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ABSTRACT

While reinforcement learning with verifiable rewards (RLVR) is effective to im-
prove the reasoning ability of large language models (LLMs), its reliance on human-
annotated labels leads to the scaling up dilemma, especially for complex tasks.
Recent self-rewarding methods investigate a label-free alternative to unlock the
reasoning capabilities of LLMs, yet they frequently encounter the non-negligible
training collapse issue, as the single-view supervision signal easily forms the
self-consistent illusion, yielding the reward hacking. Inspired by the success of
self-supervised learning, we propose Co-rewarding, a novel self-supervised RL
framework that improves training stability by seeking complementary supervision
from another views. Specifically, we instantiate Co-rewarding in two ways: (1) Co-
rewarding-I is a data-side instantiation that derives reward signals from contrastive
agreement across semantically analogous questions; and (2) Co-rewarding-II is a
model-side instantiation that maintains a slowly-updated reference teacher with
pseudo labels to realize self-distillation. Intuitively, such instantiations introduce
different levels of discrepancy to increase the difficulty of training collapse on
trivial reasoning solutions. We also explore their orthogonally combined version to
further boost the performance. Empirically, Co-rewarding exhibits stable training
across various setups, and outperforms other self-rewarding baselines by +3.31%
improvements on average on multiple mathematical reasoning benchmarks, es-
pecially by +7.49% on Llama-3.2-3B-Instruct. Notably, Co-rewarding reaches
or even surpasses RLVR with ground-truth (GT) label in several cases, such as a
Pass@1 of 94.01% on GSMS8K with Qwen3-8B-Base remarkably higher than GT.

Qwen3-1.7B-Base (MATH) Qwen3-8B-Base (DAPO-14k)
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Figure 1: Performance overview. Reasoning comparison of Pass@1 value and validation curves.
Our Co-rewarding achieves better and more stable (without collapse) training than other baselines.

Qwen3-8B-Base Llama-3.2-3B-Instruct

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Dubey et al., 2024; Qwen et al., 2025) have
demonstrated remarkable general-purpose capabilities in a wide range of linguistic tasks (Hendrycks
et al.). To further elicit their reasoning ability in complex scenarios, reinforcement learning with
verifiable rewards (RLVR) (Shao et al., 2024; Yu et al., 2025) is developed for post-training with
externally verifiable signals like program execution results (Luo et al., 2025) or mathematical
equivalence (Shao et al., 2024). Despite the impressive improvement, the reliance on high-quality
ground-truth (GT) labels of RLVR remains as a major bottleneck (Ouyang et al., 2022; Bai et al.,
2022) in the spirit of the scaling law, which subsequently motivates the emerging exploration of
self-rewarding methods with unlabeled data (Zhao et al., 2025b; Zuo et al., 2025; Zhang et al., 2025b).
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One prominent line of such label-free methods leverages the internal signals (e.g., entropy (Zhang
et al., 2025c; Prabhudesai et al., 2025) and self-certainty (Zhao et al., 2025b)) to strengthen the
confidence of the model in reasoning. Another critical line seeks the answer-level consensus (Zuo
et al., 2025; Shafayat et al., 2025) to construct pseudo labels as reward basis. while effective initially,
these self-rewarding approaches frequently exhibit non-negligible training collapse (Zhang et al.,
2025d) (indicated as right of Figure 1), which limits the scalability of such label-free training manners.

The collapse phenomenon stems from reward hacking (Laidlaw et al., 2025) under self-consistent
illusion: the reward signal is internally produced by the policy model from a single-view data
perspective, which is easily trapped by trivial solutions along with training (see Figure 7). Specifically,
for entropy- or certainty-based rewards, the policy model may concentrate probability mass on a small
set of tokens and produce repetitive strings that minimize entropy or maximize self-certainty (Zhang
et al., 2025d). And for consensus-based rewards, the policy model can converge to a consistent yet
incorrect answer that attains high consensus across rollouts (Shafayat et al., 2025). Overall, the policy
model continually reduces uncertainty without sustained gains in correctness, inflating the reward but
eroding exploration and diversity. It ultimately collapses when a persistent hacking strategy emerges.

To this end, we introduce Co-rewarding, a self-supervised RL framework that seeks complementary
supervision from another views, inspired by self-supervised learning (Chen et al., 2020; Grill et al.,
2020; Caron et al., 2021). Conceptually, one fundamental characteristic of self-rewarding methods
lies on that supervision intertwined with current policy on single-view outputs, for which we propose
to seek reasoning invariance across different views (see Figure 2). Specifically, we investigate two
initiations of Co-rewarding: (1) Co-rewarding-I: a data-side initiation that constructs rewards via
contrastive agreement across semantically analogous questions, each providing pseudo labels for
the other; and (2) Co-rewarding-II: a model-side initiation that introduces an extra teacher with
dynamically updated policy and provides stable pseudo-labels insulated from current online policy.
Additionally, we also explore the combined instantiation, Co-rewarding-III, which integrates data-side
cross-supervision with model-side self-distillation to further boost the performance.

By introducing cross-view supervision on data and decoupling the reward signal from the current
policy, Co-rewarding effectively mitigates training collapse and yields stable self-supervised RL
training. Extensive experiments across multiple datasets validate the stability and superiority of
Co-rewarding, compared to several recent baselines across several LLM families including Qwen3/2.5
and Llama. Notably, both Co-rewarding-I and -II reach or exceed training with ground-truth labels in
several settings, such as achieving up to 94.01% Pass@ 1 on GSM8K. Our main contributions are

* We introduce a new perspective, from self-supervised learning, to elicit reasoning capability via
another views of supervision, which prevents the model from training collapse (Section 3.1).

* We propose Co-rewarding, a novel self-supervised RL framework that is initiated by the data and
model sides to construct self-generate rewards to promote stably reasoning elicitation (Section 3.2).

* We empirically demonstrate the general effectiveness of Co-rewarding to achieve superior reasoning
performance on LLMs, and also present various ablation studies and further analyses (Section 4).

2 PRELIMINARY

Problem Setups. Given a LLM 7y parameterized by 6 and a dataset D of question—answer pairs
(z,a), the model generates a response y ~ mg(- | ) autoregressively. Lety = (y1, . . .,Yn ), Where
each token is sampled as y; ~ 7wy (- | ,y<¢) given the generated prefix y.;. We consider the LLM
outputs a stepbystep reasoning trace and a final answer. A verifiable reward function r(a, ) compares
the extracted answer ans(y) with the ground truth a as follows:

_ 1
r(a,y) {0 If ans(y) is incorrect with answer a. M

Then, the general objective of training LLM for reasoning via RLVR (Shao et al., 2024; Yu et al.,
2025) can be formulated with the policy model 7y as follows:

H}%X E(x,a)G’D, y~mo () [r(a, y) - 6 : KL[WQ(y|x)H7Tr8f(y|x)H7 )

1 If ans(y) is correct with answer a,

where 7 is an initial reference policy, and £ is a coefficient controlling the KL divergence to prevent
excessive deviation from the reference model. Intuitively, the training target is to maximize the
reward in passing specific reasoning questions while maintaining the general capability of LLM.
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Figure 2: Illustration of Co-rewarding framework: Unlike single-view methods that rely only on
internal reward signal on original question (a), Co-rewarding introduces complementary supervision.
On the data side (b), paraphrased questions yield pseudo-labels for cross-reference. On the model
side (c), teacher model isolated from current policy provides stabilized pseudo-labels for updates.

Group Relative Policy Optimization (GRPO). In practice, we adopt GRPO (Shao et al., 2024), a
widely used and representative optimization method for objective Eq. (2) that estimates the advantage
by normalizing the reward across multiple sampled outputs for the same question. Specifically, for a
given question x, GRPO samples G outputs from the old policy moq as {yZ}f:1 ~ Tod(+|x). It then
computes a reward for each output y; via a deterministic reward function, forming a group of rewards

{r(a,y:)}%, to estimate the advantage A; as follows:
i _ ra,yi) —mean({r(a,y:)}{,)
std({r(a,y:) }Z1)

Then, the target policy is optimized by maximizing the advantage while ensuring the policy model
remains close to the reference policy:

3

Jareo(0) = Ea,0)eD, (418, ~roy (o)

=1
lyil

G

1 1 . N . N

2 1 3 (min [ens0)dursclpless 01,1 - 1+ ) Ase]| — D rllmr) )
i=1 7 =1

Ro(A)

where

Cz’,t(g) — M7 DKL(WOHTFref) _ 71—9(yi‘,t|xvyif<t) _lo Wref(yi,t|xayi,<t) _1 (5)
TGo1a (yl,t|x7 y27<t) FYEf(yl,tlxv y2,<t) ﬂ&(yz,t €, yz,<t)

Note that the clip(-, 1 — €, 1 4 €) in Eq. (4) is used to ensure that updates do not deviate excessively

from the old policy by bounding the policy ratio between 1 — € and 1 + € in a risk function R(A). We
also provide a comprehensive discussion on additional training variants for RLVR, such as DAPO (Yu
et al., 2025) and Dr. GRPO (Liu et al., 2025a), which we leave in Appendix A due to space limits.

3 CO-REWARDING

In the following, we present Co-rewarding in detail, a novel self-supervised RL framework for LLM
to elicit the latent reasoning capability through the intuition of seeking complementary supervision.

3.1 CONCEPTUAL PHILOSOPHY: INVARIANCE BEYOND THE SINGLE-VIEW

At the core of self-rewarding methods lies a fundamental tension: the model derives supervisory
signals from its own outputs, inevitably intertwining supervision with policy and risks collapse. True
reasoning competence, however, cannot be reduced to the mere correctness of isolated answers. It
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should instead reflect invariance that extends beyond the single-view output for consistency. This calls
for training signals that remain valid across different data views or persist throughout the temporal
evolution of the model, providing a more reliable basis on which self-supervised RL can rely. In this
aspect, stability arises from invariance that prevents reasoning against superficial variations in data
and guides the model towards increasingly valid reasoning trajectories throughout training.

This philosophy yields our Co-rewarding framework, whose core idea is to ground self-supervised
RL in invariance rather than the suspicious single-view feedback.We instantiate it in two orthogonal
ways and one combined version: by enforcing analogy-invariance on the data side (Co-rewarding-I),
by disentangling supervision through temporal invariance on the model side (Co-rewarding-II), and
by integrating both mechanisms in a unified instantiation (Co-rewarding-III).

3.2 Two INITIATIONS OF CO-REWARDING FRAMEWORK

Co-rewarding-1: on the Data Side. Inspired by contrastive learning, such as SimCLR (Chen et al.,
2020) and InfoNCE (Oord et al., 2018), where two views of the same data are encouraged to have
similar representations, we hypothesize an analogy-invariance inductive property of LLMs in eliciting
reasoning capacity: questions that share the same mathematical essence but differ in surface form (e.g.,
via paraphrasing, background substitution, or reformatting) should elicit the comparably valid and
similar reasoning results. This forms the foundation for a self-referential training signal: contrastive
agreement among different question variants can serve as an optimization proxy. Co-rewarding-I
defines contrastive agreement as a principle that aligns model reasoning outputs, treating consistent
inter-view agreement as a signal for valid inference. This complements single-view self-rewarding
strategies by introducing a form of collective validity verification with broader input consideration.

Building upon the discussed contrastive agreement, we initiate our Co-rewarding-I as illustrated in
Figure 2. Formally, its learning objective can be formulated as follows based on GRPO:

jCo—rewarding-I(e) = ]ExeD,{yi}§:1~7r9"]d(.|;1;)R9(A) + Ev:’—j'D/,{// /}iG:1~7rg"]d(» :")RG(A/)a

(6)
Toriginal (6) Trephrasea (6)
where the relative advantages are estimated by the cross-refereed supervision as follows:
A Tl ye) — mean({r (v, yi) o) A= r(ys, ;) — mean({r(ys, ) }iE1) @

L std({r (v, v:) 1) std({r (. v)}1)

Specifically, given a set of original questions, we utilize the rephrased version that keeps the semantical
equivalence for the model to respond, and then collect the self-generated pseudo-labels based on the
majority voting mechanism (Shafayat et al., 2025) as follows to supervise learning on the counterparts,

e, G
Yy — arg maxz l[ans(y;) = ans(y*)], 1y, < arg maxz 1[ans(y)) = ans(yx)].  (8)
Y* Y*

i=1 i=1

The overall pipeline can be viewed as a dual-path structure with cross-reference in the reward shaping
process, it may also be compatible with other self-generated feedbacks (Wang et al., 2022) on the
output-side information due to the generality of the core idea. While in the current version, we choose
the majority voting mechanism in the implementation for the empirical effectiveness and simplicity.

We summarize the pseudo code of Co-rewarding-I in Algorithm 1. Our contrastive objective operates
on self-generated reasoning answers, encouraging the model to align its reasoning results to different
questions that share the similar semantic intent. Formally, for each input question, the signal of
Co-rewarding-I increases when the model’s output is consistent with the majority answer obtained
from its analogical counterparts, and decreases when it diverges. This contrastive agreement promotes
semantic invariance, implicitly increasing the difficulty of reaching trivial solutions to obtain the
reward (e.g., achieving the arbitrary answers but consistent on single input) by involving data-side
analogy. We leave a more intuitive case study in the Appendix D.12 to present the rephrased questions.

Co-rewarding-11: on the Model Side. On the data side, our Co-rewarding-1 provides complementary
supervision by involving question analogy, while its pseudo-labels are still generated by the current
online policy and may depend on rephrasing quality; consequently, supervision remains partially
entangled with the policy. Inspired by self- or weakly supervised methods like the representative
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BYOL (Grill et al., 2020), DINO (Caron et al., 2021), and Co-teaching (Han et al., 2018), which share
the common intuition of introducing an auxiliary network to provide supervision beyond the current
model, we initiate Co-rewarding-II from another view of complementary supervision: a model-side
strategy that sources pseudo-labels from a teacher reference, which disentangle the self-supervision
reward from the online policy. To avoid the heavy cost of adding and maintaining another LLM in
training, Co-rewarding-II reuses the GRPO reference model as the teacher to generate the rollouts and
produce pseudo-labels. In particular, the teacher is dynamically updated as an exponential moving
average (EMA) of the student policy to ensure pseudo-label quality improving as the policy improves.

Intuitively, we illustrate Co-rewarding-1I in Figure 2. Its learning objective can be formulated as:

j(f)rewar in; (0) =E ~ (k) R9(A(k))7 (9)
¢ dinetl IED’{yi 'LG 71—9 ld( |$) {yj ’Tl(‘cl‘J('l‘r)

policy student rollout reference teacher rollout

where {y;}$, are policy rollouts and { ,} ~_, are reference teacher rollouts at the k-th training step,

and the estimated advantage R(A(k)) is computed as follows:

™

0 N
Al(.k) = r( oY) = mean({ (/‘ ’yl) ’:1), k) —argmaxz [ans(y;) = ans(yx)], (10)

std({r(1)", yi) Y )

where the pseudo label y( ) is obtained via majority voting from reference rollouts, and the reference
model is updated via an EMA with the policy to play a role of a slowly updated teacher:

70 k) | ~(k=1)

nd — I ]f
AN L (1= a®) ), o =1 (end = Atan) . Cstan) (1 + cos (;{)) (11)

where o(%) (0, 1) is the EMA weight, updated according to a cosine annealing schedule from
Qistart 1O Qend, Such that the teacher is updated rapidly at the beginning and progressively more slowly,
thereby evolving smoothly and remaining temporally decoupled from the current online policy.

—al

We summarize the pseudo code of Co-rewarding-II in Algorithm 2. This design can be interpreted
as a kind of self-distillation, in which a slowly updated teacher supervises a faster-moving student.
Such a paradigm breaks the single-step on-policy feedback loop inherent in existing self-rewarding
methods (Zhao et al., 2025b; Prabhudesai et al., 2025; Shafayat et al., 2025), raises the cost of
exploiting trivial low-entropy shortcuts or spurious consensus, and offers a stable reward source
without introducing an additional LLM or optimizer. In this way, it effectively overcomes reward
hacking and prevents training collapse by implicitly seeking a temporal invariance for true reasoning.

Co-rewarding-III: Data-side + Model-side. Given that Co-rewarding-I and Co-rewarding-II provide
two complementary perspectives for constructing stable self-supervised signals, a natural exploration
is to integrate both data-side cross-supervision and model-side self-distillation into a unified instanti-
ation. We introduce Co-rewarding-111, which leverages analogy-invariance between each original
question and its rephrased counterparts while producing pseudo-labels from the EMA-updated refer-
ence teacher. Specifically, the teacher generates rollouts for both original and rephrased questions,
and the resulting pseudo-label from one side is used to supervise the other. This combination further
boosts the resistance of the reward signal to hacking, promoting more stable training dynamics.

Formally, its learning objective can be formulated as:

k “(k
jéo )rewardmg 11 (9) = R9 (A(k))

E €] -G
2D, (i} ~ o) (J2), wenr, {735 ~ 7% (1)

policy student rollout from original question reference teacher rollout from rephrased question

/ k ~ e
ven, {ytey ~ mg([a)), vep, {35 ~ 78 (|2)

policy student rollout from rephrased question reference teacher rollout from original question

Oold

+E Ro(A'™H), (12)

where the first term supervises the original question via pseudo labels generated from its rephrased
counterpart, and the second term, symmetrically, supervises the rephrased question via pseudo
labels generated from the original question. The estimated advantages R (/1(’“)) and R@(A/ (k)Y are
computed in the similar way as in Co-rewarding-I and Co-rewarding-II. The reference teacher is
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Table 1: Main Results (%) of Co-rewarding and baselines trained on MATH. Cell background
colors indicate relative performance: darker colors denote better results within each model group.
Additional results of Qwen2.5-3B/7B and Qwen3-1.7B-Base trained on MATH refer to Table 7.

Training Set: MATH \ Mathematics Code Instruction  Multi-Task
Methods | MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro
QOwen3-8B-Base
Before RL 72.4 27.82 20.93 3.75 23.41 54.75 50.89 52.92
- GT-Reward (Shao et al., 2024) 82.6 87.26 54.22 17.15 30.52 63.25 52.78 57.11
- Self-Certainty (Zhao et al., 2025b) 80.2 80.74 50.75 15.73 27.20 64.38 50.98 54.17
- Entropy (Prabhudesai et al., 2025) 80.2 87.19 49.54 15.63 29.38 62.00 51.81 54.86
- Majority-Voting (Shafayat et al., 2025) 79.8 89.76 49.09 15.83 30.52 63.38 51.80 56.93
- Co-rewarding-I (Ours) 81.2 93.70 51.20 15.10 30.81 66.00 55.79 59.95
- Co-rewarding-II (Ours) 80.8 92.42 53.46 14.48 30.23 62.83 60.70 57.50
- Co-rewarding-III (Ours) 81.4 90.98 54.07 13.33 30.71 63.75 53.69 59.10
QOwen3-4B-Base
Before RL 71.2 26.15 21.08 4.58 11.00 38.88 46.43 47.23
- GT-Reward (Shao et al., 2024) 78.6 89.76 51.20 15.00 26.07 55.38 47.80 53.96
- Self-Certainty (Zhao et al., 2025b) 71.6 71.79 38.86 11.67 22.37 57.00 48.15 48.93
- Entropy (Prabhudesai et al., 2025) 77.0 88.10 47.44 10.94 25.59 52.88 50.44 49.90
- Majority-Voting (Shafayat et al., 2025) 714 90.07 45.33 10.10 26.54 57.50 48.78 54.35
- Co-rewarding-I (Ours) 78.8 91.28 46.08 13.85 26.64 56.50 50.35 53.26
- Co-rewarding-II (Ours) 78.0 88.86 45.93 12.17 26.25 55.00 51.30 53.88
- Co-rewarding-III (Ours) 78.6 90.75 48.80 12.71 26.16 56.00 49.23 53.08
Llama-3.2-3B-Instruct
Before RL 39.2 65.73 10.54 3.75 9.86 25.37 57.32 31.14
- GT-Reward (Shao et al., 2024) 47.0 77.94 22.14 11.67 9.57 31.87 47.51 34.32
- Self-Certainty (Zhao et al., 2025b) 43.4 74.91 18.83 6.88 9.95 25.87 54.88 33.34
- Entropy (Prabhudesai et al., 2025) 43.4 66.19 20.18 6.56 11.66 24.62 54.70 33.52
- Majority-Voting (Shafayat et al., 2025) 46.8 78.77 20.48 9.27 11.00 31.25 47.96 33.18
- Co-rewarding-I (Ours) 50.2 79.45 23.80 10.00 11.28 29.88 48.89 33.77
- Co-rewarding-II (Ours) 49.8 79.30 22.59 10.73 10.80 30.63 49.90 33.61
- Co-rewarding-III (Ours) 51.6 79.91 25.45 10.42 10.43 32.50 46.37 34.50

also updated via EMA, as Eq. (11) in Co-rewarding-II. The other formulations and pseudo code of
Co-rewarding-III are supplemented in Appendix B.1 and Algorithm 3.

Remark 1. Overall, the two instantiations of Co-rewarding embody our core idea from different
perspectives: I leverages data-side analogy-invariance to provide cross supervision, while II employs
model-side self-distillation to stabilize learning. Together, they reflect that stable self-supervised
reasoning elicitation can emerge from both the diversity of data perspectives and the disentanglement
of supervision signals. Co-rewarding-III further explores an orthogonally combined instantiation
of these two sides. Moreover, Co-rewarding offers a flexible framework, in which key components,
such as pseudo-labeling strategies, data rephrasing techniques, teacher model update rules, and policy
optimization, can be seamlessly substituted with other advanced approaches (Yu et al., 2025).

4 EXPERIMENTS

4.1 SETUPS

Backbone Models and Baselines. We employ a diverse set of LLMs from different families and
scales in our experiments, including the Qwen2.5 series (Qwen2.5-3B/7B) (Qwen et al., 2025),
the Qwen3 series (Qwen3-1.7B/4B/8B-Base) (Yang et al., 2025), and the Llama3 series (Llama-
3.2-3B-Instruct) (Meta, 2024). Beyond the vanilla GRPO that utilized the GT label for rewarding,
we compare our Co-rewarding against several recent state-of-the-art (SoTA) self-reward reasoning
approaches, denoted as Self-Certainty (Zhao et al., 2025b), Entropy (Prabhudesai et al., 2025) and
Majority Voting (Shafayat et al., 2025). The details of all baselines are summarized in Appendix C.1.

Implementation Details. We implement our algorithms based on the VeRL framework (Sheng
et al., 2024), and experiments are conducted on 4 x H100-80GB GPUs. For our experiments, we
totally use three training sets: MATH (Hendrycks et al., 2021) (7,500 questions), DAPO-14k (Yu
et al., 2025) (en-version of DAPO-Math-17k, about 14.1k questions), and OpenRS (Dang & Ngo,
2025) (7,000 questions). During RL training, we use a global batch size of 128, set the number of
rollouts to G = G = 8 per question for Co-rewarding-I, II and III, and adopt AdamW with a learning
rate of 3 x 1075, In Co-rewarding-I and III, question rephrasing is performed by the open-source
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Table 2: Main Results (%) of Co-rewarding and baselines trained on DAPO-14k. Cell background
colors indicate relative performance: darker colors denote better results within each model group.
Additional Results of Qwen3-8B-Base and Qwen3-4B-Base trained on OpenRS refer to Table 8.

Training Set: DAPO-14k | Mathematics Code Instruction  Multi-Task
Methods | MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro
QOwen3-8B-Base
Before RL 72.4 27.82 20.93 3.75 23.41 54.75 50.89 52.92
- GT-Reward (Shao et al., 2024) 86.6 87.19 61.75 24.58 30.52 63.75 53.11 60.27
- Self-Certainty (Zhao et al., 2025b) 82.0 77.63 49.85 15.00 27.77 60.75 50.58 54.24
- Entropy (Prabhudesai et al., 2025) 79.4 80.82 45.48 15.00 30.14 62.00 51.56 54.57
- Majority-Voting (Shafayat et al., 2025) 78.6 91.66 50.00 11.25 30.33 61.62 51.54 55.65
- Co-rewarding-I (Ours) 78.4 88.02 51.20 11.88 29.38 62.50 50.17 55.39
- Co-rewarding-II (Ours) 80.6 94.01 54.37 16.35 31.66 67.12 53.31 59.83
- Co-rewarding-III (Ours) 81.6 92.27 53.77 17.71 32.70 66.75 55.85 60.02
QOwen3-4B-Base
Before RL 71.2 26.15 21.08 4.58 11.00 38.88 46.43 47.23
- GT-Reward (Shao et al., 2024) 83.6 85.14 52.86 20.63 18.58 56.88 47.70 55.35
- Self-Certainty (Zhao et al., 2025b) 68.4 4481 35.39 8.85 25.88 50.12 45.58 48.84
- Entropy (Prabhudesai et al., 2025) 76.6 82.79 43.37 12.81 26.35 50.75 48.20 50.22
- Majority-Voting (Shafayat et al., 2025) 734 64.06 40.81 9.17 26.16 53.00 48.91 51.06
- Co-rewarding-I (Ours) 73.8 75.89 43.83 10.63 26.25 50.12 46.84 51.51
- Co-rewarding-II (Ours) 77.8 91.89 48.49 14.27 26.64 54.87 48.90 52.83
- Co-rewarding-III (Ours) 79.2 90.45 48.95 15.10 27.58 54.87 50.30 54.79
Llama-3.2-3B-Instruct
Before RL 39.2 65.73 10.54 3.75 9.86 25.37 57.32 31.14
- GT-Reward (Shao et al., 2024) 494 78.17 25.90 9.17 10.33 31.37 53.10 33.83
- Self-Certainty (Zhao et al., 2025b) 42.4 74.71 17.32 479 11.18 28.38 54.50 33.51
- Entropy (Prabhudesai et al., 2025) 44.0 65.85 17.32 6.56 9.95 25.00 55.78 31.95
- Majority-Voting (Shafayat et al., 2025) 42.8 70.96 17.62 8.74 10.14 29.50 54.07 32.95
- Co-rewarding-I (Ours) 46.0 70.58 20.93 7.08 9.57 27.25 53.04 32.61
- Co-rewarding-II (Ours) 49.8 78.62 19.73 8.02 10.43 32.25 51.92 34.46
- Co-rewarding-III (Ours) 48.6 76.95 21.84 8.13 9.86 30.50 49.92 34.01
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Figure 3: Performance curves comparison Figure 4: Reward (left) and response length (right) of
on validation set. Top: Qwen3-1.7B-Base Qwen3-8B-Base and Llama-3.2-3B-Instruct trained on
and Qwen2.5-7B trained on the MATH set. DAPO-14k. Due to different reward scale from other
Bottom: Qwen3-8B-Base and Llama-3.2- methods, Entropy reward is plotted on the right y-axis
3B-Instruct trained on the DAPO-14k set.  of left panels, where the reward is the negative entropy.

Qwen3-32B model. In Co-rewarding-1II and III, the EMA weight is scheduled from ay,e = 0.99 to
Qend = 0.9999 using cosine annealing. More implementation details are reported in Appendix C.2.

Evaluation Details. To provide a comprehensive evaluation of model capabilities, we utilize a diverse
set of benchmarks spanning mathematical reasoning, code generation, instruction-following, and
general multi-task abilities. Specifically: (1) Mathematical reasoning: MATHS00 (Lightman et al.,
2024), GSMS8K (Cobbe et al., 2021), AMC (Li et al., 2024a), and AIME24 (Zhang & Math-Al, 2024).
(2) Code generation: LiveCodeBench (Jain et al., 2025) release_v6 and CRUX (Gu et al., 2024). (3)
Instruction-following and multi-task abilities: IFEval (Zhou et al., 2023b) and MMLU-Pro (Wang
et al., 2024). Additional evaluation details are provided in Appendix C.3.
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Figure 5: Performance and Stability on GSM8K and AMC. The gains of Co-rewarding arise from
its training stability, which supports continuous improvements throughout learning.

Table 3: Ablation study of Co-rewarding. For Co-rewarding-I, ablations train only on original or
rephrased data. For Co-rewarding-II, ablation removes EMA updates of the reference teacher.

Qwen3-8B-Base Qwen3-4B-Base

Training Set | Methods | MATH500 GSMS8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro
| Qwen3-8B-Base
Co-rewarding-I 81.2 93.70 51.20 15.10 30.81 66.00 55.79 59.95
- Majority-Voting w/ Union 80.2 93.48 49.70 15.63 31.94 64.88 5425 59.51
- Majority-Voting w/ Original 79.8 89.76 49.09 15.83 30.52 63.38 51.80 56.93
- Majority-Voting w/ Rephrased 79.2 91.51 50.75 14.17 31.66 60.38 52.24 57.26
MATH Co-rewarding-1I 80.8 92.42 53.46 14.48 30.23 62.83 60.70 57.50
- w/o Updating Reference 79.2 89.46 51.51 13.96 30.62 61.75 56.93 51.85
| Llama-3.2-3B-Instruct
Co-rewarding-I 50.2 79.45 23.80 10.00 11.28 29.88 48.89 33.77
- Majority-Voting w/ Union 48.0 80.52 21.84 9.69 10.14 30.00 43.35 34.05
- Majority-Voting w/ Original 46.8 78.77 20.48 9.27 11.00 31.25 47.96 33.18
- Majority-Voting w/ Rephrased 44.0 78.85 21.23 8.85 10.04 17.25 47.84 33.72
Co-rewarding-1I 49.8 79.30 22.59 10.73 10.80 30.63 49.90 33.61
- w/o Updating Reference 47.0 78.92 22.29 9.06 5.50 31.25 47.88 33.32
| Qwen3-8B-Base
Co-rewarding-II 80.6 94.01 54.37 16.35 31.66 67.12 5331 59.83
DAPO-14k - w/o Updating Reference 78.0 88.40 51.66 15.94 30.62 63.75 52.48 58.01
| Llama-3.2-3B-Instruct
Co-rewarding-1I 49.8 78.62 19.73 8.02 10.43 32.25 51.92 34.46
- w/o Updating Reference 45.0 76.72 17.92 8.02 10.05 30.63 51.33 33.94

4.2 EXPERIMENTAL RESULTS
4.2.1 MAIN PERFORMANCE OF CO-REWARDING

Superior Performance of Co-rewarding over self-rewarding baselines. Table 1 and Table 2 report
the experimental results trained on MATH and DAPO-14k, respectively. We observe that all three
Co-rewarding instantiations (I, II, and III) occupy more darker cells in the tables, demonstrating
stronger performance than other self-rewarding SoTA baselines. Specifically, Co-rewarding-I achieves
an average relative performance gain of +4.42% over the best baselines across four mathematical
benchmarks and models in Table 1, while Co-rewarding-1I achieves a larger average relative gain of
+12.90% in Table 2. Moreover, Co-rewarding-IIT achieves improvements on average of +7.11% and
1.72% over Co-rewarding-I and Co-rewarding-II, respectively, suggesting that integrating data-side
cross-supervision with model-side self-distillation can further boost performance. Additional results
on other training sets and LLMs are provided in Appendix D.1.

Surpassing GT-Reward on certain benchmarks. Surprisingly, we observe that both all three
Co-rewarding instantiations (I, I, and III) outperform GT-Reward in certain cases. For example,
on GSMSK, they together achieve an average improvement of +2.77% over GT-Reward in Table 1,
while Co-rewarding-II further delivers a larger gain of +5.44% in Table 2. Notably, Co-rewarding-1I
reaches a remarkably high Pass@1 of 94.01% with Qwen3-8B-Base. This may be because GSM8K
is a relatively easier benchmark, where self-supervised RL is sufficient to elicit the latent reasoning
abilities of base models without relying on GT labels. Additionally, Co-rewarding also shows
advantages on the coding benchmark CRUX in several cases. This may be attributed to the distribution
difference between the training data and the evaluation benchmarks. Such distribution mismatch
may offer opportunities for self-supervised methods to generalize on par with, or even surpass
GT-supervised methods in some cases. These findings highlight the potential of self-supervised RL
to elicit reasoning capabilities, particularly with Co-rewarding mitigating training collapse.

Code generalization with preserved general performance. Although trained solely on math-

oriented datasets, the models show improvements on coding benchmarks, suggesting a cross-domain
generalization from math to code in self-supervised reasoning elicitation. Moreover, Co-rewarding
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Figure 7: Case study: An example comparing the generations from Majority-Voting, Entropy, and our
proposed Co-rewarding. The results clearly reveal the reward hacking behavior exhibited by Majority-
Voting and Entropy, while ours generate the correct answer. Full results refer to Appendix D.13.

preserves general instruction-following and multi-task ability on MMLU-Pro and IFEval. As shown
in Table 4, Co-rewarding-II outperforms other self-rewarding baselines in 12 of 14 MMLU-Pro
categories, demonstrating that its gains do not come at the expense of broader general-domain
performance. More detailed results of MMLU-Pro and IFEval refer to Appendix D.10 and D.11.

Importance of stability for performance gain. As shown in Table 2, self-rewarding baselines exhibit
noticeably limited performance gain in certain cases, such as Self-Certainty with Qwen3-4B-Base on
GSMBK. Figure 5 further reflects this by showing that baselines improve quickly at the beginning but
soon collapse on GSM8K and AMC, whereas Co-rewarding sustains steady progress. This collapse
restricts the baselines to effective training on only a small portion of the data, preventing further
improvements with continued training. These observations underscore the importance of avoiding
training collapse in self-supervised RL to unlock further performance gains.

4.2.2 FURTHER ANALYSIS

Co-rewarding alleviates collapse and provides stable self-supervised RL. We use 5,000 questions
from the MATH test split as a validation set to monitor training process. Figure 3 shows that all three
self-rewarding baselines collapse on both MATH and DAPO-14k. Co-rewarding-I remains stable
on MATH but still collapses on DAPO-14k, suggesting that its stability depends on the property
of training data. A plausible explanation is that the questions in MATH may provide favorable
conditions for promoting diverse rephrasing variability, which is beneficial for the effectiveness of
contrastive agreement in Co-rewarding-I. More discussions are provided in Appendix D.7. In contrast,
Co-rewarding-II consistently maintains stability across datasets, as its design decouples supervision
from the online policy and thus breaks the entanglement between supervision and the policy itself.

Co-rewarding attempts to balance exploration-exploitation. Figure 4 shows reward and response
length curves. Entropy and Majority-Voting quickly reach the highest reward, indicating reward
hacking rather than genuine reasoning improvement. In contrast, GT-Reward and Co-rewarding
exhibit smoother, gradually increasing rewards, reflecting stable training. The response length
curves further illustrate this difference: GT-Reward lengthens responses to explore correct reasoning
paths; Majority-Voting collapses to short outputs, restricting exploration; and Entropy collapses
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its probability mass onto a small set of tokens, repeatedly generating them until truncation. Co-
rewarding instead maintains moderate response lengths throughout training, suggesting a balanced
exploration—exploitation trade-off. Additional curves for other LLMs are provided in Appendix D.2.

Each part contributes to Co-rewarding. Table 3 summarizes the ablations across two training sets.
For Co-rewarding-I, we observe that it typically outperforms all three variants of Majority-Voting:
models trained only on original questions, only on rephrased questions, or on their union. This
indicates that the cross-supervision between original and rephrased questions plays a key role in
mitigating training collapse, whereas simply adding more data does not resolve the inherent instability
of single-view self-rewarding methods. Notably, training only on the original or rephrased data
yields comparable results, reflecting that the quality of original and rephrased data is similar. For
Co-rewarding-II, removing the EMA update of the reference teacher model causes clear degradation,
highlighting the necessity of teacher updates for improving pseudo-label quality.

EMA is essential in Co-rewarding-II for improving pseudo-label quality. Figure 6 compares
pseudo-label accuracy across Co-rewarding-II, “w/o Updating Reference”, and Majority-Voting.
Co-rewarding-II steadily improves accuracy as training progresses, while ‘“w/o Updating Reference”
remains nearly flat, underscoring the role of EMA updates in allowing the teacher to co-evolve with
the policy and generate higher-quality pseudo labels. By contrast, Majority-Voting briefly improves
but then collapses to near zero, evidencing reward hacking through consistent yet incorrect outputs.

Case Study of the model reasoning with different learning methods. Figure 7 provides a concrete
example to illustrate the qualitative difference between self-rewarding baselines and our Co-rewarding.
Majority-Voting exhibits reward hacking by boxing an incorrect answer “0” to pursue consensus,
even though the reasoning steps are correct. Entropy produces repetitive outputs as its decoding
probability distribution collapses onto a narrow set of tokens during entropy minimization. In contrast,
Co-rewarding generates coherent step-by-step reasoning and correctly boxes the final answer, showing
its capacity to overcome reward hacking and elicit genuine reasoning. Full results are provided in
Appendix D.13 and additional case studies on code benchmark are discussed in Appendix D.14.

5 RELATED WORK

Reinforcement learning with verifiable reward (RLVR) has recently become a mainstream post-
training paradigm for eliciting strong reasoning abilities in LLMs (Guo et al., 2025), achieving
remarkably encouraging success particularly on mathematical (Shao et al., 2024) and coding (Luo
et al., 2025) tasks. However, RLVR fundamentally depends on high-quality and annotated GT
labels to supervise reward signals, which remains a major bottleneck for scalability under the spirit
of the scaling laws. To break this limitation, recent efforts have explored RL without external
reward from multiple perspectives. For instance, methods such as TTRL (Zuo et al., 2025) and
SRT (Shafayat et al., 2025) pursue self-consistency to generate pseudo labels for rewards, where
agreement among multiple rollouts is treated as optimization objective. Additionally, another technical
line such as EMPO (Zhang et al., 2025c), Intuitor (Zhao et al., 2025b) and RENT (Prabhudesai et al.,
2025), enhances the LLM confidence by optimizing internal signals of reasoning, such as entropy
minimization or self-certainty maximization. Different from these studies, Co-rewarding focuses
on mitigating inherent training collapse in existing methods and enables stable self-supervised RL
training. More detailed discussions of related work are in Appendix A.

6 CONCLUSION

In this work, we introduced Co-rewarding, a self-supervised RL framework that elicits the reasoning
capability of LLMs through complementary supervision. Unlike prior self-rewarding methods that
entangle rewards with single-view outputs and risk collapse, Co-rewarding establishes stability by
decoupling the reward signal from the current online policy with the single-view output. Specif-
ically, Co-rewarding-I leverages contrastive agreement across semantically analogous questions;
Co-rewarding-II employs a dynamically updated teacher to provide insulated pseudo-labels; and
Co-rewarding-III combines the data-side cross-supervision from Co-rewarding-I and the model-side
teacher-based pseudo labels from Co-rewarding-II to further boost performance. Together, these
designs construct cross-referable reward signals without explicit labels, aligning RL with invariances
in reasoning rather than the mere correctness of isolated outputs. We hope this work will inspire
further exploration into self-supervised RL for reasoning to advance the development.
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LLM USAGE STATEMENT

Here we clarify the usage of Large Language Models (LLMs) in this work. For the preparation of
this paper, LLMs are limited to the role of a general-purpose writing assistant and are not used for
research ideation or core content generation. For research methodology, LLM is a core component of
our proposed method. Specifically, we utilize the Qwen3-32B model to perform question rephrasing
in Co-rewarding-I, which is thoroughly detailed in the Implementation Details section of the main
paper. The authors take full responsibility for all content written under their name.

A RELATED WORK

Large Language Model Reasoning. LLMs have shown impressive performance on vast tasks that
require reasoning, including solving mathematical problems, writing code, and answering logical
questions. One of the key techniques that has improved LLM reasoning is Chain-of-Thought (CoT)
prompting (Wei et al., 2022). CoT encourages the model to generate intermediate reasoning steps
before producing the final answer, which has been shown to enhance performance on tasks like
arithmetic, commonsense reasoning, and symbolic reasoning. Subsequent work has extended CoT
by integrating it with various strategies, including compositional generalization (Zhou et al., 2023a;
Khot et al., 2023) and employing structural reasoning approaches (Yao et al., 2023a; Besta et al.,
2024; Yang et al., 2024). In addition, CoT serves as a fundamental framework for techniques like
fine-tuninig (Zelikman et al., 2022), argentic workflow (Yao et al., 2023b), and paving the way for
inference-time scaling (Snell et al., 2024).

RL for Large Language Models. Several RL algorithms have been developed primarily for
alignment tasks. Specifically, DPO (Rafailov et al., 2023), CPO (Xu et al., 2024), and their variants (Li
et al., 2024b; Guo et al., 2024; Munos et al., 2024; Hong et al., 2024; Xie et al., 2024) rely on pairs of
outputs labeled by human preference. In contrast, KTO (Ethayarajh et al., 2024) and BCO (Jung et al.,
2024) require only a single binary label (like or dislike) for each output. Besides, the PRM (Uesato
et al., 2022; Lightman et al., 2024) and Step-KTO (Lin et al., 2025a) offer step-by-step guidance
by incorporating feedback at each reasoning step rather than focusing solely on the final outputs.
Recently, the follow-up work of GRPO improves the optimization objective, e.g., DAPO (Yu et al.,
2025), Dr. GRPO (Liu et al., 2025a), REINFORCE++ (Hu, 2025), CPPO (Lin et al., 2025b), and
GPG (Chu et al., 2025). Another line of research generalizes GRPO to broader applications such
as multimodal reasoning (Zhou et al., 2025; Huang et al., 2025; Chu et al., 2025; Liu et al., 2025b;
Zhang et al., 2025a) and logical reasoning (Xie et al., 2025).

RL without External Reward. RL methods have shown promising scaling capabilities to enhance
the reasoning abilities of LLMs (Guo et al., 2025), yet they are often limited by the availability of
training data for reward signals (Gao et al., 2023; Liu et al., 2023). Notably, Wang et al. (Wang
et al., 2025) demonstrate that RL can effectively bootstrap LLM reasoning with as little as a single
training example, highlighting the potential to minimize or even eliminate reliance on external reward
signals during training. Recent efforts leverage distinct strategies for reward assignment. For instance,
SIRLC (Pang et al., 2024) and AZR (Zhao et al., 2025a) utilize an LL.M-as-the-judge approach to
assign rewards. In contrast, methods like SRT, TTRL, and their variants (Shafayat et al., 2025; Zuo
et al., 2025; Fang et al., 2025; Zhang et al., 2025b) employ self-consistency (Wang et al., 2022) to
generate pseudo-rewards, reducing dependence on external annotations. Meanwhile, INTUITOR,
RLSC, and RENT (Zhao et al., 2025b; Li et al., 2025; Prabhudesai et al., 2025) harness the internal
confidence scores of LLMs as intrinsic reward signals. Additionally, EMPO and its variants (Zhang
et al., 2025¢c; Agarwal et al., 2025) promote reasoning by minimizing entropy during the reasoning
process, further diversifying the approaches to incentivize robust LLM performance.
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Algorithm 1 Co-rewarding-1

1: Input: policy model 7y, learning rate 7, training dataset D, rephrased training dataset D', total
iterations K.

2: Output: trained policy model 7y.

3. for all iteration k = 1,..., K do

4: Sample mini-batch inputs B C D and B CTD.

5 for all input question « € B and =’ € B’ do

6: Sample rollouts {y; }$&., ~ 7, (- | ).

7 Sample rollouts {y;}gl ~ T (- | Z').

8 Obtain pseudo labels by Eq. (8).

9: Estimate relative advantages by Eq. (7).
10: Compute the objective by Eq. (6).
11 Update 0« 60— UVGJCO—rewarding-I(e)-
12: end for
13: end for

Algorithm 2 Co-rewarding-I1

1: Input: policy model 7y, learning rate 7, training dataset D, total iterations K.
2: Qutput: trained policy model 7p.

3: foriterationk =1,..., K do

4 Sample mini-batch B C D.

5 for all z € Bdo

6: Sample rollouts {y;}&, ~ 77(5 (-] x).
7: Update the reference teacher by Eq. (11).
8

: Sample rollouts {7} ﬁﬁef( | ).
9: Obtain pseudo label from {yj ~, by Eq. (10).
10: Estimate the relative advantage by Eq. (10).
11: Compute the objective by Eq. 9).
12: Update 00— nVBJCO rewarding- 11(0)
13: end for
14: end for

Algorithm 3 Co-rewarding-111

1: Input: policy model 7y, learning rate 7, original training dataset D, rephrased training dataset
D', total iterations K.

2: Qutput: trained policy model 7p.

3: foriteration k = 1,..., K do

4: Sample mini-batch inputs 5 C D and B’ C D'.

5 for all € B and 2’ eB’do

6: Sample rollouts {y;}& | ~ 7T(§ V(-] ) and {y;}7, ~ 7r((, V(-] 2.

7

8

Update the reference teacher by Eq. (11).

: Sample rollouts {3]7-}@ ~1C[ (-] ) and {yj ~ 7T§C[ (-] 2").
9: Obtain pseudo label from {7; } ~, and {%} 1 by Eq. (13) and Eq. (14).
10: Estimate the relative advantages by Eq. (13) and Eq. (14).
11: Compute the objective by Eq. (12).
12: Update 0« 0— TIVOJ(O rewarding- III(0>
13: end for
14: end for
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B PSEUDO CODE OF CO-REWARDING

B.1 FORMULATION OF CO-REWARDING-III

The relative advantages Rg(A®)) and Ry (A’¥)) are computed as:

1k ~1(k)
At _ " y) — mean({r(0", i) }E1)

Mo

~1(k) _ oo (Y — ane
- , U = arg max 1[ans(y)) = ans(yx)], (13)
std({r(;}\/”",yi) 1) o '
NN R G G
Ai(k) _ f(yv 7///) me?:)({’(yV -,!/;) 7,:1)7 g\(]k) = arg max 1[ans(g]) _ ans(y*)}, (14)
std({r (" v)YE,) -

where the pseudo label ;"
rephrased question, and y 5” is the corresponding pseudo label obtained from reference rollouts on

original question. The reference model is slowly updated via EMA as in Eq. (11).

is the majority-vote pseudo label obtained from reference rollouts on the

B.2 PSEuUDO CODE

To intuitively present the pipeline of Co-rewarding, we summarize the pseudo codes of Co-rewarding-
I, Co-rewarding-II and Co-rewarding-III in Algorithm 1, Algorithm 2 and Algorithm 3, respectively.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DETAILS OF BASELINES

We compare our proposed Co-rewarding-I and II against GT-reward and several recent state-of-the-art
(SoTA) self-reward approaches:

e GT-Reward (Shao et al., 2024): Originally introduced by DeepSeek-R1 (Guo et al., 2025),
GT-Reward supervises training using ground-truth (GT) answers, determining whether model
rollouts are correct or not, to guide RL optimization.

* Self-Certainty (Zhao et al., 2025b): This method maximizes self-certainty, defined as the KL-
divergence between the uniform distribution and the model’s decoding distribution, serving as
reward to encourage more confident predictions.

* Entropy (Prabhudesai et al., 2025): This method minimizes the entropy of the model’s rollout
distribution, using negative entropy as reward to maximize model confidence.

* Majority-Voting (Shafayat et al., 2025): By generating multiple rollouts per question, Majority-
Voting selects the most frequent answer as a pseudo-label to supervise training.

For all methods, we adopt the widely used GRPO as the policy optimization algorithm.

C.2 MORE IMPLEMENTATION DETAILS

The detailed training configurations are summarized in Table 5, and all baseline methods are trained
under the same setup for fairness. For the training system prompt, we adopt the official default prompt
provided by VeRL', shown below:

‘Let’s think step by step and output the final answer within \boxed{}.

In addition, the semantically analogical questions used in Co-rewarding-I are generated by Qwen3-
32B through a rewriting prompt. The exact rewriting instruction is provided as follows:

You are given a math problem. Please rewrite it using different wording
and a different real-world scenario, while keeping the underlying
mathematical meaning and answer exactly the same.

"https://github.com/volcengine/verl
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Table 5: Detailed training settings.

Settings \ Co-rewarding-1 Co-rewarding-I1
Batch Size 128 128

Max Prompt Length 512 512

Max Response Length 3072 3072

Train Steps 170-220 300-330
Learning Rate 3e-6 3e-6

# Policy Rollout G 8 8

# Reference Rollout G - 8

Clip Ratio 0.2 0.2
Warmup Style Cosine Cosine
Warmup Steps Ratio 0.1 0.1

KL Loss Coefficient 0.005 0.001
Optimizer AdamW (81 = 0.9, B2 = 0.999, € = 10798)
Training Temperature 1.0 1.0
Evaluation Temperature 0.8 0.8

EMA atart - 0.99

EMA @ieng - 0.9999

Table 6: Statistics and usages of datasets used in our experiments.

Dataset Name \ # Data Size Usage
MATH-Train (Hendrycks et al., 2021) 7,500 Training Set
MATH-Test (Hendrycks et al., 2021) 5,000 Validation Set
DAPO-14k (Yu et al., 2025) 14,109 Training Set
Open-RS (Dang & Ngo, 2025) 7,000 Training Set
MATHS500 (Lightman et al., 2024) 500 Evaluation Benchmark
GSMS8K (Cobbe et al., 2021) 1,319 Evaluation Benchmark
AMC (Li et al., 2024a) 83 Evaluation Benchmark
LiveCodeBench (Jain et al., 2025) 1,055 Evaluation Benchmark
CRUX (Gu et al., 2024) 800 Evaluation Benchmark
MMLU-Pro (Wang et al., 2024) 12,032 Evaluation Benchmark
IFEval (Zhou et al., 2023b) 541 Evaluation Benchmark

Guidelines:

1. Do not change
2. Use different
problem.

3. Avoid copying
4. Make sure the

(no extra explanation):

### RESULT_START
ORIGINAL:

<original question>
REWRITE:

<rewritten question>
### RESULT_END

the math logic or the final answer.
words and a new context to make it look like a different

phrases or sentence structures from the original.
rewritten question is natural, clear, and solvable.
5. Output ONLY between the following markers, and strictly in this format
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Table 7: Supplement Results (%) of Co-rewarding and baselines trained on MATH. Cell
background colors: darker colors denote better results within each model group.

Training Set: MATH \ Mathematics Code Instruction  Multi-Task
Methods | MATH500 GSM8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro
Owen2.5-3B
Before RL 53.6 19.48 10.69 0.52 9.95 18.50 29.83 32.50
- GT-Reward (Shao et al., 2024) 65.4 82.18 32.98 6.77 13.93 32.12 33.66 36.74
- Self-Certainty (Zhao et al., 2025b) 64.2 80.52 28.92 5.00 10.90 29.00 3222 33.88
- Entropy (Prabhudesai et al., 2025) 63.2 80.44 29.67 5.94 9.05 29.00 32.94 35.35
- Majority-Voting (Shafayat et al., 2025) 64.6 82.41 33.13 5.10 14.03 36.38 35.19 35.50
- Co-rewarding-I (Ours) 65.4 84.53 30.57 5.31 16.40 36.88 33.86 36.38
- Co-rewarding-II (Ours) 65.2 81.72 32.38 4.47 22.25 40.25 32.74 30.79
Owen2.5-7B
Before RL 69.4 24.71 15.81 2.81 3.79 26.38 38.19 44.76
- GT-Reward (Shao et al., 2024) 76.4 88.02 45.63 14.06 15.92 45.12 41.49 41.12
- Self-Certainty (Zhao et al., 2025b) 72.8 84.31 38.55 8.75 12.04 54.12 37.24 43.30
- Entropy (Prabhudesai et al., 2025) 72.2 81.43 39.61 10.73 16.49 51.88 40.33 42.79
- Majority-Voting (Shafayat et al., 2025) 744 84.53 40.96 11.04 15.45 51.00 38.60 43.35
- Co-rewarding-I (Ours) 74.6 89.61 41.27 10.73 15.73 55.58 42.86 40.51
- Co-rewarding-II (Ours) 73.6 89.31 42.77 11.98 8.25 47.50 41.82 37.45
Owen3-1.7B-Base
Before RL 57.0 19.56 8.43 1.15 4.45 7.50 33.65 33.00
- GT-Reward (Shao et al., 2024) 69.6 81.57 35.54 8.23 13.74 35.25 36.16 39.12
- Self-Certainty (Zhao et al., 2025b) 58.2 40.25 23.04 3.02 9.86 18.00 32.96 35.13
- Entropy (Prabhudesai et al., 2025) 63.6 71.79 31.63 6.88 13.74 31.37 35.37 36.67
- Majority-Voting (Shafayat et al., 2025) 65.2 81.57 34.78 7.50 13.08 34.25 35.45 36.00
- Co-rewarding-I (Ours) 67.6 83.01 3222 8.65 13.50 32.38 35.56 35.53
- Co-rewarding-II (Ours) 66.2 80.89 33.28 7.50 14.40 32.88 36.94 37.59

Qwen2.5-3B (MATH) Qwen3-4B-Base (MATH) Qwen3-8B-Base (MATH) Llama-3.2-3B-Instruct (MATH) Qwen3-4B-Base (DAPO-14k)

—— Entropy —— Entropy —— Entropy —— Entropy

—— Majority-Voting

—— Majority-Voting —— Majority-Voting 0 —— Majority-Voting | 0 —— Majority-Voting |

50 100 150 50 100 150 50 100 150 50 100 150 100 200 300
Step Step Step Step Step

Figure 8: Performance curves on validation set. Left to Right: {Qwen2.5-3B, Qwen3-4B-Base,
Qwen3-8B-Base, Llama-3.2-3B-Instruct} trained on MATH, Qwen3-4B-Base trained on DAPO-14k.

C.3 MORE EVALUATION DETAILS

We conduct the evaluation across a diverse set of benchmarks, spanning mathematical reasoning,
code generation, instruction-following, and general multi-task abilities. Specifically: (1) Mathemat-
ical reasoning: We evaluate on MATH500 (Lightman et al., 2024), GSM8K (Cobbe et al., 2021),
and AMC (Li et al., 2024a). For MATH500 and GSMS8K, we report pass@1 accuracy using the
lighteval library’. For AMC, we use the ttr1? library and report avg@8 as the metric. (2)
Code generation: We assess coding ability using LiveCodeBench (Jain et al., 2025) release_v6
and CRUX (Gu et al., 2024). LiveCodeBench is evaluated with its of ficial evaluation library®,
and CRUX is evaluated via the ZeroEval library’; for both datasets, we report pass@ 1 accuracy.
(3) Instruction-following and multi-task abilities: We evaluate on IFEval (Zhou et al., 2023b) and
MMLU-Pro (Wang et al., 2024), using the lm—evaluation—-harness library(7 for both. Overall,
we summarize the statistics of the datasets used in this paper in Table 6.

Zhttps://github.com/huggingface/lighteval
3https://github.com/ruixin31/Spurious_Rewards/tree/main/code/ttr]
“https://github.com/LiveCodeBench/LiveCodeBench
Shttps://github.com/WildEval/ZeroEval
Shttps://github.com/Eleuther Al/Im-evaluation-harness

20



Under review as a conference paper at ICLR 2026

Table 8: Supplement Results (%) of Co-rewarding and baselines trained on OpenRS. Cell
background colors: darker colors denote better results within each model group.

Training Set: Open-RS | Mathematics Code Instruction  Multi-Task
Methods | MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro
QOwen3-8B-Base

Before RL 72.40 27.82 20.93 23.41 54.75 50.89 52.92
- GT-Reward (Shao et al., 2024) 80.20 89.76 54.97 39.00 63.00 52.94 55.49
- Self-Certainty (Zhao et al., 2025b) 82.60 85.22 50.00 37.00 64.62 52.12 56.03
- Entropy (Prabhudesai et al., 2025) 80.60 87.41 48.95 38.00 61.25 52.53 56.80
- Majority-Voting (Shafayat et al., 2025) 78.00 84.23 51.96 36.75 58.00 51.13 54.92
- Co-rewarding-I (Ours) 78.20 92.65 50.60 28.91 63.12 53.11 57.21
- Co-rewarding-II (Ours) 80.00 90.90 53.01 39.75 62.75 52.92 56.55

QOwen3-4B-Base
Before RL 71.20 26.15 21.08 11.00 38.88 46.43 47.23
- GT-Reward (Shao et al., 2024) 78.80 85.22 49.55 33.50 55.12 46.41 50.12
- Self-Certainty (Zhao et al., 2025b) 73.20 33.43 35.84 32.50 49.50 46.47 48.24
- Entropy (Prabhudesai et al., 2025) 76.80 87.57 42.62 35.00 53.87 47.61 52.42
- Majority-Voting (Shafayat et al., 2025) 76.00 64.14 44.58 32.25 50.25 46.35 48.75
- Co-rewarding-I (Ours) 72.80 83.93 39.41 26.54 53.25 48.11 50.82
- Co-rewarding-II (Ours) 76.60 89.23 42.32 34.00 51.50 48.45 51.80

Table 9: Performance (%) of test-time training (TTT). Since self-supervised methods are label-free,
they can be leveraged during inference for test-time training to further enhance performance.

LLMs | Methods | AMC
| | avg@8 pass@8 avg@16 pass@16 avg@32 pass@32 avg@64 pass@64
‘ Before-TTT ‘ 15.81 46.99 17.55 66.27 16.34 74.70 17.32 75.90
Self-Certainty 41.57 74.70 39.23 74.70 39.68 78.31 39.95 87.95
Owen2.5-7B Entropy 38.70 56.63 39.76 68.67 39.57 79.52 39.34 81.93

Majority-Voting | 43.67 63.86 43.67 67.47 43.49 78.31 44.35 85.54
Co-rewarding-I 44.88 60.24 4533 60.24 45.44 71.08 45.76 73.49
Co-rewarding-II | 43.22 69.88 41.34 75.90 40.36 78.31 41.64 87.95

| Before-TTT | 20.93 61.45 21.31 73.49 19.58 79.52 20.97 86.75
Self-Certainty 49.85 78.31 50.68 78.31 50.41 84.34 49.55 89.16
QOwen3-8B-Base | Entropy 48.64 74.70 49.92 80.72 49.96 87.95 50.23 89.16

Majority-Voting | 50.90 73.49 50.00 72.29 50.60 80.72 51.36 85.54
Co-rewarding-I 52.86 68.67 53.46 74.70 53.24 81.93 53.58 84.34
Co-rewarding-II | 48.64 72.29 48.19 73.49 50.19 83.13 49.28 91.57

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MORE RESULTS ON OTHER TRAINING SETS AND LLMSs

Table 7 reports additional results of Qwen2.5-3B and Qwen3-1.7B-Base and Qwen3-4B-Base trained
on MATH, while Table 8 extends the experiments of Qwen3-8B-Base and Qwen3-4B-Base to
another training set OpenRS (Dang & Ngo, 2025). It can be observed that Co-rewarding occupies
relatively darker areas. Across models and training sets, Co-rewarding-I and II achieve an average
relative improvement of +2.23% on GSMS8K, with notably high pass@1 scores of 92.65% and
90.90% for Qwen3-8B-Base trained on OpenRS, respectively. Moreover, thanks to its stability,
Co-rewarding-II delivers more reliable gains than self-rewarding baselines, which occasionally suffer
lower performance on certain models or benchmarks, e.g., Self-Certainty on Qwen3-1.7B-Base in
Table 7 or Majority-Voting on Qwen3-4B-Base in Table 8. These results further demonstrate the
effectiveness of Co-rewarding.

D.2 MORE CURVES OF REWARD, RESPONSE LENGTH AND PSEUO LABEL ACCURACY

Figure 9 supplements the reward and response curves of Qwen3-4B-Base trained on DAPO-14k. The
trends are consistent with Qwen3-8B-Base and Llama-3.2-3B-Instruct in Figure 4: Majority-Voting
and Entropy rapidly increase rewards at early stage and quickly peak, a clear sign of reward hacking.
In contrast, GT-Reward and Co-rewarding-II exhibit smoother, steadily rising rewards, indicating gen-
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Figure 9: Curves of reward (Left), response length (Middle), and pseudo label accuracy (Right)
of Qwen3-4B-Base trained on DAPO-14k. Entropy reward is plotted on the right y-axis due to its
different reward scale. Note that entropy minimization is to maximizing the negative entropy.

Table 10: Detailed MMLU-Pro performance on Qwen3-4B-Base and Llama-3.2-3B-Instruct
traind on DAPO-14k. Results are reported for each of the 14 categories in MMLU-Pro.

QOwen3-4B-Base

Methods \ biology business chemistry computer sci. economics engineering health
- GT-Reward | 73.50 63.49 59.71 56.34 65.05 42.93 50.86
- Self-Certainty 71.41 54.37 45.93 50.73 63.27 3591 50.12
- Entropy 70.99 56.02 50.44 48.29 63.15 34.37 48.41
- Majority-Voting | 70.43 55.77 52.83 53.41 62.79 38.09 50.61
- Co-rewarding-I 73.92 59.82 50.71 54.15 64.93 41.49 49.76
- Co-rewarding-II | 72.66 59.95 55.65 53.41 64.10 39.73 50.61
Methods \ history law math other philosophy physics psychology
- GT-Reward | 44.88 26.34 69.80 48.81 44.69 57.04 65.79
- Self-Certainty 39.63 24.43 59.44 43.94 40.08 47.04 59.65
- Entropy 40.68 26.43 60.99 45.13 43.69 50.89 61.90
- Majority-Voting | 40.94 2343 64.17 43.39 44.09 50.73 63.66
- Co-rewarding-I 40.94 23.25 63.73 4491 42.69 50.58 60.78
- Co-rewarding-II | 42.26 24.79 67.58 44.59 41.88 54.19 62.91
Llama3.2-3B-Instruct
Methods \ biology business chemistry computer sci. economics engineering health
- GT-Reward | 54.81 36.25 25.18 33.41 42.65 21.57 39.36
- Self-Certainty 55.23 32.95 27.21 31.95 42.77 20.54 39.12
- Entropy 52.86 31.05 23.94 32.93 41.71 20.43 38.02
- Majority-Voting | 56.07 32.95 22.79 30.98 44.19 18.99 39.61
- Co-rewarding-I 51.88 34.22 22.88 34.88 44.67 19.09 38.63
- Co-rewarding-II | 56.21 34.35 27.03 35.61 43.01 19.92 40.34
Methods | history law math other philosophy physics psychology
- GT-Reward | 30.18 22.71 34.20 34.74 32.06 28.33 50.38
- Self-Certainty 30.45 24.98 33.38 31.60 29.86 28.56 50.50
- Entropy 33.86 21.89 32.35 33.01 29.46 24.25 47.50
- Majority-Voting | 32.02 25.25 34.35 34.20 29.86 24.79 48.25
- Co-rewarding-I 33.86 23.25 32.12 33.01 31.86 25.40 48.75
- Co-rewarding-II | 32.28 24.34 35.83 36.26 33.27 28.18 49.12

uine learning of reasoning ability. Moreover, Co-rewarding-II maintains moderate response lengths
on Qwen3-4B-Base, further demonstrating its generality in balancing the exploration—exploitation
trade-off during reasoning training, which is a core principle of RL (Wang et al., 2018).

Additionally, the right panel of Figure 9 presents the pseudo-label accuracy of Qwen3-4B-Base,
showing trends consistent with Qwen3-8B-Base and Llama-3.2-3B-Instruct in Figure 6. As training
progresses, Co-rewarding-II steadily improves pseudo-label accuracy, while “w/o Updating Reference”
remains around 25%. Majority-Voting briefly increases accuracy but soon collapses to zero, clearly
indicating reward hacking. This highlights our design philosophy of pairing a fast policy student with
a slowly updated teacher, which decouples supervision from the online policy while enabling the
teacher to co-evolve with the student, thereby sustaining improvements in pseudo-label quality.
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Figure 10: Performance curves on benchmarks of MATH500, GSM8K, AMC and CRUX across
Qwen3-8B-Base, Qwen3-4B-Base, and Llama-3.2-3B-Instruct trained on DAPO-14k.

D.3 MORE RESULTS OF VALIDATION PERFORMANCE CURVES

As a supplement to Figure 3, Figure 8 presents validation performance curves for Qwen2.5-3B,
Qwen3-4B-Base, Qwen3-8B-Base, LLlama-3.2-3B-Instruct trained on MATH, as well as Qwen3-4B-
Base trained on DAPO-14k. Self-Certainty and Entropy collapse rapidly across all settings, as their
supervision signals are tied to internal confidence or entropy and are easily exploited. Majority-Voting
also collapses in several cases, reflecting that sampling pseudo labels from outputs cannot prevent
hacking. By contrast, Co-rewarding-I maintains stability across MATH-trained models through
data-side contrastive agreement, while Co-rewarding-II consistently provides stability across all
models and datasets by disentangling supervision with a slowly updated teacher, making hacking
substantially harder and optimization more reliable.

D.4 RESULTS OF TEST-TIME TRAINING (TTT)

Thanks to the label-free nature of self-supervised methods, which do not require GT labels, they are
naturally compatible with test-time training (TTT), enabling further refinement of the model during
inference. Table 9 reports the TTT results on the challenging competition-level benchmark AMC
across Co-rewarding and other self-rewarding baselines. We observe that Co-rewarding matches or
even surpasses existing methods, achieving the best results on 11 out of 18 metrics. These findings
broaden the applicability of self-supervised RL: beyond post-training for reasoning elicitation, it can
also be leveraged at inference time to further improve performance on specific benchmarks.

D.5 MORE RESULTS OF BENCHMARK PERFORMANCE CURVES

As a supplement to Figure 3 and Figure 5, Figure 10 presents performance curves on MATH500,
GSMS8K, AMC, and CRUX with Qwen3-8B-Base, Qwen3-4B-Base, and Llama-3.2-3B-Instruct.
Consistent with earlier findings, Self-Certainty, Entropy, and Majority-Voting rapidly collapse across
benchmarks and models, while Co-rewarding-II and GT-Reward sustain continued and stable im-
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Table 11: Impact of math training collapse on code and multi-task performance. Results are
evaluated on models before and after training collapse.

QOwen3-4B-Base

- | | Mathematics Code Multi-task
Training stage Methods
‘ ‘ MATH500 GSM8K AMC AIME24 LiveCode CRUX MMLU-Pro
- Self-Certainty 68.4 4481 35.39 8.85 25.88 50.12 48.84
Before training collapse | - Entropy 76.6 82.79 43.37 12.81 26.35 50.75 50.22
- Majority-Voting 73.4 64.06  40.81 9.17 26.16 53.00 51.06
- Self-Certainty 2.8 3.34 2.71 0.00 14.22 8.12 29.71
After training collapse - Entropy 2.8 2.35 3.46 0.00 18.60 31.75 28.13
- Majority-Voting 2.8 4.85 1.36 0.00 24.36 52.75 50.19

Table 12: Difference between original and rephrased questions from background richness, vocab-
ulary complexity, and sentence complexity.

Training Set \ # Data Size Background richness Vocabulary complexity Sentence complexity

MATH 7,500 +4.91% +4.79% +9.05%
DAPO-14k 14,100 +4.65% 1.95% +4.19%

Table 13: Success rate of different rephraser LLMs: MATH training set rephrased by Qwen3-32B,
Qwen3-8B, and Qwen3-1.7B, respectively.

Rephraser LLM | Training Set # Original questions # Rephrased questions  Success rate (%)

Qwen3-32B MATH 7,500 7,498 99.97%
Qwen3-8B MATH 7,500 1477 99.69%
Qwen3-1.7B MATH 7,500 2,060 27.47%

provements. These results underscore the link between performance and training stability: stable
training enables models to continue improving by effectively learning knowledge from more data.

D.6 IMPACT OF MATH TRAINING COLLAPSE ON OTHER TASKS

We investigate how training collapse occurring on math-oriented training sets impacts the model’s
performance on code-generation and multi-task benchmarks. To this end, we evaluate models trained
with existing self-rewarding methods (Self-Certainty, Entropy, and Majority-Voting) both before
and after training collapse. Table 11 summarizes the results. We observe that training collapses on
math-related training sets affect other tasks (LiveCode, CRUX and MMLU-Pro) in different way for
certainty- or entropy-based methods (Self-Certainty and Entropy) compared with consensus-based
methods (Majority-Voting). When collapse occurs on math-oriented training sets, all three methods
show substantial performance degradation on the four math benchmarks (MATH500, GSM8K, AMC,
and AIME24). However, their impacts on other tasks differ:

For certainty- or entropy-based methods, the performance on LiveCode, CRUX, and MMLU-Pro also
declines after collapse on math training sets. This arises from their reward objectives: maximizing self-
certainty or minimizing entropy, result in the decoding probability mass becoming highly concentrated
on a very subset of tokens. Consequently, the model produces repetitive outputs, and this repetitive
decoding behavior transfers across tasks, leading to degraded performance beyond the math domain.

For the consensus-based method, Majority-Voting shows similar performance before and after training
collapse on math-oriented training sets. This may be because its collapses stem from reward hacking
at the answer format: the model exploits the \boxed{} structure by consistently inserting an incorrect
but self-consistent answer to maximize reward. This type of collapse weakly affects the intermediate
reasoning trace, which largely remains structured. Since code-generation and multi-task benchmarks
do not rely on boxed-answer extraction, this type of collapse has limited impact on their performance.
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Table 14: Impact of rephraser LLM for Co-rewarding-I. Train Qwen3-8B-Base using data
rephrased by Qwen3-32B, Qwen3-8B and Qwen3-1.7B, respectively.

Trained Model \Rephraser LLM \ MATH500 GSMS8K AMC AIME24 LiveCode CRUX IFEval MMLU-Pro

Qwen3-32B 81.2 93.70 51.20 15.10 30.81 66.00 55.79 59.95
Qwen3-8B-Base | Qwen3-8B 79.2 92.72 51.51 14.58 30.90 63.12 54.73 59.30
Qwen3-1.7B 78.2 87.41 49.25 12.81 29.57 61.00 53.44 55.85
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Figure 11: Curves of voting accuracy of Majority-Voting, Co-rewarding-I and its ablations with
Qwen2.5-3B, Qwen3-1.7B-Base and Qwen3-8B-Base trained on MATH.

D.7 DiscussioN OF MATH AND DAPO-14K

We leverage Qwen3-235B-A22B to score the difference between original and rephrased questions
from multiple perspectives, including background richness, vocabulary complexity, and sentence
complexity, for MATH and DAPO-14k. From Table 12, we observe that the rephrasing in MATH
exhibits larger changes from the original to rephrased questions than DAPO-14k. This suggests that
the questions in MATH may provide favorable conditions for promoting diverse rephrasing variability,
which is beneficial for the effectiveness of contrastive agreement in Co-rewarding-1.

D.8 ROBUSTNESS ANALYSIS OF DIFFERENT REPHRASER LLMS

To analyze the impact of different rephraser LLMs for Co-rewarding-I, we conduct additional
experiments using smaller LLMs instead of Qwen3-32B for rephrasing. To control architectural
variability in the rephraser LLMs, we employ two smaller LLMs from the same family, i.e., Qwen3-
8B and Qwen3-1.7B, for rephrasing the MATH training set. Table 13 reports the rephrasing success
rate. We observe that rephrasing success rates drop as the model size decreases, which is expected:
rephrasing math questions while preserving the analogical essence is a relatively challenging task,
and weaker LLMs struggle to achieve this goal. This observation supports our choice of Qwen3-32B
as the rephraser, as a sufficiently capable LLM is required to produce faithful rephrasing.

We then train Co-rewarding-I on Qwen3-8B-Base using rephrased data generated by Qwen3-32B,
Qwen3-8B, and Qwen3-1.7B, respectively. The performance is summarized in Table 14. From
the results, it can be observed that performance gradually degrades as the size of the rephraser
LLM decreases, but not always significantly. Rephrasing with Qwen3-8B maintains reasonably
similar performance to using Qwen3-32B, indicating that Co-rewarding-I exhibits a certain degree of
robustness under moderate reductions in rephrasing quality. Notably, rephrasing with Qwen3-1.7B
leads to a substantial performance drop. This degradation is largely attributable to the significantly
lower rephrasing success rate of Qwen3-1.7B, which results in a substantial reduction of usable
training data and consequently weakens the effectiveness of Co-rewarding-I.

D.9 VOTING ACCURACY ANALYSIS OF CO-REWARDING-I

To demonstrate the stability and efficiency of Co-rewarding-I, we compare its voting accuracy against
that of Majority-Voting in Figure 11 and Figure 12. These experiments are conducted on Qwen2.5-
3B, Qwen3-1.7B-Base and Qwen3-8B-Base models, all trained on the MATH dataset. Across all
settings, the Majority-Voting method exhibits reward hacking, where its performance sharply declines
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Figure 12: Voting accuracy of Majority-Voting, Co-rewarding-I and its ablated variants across
different difficulty levels of questions 7Top: Qwen3-1.7B-Base. Bottom: Qwen2.5-3B.

after reaching an early peak, particularly on more difficult questions (levels 2 to 5). In contrast,
Co-Rewarding-I maintains a stable voting accuracy on both original and rephrased data. Ultimately,
it achieves the highest overall voting accuracy across all models and dataset configurations.

Table 15: Detailed MMLU-Pro performance on Qwen3-8B-Base and Qwen3-4B-Base trained
on OpenRS. Results are reported for each of 14 categories in MMLU-Pro.

QOwen3-4B-Base

Methods \ biology business chemistry computer sci. economics engineering health
- GT-Reward | 70.99 59.82 52.30 54.63 65.05 39.01 51.22
- Self-Certainty 69.87 54.50 44.08 49.27 63.63 37.36 50.24
- Entropy 70.71 58.68 49.03 51.22 63.39 37.46 49.63
- Majority-Voting | 69.60 55.77 47.17 53.17 63.39 36.02 48.78
- Co-rewarding-I 69.04 55.39 47.79 53.41 63.86 38.39 50.61
- Co-rewarding-II | 70.85 58.81 53.27 53.90 66.11 37.15 52.81
Methods \ history law math other philosophy physics psychology
- GT-Reward | 39.63 24.98 65.58 47.84 40.68 54.50 62.53
- Self-Certainty 39.63 24.25 58.11 46.65 40.88 46.42 61.40
- Entropy 39.90 22.16 62.18 45.02 43.09 50.19 59.90
- Majority-Voting | 40.68 22.52 60.25 46.10 41.08 48.42 60.65
- Co-rewarding-I 40.68 24.25 62.18 44.37 44.49 49.58 61.65
- Co-rewarding-II | 41.21 25.89 64.91 45.24 39.28 52.27 59.40
QOwen3-8B-Base
Methods \ biology business chemistry computer sci. economics engineering health
- GT-Reward | 74.76 63.24 55.48 63.17 68.96 41.38 57.09
- Self-Certainty 75.03 63.62 53.62 55.61 68.96 39.83 57.09
- Entropy 75.73 64.39 54.51 58.29 65.05 41.69 55.87
- Majority-Voting | 76.15 60.20 54.15 56.34 69.91 3891 55.75
- Co-rewarding-I 76.43 65.78 57.07 62.20 69.43 43.14 56.60
- Co-rewarding-II | 76.84 64.25 54.68 62.43 68.12 42.00 58.06
Methods \ history law math other philosophy physics psychology
- GT-Reward | 50.92 30.25 67.58 52.49 51.10 57.20 67.67
- Self-Certainty 49.34 28.88 68.02 51.62 52.10 56.89 66.42
- Entropy 50.39 3043 65.28 51.41 47.09 54.50 66.67
- Majority-Voting | 48.03 28.88 63.43 53.68 48.10 52.50 64.66
- Co-rewarding-I 50.13 29.97 68.54 52.92 50.70 56.66 65.54
- Co-rewarding-II | 51.44 30.06 65.80 51.51 52.10 57.58 65.78
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D.10 MORE RESULTS OF MMLU-PRO EVALUATION

As a complement to Table 4, Table 10 and Table 15 report detailed MMLU-Pro results for models
trained on DAPO-14k and OpenRS, respectively. We observe that Co-rewarding consistently preserves
general-domain performance across diverse subjects, indicating that though trained on math-oriented
datasets, its improvements do not come at the cost of broader capabilities from other domains.

D.11 MORE RESULTS OF IFEVAL EVALUATION

The aim of IFEval is used to evaluate the instruction-following ability of LLMs. In Table 1, Table 2,
Table 7 and Table 8, we report average IFEval performance due to space constraints. Specifi-
cally, the evaluation of IFEval includes four metrics: {prompt_level_strict_acc, inst_level_strict_acc,
prompt_level loose_acc and inst_level loose_acc}, which apply different levels of answer matching.
As a supplement, complete results are provided in Table 16, Table 17, and Table 18. The results show
that Co-rewarding not only preserves the inherent instruction-following ability of base models but
also often surpasses GT-Reward across multiple models. This further confirms that Co-rewarding’s
gains on mathematical and coding benchmarks are achieved without sacrificing general-domain
instruction-following ability.

Table 16: Detailed IFEval Performance on Qwen2.5-3B/7B, Qwen3-1.7B/4B/8B-Base and Llama-
3.2-3B-Instruct traind on MATH. Results are reported for loose and strick settings respectively.

IFEval

‘ Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose ‘ Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose

Qwen2.5-3B | Qwen2.5-7B
Before RL 29.83 22.55 27.17 31.89 37.70 38.19 29.57 34.57 41.85 46.76
- GT-Reward 33.66 2551 31.42 35.85 41.85 41.49 31.79 39.56 43.65 50.96
- Self-Certainty 32.22 24.40 29.76 34.65 40.05 37.24 28.47 34.38 40.05 46.04
- Entropy 32.94 24.71 30.50 35.13 41.37 40.33 30.13 37.87 43.29 50.00
- Majority-Voting 35.19 26.25 32.72 37.53 44.24 38.60 29.21 35.86 41.61 47.72
- Co-rewarding-I 33.86 23.84 31.61 36.09 43.88 41.73 32.35 39.37 44.48 50.72
- Co-rewarding-II 32.74 23.29 29.02 36.33 4233 41.82 31.79 40.29 43.88 51.31
Owen3-1.7B-Base Owen3-4B-Base
Before RL 33.65 25.69 30.86 36.45 41.60 46.43 36.04 44.18 48.68 56.83
- GT-Reward 36.16 27.35 31.79 40.64 44.84 47.80 37.34 46.77 49.40 57.67
- Self-Certainty 32.96 24.58 29.20 36.69 41.36 48.15 39.37 46.76 49.52 56.95
- Entropy 35.37 26.61 31.42 39.44 44.00 50.44 40.67 48.61 52.52 59.07
- Majority-Voting | 35.45 26.06 32.16 38.72 48.84 48.78 37.89 47.50 50.36 59.65
- Co-rewarding-I 35.56 2791 31.23 39.32 43.76 50.35 40.67 49.35 51.56 59.83
- Co-rewarding-1I 36.94 27.17 33.64 40.05 46.88 51.30 41.40 49.54 53.12 61.15
Qwen3-8B-Base Llama3-2-Instruct
Before RL 50.32 40.11 50.27 51.07 59.83 5732 46.77 55.27 60.19 67.03
- GT-Reward 52.78 41.96 51.76 54.44 62.95 47.41 37.34 42.88 52.52 57.31
- Self-Certainty 50.98 39.74 49.54 52.88 61.75 54.88 43.81 52.68 58.15 64.87
- Entropy 51.81 40.67 51.20 52.76 62.59 54.70 43.81 52.68 57.67 64.63
- Majority-Voting 51.80 39.74 51.02 53.60 62.83 47.96 37.34 43.44 52.88 58.18
- Co-rewarding-I 55.79 43.99 57.11 55.63 66.42 49.14 39.37 45.66 53.12 58.39
- Co-rewarding-1I |  60.70 55.64 65.59 56.00 65.59 49.90 39.93 45.66 54.68 59.35

D.12 ORIGINAL QUESTIONS VS. REPHRASED QUESTIONS

To provide an intuitive illustration, we present several examples of original questions with their
rephrased versions in Table 19. We observe that such rephrasings are reasonable and effective, as they
preserve the same underlying mathematical essence while presenting the problems in a substantially
different surface form. This reflects the high quality of our rephrased data and forms the basis of
Co-rewarding-1: by leveraging contrastive agreement across data-invariant variants, the model is
encouraged to elicit more robust reasoning ability.

D.13 COMPLETE CASE STUDY

As a supplement to Figure 7, we present the complete generation outputs of this case study. The
full outputs clearly reveal the reward hacking behaviors of existing self-rewarding baselines. Self-
Certainty and Entropy fall into repetitive outputs—for example, Self-Certainty repeatedly generates
“Understanding,” and Entropy repeatedly produces “Simplify the next fraction” until truncated at
the maximum length. This arises because their decoding probability mass collapses onto a small
subset of tokens, leading the model to loop over them. Majority-Voting shows another form of reward
hacking by boxing an incorrect answer “0” to maximize consensus across rollouts and thereby secure
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Table 17: Detailed IFEval performance on Qwen3-4B/8B-Base and Llama-3.2-3B-Instruct
traind on DAPO-14k. Results are reported for loose and strict settings in IFEval, respectively.

Methods ‘ IFEval
| Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose
Qwen3-4B-Base
Before RL 46.43 36.04 44.18 48.68 56.83
- GT-Reward 47.70 37.52 45.84 49.76 57.67
- Self-Certainty 45.58 35.67 43.99 47.84 54.80
- Entropy 48.20 37.71 46.58 50.48 58.03
- Majority-Voting | 4891 39.19 47.69 50.24 58.51
- Co-rewarding-I 46.84 36.41 45.66 48.80 56.47
- Co-rewarding-IT | 48.90 39.56 46.21 51.44 58.39
QOwen3-8B-Base
Before RL 50.32 40.11 50.27 51.07 59.83
- GT-Reward 53.11 41.59 52.13 54.56 64.15
- Self-Certainty 50.58 41.04 49.54 51.68 60.07
- Entropy 51.56 41.59 49.91 53.48 61.27
- Majority-Voting 51.54 41.22 51.02 52.64 61.27
- Co-rewarding-I 50.17 40.67 48.24 52.16 59.59
- Co-rewarding-II | 53.31 41.40 53.23 54.20 64.39
Llama3.2-3B-Instruct

Before RL 57.32 46.77 55.27 60.19 67.03
- GT-Reward 53.10 42.33 49.91 57.19 62.95
- Self-Certainty 54.50 44.55 51.76 58.03 63.67
- Entropy 55.78 45.29 53.23 59.11 65.47
- Majority-Voting 54.07 42.33 52.50 56.83 64.63
- Co-rewarding-I 53.04 42.33 51.02 55.76 63.07
- Co-rewarding-IT | 51.92 41.59 48.24 56.00 61.87

Table 18: Detailed IFEval Performance on Qwen3-8B/4B-Base trained on Open-RS. Results are
reported for loose and strict settings in IFEval, respectively.

Method | IFEval
| Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose | Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose
| Qwen3-8B-Base | Qwen3-4B-Base

Before RL 50.32 40.11 50.27 51.07 59.83 46.43 36.04 44.18 48.68 56.83

- GT-Reward 52.53 41.59 51.02 54.56 62.95 47.80 37.34 46.77 49.40 57.67

- Self-Certainty 52.12 41.59 50.83 53.72 62.35 46.47 35.86 44.73 48.56 56.71

- Entropy 52.94 43.25 51.94 53.72 62.83 46.41 36.97 44.73 48.68 55.28

- Majority-Voting | 51.13 40.67 49.35 53.36 61.15 46.35 36.41 44.18 48.80 56.00

- Co-rewarding-I 53.11 41.40 53.05 53.95 64.02 46.83 35.86 46.77 47.84 56.83

- Co-rewarding-II 52.92 42.14 52.50 54.08 62.95 48.45 38.26 46.77 50.24 58.51

the highest reward. In contrast, both Co-rewarding and GT-Reward yield the correct final answer
along with a coherent step-by-step reasoning path.

D.14 CASE STUDY ON CODE BENCHMARK

To understand the behaviors of different methods on other tasks, we supplement an additional case
study on CRUX. We observe that Self-Certainty and Entropy fail by producing repetitive outputs,
consistent with the collapse pattern on math-related benchmarks. In contrast, GT-Reward, Majority-
Voting, and Co-rewarding generate coherent reasoning trace and correct solutions.

% is the Irreducible fraction value of

, what is the value of m + n?
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Table 19: Case studies: Original vs. Rephrased Questions

Original Question Rephrased Question

Sam is hired for a 20-day period. On days | A contractor agrees to a job lasting 20 days.
that he works, he earns $60. For each day that | For every day the job is completed on time,
he does not work, $30 is subtracted from his | the contractor earns $60. However, for each
earnings. At the end of the 20-day period, he | day the work is delayed, a fine of $30 is ap-
received $660. How many days did he not | plied. After the 20-day period, the contrac-
work? tor’s total earnings are $660. How many days
was the job delayed?

Karen drove continuously from 9:40 a.m. un- | A traveler set off at 9:40 a.m. and reached
til 1:20 p.m. of the same day and covered a | their destination at 1:20 p.m. the same day
distance of 165 miles. What was her average | after traveling a total of 165 miles. What was

speed in miles per hour? their average speed during the trip in miles
per hour?
Solve for z: % + % = % A tank is partially filled by two different pipes.

One pipe fills half the tank in an hour, and
together with another pipe, they fill five-sixths
of the tank in the same time. If the second
pipe alone fills % of the tank in an hour, find
the value of z.

Co-rewarding-I Answer:

To solve the problem, we need to simplify the given expression step by step and then find the
irreducible fraction form. The expression is:

1
3+ T
First, we simplify the innermost fraction:
3 19 n 1 10
3 33 3
Now substitute this back into the expression:
1 1
3+ =3+ .
3+ 15 3+ 3
3

Next, simplify the fraction inside the denominator:

3 = 3 — @ b 3 — §
10 10 10 10
Now substitute this back into the expression:

1 10
3+ = =3+ —.
MERRRET
To add these, we need a common denominator:

10 99 10 109
tmTmtnTay
The fraction % is already in its simplest form because 109 and 33 have no common factors

other than 1. Therefore, m = 109 and n = 33, and the value of m + n is:

109 + 33 = 142.
So, the final answer is:

142 |.
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Co-rewarding-II Answer:

To solve the given expression 3 + ﬁ, we need to simplify it step by step.

3+1
First, simplify the innermost fraction:

3 1 9 i 1 10
3 3 3 3°
Next, substitute this back into the next fraction:
1 1 1 1 10
3l =3+ —==3+ =3+ ==3+—=.
3+§ 3+ 3 043 33 33

Now, simplify the expression 3 + %:

10 99 10 109

3+ —=—+—-=—.
+ 33 33 * 33 33
The fraction % is already in its simplest form because 109 and 33 are coprime (they have
no common factors other than 1).
Thus, the irreducible fraction value of the given expression is %, where m = 109 and

n = 33. Therefore, m + n = 109 + 33 = 142.

The value of m + n is .
GT-Reward Answer:

Alright, I have this problem:
The expression is:

1
3+ —7—
8+ 3+3
And I need to find the irreducible fraction > that equals this expression, then determine

m + n.

First, I need to simplify the expression step by step. It looks like a continued fraction, so I'll
start by simplifying the innermost part and work my way out.

Let’s denote the entire expression as:

1
E=3+ T
3+ 3+3
**Step 1: Simplify the innermost fraction**
Start with the innermost fraction: .
34 =
+ 3
Calculate this:
ga L _ 9 N 1 10
3 3 3
So now, the expression becomes:
1
E=3+
3+
3
Wait, T need to simplify -y
’ 1 3
10 — 10
= 10
Now, the expression is:
E=3+
3+ 3
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**Step 2: Simplify the next fraction**
Now, simplify 3 + 2
;. 3 _%0 3 33
10 10 10 10
So, the expression now is:

1
E=3+ 453
10
Simplify = :
"’ 110
33 — a2
= 33
Now, the expression is:
10
E=3+—
+ 33
**Step 3: Combine the terms**
Convert 3 to a fraction with denominator 33:
99
3=—
33
Now, add the fractions:
99 10 109
E = — + _—= —
33 33 33

. . . 109
So, the expression simplifies to ==

**Step 4: Ensure the fraction is irreducible®*

Check if 109 and 33 have any common divisors. 109 is a prime number (I think), and 33 is
3 x 11. Since 109 isn’t divisible by 3 or 11, the fraction % is already in its irreducible form.
**Step 5: Find m + n**

Here, m = 109 and n = 33, so:
m—+n =109 + 33 = 142

Wait, let’s double-check the calculations to ensure no mistakes were made.
**Verification: **
Starting over:

1
E=3+ T
3+ 34T
Innermost:
342=10
3 3
Next layer:
1 3 33
Outermost:
GO 33 33 33 33

10
Yes, it checks out. Therefore, m + n = 109 + 33 = 142.

Majority-Voting Answer:

To find the value of “* as the irreducible fraction of the expression 3 + ﬁ, we need to
3+
simplify the expression step by step. ’

31



Under review as a conference paper at ICLR 2026

First, let’s simplify the innermost fraction:

3+1_3+1_9+1_10
3 3 3 3 3
Now, substitute this back into the expression:
1 1
3+ =3+
3+ 14 J== i

Next, simplify the fraction 3 + 3:

34 3 30 o 3 33
10 10 10 10
Now, substitute this back into the expression:

1 10
e
5] 33

To add these, we need a common denominator:

33 33 33 33

So, the irreducible fraction value of the expression is %. Here, m = 109 and n = 33.
Therefore, the value of m + n is:

m+n =109 + 33 = 142
Thus, the value of m + n is @

Self-Certainty Answer:

Alright, I have this math problem to solve:

**Problem:** I need to solve a math problem. The problem is about understanding how to
solve math problems. I need to understand how to solve this problem so I can understand
more about math.

### Understanding the Problem

First, I need to understand what the problem is. I need to understand math so I can understand
more about numbers and how to solve problems with numbers. Understanding math will help
me understand more about how to understand problems.

### Understanding Math Problems

After understanding the problem, I need to understand more about math problems. Un-
derstanding math problems will help me understand how to understand these problems.
Understanding these problems will help me understand more about how to understand math.
### Understanding Mathematical Concepts

After understanding math problems, I need to understand more about mathematical concepts.
Understanding mathematical concepts will help me understand more about math. Under-
standing these concepts will help me understand more about how math helps me understand
numbers.

### Understanding Mathematical Operations

After understanding mathematical concepts, I need to understand more about mathematical
operations. Understanding mathematical operations will help me understand more about how
to understand these operations. Understanding these operations will help me understand more
about how these operations help me understand math.

### Understanding Mathematical Operations in Math

After understanding mathematical operations, I need to understand ......

### Understanding Mathematical Methods
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After understanding mathematical operations, I need to understand more about mathematical
methods. ......

### Understanding How Mathematical Methods Help

### Understanding How These Methods Help Me Understand Math

After understanding more about how these methods help me, I need to understand ......

### Understanding How These Methods Help Me Understand Math Problems

After understanding how these methods help me understand math, I need to understand ......
### Understanding How These Methods Help Me Solve Math Problems

After understanding how these methods help me understand these math problems, I need to
understand ......

### Understanding How These Methods Help Me Solve These Problems

After understanding how these methods help me solve these problems, I need to understand
more about ......

Entropy Answer:

To find the value of 7 as the irreducible fraction of the expression:

Let’s simplify the expression step by step.
1. **Simplify the innermost fraction:**

1
3 —
T3
g 1 3x3 1 9 1 941 10
3 3 3 3 3 3 3
2. **Simplify the next fraction:**
34+ _—34 1
RN
1 1x3 3 3x10 3 30 3 30+3 33
ST =3t T T 0 T w0 0T 10 10
3. **Simplify the next fraction:**
P 34 o
PO EE]
Chl ve 0
gLl g 1x10 . 10 3x33 10 99 10 99410 109
33 - 33 7 33 33 33 33 33 33 33
4. **Simplify the next fraction:**
3+71 34 o
1 = 109
Ty W
3+i_3+1><33_3+§_3x109+§_ﬁ+ﬁ_327+33_@
09 109 7 109 109 109 109 109 109 109
5. **Simplify the next fraction: **
1 1
3+ y =3+ 55
3+3+ 1 109
3+3+%
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109 3x360 109 1080 109 1080 +109 1189
~ 360

3toay = 3+ — 34 +
360 360 360 360 360 360 360 360
6. **Simplify the next fraction:**
1
3+ 1 =3+ 1m0
S 4o — 360
3+ —1g
3+
7. **Simplify the next fraction:**
1 1
3+ 37 7 =3+ 3557
3+ i 1189
S —
3*&%
8. **Simplify the next fraction:**
1 1
3+ 31 1 =3+ 1m0
34 —L——— 3927
T ——
3+ﬁ73+@
9. **Simplify the next fraction:**
1
3+ 3 1 =3+ Jos37
+ S — m— 12970
34—
3+%
3+
10. **Simplify the next fraction:**
1 1
3+3+ 1 =3+ Tams1
3+ T 42837
e —— = T
34 1
s Jrll
3
11. **Simplify the next fraction:**
1 1
3+3+ i =3+ om0
357 - 141481
3+ o
3+3+3+i
3+T 111
3
12. **Simplify the next fraction:**
1 1
3+3+ 1 =3+ Tzaan
3437 L 467280
3+ —
3+3+—1
3+3+3+i
3+?r17
3
13. **Simplify the next fraction: **
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1
3+ 1 =3+ 509213
3+ 3+ 1 1543321

1
3+ sogmaas = S+

1543321

Question:

## Question:

You are given a Python function and an assertion containing an
input to the function. Complete the assertion with a literal (no
unsimplified expressions, no function calls) containing the
output when executing the provided code on the given input, even
if the function is incorrect or incomplete.

[PYTHON]
def f(text):
new_text = list (text)
for i in '+’:
if 1 in new_text:
new_text.remove (1)
return '’ .join (new_text)
assert f (’hbtofdeiequ’) == 2?7
[/PYTHON]

## Instruction

Please answer this question by first reasoning and then providing
your answer.
Present your reasoning and solution in the following json format.
Please show your final answer in the ‘answer‘' field, e.g.,"answer":
Il42ll.

AN

{

json
"reasoning": " "
"answer" . " n

GT-Reward Answer:

"reasoning": "The function ‘f' is designed to remove all
occurrences of the character "+’ from the input string ‘text‘.
The function first converts the string into a list of characters
, iterates through this list, and removes any '+’ characters it
finds. Finally, it joins the remaining characters back into a
single string. Given the input string ’'hbtofdeiequ’, there are
no "+’ characters in the string, so the function will simply
return the original string unchanged. Therefore, the output of
the function when given the input ’'hbtofdeiequ’ is the string '
hbtofdeiequ’.",

35



Under review as a conference paper at ICLR 2026

"answer": "hbtofdeiequ"

Co-rewarding-I Answer:

"reasoning": "The function ‘f' is designed to remove all
occurrences of the character '+’ from the input string ‘text‘.
The function first converts the string into a list of characters
, then iterates over the character '+’ and removes it from the
list if it exists. Finally, it joins the list back into a string
and returns it. Given the input ’"hbtofdeiequ’, the character
"+’ does not appear in the string, so the function will return
the original string unchanged.",
"answer": "hbtofdeiequ"

Co-rewarding-II Answer:

"reasoning": "The function ‘f‘ takes a string ‘text‘' and
removes all occurrences of the character '+’ from it. The
function then Jjoins the remaining characters back into a string
and returns it. Given the input ’'hbtofdeiequ’, the function will
remove all ’+’ characters (though there are none in the input),
so the output will be the same as the input string. Therefore,
the assertion should check if the output of ‘f(’hbtofdeiequ’)®
is ’hbtofdeiequ’.",
"answer": "hbtofdeiequ"

Majority-Voting Answer:

"reasoning": "The function ‘f' is designed to remove all
occurrences of the character '+’ from the input string ‘text‘.
The input provided to the function is ’'hbtofdeiequ’. Since the
character '+’ does not appear in this string, the function will
return the original string unchanged. Therefore, the assertion
should compare the output of the function to the original input
string.",

"answer": "’'hbtofdeiequ’"

Self-Certainty Answer:

To solve this problem, we need to follow these steps:

1. Understand the given Python function.

Determine what the function does with the given input.

3. Complete the assertion with the correct output based on the
function’s behavior.

N
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Let’s go through each step one by one:

1. Understand the given Python function.

2. Determine what the function does with the given input.

3. Complete the assertion with the correct output based on the
function’s behavior.

We will write the code to understand the function, determine its

behavior with the given input,
with the correct output.

Let’s write the code step by step.

*Y'python

# Step 1: Understand the given Python
# Step 2: Determine what the function
# Step 3: Complete the assertion with

the function’s behavior

and then complete the assertion

function
does with the given input
the correct output based on

# Let’s write the code to follow these steps

AN

‘Y'python

# Step 1: Understand the given Python
# Step 2: Determine what the function
# Step 3: Complete the assertion with

the function’s behavior

function
does with the given input
the correct output based on

# Let’s write the code to follow these steps

# Step 1:
# We will

Understand the given Python

Determine what the function
determine the output of the

# Step 2:
# We will

# Step 3: Complete the assertion with
the function’s behavior

# We will complete the assertion with

# Let’s write the code

AU

Let’s write the code step by step.

‘Y'python

# Step 1: Understand the given Python
# Step 2: Determine what the function
# Step 3: Complete the assertion with

the function’s behavior

function

define the given function and understand what it does

does with the given input
function for the given input

the correct output based on

the correct output

function
does with the given input
the correct output based on

# Let’s write the code to follow these steps

AN

‘Y 'python
# Step 1:
# We will

Understand the given Python

Determine what the function
determine the output of the

# Step 2:
# We will

# Step 3: Complete the assertion with
the function’s behavior
# We will complete the assertion with

function

define the given function and understand what it does

does with the given input
function for the given input

the correct output based on

the correct output
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# Let’s write the code

# Step 1: Understand the

Entropy Answer:

AN

{

Jjson

"reasoning": "To determine the output of the function ‘f‘ when
the input is ’'hbtofdeiequ’, we need to follow these steps:

1. Convert the string ’"hbtofdeiequ’ into a list:
A
\text {new\_text}
\1
N
\text {new\_text}

Iql, Iul]

\1

\text{list} (" hbtofdeiequ’)

[/hl, lb/, lt/, IOI, Ifl, Idl, IeI, Iil, IeI,

2. Iterate through the character ’"+’:

\ [

\text{for } i \text{ in } '+’:
\]

\ [

\text{for } i \text{ in } '+':
\]

\ [

\text{for } i \text{ in } "+’:
\]

\ [

\text{for } i \text{ in } '+':
\]

\ [

\text{for } i \text{ in } "+’:
\]

\ [

\text{for } i \text{ in } '+’:
\]

\ [

\text{for } i \text{ in } "+’:
\]

\ [

\text{for } i \text{ in } '+
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