 3 Co-rewarding-III

1: Input: policy model πθ, learning rate η, original training dataset D, rephrased training dataset
D′, total iterations K.

2: Output: trained policy model πθ.
3: for iteration k = 1, . . . ,K do
4: Sample mini-batch inputs B ⊆ D and B′ ⊆ D′.
5: for all x ∈ B and x′ ∈ B′ do
6: Sample rollouts {yi}Gi=1 ∼ π

(k)
θold

(· | x) and {y′i}Gi=1 ∼ π
(k)
θold

(· | x′).
7: Update the reference teacher by Eq. (11).
8: Sample rollouts {ỹj}G̃j=1 ∼ π̃

(k)
ref (· | x) and {ỹ′j}G̃j=1 ∼ π̃

(k)
ref (· | x′).

9: Obtain pseudo label from {ỹ′j}G̃j=1 and {ỹj}G̃j=1 by Eq. (13) and Eq. (14).
10: Estimate the relative advantages by Eq. (13) and Eq. (14).
11: Compute the objective by Eq. (12).
12: Update θ ← θ − η∇θJ (k)

Co-rewarding-III(θ).
13: end for
14: end for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PSEUDO CODE OF CO-REWARDING

B.1 FORMULATION OF CO-REWARDING-III

The relative advantagesRθ(Â
(k)) andRθ(Â

′(k)) are computed as:

Â
(k)
i =

r(ỹ
′(k)
v , yi)−mean({r(ỹ′(k)v , yi)}Gi=1)

std({r(ỹ′(k)v , yi)}Gi=1)
, ỹ′(k)v = argmax

y∗

G̃∑
j=1

1[ans(ỹ′j) = ans(y∗)], (13)

Â
′(k)
i =

r(ỹ
(k)
v , y′i)−mean({r(ỹ(k)v , y′i)}Gi=1)

std({r(ỹ(k)v , y′i)}Gi=1)
, ỹ(k)v = argmax

y∗

G̃∑
j=1

1[ans(ỹj) = ans(y∗)], (14)

where the pseudo label ỹ′(k)v is the majority-vote pseudo label obtained from reference rollouts on the
rephrased question, and ỹ

(k)
v is the corresponding pseudo label obtained from reference rollouts on

original question. The reference model is slowly updated via EMA as in Eq. (11).

B.2 PSEUDO CODE

To intuitively present the pipeline of Co-rewarding, we summarize the pseudo codes of Co-rewarding-
I, Co-rewarding-II and Co-rewarding-III in Algorithm 1, Algorithm 2 and Algorithm 3, respectively.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DETAILS OF BASELINES

We compare our proposed Co-rewarding-I and II against GT-reward and several recent state-of-the-art
(SoTA) self-reward approaches:

• GT-Reward (Shao et al., 2024): Originally introduced by DeepSeek-R1 (Guo et al., 2025),
GT-Reward supervises training using ground-truth (GT) answers, determining whether model
rollouts are correct or not, to guide RL optimization.

• Self-Certainty (Zhao et al., 2025b): This method maximizes self-certainty, defined as the KL-
divergence between the uniform distribution and the model’s decoding distribution, serving as
reward to encourage more confident predictions.

• Entropy (Prabhudesai et al., 2025): This method minimizes the entropy of the model’s rollout
distribution, using negative entropy as reward to maximize model confidence.

• Majority-Voting (Shafayat et al., 2025): By generating multiple rollouts per question, Majority-
Voting selects the most frequent answer as a pseudo-label to supervise training.

For all methods, we adopt the widely used GRPO as the policy optimization algorithm.

C.2 MORE IMPLEMENTATION DETAILS

The detailed training configurations are summarized in Table 5, and all baseline methods are trained
under the same setup for fairness. For the training system prompt, we adopt the official default prompt
provided by VeRL1, shown below:

Let’s think step by step and output the final answer within \boxed{}.

In addition, the semantically analogical questions used in Co-rewarding-I are generated by Qwen3-
32B through a rewriting prompt. The exact rewriting instruction is provided as follows:

You are given a math problem. Please rewrite it using different wording
and a different real-world scenario, while keeping the underlying
mathematical meaning and answer exactly the same.

1https://github.com/volcengine/verl

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Detailed training settings.

Settings Co-rewarding-I Co-rewarding-II
Batch Size 128 128
Max Prompt Length 512 512
Max Response Length 3072 3072
Train Steps 170-220 300-330
Learning Rate 3e-6 3e-6
Policy Rollout G 8 8
Reference Rollout G̃ - 8
Clip Ratio 0.2 0.2
Warmup Style Cosine Cosine
Warmup Steps Ratio 0.1 0.1
KL Loss Coefficient 0.005 0.001
Optimizer AdamW (β1 = 0.9, β2 = 0.999, ϵ = 10−8)
Training Temperature 1.0 1.0
Evaluation Temperature 0.8 0.8
EMA αstart - 0.99
EMA αend - 0.9999

Table 6: Statistics and usages of datasets used in our experiments.

Dataset Name # Data Size Usage
MATH-Train (Hendrycks et al., 2021) 7,500 Training Set
MATH-Test (Hendrycks et al., 2021) 5,000 Validation Set
DAPO-14k (Yu et al., 2025) 14,109 Training Set
Open-RS (Dang & Ngo, 2025) 7,000 Training Set

MATH500 (Lightman et al., 2024) 500 Evaluation Benchmark
GSM8K (Cobbe et al., 2021) 1,319 Evaluation Benchmark
AMC (Li et al., 2024a) 83 Evaluation Benchmark
LiveCodeBench (Jain et al., 2025) 1,055 Evaluation Benchmark
CRUX (Gu et al., 2024) 800 Evaluation Benchmark
MMLU-Pro (Wang et al., 2024) 12,032 Evaluation Benchmark
IFEval (Zhou et al., 2023b) 541 Evaluation Benchmark

Guidelines:
1. Do not change the math logic or the final answer.
2. Use different words and a new context to make it look like a different

problem.
3. Avoid copying phrases or sentence structures from the original.
4. Make sure the rewritten question is natural, clear, and solvable.
5. Output ONLY between the following markers, and strictly in this format

(no extra explanation):

RESULT_START
ORIGINAL:
<original question>
REWRITE:
<rewritten question>
RESULT_END

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Supplement Results (%) of Co-rewarding and baselines trained on MATH. Cell
background colors: darker colors denote better results within each model group.

Training Set: MATH Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro

Qwen2.5-3B
Before RL 53.6 19.48 10.69 0.52 9.95 18.50 29.83 32.50
- GT-Reward (Shao et al., 2024) 65.4 82.18 32.98 6.77 13.93 32.12 33.66 36.74

- Self-Certainty (Zhao et al., 2025b) 64.2 80.52 28.92 5.00 10.90 29.00 32.22 33.88
- Entropy (Prabhudesai et al., 2025) 63.2 80.44 29.67 5.94 9.05 29.00 32.94 35.35
- Majority-Voting (Shafayat et al., 2025) 64.6 82.41 33.13 5.10 14.03 36.38 35.19 35.50
- Co-rewarding-I (Ours) 65.4 84.53 30.57 5.31 16.40 36.88 33.86 36.38
- Co-rewarding-II (Ours) 65.2 81.72 32.38 4.47 22.25 40.25 32.74 30.79

Qwen2.5-7B
Before RL 69.4 24.71 15.81 2.81 3.79 26.38 38.19 44.76
- GT-Reward (Shao et al., 2024) 76.4 88.02 45.63 14.06 15.92 45.12 41.49 41.12

- Self-Certainty (Zhao et al., 2025b) 72.8 84.31 38.55 8.75 12.04 54.12 37.24 43.30
- Entropy (Prabhudesai et al., 2025) 72.2 81.43 39.61 10.73 16.49 51.88 40.33 42.79
- Majority-Voting (Shafayat et al., 2025) 74.4 84.53 40.96 11.04 15.45 51.00 38.60 43.35
- Co-rewarding-I (Ours) 74.6 89.61 41.27 10.73 15.73 55.58 42.86 40.51
- Co-rewarding-II (Ours) 73.6 89.31 42.77 11.98 8.25 47.50 41.82 37.45

Qwen3-1.7B-Base
Before RL 57.0 19.56 8.43 1.15 4.45 7.50 33.65 33.00
- GT-Reward (Shao et al., 2024) 69.6 81.57 35.54 8.23 13.74 35.25 36.16 39.12

- Self-Certainty (Zhao et al., 2025b) 58.2 40.25 23.04 3.02 9.86 18.00 32.96 35.13
- Entropy (Prabhudesai et al., 2025) 63.6 71.79 31.63 6.88 13.74 31.37 35.37 36.67
- Majority-Voting (Shafayat et al., 2025) 65.2 81.57 34.78 7.50 13.08 34.25 35.45 36.00
- Co-rewarding-I (Ours) 67.6 83.01 32.22 8.65 13.50 32.38 35.56 35.53
- Co-rewarding-II (Ours) 66.2 80.89 33.28 7.50 14.40 32.88 36.94 37.59

0 50 100 150
Step

0

20

40

60

M
AT

H
 P

as
s@

1
(%

)

Qwen2.5-3B (MATH)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 50 100 150
Step

0

20

40

60

80

M
AT

H
 P

as
s@

1
(%

)

Qwen3-4B-Base (MATH)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 50 100 150
Step

0

20

40

60

80

M
AT

H
 P

as
s@

1
(%

)

Qwen3-8B-Base (MATH)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 50 100 150
Step

0

10

20

30

40

50

M
AT

H
 P

as
s@

1
(%

)

Llama-3.2-3B-Instruct (MATH)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

80

M
AT

H
 P

as
s@

1
(%

)

Qwen3-4B-Base (DAPO-14k)

Ground Truth
Co-rewarding-I
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Figure 8: Performance curves on validation set. Left to Right: {Qwen2.5-3B, Qwen3-4B-Base,
Qwen3-8B-Base, Llama-3.2-3B-Instruct} trained on MATH, Qwen3-4B-Base trained on DAPO-14k.

C.3 MORE EVALUATION DETAILS

We conduct the evaluation across a diverse set of benchmarks, spanning mathematical reasoning,
code generation, instruction-following, and general multi-task abilities. Specifically: (1) Mathemat-
ical reasoning: We evaluate on MATH500 (Lightman et al., 2024), GSM8K (Cobbe et al., 2021),
and AMC (Li et al., 2024a). For MATH500 and GSM8K, we report pass@1 accuracy using the
lighteval library2. For AMC, we use the ttrl3 library and report avg@8 as the metric. (2)
Code generation: We assess coding ability using LiveCodeBench (Jain et al., 2025) release v6
and CRUX (Gu et al., 2024). LiveCodeBench is evaluated with its official evaluation library4,
and CRUX is evaluated via the ZeroEval library5; for both datasets, we report pass@1 accuracy.
(3) Instruction-following and multi-task abilities: We evaluate on IFEval (Zhou et al., 2023b) and
MMLU-Pro (Wang et al., 2024), using the lm-evaluation-harness library6 for both. Overall,
we summarize the statistics of the datasets used in this paper in Table 6.

2https://github.com/huggingface/lighteval
3https://github.com/ruixin31/Spurious Rewards/tree/main/code/ttrl
4https://github.com/LiveCodeBench/LiveCodeBench
5https://github.com/WildEval/ZeroEval
6https://github.com/EleutherAI/lm-evaluation-harness

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Supplement Results (%) of Co-rewarding and baselines trained on OpenRS. Cell
background colors: darker colors denote better results within each model group.

Training Set: Open-RS Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Before RL 72.40 27.82 20.93 23.41 54.75 50.89 52.92
- GT-Reward (Shao et al., 2024) 80.20 89.76 54.97 39.00 63.00 52.94 55.49

- Self-Certainty (Zhao et al., 2025b) 82.60 85.22 50.00 37.00 64.62 52.12 56.03
- Entropy (Prabhudesai et al., 2025) 80.60 87.41 48.95 38.00 61.25 52.53 56.80
- Majority-Voting (Shafayat et al., 2025) 78.00 84.23 51.96 36.75 58.00 51.13 54.92
- Co-rewarding-I (Ours) 78.20 92.65 50.60 28.91 63.12 53.11 57.21
- Co-rewarding-II (Ours) 80.00 90.90 53.01 39.75 62.75 52.92 56.55

Qwen3-4B-Base
Before RL 71.20 26.15 21.08 11.00 38.88 46.43 47.23
- GT-Reward (Shao et al., 2024) 78.80 85.22 49.55 33.50 55.12 46.41 50.12

- Self-Certainty (Zhao et al., 2025b) 73.20 33.43 35.84 32.50 49.50 46.47 48.24
- Entropy (Prabhudesai et al., 2025) 76.80 87.57 42.62 35.00 53.87 47.61 52.42
- Majority-Voting (Shafayat et al., 2025) 76.00 64.14 44.58 32.25 50.25 46.35 48.75
- Co-rewarding-I (Ours) 72.80 83.93 39.41 26.54 53.25 48.11 50.82
- Co-rewarding-II (Ours) 76.60 89.23 42.32 34.00 51.50 48.45 51.80

Table 9: Performance (%) of test-time training (TTT). Since self-supervised methods are label-free,
they can be leveraged during inference for test-time training to further enhance performance.

LLMs Methods AMC
avg@8 pass@8 avg@16 pass@16 avg@32 pass@32 avg@64 pass@64

Qwen2.5-7B

Before-TTT 15.81 46.99 17.55 66.27 16.34 74.70 17.32 75.90

Self-Certainty 41.57 74.70 39.23 74.70 39.68 78.31 39.95 87.95
Entropy 38.70 56.63 39.76 68.67 39.57 79.52 39.34 81.93
Majority-Voting 43.67 63.86 43.67 67.47 43.49 78.31 44.35 85.54
Co-rewarding-I 44.88 60.24 45.33 60.24 45.44 71.08 45.76 73.49
Co-rewarding-II 43.22 69.88 41.34 75.90 40.36 78.31 41.64 87.95

Qwen3-8B-Base

Before-TTT 20.93 61.45 21.31 73.49 19.58 79.52 20.97 86.75

Self-Certainty 49.85 78.31 50.68 78.31 50.41 84.34 49.55 89.16
Entropy 48.64 74.70 49.92 80.72 49.96 87.95 50.23 89.16
Majority-Voting 50.90 73.49 50.00 72.29 50.60 80.72 51.36 85.54
Co-rewarding-I 52.86 68.67 53.46 74.70 53.24 81.93 53.58 84.34
Co-rewarding-II 48.64 72.29 48.19 73.49 50.19 83.13 49.28 91.57

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MORE RESULTS ON OTHER TRAINING SETS AND LLMS

Table 7 reports additional results of Qwen2.5-3B and Qwen3-1.7B-Base and Qwen3-4B-Base trained
on MATH, while Table 8 extends the experiments of Qwen3-8B-Base and Qwen3-4B-Base to
another training set OpenRS (Dang & Ngo, 2025). It can be observed that Co-rewarding occupies
relatively darker areas. Across models and training sets, Co-rewarding-I and II achieve an average
relative improvement of +2.23% on GSM8K, with notably high pass@1 scores of 92.65% and
90.90% for Qwen3-8B-Base trained on OpenRS, respectively. Moreover, thanks to its stability,
Co-rewarding-II delivers more reliable gains than self-rewarding baselines, which occasionally suffer
lower performance on certain models or benchmarks, e.g., Self-Certainty on Qwen3-1.7B-Base in
Table 7 or Majority-Voting on Qwen3-4B-Base in Table 8. These results further demonstrate the
effectiveness of Co-rewarding.

D.2 MORE CURVES OF REWARD, RESPONSE LENGTH AND PSEUO LABEL ACCURACY

Figure 9 supplements the reward and response curves of Qwen3-4B-Base trained on DAPO-14k. The
trends are consistent with Qwen3-8B-Base and Llama-3.2-3B-Instruct in Figure 4: Majority-Voting
and Entropy rapidly increase rewards at early stage and quickly peak, a clear sign of reward hacking.
In contrast, GT-Reward and Co-rewarding-II exhibit smoother, steadily rising rewards, indicating gen-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Step

0.2

0.4

0.6

0.8

1.0

M
ea

n
R

ew
ar

d

Ground Truth
Co-rewarding-II
Majority-Voting
Entropy

0.8

0.6

0.4

0.2

0.0

N
eg

at
iv

e
En

tro
py

 R
ew

ar
d

Qwen3-4B-Base

0 100 200 300
Step

500

1000

1500

2000

2500

3000

R
es

po
ns

e
Le

ng
th

Qwen3-4B-Base

Ground Truth
Co-rewarding-II
Entropy
Majority-Voting

0 100 200 300
Step

0.0

0.2

0.4

Ps
eu

do
-L

ab
el

 A
cc

ur
ac

y

Qwen3-4B-Base

Co-rewarding-II
w/o Updating Reference
Majority-Voting

Figure 9: Curves of reward (Left), response length (Middle), and pseudo label accuracy (Right)
of Qwen3-4B-Base trained on DAPO-14k. Entropy reward is plotted on the right y-axis due to its
different reward scale. Note that entropy minimization is to maximizing the negative entropy.

Table 10: Detailed MMLU-Pro performance on Qwen3-4B-Base and Llama-3.2-3B-Instruct
traind on DAPO-14k. Results are reported for each of the 14 categories in MMLU-Pro.

Qwen3-4B-Base
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 73.50 63.49 59.71 56.34 65.05 42.93 50.86

- Self-Certainty 71.41 54.37 45.93 50.73 63.27 35.91 50.12
- Entropy 70.99 56.02 50.44 48.29 63.15 34.37 48.41
- Majority-Voting 70.43 55.77 52.83 53.41 62.79 38.09 50.61
- Co-rewarding-I 73.92 59.82 50.71 54.15 64.93 41.49 49.76
- Co-rewarding-II 72.66 59.95 55.65 53.41 64.10 39.73 50.61

Methods history law math other philosophy physics psychology
- GT-Reward 44.88 26.34 69.80 48.81 44.69 57.04 65.79

- Self-Certainty 39.63 24.43 59.44 43.94 40.08 47.04 59.65
- Entropy 40.68 26.43 60.99 45.13 43.69 50.89 61.90
- Majority-Voting 40.94 23.43 64.17 43.39 44.09 50.73 63.66
- Co-rewarding-I 40.94 23.25 63.73 44.91 42.69 50.58 60.78
- Co-rewarding-II 42.26 24.79 67.58 44.59 41.88 54.19 62.91

Llama3.2-3B-Instruct
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 54.81 36.25 25.18 33.41 42.65 21.57 39.36

- Self-Certainty 55.23 32.95 27.21 31.95 42.77 20.54 39.12
- Entropy 52.86 31.05 23.94 32.93 41.71 20.43 38.02
- Majority-Voting 56.07 32.95 22.79 30.98 44.19 18.99 39.61
- Co-rewarding-I 51.88 34.22 22.88 34.88 44.67 19.09 38.63
- Co-rewarding-II 56.21 34.35 27.03 35.61 43.01 19.92 40.34

Methods history law math other philosophy physics psychology
- GT-Reward 30.18 22.71 34.20 34.74 32.06 28.33 50.38

- Self-Certainty 30.45 24.98 33.38 31.60 29.86 28.56 50.50
- Entropy 33.86 21.89 32.35 33.01 29.46 24.25 47.50
- Majority-Voting 32.02 25.25 34.35 34.20 29.86 24.79 48.25
- Co-rewarding-I 33.86 23.25 32.12 33.01 31.86 25.40 48.75
- Co-rewarding-II 32.28 24.34 35.83 36.26 33.27 28.18 49.12

uine learning of reasoning ability. Moreover, Co-rewarding-II maintains moderate response lengths
on Qwen3-4B-Base, further demonstrating its generality in balancing the exploration–exploitation
trade-off during reasoning training, which is a core principle of RL (Wang et al., 2018).

Additionally, the right panel of Figure 9 presents the pseudo-label accuracy of Qwen3-4B-Base,
showing trends consistent with Qwen3-8B-Base and Llama-3.2-3B-Instruct in Figure 6. As training
progresses, Co-rewarding-II steadily improves pseudo-label accuracy, while “w/o Updating Reference”
remains around 25%. Majority-Voting briefly increases accuracy but soon collapses to zero, clearly
indicating reward hacking. This highlights our design philosophy of pairing a fast policy student with
a slowly updated teacher, which decouples supervision from the online policy while enabling the
teacher to co-evolve with the student, thereby sustaining improvements in pseudo-label quality.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 100 200 300
Step

0

20

40

60

80

M
AT

H
50

0
Pa

ss
@

1
(%

)

Qwen3-8B-Base on MATH500

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

80

G
SM

8K
 P

as
s@

1
(%

)

Qwen3-8B-Base on GSM8K

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

A
M

C
 A

vg
@

8
(%

)

Qwen3-8B-Base on AMC

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

C
R

U
X

 P
as

s@
1

(%
)

Qwen3-8B-Base on CRUX

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

80

M
AT

H
50

0
Pa

ss
@

1
(%

)

Qwen3-4B-Base on MATH500

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

20

40

60

80

G
SM

8K
 P

as
s@

1
(%

)

Qwen3-4B-Base on GSM8K

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

10

20

30

40

50

A
M

C
 A

vg
@

8
(%

)

Qwen3-4B-Base on AMC

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

10

20

30

40

50

60

C
R

U
X

 P
as

s@
1

(%
)

Qwen3-4B-Base on CRUX

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

10

20

30

40

50

M
AT

H
50

0
Pa

ss
@

1
(%

)

Llama-3.2-3B-Instruct on MATH500

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

20

40

60

80

G
SM

8K
 P

as
s@

1
(%

)

Llama-3.2-3B-Instruct on GSM8K

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

5

10

15

20

25

A
M

C
 A

vg
@

8
(%

)

Llama-3.2-3B-Instruct on AMC

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

0 100 200 300
Step

0

10

20

30

40

C
R

U
X

 P
as

s@
1

(%
)

Llama-3.2-3B-Instruct on CRUX

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Figure 10: Performance curves on benchmarks of MATH500, GSM8K, AMC and CRUX across
Qwen3-8B-Base, Qwen3-4B-Base, and Llama-3.2-3B-Instruct trained on DAPO-14k.

D.3 MORE RESULTS OF VALIDATION PERFORMANCE CURVES

As a supplement to Figure 3, Figure 8 presents validation performance curves for Qwen2.5-3B,
Qwen3-4B-Base, Qwen3-8B-Base, Llama-3.2-3B-Instruct trained on MATH, as well as Qwen3-4B-
Base trained on DAPO-14k. Self-Certainty and Entropy collapse rapidly across all settings, as their
supervision signals are tied to internal confidence or entropy and are easily exploited. Majority-Voting
also collapses in several cases, reflecting that sampling pseudo labels from outputs cannot prevent
hacking. By contrast, Co-rewarding-I maintains stability across MATH-trained models through
data-side contrastive agreement, while Co-rewarding-II consistently provides stability across all
models and datasets by disentangling supervision with a slowly updated teacher, making hacking
substantially harder and optimization more reliable.

D.4 RESULTS OF TEST-TIME TRAINING (TTT)

Thanks to the label-free nature of self-supervised methods, which do not require GT labels, they are
naturally compatible with test-time training (TTT), enabling further refinement of the model during
inference. Table 9 reports the TTT results on the challenging competition-level benchmark AMC
across Co-rewarding and other self-rewarding baselines. We observe that Co-rewarding matches or
even surpasses existing methods, achieving the best results on 11 out of 18 metrics. These findings
broaden the applicability of self-supervised RL: beyond post-training for reasoning elicitation, it can
also be leveraged at inference time to further improve performance on specific benchmarks.

D.5 MORE RESULTS OF BENCHMARK PERFORMANCE CURVES

As a supplement to Figure 3 and Figure 5, Figure 10 presents performance curves on MATH500,
GSM8K, AMC, and CRUX with Qwen3-8B-Base, Qwen3-4B-Base, and Llama-3.2-3B-Instruct.
Consistent with earlier findings, Self-Certainty, Entropy, and Majority-Voting rapidly collapse across
benchmarks and models, while Co-rewarding-II and GT-Reward sustain continued and stable im-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Impact of math training collapse on code and multi-task performance. Results are
evaluated on models before and after training collapse.

Qwen3-4B-Base

Training stage Methods Mathematics Code Multi-task
MATH500 GSM8K AMC AIME24 LiveCode CRUX MMLU-Pro

Before training collapse
- Self-Certainty 68.4 44.81 35.39 8.85 25.88 50.12 48.84
- Entropy 76.6 82.79 43.37 12.81 26.35 50.75 50.22
- Majority-Voting 73.4 64.06 40.81 9.17 26.16 53.00 51.06

After training collapse
- Self-Certainty 2.8 3.34 2.71 0.00 14.22 8.12 29.71
- Entropy 2.8 2.35 3.46 0.00 18.60 31.75 28.13
- Majority-Voting 2.8 4.85 1.36 0.00 24.36 52.75 50.19

Table 12: Difference between original and rephrased questions from background richness, vocab-
ulary complexity, and sentence complexity.

Training Set # Data Size Background richness Vocabulary complexity Sentence complexity
MATH 7,500 +4.91% +4.79% +9.05%
DAPO-14k 14,100 +4.65% 1.95% +4.19%

Table 13: Success rate of different rephraser LLMs: MATH training set rephrased by Qwen3-32B,
Qwen3-8B, and Qwen3-1.7B, respectively.

Rephraser LLM Training Set # Original questions # Rephrased questions Success rate (%)
Qwen3-32B MATH 7,500 7,498 99.97%
Qwen3-8B MATH 7,500 7,477 99.69%
Qwen3-1.7B MATH 7,500 2,060 27.47%

provements. These results underscore the link between performance and training stability: stable
training enables models to continue improving by effectively learning knowledge from more data.

D.6 IMPACT OF MATH TRAINING COLLAPSE ON OTHER TASKS

We investigate how training collapse occurring on math-oriented training sets impacts the model’s
performance on code-generation and multi-task benchmarks. To this end, we evaluate models trained
with existing self-rewarding methods (Self-Certainty, Entropy, and Majority-Voting) both before
and after training collapse. Table 11 summarizes the results. We observe that training collapses on
math-related training sets affect other tasks (LiveCode, CRUX and MMLU-Pro) in different way for
certainty- or entropy-based methods (Self-Certainty and Entropy) compared with consensus-based
methods (Majority-Voting). When collapse occurs on math-oriented training sets, all three methods
show substantial performance degradation on the four math benchmarks (MATH500, GSM8K, AMC,
and AIME24). However, their impacts on other tasks differ:

For certainty- or entropy-based methods, the performance on LiveCode, CRUX, and MMLU-Pro also
declines after collapse on math training sets. This arises from their reward objectives: maximizing self-
certainty or minimizing entropy, result in the decoding probability mass becoming highly concentrated
on a very subset of tokens. Consequently, the model produces repetitive outputs, and this repetitive
decoding behavior transfers across tasks, leading to degraded performance beyond the math domain.

For the consensus-based method, Majority-Voting shows similar performance before and after training
collapse on math-oriented training sets. This may be because its collapses stem from reward hacking
at the answer format: the model exploits the \boxed{} structure by consistently inserting an incorrect
but self-consistent answer to maximize reward. This type of collapse weakly affects the intermediate
reasoning trace, which largely remains structured. Since code-generation and multi-task benchmarks
do not rely on boxed-answer extraction, this type of collapse has limited impact on their performance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 14: Impact of rephraser LLM for Co-rewarding-I. Train Qwen3-8B-Base using data
rephrased by Qwen3-32B, Qwen3-8B and Qwen3-1.7B, respectively.

Trained Model Rephraser LLM MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Qwen3-32B 81.2 93.70 51.20 15.10 30.81 66.00 55.79 59.95
Qwen3-8B 79.2 92.72 51.51 14.58 30.90 63.12 54.73 59.30
Qwen3-1.7B 78.2 87.41 49.25 12.81 29.57 61.00 53.44 55.85

0 50 100 150
Step

35

40

45

50

55

60

65

70

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen2.5-3B

Majority-Voting
w/ Original Data
w/ Rephrased Data
Co-rewarding-I

0 50 100 150 200
Step

35

40

45

50

55

60

65

70

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen3-1.7B-Base

Majority-Voting
w/ Original Data
w/ Rephrased Data
Co-rewarding-I

0 50 100 150 200
Step

60

65

70

75

80

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen3-8B-Base

Majority-Voting
w/ Original Data
w/ Rephrased Data
Co-rewarding-I

Figure 11: Curves of voting accuracy of Majority-Voting, Co-rewarding-I and its ablations with
Qwen2.5-3B, Qwen3-1.7B-Base and Qwen3-8B-Base trained on MATH.

D.7 DISCUSSION OF MATH AND DAPO-14K

We leverage Qwen3-235B-A22B to score the difference between original and rephrased questions
from multiple perspectives, including background richness, vocabulary complexity, and sentence
complexity, for MATH and DAPO-14k. From Table 12, we observe that the rephrasing in MATH
exhibits larger changes from the original to rephrased questions than DAPO-14k. This suggests that
the questions in MATH may provide favorable conditions for promoting diverse rephrasing variability,
which is beneficial for the effectiveness of contrastive agreement in Co-rewarding-I.

D.8 ROBUSTNESS ANALYSIS OF DIFFERENT REPHRASER LLMS

To analyze the impact of different rephraser LLMs for Co-rewarding-I, we conduct additional
experiments using smaller LLMs instead of Qwen3-32B for rephrasing. To control architectural
variability in the rephraser LLMs, we employ two smaller LLMs from the same family, i.e., Qwen3-
8B and Qwen3-1.7B, for rephrasing the MATH training set. Table 13 reports the rephrasing success
rate. We observe that rephrasing success rates drop as the model size decreases, which is expected:
rephrasing math questions while preserving the analogical essence is a relatively challenging task,
and weaker LLMs struggle to achieve this goal. This observation supports our choice of Qwen3-32B
as the rephraser, as a sufficiently capable LLM is required to produce faithful rephrasing.

We then train Co-rewarding-I on Qwen3-8B-Base using rephrased data generated by Qwen3-32B,
Qwen3-8B, and Qwen3-1.7B, respectively. The performance is summarized in Table 14. From
the results, it can be observed that performance gradually degrades as the size of the rephraser
LLM decreases, but not always significantly. Rephrasing with Qwen3-8B maintains reasonably
similar performance to using Qwen3-32B, indicating that Co-rewarding-I exhibits a certain degree of
robustness under moderate reductions in rephrasing quality. Notably, rephrasing with Qwen3-1.7B
leads to a substantial performance drop. This degradation is largely attributable to the significantly
lower rephrasing success rate of Qwen3-1.7B, which results in a substantial reduction of usable
training data and consequently weakens the effectiveness of Co-rewarding-I.

D.9 VOTING ACCURACY ANALYSIS OF CO-REWARDING-I

To demonstrate the stability and efficiency of Co-rewarding-I, we compare its voting accuracy against
that of Majority-Voting in Figure 11 and Figure 12. These experiments are conducted on Qwen2.5-
3B, Qwen3-1.7B-Base and Qwen3-8B-Base models, all trained on the MATH dataset. Across all
settings, the Majority-Voting method exhibits reward hacking, where its performance sharply declines

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Step

20

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen3-1.7B-Base: Majority-Voting

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150 200
Step

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen3-1.7B-Base: w/ Original Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150 200
Step

20

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen3-1.7B-Base: w/ Rephrased Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150 200
Step

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen3-1.7B-Base: Co-rewarding-I

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

20

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen2.5-3B: Majority-Voting

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

20

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen2.5-3B: w/ Original Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

20

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen2.5-3B: w/ Rephrased Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

30

40

50

60

70

80

90

Vo
tin

g
A

cc
ur

ac
y

(%
)

Qwen2.5-3B: Co-rewarding-I

Level 1
Level 2
Level 3
Level 4
Level 5

Figure 12: Voting accuracy of Majority-Voting, Co-rewarding-I and its ablated variants across
different difficulty levels of questions Top: Qwen3-1.7B-Base. Bottom: Qwen2.5-3B.

after reaching an early peak, particularly on more difficult questions (levels 2 to 5). In contrast,
Co-Rewarding-I maintains a stable voting accuracy on both original and rephrased data. Ultimately,
it achieves the highest overall voting accuracy across all models and dataset configurations.

Table 15: Detailed MMLU-Pro performance on Qwen3-8B-Base and Qwen3-4B-Base trained
on OpenRS. Results are reported for each of 14 categories in MMLU-Pro.

Qwen3-4B-Base
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 70.99 59.82 52.30 54.63 65.05 39.01 51.22

- Self-Certainty 69.87 54.50 44.08 49.27 63.63 37.36 50.24
- Entropy 70.71 58.68 49.03 51.22 63.39 37.46 49.63
- Majority-Voting 69.60 55.77 47.17 53.17 63.39 36.02 48.78
- Co-rewarding-I 69.04 55.39 47.79 53.41 63.86 38.39 50.61
- Co-rewarding-II 70.85 58.81 53.27 53.90 66.11 37.15 52.81

Methods history law math other philosophy physics psychology
- GT-Reward 39.63 24.98 65.58 47.84 40.68 54.50 62.53

- Self-Certainty 39.63 24.25 58.11 46.65 40.88 46.42 61.40
- Entropy 39.90 22.16 62.18 45.02 43.09 50.19 59.90
- Majority-Voting 40.68 22.52 60.25 46.10 41.08 48.42 60.65
- Co-rewarding-I 40.68 24.25 62.18 44.37 44.49 49.58 61.65
- Co-rewarding-II 41.21 25.89 64.91 45.24 39.28 52.27 59.40

Qwen3-8B-Base
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 74.76 63.24 55.48 63.17 68.96 41.38 57.09

- Self-Certainty 75.03 63.62 53.62 55.61 68.96 39.83 57.09
- Entropy 75.73 64.39 54.51 58.29 65.05 41.69 55.87
- Majority-Voting 76.15 60.20 54.15 56.34 69.91 38.91 55.75
- Co-rewarding-I 76.43 65.78 57.07 62.20 69.43 43.14 56.60
- Co-rewarding-II 76.84 64.25 54.68 62.43 68.12 42.00 58.06

Methods history law math other philosophy physics psychology
- GT-Reward 50.92 30.25 67.58 52.49 51.10 57.20 67.67

- Self-Certainty 49.34 28.88 68.02 51.62 52.10 56.89 66.42
- Entropy 50.39 30.43 65.28 51.41 47.09 54.50 66.67
- Majority-Voting 48.03 28.88 63.43 53.68 48.10 52.50 64.66
- Co-rewarding-I 50.13 29.97 68.54 52.92 50.70 56.66 65.54
- Co-rewarding-II 51.44 30.06 65.80 51.51 52.10 57.58 65.78

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.10 MORE RESULTS OF MMLU-PRO EVALUATION

As a complement to Table 4, Table 10 and Table 15 report detailed MMLU-Pro results for models
trained on DAPO-14k and OpenRS, respectively. We observe that Co-rewarding consistently preserves
general-domain performance across diverse subjects, indicating that though trained on math-oriented
datasets, its improvements do not come at the cost of broader capabilities from other domains.

D.11 MORE RESULTS OF IFEVAL EVALUATION

The aim of IFEval is used to evaluate the instruction-following ability of LLMs. In Table 1, Table 2,
Table 7 and Table 8, we report average IFEval performance due to space constraints. Specifi-
cally, the evaluation of IFEval includes four metrics: {prompt level strict acc, inst level strict acc,
prompt level loose acc and inst level loose acc}, which apply different levels of answer matching.
As a supplement, complete results are provided in Table 16, Table 17, and Table 18. The results show
that Co-rewarding not only preserves the inherent instruction-following ability of base models but
also often surpasses GT-Reward across multiple models. This further confirms that Co-rewarding’s
gains on mathematical and coding benchmarks are achieved without sacrificing general-domain
instruction-following ability.

Table 16: Detailed IFEval Performance on Qwen2.5-3B/7B, Qwen3-1.7B/4B/8B-Base and Llama-
3.2-3B-Instruct traind on MATH. Results are reported for loose and strick settings respectively.

Methods IFEval
Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose

Qwen2.5-3B Qwen2.5-7B
Before RL 29.83 22.55 27.17 31.89 37.70 38.19 29.57 34.57 41.85 46.76
- GT-Reward 33.66 25.51 31.42 35.85 41.85 41.49 31.79 39.56 43.65 50.96

- Self-Certainty 32.22 24.40 29.76 34.65 40.05 37.24 28.47 34.38 40.05 46.04
- Entropy 32.94 24.77 30.50 35.13 41.37 40.33 30.13 37.87 43.29 50.00
- Majority-Voting 35.19 26.25 32.72 37.53 44.24 38.60 29.21 35.86 41.61 47.72
- Co-rewarding-I 33.86 23.84 31.61 36.09 43.88 41.73 32.35 39.37 44.48 50.72
- Co-rewarding-II 32.74 23.29 29.02 36.33 42.33 41.82 31.79 40.29 43.88 51.31

Qwen3-1.7B-Base Qwen3-4B-Base
Before RL 33.65 25.69 30.86 36.45 41.60 46.43 36.04 44.18 48.68 56.83
- GT-Reward 36.16 27.35 31.79 40.64 44.84 47.80 37.34 46.77 49.40 57.67

- Self-Certainty 32.96 24.58 29.20 36.69 41.36 48.15 39.37 46.76 49.52 56.95
- Entropy 35.37 26.61 31.42 39.44 44.00 50.44 40.67 48.61 52.52 59.07
- Majority-Voting 35.45 26.06 32.16 38.72 48.84 48.78 37.89 47.50 50.36 59.65
- Co-rewarding-I 35.56 27.91 31.23 39.32 43.76 50.35 40.67 49.35 51.56 59.83
- Co-rewarding-II 36.94 27.17 33.64 40.05 46.88 51.30 41.40 49.54 53.12 61.15

Qwen3-8B-Base Llama3-2-Instruct
Before RL 50.32 40.11 50.27 51.07 59.83 57.32 46.77 55.27 60.19 67.03
- GT-Reward 52.78 41.96 51.76 54.44 62.95 47.41 37.34 42.88 52.52 57.31

- Self-Certainty 50.98 39.74 49.54 52.88 61.75 54.88 43.81 52.68 58.15 64.87
- Entropy 51.81 40.67 51.20 52.76 62.59 54.70 43.81 52.68 57.67 64.63
- Majority-Voting 51.80 39.74 51.02 53.60 62.83 47.96 37.34 43.44 52.88 58.18
- Co-rewarding-I 55.79 43.99 57.11 55.63 66.42 49.14 39.37 45.66 53.12 58.39
- Co-rewarding-II 60.70 55.64 65.59 56.00 65.59 49.90 39.93 45.66 54.68 59.35

D.12 ORIGINAL QUESTIONS VS. REPHRASED QUESTIONS

To provide an intuitive illustration, we present several examples of original questions with their
rephrased versions in Table 19. We observe that such rephrasings are reasonable and effective, as they
preserve the same underlying mathematical essence while presenting the problems in a substantially
different surface form. This reflects the high quality of our rephrased data and forms the basis of
Co-rewarding-I: by leveraging contrastive agreement across data-invariant variants, the model is
encouraged to elicit more robust reasoning ability.

D.13 COMPLETE CASE STUDY

As a supplement to Figure 7, we present the complete generation outputs of this case study. The
full outputs clearly reveal the reward hacking behaviors of existing self-rewarding baselines. Self-
Certainty and Entropy fall into repetitive outputs—for example, Self-Certainty repeatedly generates
“Understanding,” and Entropy repeatedly produces “Simplify the next fraction” until truncated at
the maximum length. This arises because their decoding probability mass collapses onto a small
subset of tokens, leading the model to loop over them. Majority-Voting shows another form of reward
hacking by boxing an incorrect answer “0” to maximize consensus across rollouts and thereby secure

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 17: Detailed IFEval performance on Qwen3-4B/8B-Base and Llama-3.2-3B-Instruct
traind on DAPO-14k. Results are reported for loose and strict settings in IFEval, respectively.

Methods IFEval
Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose

Qwen3-4B-Base
Before RL 46.43 36.04 44.18 48.68 56.83
- GT-Reward 47.70 37.52 45.84 49.76 57.67

- Self-Certainty 45.58 35.67 43.99 47.84 54.80
- Entropy 48.20 37.71 46.58 50.48 58.03
- Majority-Voting 48.91 39.19 47.69 50.24 58.51
- Co-rewarding-I 46.84 36.41 45.66 48.80 56.47
- Co-rewarding-II 48.90 39.56 46.21 51.44 58.39

Qwen3-8B-Base
Before RL 50.32 40.11 50.27 51.07 59.83
- GT-Reward 53.11 41.59 52.13 54.56 64.15

- Self-Certainty 50.58 41.04 49.54 51.68 60.07
- Entropy 51.56 41.59 49.91 53.48 61.27
- Majority-Voting 51.54 41.22 51.02 52.64 61.27
- Co-rewarding-I 50.17 40.67 48.24 52.16 59.59
- Co-rewarding-II 53.31 41.40 53.23 54.20 64.39

Llama3.2-3B-Instruct
Before RL 57.32 46.77 55.27 60.19 67.03
- GT-Reward 53.10 42.33 49.91 57.19 62.95

- Self-Certainty 54.50 44.55 51.76 58.03 63.67
- Entropy 55.78 45.29 53.23 59.11 65.47
- Majority-Voting 54.07 42.33 52.50 56.83 64.63
- Co-rewarding-I 53.04 42.33 51.02 55.76 63.07
- Co-rewarding-II 51.92 41.59 48.24 56.00 61.87

Table 18: Detailed IFEval Performance on Qwen3-8B/4B-Base trained on Open-RS. Results are
reported for loose and strict settings in IFEval, respectively.

Methods IFEval
Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose

Qwen3-8B-Base Qwen3-4B-Base
Before RL 50.32 40.11 50.27 51.07 59.83 46.43 36.04 44.18 48.68 56.83
- GT-Reward 52.53 41.59 51.02 54.56 62.95 47.80 37.34 46.77 49.40 57.67

- Self-Certainty 52.12 41.59 50.83 53.72 62.35 46.47 35.86 44.73 48.56 56.71
- Entropy 52.94 43.25 51.94 53.72 62.83 46.41 36.97 44.73 48.68 55.28
- Majority-Voting 51.13 40.67 49.35 53.36 61.15 46.35 36.41 44.18 48.80 56.00
- Co-rewarding-I 53.11 41.40 53.05 53.95 64.02 46.83 35.86 46.77 47.84 56.83
- Co-rewarding-II 52.92 42.14 52.50 54.08 62.95 48.45 38.26 46.77 50.24 58.51

the highest reward. In contrast, both Co-rewarding and GT-Reward yield the correct final answer
along with a coherent step-by-step reasoning path.

D.14 CASE STUDY ON CODE BENCHMARK

To understand the behaviors of different methods on other tasks, we supplement an additional case
study on CRUX. We observe that Self-Certainty and Entropy fail by producing repetitive outputs,
consistent with the collapse pattern on math-related benchmarks. In contrast, GT-Reward, Majority-
Voting, and Co-rewarding generate coherent reasoning trace and correct solutions.

Question:

m
n is the Irreducible fraction value of

3 +
1

3 + 1
3+ 1

3

, what is the value of m+ n?

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 19: Case studies: Original vs. Rephrased Questions

Original Question Rephrased Question
Sam is hired for a 20-day period. On days
that he works, he earns $60. For each day that
he does not work, $30 is subtracted from his
earnings. At the end of the 20-day period, he
received $660. How many days did he not
work?

A contractor agrees to a job lasting 20 days.
For every day the job is completed on time,
the contractor earns $60. However, for each
day the work is delayed, a fine of $30 is ap-
plied. After the 20-day period, the contrac-
tor’s total earnings are $660. How many days
was the job delayed?

Karen drove continuously from 9:40 a.m. un-
til 1:20 p.m. of the same day and covered a
distance of 165 miles. What was her average
speed in miles per hour?

A traveler set off at 9:40 a.m. and reached
their destination at 1:20 p.m. the same day
after traveling a total of 165 miles. What was
their average speed during the trip in miles
per hour?

Solve for x: 1
2 + 1

x = 5
6 . A tank is partially filled by two different pipes.

One pipe fills half the tank in an hour, and
together with another pipe, they fill five-sixths
of the tank in the same time. If the second
pipe alone fills 1

x of the tank in an hour, find
the value of x.

Co-rewarding-I Answer:

To solve the problem, we need to simplify the given expression step by step and then find the
irreducible fraction form. The expression is:

3 +
1

3 + 1
3+ 1

3

.

First, we simplify the innermost fraction:

3 +
1

3
=

9

3
+

1

3
=

10

3
.

Now substitute this back into the expression:

3 +
1

3 + 1
10
3

= 3 +
1

3 + 3
10

.

Next, simplify the fraction inside the denominator:

3 +
3

10
=

30

10
+

3

10
=

33

10
.

Now substitute this back into the expression:

3 +
1
33
10

= 3 +
10

33
.

To add these, we need a common denominator:

3 +
10

33
=

99

33
+

10

33
=

109

33
.

The fraction 109
33 is already in its simplest form because 109 and 33 have no common factors

other than 1. Therefore, m = 109 and n = 33, and the value of m+ n is:

109 + 33 = 142.

So, the final answer is:

142 .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Co-rewarding-II Answer:

To solve the given expression 3 + 1
3+ 1

3+ 1
3

, we need to simplify it step by step.

First, simplify the innermost fraction:

3 +
1

3
=

9

3
+

1

3
=

10

3
.

Next, substitute this back into the next fraction:

3 +
1

3 + 1
10
3

= 3 +
1

3 + 3
10

= 3 +
1

30
10 + 3

10

= 3 +
1
33
10

= 3 +
10

33
.

Now, simplify the expression 3 + 10
33 :

3 +
10

33
=

99

33
+

10

33
=

109

33
.

The fraction 109
33 is already in its simplest form because 109 and 33 are coprime (they have

no common factors other than 1).
Thus, the irreducible fraction value of the given expression is 109

33 , where m = 109 and
n = 33. Therefore, m+ n = 109 + 33 = 142.
The value of m+ n is 142 .

GT-Reward Answer:

Alright, I have this problem:
The expression is:

3 +
1

3 + 1
3+ 1

3

And I need to find the irreducible fraction m
n that equals this expression, then determine

m+ n.
First, I need to simplify the expression step by step. It looks like a continued fraction, so I’ll
start by simplifying the innermost part and work my way out.
Let’s denote the entire expression as:

E = 3 +
1

3 + 1
3+ 1

3

Step 1: Simplify the innermost fraction
Start with the innermost fraction:

3 +
1

3
Calculate this:

3 +
1

3
=

9

3
+

1

3
=

10

3
So now, the expression becomes:

E = 3 +
1

3 + 1
10
3

Wait, I need to simplify 1
10
3

:
1
10
3

=
3

10

Now, the expression is:

E = 3 +
1

3 + 3
10

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Step 2: Simplify the next fraction
Now, simplify 3 + 3

10 :

3 +
3

10
=

30

10
+

3

10
=

33

10
So, the expression now is:

E = 3 +
1
33
10

Simplify 1
33
10

:
1
33
10

=
10

33

Now, the expression is:

E = 3 +
10

33
Step 3: Combine the terms
Convert 3 to a fraction with denominator 33:

3 =
99

33

Now, add the fractions:

E =
99

33
+

10

33
=

109

33

So, the expression simplifies to 109
33 .

Step 4: Ensure the fraction is irreducible
Check if 109 and 33 have any common divisors. 109 is a prime number (I think), and 33 is
3× 11. Since 109 isn’t divisible by 3 or 11, the fraction 109

33 is already in its irreducible form.
Step 5: Find m+ n
Here, m = 109 and n = 33, so:

m+ n = 109 + 33 = 142

Wait, let’s double-check the calculations to ensure no mistakes were made.
Verification:
Starting over:

E = 3 +
1

3 + 1
3+ 1

3

Innermost:
3 +

1

3
=

10

3
Next layer:

3 +
1
10
3

= 3 +
3

10
=

33

10

Outermost:
3 +

1
33
10

= 3 +
10

33
=

99

33
+

10

33
=

109

33

Yes, it checks out. Therefore, m+ n = 109 + 33 = 142.
142

Majority-Voting Answer:

To find the value of m
n as the irreducible fraction of the expression 3 + 1

3+ 1

3+ 1
3

, we need to

simplify the expression step by step.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

First, let’s simplify the innermost fraction:

3 +
1

3
= 3 +

1

3
=

9

3
+

1

3
=

10

3

Now, substitute this back into the expression:

3 +
1

3 + 1
10
3

= 3 +
1

3 + 3
10

Next, simplify the fraction 3 + 3
10 :

3 +
3

10
=

30

10
+

3

10
=

33

10

Now, substitute this back into the expression:

3 +
1
33
10

= 3 +
10

33

To add these, we need a common denominator:

3 +
10

33
=

99

33
+

10

33
=

109

33

So, the irreducible fraction value of the expression is 109
33 . Here, m = 109 and n = 33.

Therefore, the value of m+ n is:

m+ n = 109 + 33 = 142

Thus, the value of m+ n is 0 .

Self-Certainty Answer:

Alright, I have this math problem to solve:
Problem: I need to solve a math problem. The problem is about understanding how to
solve math problems. I need to understand how to solve this problem so I can understand
more about math.
Understanding the Problem
First, I need to understand what the problem is. I need to understand math so I can understand
more about numbers and how to solve problems with numbers. Understanding math will help
me understand more about how to understand problems.
Understanding Math Problems
After understanding the problem, I need to understand more about math problems. Un-
derstanding math problems will help me understand how to understand these problems.
Understanding these problems will help me understand more about how to understand math.
Understanding Mathematical Concepts
After understanding math problems, I need to understand more about mathematical concepts.
Understanding mathematical concepts will help me understand more about math. Under-
standing these concepts will help me understand more about how math helps me understand
numbers.
Understanding Mathematical Operations
After understanding mathematical concepts, I need to understand more about mathematical
operations. Understanding mathematical operations will help me understand more about how
to understand these operations. Understanding these operations will help me understand more
about how these operations help me understand math.
Understanding Mathematical Operations in Math
After understanding mathematical operations, I need to understand
Understanding Mathematical Methods

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

After understanding mathematical operations, I need to understand more about mathematical
methods.
Understanding How Mathematical Methods Help
......
Understanding How These Methods Help Me Understand Math
After understanding more about how these methods help me, I need to understand
Understanding How These Methods Help Me Understand Math Problems
After understanding how these methods help me understand math, I need to understand
Understanding How These Methods Help Me Solve Math Problems
After understanding how these methods help me understand these math problems, I need to
understand
Understanding How These Methods Help Me Solve These Problems
After understanding how these methods help me solve these problems, I need to understand
more about

Entropy Answer:

To find the value of m
n as the irreducible fraction of the expression:

3 +
1

3 + 1
3+ 1

3

Let’s simplify the expression step by step.
1. **Simplify the innermost fraction:**

3 +
1

3

3 +
1

3
=

3× 3

3
+

1

3
=

9

3
+

1

3
=

9 + 1

3
=

10

3
2. **Simplify the next fraction:**

3 +
1

3 + 1
3

= 3 +
1
10
3

3 +
1
10
3

= 3 +
1× 3

10
= 3 +

3

10
=

3× 10

10
+

3

10
=

30

10
+

3

10
=

30 + 3

10
=

33

10

3. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3

= 3 +
1
33
10

3 +
1
33
10

= 3 +
1× 10

33
= 3 +

10

33
=

3× 33

33
+

10

33
=

99

33
+

10

33
=

99 + 10

33
=

109

33

4. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3

= 3 +
1
109
33

3 +
1
109
33

= 3 +
1× 33

109
= 3 +

33

109
=

3× 109

109
+

33

109
=

327

109
+

33

109
=

327 + 33

109
=

360

109

5. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1
360
109

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

3+
1
360
109

= 3+
1× 109

360
= 3+

109

360
=

3× 360

360
+
109

360
=

1080

360
+
109

360
=

1080 + 109

360
=

1189

360

6. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

1189
360

......
7. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

3927
1189

......
8. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

12970
3927

......
9. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

42837
12970

......
10. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

141481
42837

......
11. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

467280
141481

......
12. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

1543321
467280

......
13. **Simplify the next fraction:**

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

5097243
1543321

3 +
1

5097243
1543321

= 3+

Question:

Question:

You are given a Python function and an assertion containing an
input to the function. Complete the assertion with a literal (no
unsimplified expressions, no function calls) containing the

output when executing the provided code on the given input, even
if the function is incorrect or incomplete.

[PYTHON]
def f(text):

new_text = list(text)
for i in ’+’:

if i in new_text:
new_text.remove(i)

return ’’.join(new_text)
assert f(’hbtofdeiequ’) == ??
[/PYTHON]

Instruction

Please answer this question by first reasoning and then providing
your answer.

Present your reasoning and solution in the following json format.
Please show your final answer in the ‘answer‘ field, e.g.,"answer":

"42".

‘‘‘json
{

"reasoning": "___",
"answer": "___"

}

GT-Reward Answer:

{
"reasoning": "The function ‘f‘ is designed to remove all
occurrences of the character ’+’ from the input string ‘text‘.
The function first converts the string into a list of characters
, iterates through this list, and removes any ’+’ characters it
finds. Finally, it joins the remaining characters back into a
single string. Given the input string ’hbtofdeiequ’, there are
no ’+’ characters in the string, so the function will simply
return the original string unchanged. Therefore, the output of
the function when given the input ’hbtofdeiequ’ is the string ’
hbtofdeiequ’.",

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

"answer": "hbtofdeiequ"
}

Co-rewarding-I Answer:

{
"reasoning": "The function ‘f‘ is designed to remove all
occurrences of the character ’+’ from the input string ‘text‘.
The function first converts the string into a list of characters
, then iterates over the character ’+’ and removes it from the
list if it exists. Finally, it joins the list back into a string
and returns it. Given the input ’hbtofdeiequ’, the character

’+’ does not appear in the string, so the function will return
the original string unchanged.",
"answer": "hbtofdeiequ"

}

Co-rewarding-II Answer:

{
"reasoning": "The function ‘f‘ takes a string ‘text‘ and
removes all occurrences of the character ’+’ from it. The
function then joins the remaining characters back into a string
and returns it. Given the input ’hbtofdeiequ’, the function will
remove all ’+’ characters (though there are none in the input),
so the output will be the same as the input string. Therefore,

the assertion should check if the output of ‘f(’hbtofdeiequ’)‘
is ’hbtofdeiequ’.",
"answer": "hbtofdeiequ"

}

Majority-Voting Answer:

{
"reasoning": "The function ‘f‘ is designed to remove all
occurrences of the character ’+’ from the input string ‘text‘.
The input provided to the function is ’hbtofdeiequ’. Since the
character ’+’ does not appear in this string, the function will
return the original string unchanged. Therefore, the assertion
should compare the output of the function to the original input
string.",
"answer": "’hbtofdeiequ’"

}

Self-Certainty Answer:

To solve this problem, we need to follow these steps:

1. Understand the given Python function.
2. Determine what the function does with the given input.
3. Complete the assertion with the correct output based on the

function’s behavior.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Let’s go through each step one by one:

1. Understand the given Python function.
2. Determine what the function does with the given input.
3. Complete the assertion with the correct output based on the

function’s behavior.

We will write the code to understand the function, determine its
behavior with the given input, and then complete the assertion
with the correct output.

Let’s write the code step by step.
‘‘‘python
Step 1: Understand the given Python function
Step 2: Determine what the function does with the given input
Step 3: Complete the assertion with the correct output based on

the function’s behavior

Let’s write the code to follow these steps
‘‘‘

‘‘‘python
Step 1: Understand the given Python function
Step 2: Determine what the function does with the given input
Step 3: Complete the assertion with the correct output based on

the function’s behavior

Let’s write the code to follow these steps

Step 1: Understand the given Python function
We will define the given function and understand what it does

Step 2: Determine what the function does with the given input
We will determine the output of the function for the given input

Step 3: Complete the assertion with the correct output based on
the function’s behavior

We will complete the assertion with the correct output

Let’s write the code
‘‘‘

Let’s write the code step by step.
‘‘‘python
Step 1: Understand the given Python function
Step 2: Determine what the function does with the given input
Step 3: Complete the assertion with the correct output based on

the function’s behavior

Let’s write the code to follow these steps
‘‘‘

‘‘‘python
Step 1: Understand the given Python function
We will define the given function and understand what it does

Step 2: Determine what the function does with the given input
We will determine the output of the function for the given input

Step 3: Complete the assertion with the correct output based on
the function’s behavior

We will complete the assertion with the correct output

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

......

Let’s write the code

Step 1: Understand the

Entropy Answer:

‘‘‘json
{

"reasoning": "To determine the output of the function ‘f‘ when
the input is ’hbtofdeiequ’, we need to follow these steps:

1. Convert the string ’hbtofdeiequ’ into a list:
\[
\text{new_text} = \text{list}(’hbtofdeiequ’)
\]
\[
\text{new_text} = [’h’, ’b’, ’t’, ’o’, ’f’, ’d’, ’e’, ’i’, ’e’,
’q’, ’u’]

\]

2. Iterate through the character ’+’:
\[
\text{for } i \text{ in } ’+’:
\]
\[
\text{for } i \text{ in } ’+’:
\]
\[
\text{for } i \text{ in } ’+’:
\]
\[
\text{for } i \text{ in } ’+’:
\]
\[
\text{for } i \text{ in } ’+’:
\]
\[
\text{for } i \text{ in } ’+’:
\]
......

\[
\text{for } i \text{ in } ’+’:
\]
\[
\text{for } i \text{ in } ’+

38

	Introduction
	Preliminary
	Co-rewarding
	Conceptual Philosophy: invariance beyond the single-view
	Two Initiations of Co-rewarding Framework

	Experiments
	Setups
	Experimental Results
	Main Performance of Co-rewarding
	Further Analysis

	Related Work
	Conclusion
	Related Work
	Pseudo Code of Co-rewarding
	Formulation of Co-rewarding-III
	Pseudo Code

	Additional Experimental Details
	Details of Baselines
	More Implementation Details
	More Evaluation Details

	Additional Experimental Results
	More Results on Other Training Sets and LLMs
	More Curves of Reward, Response Length and Pseuo Label Accuracy
	More Results of Validation Performance Curves
	Results of Test-time Training (TTT)
	More Results of Benchmark Performance Curves
	Impact of Math Training Collapse on Other Tasks
	Discussion of MATH and DAPO-14k
	Robustness Analysis of Different Rephraser LLMs
	Voting Accuracy Analysis of Co-rewarding-I
	More Results of MMLU-Pro Evaluation
	More Results of IFEval Evaluation
	Original Questions vs. Rephrased Questions
	Complete Case Study
	Case Study on Code Benchmark

