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Abstract

Discrete diffusion models have recently gained significant prominence in appli-
cations involving natural language and graph data. A key factor influencing their
effectiveness is the efficiency of discretized samplers. Among these, τ -leaping
samplers have become particularly popular due to their theoretical and empiri-
cal success. However, existing theoretical analyses of τ -leaping often rely on
somewhat restrictive and difficult-to-verify regularity assumptions, and their con-
vergence bounds contain quadratic dependence on the vocabulary size. In this work,
we introduce a new analytical approach for discrete diffusion models that removes
the need for such assumptions. For the standard τ -leaping method, we establish
convergence guarantees in KL divergence that scale linearly with vocabulary size,
improving upon prior results with quadratic dependence. Our approach is also more
broadly applicable: it provides the first convergence guarantees for other widely
used samplers, including the Euler method and Tweedie τ -leaping. Central to our
approach is a novel technique based on differential inequalities, offering a more
flexible alternative to the traditional Girsanov change-of-measure methods. This
technique may also be of independent interest for the analysis of other stochastic
processes.

1 Introduction
Generative modeling is a core component of deep learning, aiming to generate samples that closely
approximate distributions of training data. Recently, diffusion models [1, 2, 3] have gained significant
attention. These models really work well in various generative tasks, particularly in image and video
generation [4, 5]. Their effectiveness has been extensively documented in several comprehensive
surveys [6, 7, 8].

Discrete (i.e., discrete sample space) diffusion models form a specialized subclass within the broader
family of diffusion models and have gained increasing prominence in generative modeling. Similar
to their continuous (i.e., continuous sample space) counterparts, they adopt the standard diffusion
framework comprising of a forward and a reverse process. Differently, by operating over discrete
sample spaces, both processes are formulated as discrete-state Markov chains, first under discrete-time
[3] and later under continuous-time [9]. Since the seminal work [3], discrete diffusion models have
been remarkably useful for a variety of discrete-data applications, achieving excellent performance
in natural language processing (NLP) [10], graph generation [11, 12], and drug design [13]. Recent
advances, such as SEDD and RADD, have further demonstrated language generation capabilities that
rival those of traditional autoregressive models such as GPTs [10, 14].

Despite their empirical success, the theoretical understanding of discrete diffusion models remains
limited. Existing theoretical studies on discrete-state diffusion models have mainly focused on various
sampling methods. One focus has been on the random-step-size samplers, which sample both the
next-state and the transition-times in the reverse process. This includes the Gillespie’s algorithm [15]
and the uniformization algorithm [16]. Specifically, the uniformization algorithm has been analyzed
in [17, 18]. While these algorithms are able to simulate the reverse process exactly, their convergence
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guarantee is characterized only in a stochastic manner. In other words, there is no guarantee of fixed
and finite number of iterations to achieve a target accuracy due to the algorithm’s inherent randomness
in the number of iterations, which, in the worst case, can be unbounded.

Another theoretical focus is on deterministic-step-size samplers, which enjoy finite-iteration guarantee
for achieving a target accuracy. One type of such samplers is what we call as Kolmogorov sampler,
which directly solves the piece-wise Kolmogorov equation at each discretized step, for which
convergence guarantees were provided in [19, 20]. Such an approach may not be practically feasible,
because it involves high computational costs in practice. At each step, the Kolmogorov sampler needs
to solve a matrix exponential, which typically requires eigen-decomposition and multiplication of the
reverse rate matrices (of size Sd × Sd, where S is the vocabulary size and d is the data dimension).
This renders the per-step computational complexity to be exponential in d.

A more practical deterministic-step-size sampler is τ -leaping [21], which has drawn a lot of attention
[9, 10, 18]. Rather than solving for the matrix exponential exactly, the algorithm applies all transitions
within a single step simultaneously for each next-state and dimension. The existing theoretical studies
[9, 18] on τ -leaping have some fundamental limitations that need to be resolved. (1) (Strong or
hard-to-check assumptions) Existing results require either strong assumptions on the estimation
error or somewhat hard-to-check assumptions due to the analysis technique. Specifically, [9] assumes
that the reverse rate matrix is well estimated under the L∞ error for each data sample and for each
diffusion time, which is stronger compared to that only in expectation. [18] requires additional
regularity assumptions on the diffusion path in order to invoke the Girsanov change-of-measure
framework, which are usually hard to check in practice. (2) (High dependence on vocabulary size)
Existing error bounds have high dependence on the vocabulary size S. In particular, the iteration
complexity grows in fourth-power in both d and S for [9], and it grows quadratically in S for [18].1
This might be unsatisfactory in practice where S is large (e.g., S = 50257 for GPT-2 tasks [10]).
To this end, it is important to obtain a tighter bound on S. Thus, these open challenges can be
summarized into the following intriguing question:

Question 1: Can we establish convergence guarantees for τ -leaping under more relaxed assumptions?
Meanwhile, can we achieve a better dependency on S?

While τ -leaping is a practical sampler, it also has several weaknesses. For each step, the sampler
requires sampling from a Poisson random variable for each dimension and each token, which becomes
per-step sampling heavy especially when the vocabulary size S is large. Also, especially for non-
ordinal or categorical data, there could occur unmeaningful jumps such as multiple jumps within the
same dimension or out-of-range jumps. For practical implementations, one usually needs additional
constraints to restrict only one change to only one target location [9], which might further increase the
sampling complexity. In comparison, empirical studies usually employ the Euler method or Tweedie
τ -leaping [10, 22], which are more sampling efficient than vanilla τ -leaping. However, existing
analytical tools are not directly applicable to these samplers.

Question 2: Can we provide convergence guarantees for practically more efficient samplers having
deterministic step-sizes, such as the Euler method and Tweedie τ -leaping?

This paper will provide affirmative answers to both of the above questions.

1.1 Our Contributions
Our main contribution in this paper lies in developing a novel analysis framework to analyze discrete
diffusion models to improve/advance the current theory. Our detailed contributions are as follows.

Novel Analysis Technique: We develop a novel framework for analyzing discrete diffusion models.
In particular, we directly analyze the rate-of-change of the KL-divergence between the true posterior
and the sampling distribution, for which we provide an upper bound in terms of the respective rate
matrices in the two processes by directly invoking the Kolmogorov equations. Our analysis (i)
provides convergence guarantee without any regularity conditions, i.e., without requiring that the
likelihood function on the sampling path is a local martingale, which is typically required for the
Girsanov change-of-measure technique; (ii) enables to analyze a broader class of practical samplers,
such as the Euler method and Tweedie τ -leaping [10], for which it is challenging to apply the analysis
based on the Girsanov change-of-measure framework.

1The error bound in [18] does not explicitly characterize the dependence on S. However, it is straightforward
to derive the quadratic dependence on S from their proof steps.
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Sampler Space Assump Comp
per-step

Sample
per-step

Results:
Num of steps Reference

Uniform-
ization

{0, 1}d int-path O(d) O(d) Pois (O (d)) [17, Thm 6]
[S]d int-path O(Sd) O(d) Pois (O (dS)) [18, Thm 4.9]

Kolmogo-
rov [S]d int-path O(S3d) O(d) O

(√
dMS√

ε

)
[19, Cor 1]

DMPM {0, 1}d disc-max O(d) O(1) O
(

2dd
ε2δd

)
[20, Cor 2.7]

τ -
leaping

[S]d cont-max O(Sd) O(Sd) O
(

d4S4+Cd2
√
ε

)
[9, Thm 1]

[S]d disc-sum O(Sd) O(Sd)∗∗ O
(

d2S2

ε

)
[18, Thm 4.7]

[S]d disc-sum O(Sd) O(Sd) O
(

d2S
ε

)
Thm 2 (here)

Euler [S]d disc-sum O(Sd) O(d) O
(

d2S
ε

)
Thm 3 (here)

Tweedie [S]d disc-sum O(Sd) O(d) O
(

d2S
ε

)
Thm 3 (here)

Table 1: Summary of results for discrete diffusion samplers in terms of the number of steps needed to
achieve ε-accuracy in KL(qδ||pT−δ) and the per-step computation and sampling complexity. Note that all log-
dependencies are not shown. Here d is the dimension (window-length for generative tasks), S is the vocabulary
size, M is the upper bound of the score estimates (which grows in O(S)), Pois(λ) is a Poisson r.v. with rate λ,
and qδ is such that TV(q0, qδ) ≲ dδ. Comparison of results: (i) Uniformization samplers suffer from random
number of steps guarantee, whose actual iterations to convergence might grow unbounded. (ii) Kolmogorov
samplers enjoy fixed and finite step guarantee, but suffer from exponential in d per-step computational complexity,
making it generally not practical. (iii) DMPM is an Euler-type method that differs from the standard Euler
schemes [10, 22] studied in this paper. In particular, at most one coordinate is updated at each step, whereas the
standard Euler sampler [10, 22] first constructs sampling probabilities for all coordinates and then performs a
simultaneous categorical draw across all of them. After our initial submission of the paper, [20] provided an
updated result, which is O(d/ε2). (iv) The result on τ -leaping in [9] has high dependence on d and S (note that
C = Ω(S2) is an implicit function of S), although is more efficient in ϵ. The number of steps in [9] is calculated
in order to reach

√
ε total-variation error, which is weaker than the KL-divergence error considered in other

guarantees in the table. The “cont-max" assumption is strong, which requires an upper bound for each time
on each sample. The result on τ -leaping in [18] has dependence on S2. Note that S is quite large for many
NLP tasks. (v) Our result on τ -leaping improves that of [18] by a factor of S. Our analysis also removes the
regularity assumptions required in [18]. (vi) Our result on the Euler method and Tweedie τ -leaping enjoys the
same convergence rate as vanilla τ -leaping, but these two samplers have smaller per-step sampling complexity
than τ -leaping by a factor of S.

Improved Result for τ -leaping: Based our analysis tools, we show that τ -leaping generates a
sample distribution that is close to the target distribution within an ε-KL accuracy with Õ(d2S/ε)
iteration steps. In particular, the iteration guarantee is linear in S under the fully discrete score-
entropy estimation loss, which improves the quadratic dependency on S in [18]. This order-level
improvement has important practical implications, especially because S is often very large in NLP
tasks (e.g., S = 50257 in [10]).

New Convergence on Euler method, and Tweedie τ -leaping: Our analysis framework further
provides convergence guarantees for practically efficient samplers: the Euler method and Tweedie
τ -leaping. The existing analysis tools do not seem to be applicable directly for lack of a path-
wise measure defined for both samplers. Our result shows that these two samplers enjoy the same
performance guarantee as τ -leaping even with smaller sampling complexity at each step. Our
approach involves constructing an approximate sampler which is asymptotically equivalent to both
samplers, and then establishing the convergence guarantees for the constructed sampler. This
constructed sampler might be of independent interest to future theoretical investigations of these two
samplers.

1.2 Related Works
We have provided more prior works in Appendix A.

Empirical Studies on Discrete Diffusion Models: Unlike continuous-space diffusion models,
discrete-space diffusion models are emerging as a strong contender in generative modeling, particu-
larly for tasks involving discrete data [9, 10] (see some surveys in [12, 13]). The continuous-time
discrete diffusion formulation was first developed in [9]. Recently, [10] first proposed the score-
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entropy estimation error and achieved empirical success in text generation tasks. They also proposed
a new discrete diffusion sampler by approximately solving the Tweedie’s formula, which they call
Tweedie τ -leaping. For per-step sampling, note that most of these works use categorical sampling
algorithms, yielding good empirical performances.

Theory on Discrete Diffusion Models: While there are numerous results for continuous-space
diffusion models, the theoretical understanding of discrete diffusion models remains limited. Among
them, [9] provided an early convergence analysis under the TV metric using τ -leaping. However, the
estimation error is quite strong, and the parameter dependencies are also high. More recently, under
the score-entropy estimation errors, [17] provided the convergence result using the uniformization
sampler on a d-dimensional hypercube, which was subsequently extended to general [S]d space in
[18]. For deterministic-step-size samplers, [19, 20] performed analyses by assuming the accessibility
of a perfect per-step sampler via solving the Kolmogorov equation, and [18] investigated the more
practical τ -leaping sampler. Among these works, [19] required the score-entropy loss to be evaluated
on the continuous sampling path, whereas [18, 20] only required it to be on the discrete sampling grid.
Notably, all of these works [17, 18, 19, 20] employed the Girsanov change-of-measure framework,
which requires such regularity conditions (that the likelihood function is a path-wise local martingale)
that are hard to check in practice.

2 Preliminaries of Discrete Diffusion Samplers
In this section, we provide the background of continuous-time discrete-space diffusion sampler.

2.1 The Forward Process
Let the initial (discrete) data x0 = {x1

0, . . . , x
d
0} consist of d tokens, where each token xi

0 ∈ [S] with
S being the cardinality of the token space. Hence, x0 ∈ [S]d. Let qi0 be the probability mass function
(p.m.f.) of xi

0, which is the probability simplex over [0, 1]S . We further let q0 ∈ [0, 1]S
d

be entire
p.m.f. of the initial data x0.

The forward process can be characterized by a Continuous-Time Markov Chain (CTMC) from t = 0

to t = T , which is defined by an initial distribution q0 and a transition rate matrix Rt ∈ RSd×Sd

.
Intuitively, each entry Rt(x, y) in the rate matrix Rt characterizes how fast state x transitions to
state y at time t, where x, y ∈ [S]d. Thus, for a sufficiently small time duration ∆t, the conditional
probability qt+∆t|t(y|x) of state y at time t+∆ given state x at time t is given by

qt+∆t|t(y|x) = 1 {y = x}+Rt(x, y)∆t+ o(∆t), ∀x, y ∈ [S]d. (1)

Here 1 {A} is the indicator function of an event A. Equivalently, qt satisfies the Kolmogorov forward
equation: d

dtqt(y) :=
∑

x∈[S]d qt(x)Rt(x, y).

We now discuss several properties for the rate matrix Rt. For a valid CTMC, Rt needs to satisfy
that: 1) for all x, y ∈ [S]d, Rt(x, y) ≥ 0 if x ̸= y; 2) Rt(x, x) ≤ 0; and 3)

∑
y∈[S]d Rt(x, y) = 0.

Also, to make the computation tractable for large S and d, a common practice is to make each token
propagate independently and homogeneously (i.e., over the dimension) [9, 10]. Then, Rt necessarily
satisfies that, for all x ̸= y, [9, Prop. 3]

Rt(x, y) =

{
Rtok

t (xi, yi) if Ham(x, y) = 1,

0 otherwise.
(2)

Here Rtok
t ∈ RS×S is the token transition rate matrix (corresponding to qit), and Ham(x, y) denotes

the number of unequal tokens between x and y. We follow [9] and let Rtok
t = βtRbase for some

noise schedule βt > 0. In this paper, we are primarily interested in the constant noise schedule (i.e.,
βt ≡ 1) as in the previous studies (e.g., [18, 19]). With such Rt, we can obtain an analytical solution
for qt|0 useful for training. Further, we primarily focus on the case where

Rbase :=
1

S
1S1

⊺
S − IS ,

which is common in many applications [3, 9, 10].2 An immediate implication is that for all x ∈ [S]d,
Rt(x, x) = −

∑
y ̸=x Rt(x, y) = −S−1

S d. Note that qT ≈ Uniform([S]d) for the chosen Rbase.

2Most of our results can be extended for general Rt’s that satisfy [18, Assumption 4.3].
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2.2 The Reverse Process
The forward process has a corresponding reverse process whose marginal distribution matches that of
the forward process [23]. By [9, Prop. 1], such a reverse process is a CTMC with initial distribution
⃗q0 := qT and transition rate ⃗Rt, where ⃗Rt satisfies

⃗Rt(x, y) := RT−t(y, x)
qT−t(y)

qT−t(x)
, ∀x ̸= y, and ⃗Rt(x, x) = −

∑
y ̸=x

⃗Rt(x, y). (3)

We let the reverse process stop at t = T − δ with some small constant δ. This technique is called
early-stopping to prevent irregularities in the score when t → 0+. One immediate consequence
is that with the Rt in (2), whenever Ham(x, y) ≥ 2, ⃗Rt(x, y) = 0. Note that ⃗qt := qT−t for all
t ∈ [0, T − δ].

2.3 The Sampling Process
In order to implement the reverse process, several approximations need to be made for sampling. Let
pt be the marginal p.m.f. at time t ∈ [0, T − δ] in the sampling process. First, since qT is unavailable,
we start the sampling process with p0 := Uniform([S]d), which is the stationary distribution of the
CTMC. Second, when y ̸= x, we estimate the intractable ratio qt(y)

qt(x)
with st(y, x), which is known

as the concrete score function. Here we adopt the score-entropy (SE) loss [10] to train the score
function, which is defined as

LSE(t; st) := Ext∼qt

∑
y ̸=xt

Rt(y, xt)

(
st(y, xt)−

qt(y)

qt(xt)
− qt(y)

qt(xt)
log

st(y, xt)

qt(y)/qt(xt)

)
. (4)

Third, the continuous-path needs to be discretized for practical algorithms. Let {tk}k∈[N ] be the
discretization points on which sT−tk is accessible, where t0 = 0 and tN = T − δ. Define the
estimated rate on the sampling grid as

R̂tk(x, y) := RT−tk(y, x)sT−tk(y, x). (5)

τ -leaping: A popular approximate sampler is called τ -leaping, which has a deterministic number
of sampling steps with polynomial per-step computation in S and d. Given xtk , the next state is
obtained as

xtk+1
= xtk +

∑d
i=1 e

i
∑

yi∈[S](y
i − xi

tk
)Pois

(
R̂tk(xtk , x

−i
tk
⊕i y

i)(tk+1 − tk)
)
, (6)

where ei is a unit (one-hot) vector on token i ∈ [d], Pois(λ) is a Poisson random variable with rate
λ, and v−i ⊕i a is a vector that replaces the i-th element of v as a ∈ [S]. Intuitively, the sampler
applies all transitions within [tk, tk+1) to a single component simultaneously, where the transition
rate comes from the estimated reverse rate at the initial time. As shown in [9, Appendix B.5], the
τ -leaping process is equivalent to a CTMC with a piece-wise constant rate matrix given by

R̂τ -leap
t (x, y) := R̂tk(xtk , y − x+ xtk), ∀x ̸= y, ∀t ∈ [tk, tk+1). (7)

While τ -leaping is popular in theoretical studies [9, 18], its sampling complexity is quite high because
it requires drawing O(Sd) Poisson r.v.s at each sampling step. Rather, many empirical samplers,
such as the Euler method and Tweedie τ -leaping, draw only O(d) categorical r.v.s [10, 14, 22].

Euler method: The Euler method is given by, for each k = 0, . . . , N − 1,

xi
tk+1

=

{
a, w.p. R̂i

k(x
i
tk
, a)(tk+1 − tk), ∀a ̸= xi

tk

xi
tk
, w.p. 1 + R̂i

k(x
i
tk
, xi

tk
)(tk+1 − tk)

, (8)

where R̂i
k(z, a) is the token-wise rate defined as

R̂i
k(z, a) := R̂tk(xtk , x

−i
tk
⊕i a)1

{
z = xi

tk

}
, ∀a ̸= xi

tk
. (9)

Tweedie τ -leaping: The Tweedie τ -leaping sampler is given by, for each k = 0, . . . , N − 1,

xi
tk+1

=


a, w.p.

([
e−(tk+1−tk)Rbase

]a:
sT−tk(x

−i
tk
⊕i ·, xtk)

)
×[

e(tk+1−tk)Rbase
]a,xi

tk , ∀a ̸= xi
tk

xi
tk
, otherwise

. (10)

Note that neither sampler has such an R̂t defined on the continuous-path (tk, tk+1). This renders the
theoretical analysis for these two samplers to be still lacking, since existing analytical tools require
the path-wise measure of the sampling process to be well-defined (for all t ∈ [0, T − δ]).
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2.4 Key Notations
Let xi(1 ≤ i ≤ d) denote the i-th element of a vector x ∈ [S]d and x−i ∈ [S]d−1 denote the i-th
element removed. Define Ham(x, y) as the Hamming distance between two vectors x and y. For a
positive integer n, [n] := {1, . . . , n}. Write 1S as a vector of length S that contains all 1’s, and IS as
an identity matrix of size S × S. See a full list of notations in Appendix B.

3 Main Convergence Results
The τ -leaping sampler has been analyzed in [9, 18] with convergence guarantees. However, the
convergence rate in [9] has high dependence on S and d (which grows in fourth-power in both d and
S). Further, [9] assumes that the reverse rate matrix is well estimated under L∞ error. The study in
[18] relaxed such an assumption to be in expectation, and the convergence rate in [18] grows only
quadratically in S. However, the study in [18] requires additional difficult-to-check assumptions on
the diffusion path in order to invoke the Girsanov change-of-measure framework.

In this section, we develop a new analytical framework, which removes the need for the regularity
assumptions used in [18], and to further improve their convergence rate with a lower-order dependence
on S.

3.1 Convergence Guarantees for General Sampling Processes
We first propose the following KL-divergence decomposition for general reverse rates, without any
regularity assumptions for the sampling path. Indeed, the result is applicable to any CTMC with
general forward rate Rt as long as the reverse rate ⃗Rt is well-defined [23, Chapter 1].
Theorem 1. Recall the true reverse process with rate defined in (3). Suppose that pt also follows a
CTMC, with initial distribution p0 and rate R̂t. Then,

KL( ⃗qT−δ||pT−δ) ≤ KL( ⃗q0||p0) +
N−1∑
k=0

Extk
∼ ⃗qtk

[
KL( ⃗qtk+1|tk(·|xtk)||ptk+1|tk(·|xtk))

]
≤ KL( ⃗q0||p0) +

N−1∑
k=0

∫ tk+1

tk

Ext∼ ⃗qt

∑
y ̸=xt

R̂t(xt, y)− ⃗Rt(xt, y) + ⃗Rt(xt, y) log
⃗Rt(xt, y)

R̂t(xt, y)

dt.

(11)

Theorem 1 indicates that, without any regularity condition, the final KL-divergence between the
marginal distributions of the true and the mismatched process can be upper-bounded by the sum of
(1) the divergence between the initial distribution and (2) that accumulated along the sampling path
due to mismatched rate matrices. Also, different from continuous diffusion models [24], the rate of
accumulation at each time t is characterized not by Fisher divergence but by Bregman divergence
generated by the negative entropy function.

The proof is provided in Appendix E. Our proof of Theorem 1 takes a differential inequality argument,
which is different from the approaches used in existing works. After invoking the chain-rule of
the KL divergence (cf. (24)), the key is to provide an upper bound for the rate-of-change of the
KL-divergence between the true posterior and the sampling distribution. We then convert it into the
rate-of-change of the respective probabilities themselves, which can be further characterized by the
corresponding CTMC rate matrices by invoking the Kolmogorov equation. Rearranging the terms,
we finally obtain an upper bound in terms of only the rate matrices.

While our idea comes from [24, Lemma 6 and Proposition 8] (which studied continuous diffusion
models), there are several key differences: (1) In contrast to the continuous diffusion studied in
[24], there is no Fokker-Planck equation defined for discrete diffusion (since the space is discrete).
Instead, we need to use the Kolmogorov equation specifically tailored to a CTMC, which is related
to the special CTMC rate matrix. (2) Because of this, we need to characterize the reverse rate of a
CTMC not in terms of the marginal probabilities (as in [9]) but ones that are conditioned on future
observations. This is a non-trivial extension, whose proof is given in Lemma 9.

Comparison with Girsanov-based approaches: Our differential-inequality based approach for
proving Theorem 1 is more advantageous than previous Girsanov-based approaches (see [18, Corol-
lary 3.4], [19, Lemma 1], and [20, Theorem F.3]), in two ways. (1) First, we do not require the
regularities conditions necessary to apply the Girsanov change-of-measure (see [18, Remark A.12],
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[19, Theorem 3], and [20, Theorem F.3]). (2) [18, 19, 20] assume a particular parameterization of
the sampling rate as R̂t(x, y) = RT−t(y, x)sT−t(y, x), whereas our analysis allows R̂t(x, y) to
be generic. This might be useful, for example, when the rate is not obtained through minimizing
the score-entropy, or when there is general score mismatch that arises from a mismatched target
[25]. Nonetheless, Theorem 1 can be applied directly to the aforementioned particular parameteri-
zation R̂t(x, y) to obtain the following Corollary 1, where the score-entropy is used. The proof is
straightforward, which is provided for completeness in Appendix F.
Corollary 1. Under the parameterization that R̂t(x, y) = RT−t(y, x)sT−t(y, x), we have

KL( ⃗qT−δ||pT−δ) ≤ KL( ⃗q0||p0) +
N−1∑
k=0

∫ tk+1

tk

LSE(T − t; sT−t)dt. (12)

Here LSE is the score-entropy defined in (4).

3.2 Improved Parameter Dependence for τ -leaping
In this subsection, we characterize the convergence rate of τ -leaping with explicit dependencies on d
and S. To this end, we employ the following standard assumptions.
Assumption 1 (Score Estimation Error). Recall LSE as defined in (4). The score estimation satisfies

N−1∑
k=0

(tk+1 − tk)LSE(T − tk; sT−tk) ≤ εscore. (13)

Note that Assumption 1 captures the error that stk incurs for estimating the score function in terms
of the loss value at T − tk’s. We have provided a table to compare different assumptions for score
estimation in Table 1. In particular, for those works using score-entropy estimation errors, [17,
Assumption 1] and [19, Assumption 1] require that st (or stk ) is well-estimated along the integral-
path of the sampling process. This assumption is typically hard to verify in practice because of the
continuity of the sampling path. [20, Cor 2.7] requires that the maximum error over the discrete
sampling grid is well-controlled, which is stronger than our Assumption 1. Our Assumption 1 is the
same as [18, Assumption 4.6], which assumes that the sum-averaged error over the discrete grid is
well-controlled, which can be practically verified.
Assumption 2 (Bounded Score Estimates). The score estimates stk ’s satisfy stk(x, y) ∈ [M−1,M ]
for all x, y ∈ [S]d and k = 0, . . . , N − 1.

Assumption 2 is commonly adopted in the previous studies such as in [18, 19]. In practice, this can
be satisfied with score-clipping during training [19]. Indeed, as shown in Theorem 2, the convergence
error bounds depend only on logM .

We are now ready to present our main result below.
Theorem 2. Suppose that Assumptions 1 and 2 hold. Using the τ -leaping sampler, and choosing
tk+1 − tk ≤ κmin {1, T − tk}, we have

KL(qδ||pT−δ) ≲ d(logS)e−T + εscore + κd2S(T + log(MSδ−1)), (14)

where qδ satisfies TV(q0, qδ) ≲ dδ.

Furthermore, by letting tk+1− tk = κmin {1, T − tk} and choosing T = log(d(logS)/ε), we have
that KL(qδ||pT−δ) achieves ε error with N = Õ

(
d2S/ε

)
sampling steps.

Theorem 2 indicates that it takes at most Õ(d2S/ε) iterations to approximate a δ-perturbed distribution
of q0 to ε-accuracy in KL-divergence. The linear dependence on S improves upon the best previously
known result for τ -leaping in [18] by a factor of O(S).3 This order-level improvement has important
practical implications, because S is often very large for many NLP tasks (e.g., S = 50257 [10]). We
have performed a numerical study to validate such linear dependence in Figure 1 in Appendix D. The
full proof of Theorem 2 is in Appendix G, and we have provided a proof sketch in Section 4.

3The error bound in [18] does not explicitly characterize the dependence on S. However, it is straightforward
to derive the quadratic dependence on S from their proof steps.
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3.3 Convergence Guarantees for Euler Method and Tweedie τ -leaping
A significant obstacle in establishing the guarantees for the Euler method and Tweedie τ -leaping is
that both samplers are defined directly on the discrete sampling grids and thus lack an intermediate
rate function. Our approach to tackle this challenge includes the following steps. (i) First, we construct
a non-trivial approximate sampler with explicit intermediate rate that allows for categorical per-step
sampling. (ii) We then show that our construction is asymptotically equivalent (in the categorical
sampling probabilities) to both the Euler method and Tweedie τ -leaping. (iii) Then, in order to
establish convergence guarantees for these samplers, we show that asymptotically equivalent samplers
would also result in the same asymptotic rate in KL-divergence. In particular, this step is based on
our step-wise KL-divergence decomposition in (26). In comparison, the Girsanov change-of-measure
technique cannot be applied here directly due to the lack of a path-wise measure defined for both
samplers. (iv) Finally, we show that our constructed approximate sampler enjoys the same rate as
vanilla τ -leaping does. The full proof is in Appendix H.
Theorem 3. Suppose that Assumptions 1 and 2 hold. For both the Euler method and Tweedie
τ -leaping, choosing tk+1 − tk ≤ κmin {1, T − tk}, we have

KL(qδ||pT−δ) ≲ d(logS)e−T + εscore + κd2S(T + log(MSδ−1)). (15)

Here TV(q0, qδ) ≲ dδ. Similarly, if we take tk+1 − tk = κmin {1, T − tk}, it suffices that T =

log(d(logS)/ε) and N = Õ
(
d2S/ε

)
to reach ε KL-divergence error.

Notably, this is the first theoretical convergence guarantee characterized for the Euler method and
Tweedie τ -leaping. Compared with vanilla τ -leaping, since both samplers require the same number
of iterations but a decreased number of samples per-step (by a factor of O(S)), our Theorem 3 shows
that the Euler method and Tweedie τ -leaping enjoy less overall sampling complexity for a given
target accuracy ε. This benefit becomes more significant when S is large, as in many practical tasks
[10]. We have also numerically compared these samplers in Figure 2 in Appendix D.

4 Proof Sketch of Theorem 2
In this section, we provide a proof sketch of Theorem 2 to describe the main idea of our analysis
approach. The full proof is in Appendix G. Upon invoking the KL-divergence decomposition in
Theorem 1, we can decompose the total error into three different errors, where the discretization error
is the rate-determining term. For the two terms of the discretization error, we further identify one of
the dominant term and provide an error upper bound directly in expectation.

Comparison with the approach of [18]: Our proof is different from [18] in the following ways. (i)
In Step 1, we do not use the Girsanov change-of-measure framework to start with, thus eliminating
the need for any regularity conditions, which restrict path-wise integrability and are typically hard
to check in practice (see [18, Corollary 3.4 and Remark A.12]). Rather, our Theorem 1 provides a
more general starting point for which no such regularity conditions are needed. (ii) In Step 2, for
determining parameter dependency, we do not construct a stochastic-integral framework where Ito’s
Lemma is needed for the analysis of discretization error (see [18, Theorem A.10 and Proposition C.4]).
Instead, we directly identify the dominant error term by invoking the Kolmogorov equation, thus
eliminating the need of such stochastic-integral formulation in the analysis. (iii) In Step 3, we do not
employ a uniform upper bound (in x and y) for the score difference to control the discretization error
as in [18, Proposition C.2]. Differently, our upper bound is only in expectation of xt, which enables
us to reduce the quadratic dependency on S to linear dependency.

In the following, we divide the proof into three steps.

Step 1: Decomposing total error (Theorem 1). Following Theorem 1, we can decompose the total
error as

KL( ⃗qT ||pT ) ≤ KL( ⃗q0||p0)︸ ︷︷ ︸
initialization error

+

N−1∑
k=0

(tk+1 − tk)Extk
∼ ⃗qtk

[gtk(xtk)]︸ ︷︷ ︸
estimation error

+

N−1∑
k=0

∫ tk+1

tk

E xt∼ ⃗qt
xtk

∼ ⃗qtk

[gt(xt)− gt(xtk)] + Extk
∼ ⃗qtk

[gt(xtk)− gtk(xtk)] dt︸ ︷︷ ︸
discretization error

, (16)
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where we have defined gt(xt) :=
∑

y ̸=xt
R̂t(xt, y)− ⃗Rt(xt, y)+ ⃗Rt(xt, y) log

⃗Rt(xt,y)

R̂t(xt,y)
. Indeed gt is

a Bregman divergence generated by the negative entropy function. Here from [19, Proposition 2] and
[18, Theorem C.1], the initialization error satisfies KL( ⃗q0||p0) ≲ (d logS)e−T . Also, the estimation
error satisfies

N−1∑
k=0

(tk+1 − tk)Extk
∼ ⃗qtk

[gtk(xtk)] =

N−1∑
k=0

(tk+1 − tk)LSE(T − tk; stk) ≤ εscore. (17)

It remains to provide an upper-bound for the two terms, which constitute the discretization error.

Step 2: Identifying dominant term for discretization error (Lemma 1). As shown above, the
discretization error consists of two terms: one for the time-difference in the argument of gt (in
expected value), and the other for the difference in gt itself. For the former term, the expected
difference in the argument can be upper-bounded using the Kolmogorov forward equation and the
rate properties. Indeed, we can show that the former term is decaying faster than the other, which
further implies that it does not contribute to the total error:∫ T−δ

0

E xt∼ ⃗qt
xtk

∼ ⃗qtk

[gt(xt)− gt(xtk)] = κ ·O

(
εscore +

∫ T−δ

0

Extk
∼ ⃗qtk

[gt(xtk)− gtk(xtk)] dt

)
= o(κ). (18)

Step 3: Bounding dominant term for discretization error (Lemmas 3 and 5 and Equation (29)).
Now, we control the latter term in the discretization error, which is also the dominant-rate error term.
We first upper-bound this term as an expected difference of the reverse CTMC rate matrix (Lemma 3
and Equation (29)):

Extk
∼ ⃗qtk

(gt(xtk)− gtk(xtk)) ≲ (1 + log(MSδ−1))Extk
∼ ⃗qtk

∑
y ̸=xtk

∣∣∣ ⃗Rt(xtk , y)− ⃗Rtk(xtk , y)
∣∣∣

≲ (1 + log(MSδ−1))Extk
∼ ⃗qtk

∑
y ̸=xtk

Ham(y,xtk)=1

∣∣∣∣ qT−tk(y)

qT−tk(xtk)
− qT−t(y)

qT−t(xtk)

∣∣∣∣RT−tk(y, xtk). (19)

Thus, it is essential to deal with the time difference of the likelihood ratios (i.e., concrete scores). One
common way is to exploit the continuity of this ratio and to upper-bound its derivative for every fixed
x and y such that Ham(x, y) = 1. Indeed, this is the approach taken by [18, Prop. C.2], which will
result in an O(S2) dependency, as we show in Lemma 4 (for purpose of comparison). Instead, our
approach here directly provides an upper bound in expectation, which enables us to reduce a factor of
O(S) (see Lemma 5). With this improved bound, the discretization errorWdisc satisfies that

Wdisc ≲
N−1∑
k=0

d2Smax{1, (T − tk+1)
−2}(tk+1 − tk)

2. (20)

Note that this results in a tighter upper bound with linear S dependency.

Finally, combining the steps above, and invoking [24, Lemma 18], we can determine the overall
parameter dependencies in the above summation, which shows that

N−1∑
k=0

max{1, (T − tk+1)
−2}(tk+1 − tk)

2 ≲ κ(T + log δ−1). (21)

Also, from the last part of [17, Theorem 6], the perturbation due to early-stopping satisfies that
TV(q0, qδ) ≲ dδ, as δ → 0. (22)

5 Conclusion
In this paper, we have introduced a new analytical approach for discrete diffusion models that
removes the need for any regularity assumptions required in the previous Girsanov change-of-
measure techniques. For the standard τ -leaping sampler, we have established convergence guarantees
that scale linearly with the vocabulary size, improving upon prior results with quadratic dependence.
We have also provided the first convergence guarantees for other widely used samplers, including the
Euler method and Tweedie τ -leaping. In the future, it might be interesting to investigate acceleration
techniques that further reduce the order of d and S dependence.
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paper’s contributions and scope?
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provided separate subsections for our contributions and relationship to previous works.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the achievability and the limitations of all our assumptions
right after we proposed them in the paper. We have also explicitly captured the dependency
on S in both the computation and sampling complexity (see Table 1), which is typically
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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Answer: [Yes]

Justification: The assumptions are highlighted in Assumptions 1 and 2, and all proofs are
given in the appendix.
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• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not contain experimental results.
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• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not contain experimental results.
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• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not contain experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: The result in this paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is part of foundational research that aims to understand a generic
class of diffusion process, which is not tied to any particular application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose risks regarding data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM is only used during writing and editing of this paper.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Works
Theory on Continuous Diffusion Models: There have been many works that have explored the
performance guarantees of continuous-space diffusion models. While initial studies focused on
L∞ score estimation error and exponential error bounds [26, 27], subsequent studies developed
polynomial error bounds under L2 score estimation error (e.g., [28, 29, 30, 31, 32]). In particular,
[29] first employed the Girsanov change-of-measure framework for continuous diffusion models
and obtained guarantees for Lipschitz-score distributions. This result was later improved under a
differential-inequality-based analysis in [24], which removed all regularity conditions and enlarged
the distributional set to enforce the Lipschitz condition only for the target and to include all finite-
variance targets. Their idea inspired our analysis to investigate a differential-inequality based analysis
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also for the discrete diffusion models. Apart from the works mentioned above, there are other works
that provide convergence guarantees on the discrete-time formulation directly [33, 34, 35], on the
deterministic sampler [36, 37, 38, 39], on the Wasserstein distance [40, 41], and on the modified
predictor-corrector sampling method [42]. Recently, [43] provided a unified reverse-transition-kernel
framework that include these stochastic samplers for continuous-space diffusion models.

Empirical Works on Discrete Diffusion Models: Different from continuous-space diffusion models,
discrete-space diffusion models are rising as a strong candidate in generative modeling, especially for
those tasks involving discrete data such as texts [10], images [9], and graphs [12], having applications
even in the biochemical field [13]. Early ideas of discrete diffusion models can be traced back to
[1], which was subsequently extended in [44, 3]. The continuous-time counterpart using CTMC was
developed in [9]. In particular, all models in [44, 3, 9] are trained according to a variational inference
objective, which maximizes an Evidence Lower-Bound (ELBO). While empirically effective, it is
hard for one to characterize the estimation error, which is implicit in the Jensen bound. Recently, [10]
first proposed the score-entropy estimation error which is easy to train, and they achieved empirical
success compared to autogressive models in text generation tasks. They also proposed a new discrete
diffusion sampler by approximately solving the Tweedie’s formula, which they call the Tweedie
τ -leaping sampler. Other than an improved training objective, there are other works that are focused
on the conditional guidance in discrete diffusion models [11, 22, 45], on the discrete flow models
[46, 47], on the non-Markovian sampling process [48], on fine-tuning [49], to name a few. For
per-step sampling methods, note that the majority of these works (only except [9]) use categorical
sampling methods, yielding good empirical performances.

Theory on Discrete Diffusion Models: While there have been flourishing results for continuous-
space diffusion models, the theoretical understanding of discrete diffusion models remains limited.
All convergence results are given in Table 1. Among them, [9] provided an early convergence analysis
under the TV metric using the τ -leaping sampler. However, the estimation error is quite strong, and
the parameter dependencies are also high. More recently, under the score-entropy estimation errors,
[17] provided the convergence result using the uniformization sampler on a d-dimensional hypercube,
which was subsequently extended to general [S]d space in [18]. For deterministic-step-size samplers,
[19] performed analyses by assuming the accessibility of a perfect per-step sampler via solving the
Kolmogorov equation, [20] analyzed an Euler-type method which differs from the standard Euler
schemes [10, 22],4 and [18] investigated the more practical τ -leaping sampler. Among these works,
[19] required that the score-entropy loss is evaluated on the continuous sampling path, whereas
[18, 20] only required such loss to be evaluated on the discrete sampling grid. Notably, all of these
works [17, 18, 19, 20] employed the Girsanov change-of-measure framework, which requires such
regularity conditions (that the likelihood function is a path-wise local martingale) that are hard to
check in practice. Recently, [50] investigated possible acceleration schemes in discrete diffusion
models, and [51] used discrete diffusion techniques to solve for continuous diffusion problems under
quantization.

B Full List of Notations

For any two functions f(d, δ, ε) and g(d, δ, ε), we write f(d, δ, ε) ≲ g(d, δ, ε) (resp. f(d, δ, ε) ≳
g(d, δ, ε)) for some universal constant (not depending on δ, d or T ) L < ∞ (resp. L > 0) if
lim supε→0 |f(d, δ, ε)/ g(d, δ, ε)| ≤ L (resp. lim infε→0 |f(d, δ, ε)/g(d, δ, ε)| ≥ L). We write
f(d, δ, ε) ≍ g(d, δ, ε) when both f(d, δ, ε) ≲ g(d, δ, ε) and f(d, δ, ε) ≳ g(d, δ, ε) hold. Unless
otherwise specified, we write xi(1 ≤ i ≤ d) as the i-th element of a vector x ∈ [S]d and [A]ij as
the (i, j)-th element of a matrix A. Also, write x−i ∈ [S]d−1 as the i-th element removed. Define
Ham(x, y) as the Hamming distance between two vectors x and y (which is equal to the number of
non-equal elements). We also write Ham(x) = Ham (x, 0) for brevity. For matrices A,B, Tr(A)
is the trace of A, and A ⪯ B means that B − A is positive semi-definite. For a positive integer n,
[n] := {1, . . . , n}. Write 1S as a vector of length S that contains all 1’s, and IS as an identity matrix
of size S × S. Write 1 {A} as the indicator function of an event A.

4In the DMPM algorithm in [20], at most one coordinate is updated at each step, whereas the standard Euler
sampler [10, 22] first constructs sampling probabilities for all coordinates and then performs a simultaneous
categorical draw across all of them. Consequently, the number of flips at each step is a random variable taking
values in 0 to d (where d is the dimension).
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C Implementations of Discrete Diffusion Samplers
In this section, we provide the implementation of two practical sampling algorithms typically used
in empirical studies, namely the Euler method and Tweedie τ -leaping [10]. We also provide our
construction of an approximate discrete sampler for the proof of Theorem 3, which we name as
Truncated τ -leaping.

Algorithm 1: Euler method (e.g., in [10, 22])

Input: initial sample xt0 ∼ p0, discretization points {tk}Nk=0 (with t0 = 0 and tN = T − δ),
estimated score on these discretized points sT−tk

1 for k = 0 to N − 1 do
2 R̂tk(x, y)← RT−tk(y, x)sT−tk(y, x);
3 for i = 1 to d do
4 Recall R̂i

k(z, a) from (9). Draw xi
tk+1

as follows:

xi
tk+1

=

{
a (̸= xi

tk
), w.p. R̂i

k(x
i
tk
, a)(tk+1 − tk)

xi
tk
, w.p. 1 + R̂i

k(x
i
tk
, xi

tk
)(tk+1 − tk)

5 end
6 end

Return: xtN

Algorithm 2: Tweedie τ -leaping [10]

Input: initial sample xt0 ∼ p0, discretization points {tk}Nk=0 (with t0 = 0 and tN = T − δ),
estimated score on these discretized points sT−tk

1 for k = 0 to N − 1 do
2 for i = 1 to d do
3 Draw xi

tk+1
as follows:

xi
tk+1

=


a (̸= xi

tk
), w.p.

([
e−(β̄T−tk

−β̄T−tk+1
)Rbase

]a:
sT−tk(x

−i
tk
⊕i ·, xtk)

)
×[

e(β̄T−tk
−β̄T−tk+1

)Rbase
]a,xi

tk

xi
tk
, otherwise

4 end
5 end

Return: xtN

D Numerical Simulations
In this section, we provide some numerical simulations to validate our theoretical results. The target
distribution is a synthetic autoregressive model with given coefficients.

E Proof of Theorem 1
Write X := [S]d. To begin, we note the chain-rule of KL divergence as [35, Theorem 1] (cf. [24,
Theorem 1])

KL( ⃗qT ||pT ) ≤ KL( ⃗q0||p0) +
N−1∑
k=0

Extk
∼ ⃗qk

[
KL( ⃗qtk+1|tk(·|xtk)||ptk+1|tk(·|xtk))

]
, (24)

where, for each xtk ∈ X ,

KL( ⃗qtk+1|tk(·|xtk)||ptk+1|tk(·|xtk)) = KL( ⃗qs|tk(·|xtk)||ps|tk(·|xtk))+
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Algorithm 3: Truncated τ -leaping (used in Appendix H)

Input: initial sample xt0 ∼ p0, discretization points {tk}Nk=0 (with t0 = 0 and tN = T − δ),
estimated score on these discretized points sT−tk

1 for k = 0 to N − 1 do
2 R̂tk(x, y)← RT−tk(y, x)sT−tk(y, x);
3 for i = 1 to d do
4 For each z, a ∈ [S], recall that the token-wise rate R̂i

k ∈ RS×S is defined in (9) as

R̂i
k(z, a) := R̂tk(xtk , x

−i
tk
⊕i a)1

{
z = xi

tk

}
, ∀a ̸= xi

tk

with R̂i
k(x

i
tk
, xi

tk
) := −

∑
a∈[S]

a ̸=xi
tk

R̂i
k(x

i
tk
, a);

5 Draw xi
tk+1

as follows:

xi
tk+1

=

a ( ̸= xi
tk
), w.p.

R̂i
k(x

i
tk

,a)

−R̂i
k(x

i
tk

,xi
tk

)

(
1− exp

(
R̂i

k(x
i
tk
, xi

tk
)(tk+1 − tk)

))
xi
tk
, w.p. exp

(
R̂i

k(x
i
tk
, xi

tk
)(tk+1 − tk)

)
(23)

6 end
7 end

Return: xtN

Figure 1: Estimated KL-divergence between the target and the sampling distribution. The target is
generated autoregressively over the dimensions. Here d = 2. We use Euler method to obtain 2000000
samples to estimate the KL divergence.

∫ tk+1

s

∂

∂t
KL( ⃗qt|tk(·|xtk)||pt|tk(·|xtk))dt.

By Lemma 8, we can take the limit s ↓ tk which yields

KL( ⃗qtk+1|tk(·|xtk)||ptk+1|tk(·|xtk)) =

∫ tk+1

tk

∂

∂t
KL( ⃗qt|tk(·|xtk)||pt|tk(·|xtk))dt. (25)

It suffices to provide an upper bound for the partial derivative of the KL divergence. Below, for
notation brevity, we omit the conditional dependence on xtk in notation and write ⃗qt|tk(x) =
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Figure 2: Estimated total variation distance between the target and sampling distribution of different
sampling methods. Here d = 3 and S = 8. We use 30000 samples to estimate the TV distance.

⃗qt|tk(x|xtk) (resp. pt|tk(x)). We have

∂

∂t
KL( ⃗qt|tk(·|xtk)||pt|tk(·|xtk))

=
∂

∂t

∑
x∈X

⃗qt|tk(x) log
⃗qt|tk(x)

pt|tk(x)

=
∑
x∈X

(
∂

∂t
⃗qt|tk(x)

)
log

⃗qt|tk(x)

pt|tk(x)
+
∑
x∈X

⃗qt|tk(x)

(
∂
∂t ⃗qt|tk(x)

⃗qt|tk(x)
−

∂
∂tpt|tk(x)

pt|tk(x)

)

=
∑
x∈X

(
∂

∂t
⃗qt|tk(x)

)
log

⃗qt|tk(x)

pt|tk(x)︸ ︷︷ ︸
=:T1

−
∑
x∈X

⃗qt|tk(x)
∂
∂tpt|tk(x)

pt|tk(x)︸ ︷︷ ︸
=:T2

.

Using the Kolmogorov forward equation (see (1)) and reversing x and y, we have

T1 =
∑
x∈X

∑
y∈X

⃗Rt(y, x) ⃗qt|tk(y)

 log
⃗qt|tk(x)

pt|tk(x)
=
∑

x,y∈X

⃗Rt(x, y) ⃗qt|tk(x) log
⃗qt|tk(y)

pt|tk(y)
,

T2 =
∑
x∈X

⃗qt|tk(x)

pt|tk(x)

∑
y∈X

R̂t(y, x)pt|tk(y) =
∑

x,y∈X

⃗qt|tk(y)

pt|tk(y)
R̂t(x, y)pt|tk(x).

In order to show the desired result, we need to relate the ratio of densities with that of the rate matrices.
Recall the definition of ⃗Rt in (3). We have

T1 =
∑

x,y∈X

⃗Rt(x, y) ⃗qt|tk(x) log
⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)
+
∑
x∈X

⃗qt|tk(x) log
⃗qt|tk(x)

pt|tk(x)

∑
y∈X

⃗Rt(x, y)


(i)
=
∑

x,y∈X

⃗Rt(x, y) ⃗qt|tk(x) log
⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)

(ii)
=
∑
x∈X

⃗Rt(x, x) ⃗qt|tk(x) +
∑

x,y∈X
x ̸=y

⃗Rt(x, y) ⃗qt|tk(x) log
⃗Rt(x, y)/RT−t|T−tk(y, x)

pt|tk(y)/pt|tk(x)
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where (i) follows because
∑

y∈X
⃗Rt(x, y) = 0, and (ii) follows by Lemma 9 (where the conditioned

xtk is omitted for brevity) and note that RT−t|T−tk(y, x) =
qT−tk|T−t(xtk

|x)
qT−tk|T−t(xtk

|y)RT−t(y, x). Thus,

T1 − T2

=
∑
x∈X

(
⃗Rt(x, x)− R̂t(x, x)

)
⃗qt|tk(x)

+
∑

x,y∈X
x ̸=y

⃗qt|tk(x)

(
⃗Rt(x, y) log

⃗Rt(x, y)/RT−t|T−tk(y, x)

pt|tk(y)/pt|tk(x)
−

⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)
R̂t(x, y)

)

=
∑
x∈X

 ⃗Rt(x, x)− R̂t(x, x) +
∑
y∈X
y ̸=x

⃗Rt(x, y) log
⃗Rt(x, y)

R̂t(x, y)

 ⃗qt|tk(x)

+
∑

x,y∈X
x ̸=y

⃗qt|tk(x)

(
⃗Rt(x, y) log

R̂t(x, y)/RT−t|T−tk(y, x)

pt|tk(y)/pt|tk(x)
−

⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)
R̂t(x, y)

)
︸ ︷︷ ︸

=:R

.

Now, since log z ≤ z − 1 for all z > 0, we have

R ≤
∑

x,y∈X
x ̸=y

⃗qt|tk(x)

(
⃗Rt(x, y)

(
R̂t(x, y)/RT−t|T−tk(y, x)

pt|tk(y)/pt|tk(x)
− 1

)
−

⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)
R̂t(x, y)

)

(iii)
=

∑
x,y∈X
x ̸=y

⃗qt|tk(x)

(
R̂t(x, y)

(
⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)
− 1

)
−

⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)
R̂t(x, y)

)

(iv)
=
∑
x∈X

⃗qt|tk(x)R̂t(x, x) +
∑

x,y∈X
x ̸=y

⃗qt|tk(x)R̂t(x, y)

(
⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)
−

⃗qt|tk(y)/ ⃗qt|tk(x)

pt|tk(y)/pt|tk(x)

)
(v)

≤ 0

where (iii) is again by Lemma 9, (iv) follows because
∑

y∈X R̂t(x, y) = 0, and (v) follows because
R̂t(x, x) ≤ 0. Therefore,

Extk
∼ ⃗qk

[
∂

∂t
KL( ⃗qt|tk(·|xtk)||pt|tk(·|xtk))

]

≤ E xtk
∼ ⃗qk

xt∼ ⃗qt|tk (·|xtk
)

 ⃗Rt(xt, xt)− R̂t(xt, xt) +
∑
y∈X
y ̸=xt

⃗Rt(xt, y) log
⃗Rt(xt, y)

R̂t(xt, y)



= Ext∼ ⃗qt

∑
y∈X
y ̸=xt

R̂t(xt, y)− ⃗Rt(xt, y) + ⃗Rt(xt, y) log
⃗Rt(xt, y)

R̂t(xt, y)

 .

The proof is now complete by combining this with (24) and (25).

F Proof of Corollary 1
The proof is straight-forward by noting that

Ext∼ ⃗qt

[ ∑
y ̸=xt

R̂t(xt, y)− ⃗Rt(xt, y) + ⃗Rt(xt, y) log
⃗Rt(xt, y)

R̂t(xt, y)

]

26



= Ext∼ ⃗qt

[ ∑
y ̸=xt

RT−t(y, xt)sT−t(y, xt)−RT−t(y, xt)
qT−t(y)

qT−t(xt)

+RT−t(y, xt)
qT−t(y)

qT−t(xt)
log

RT−t(y, xt)(qT−t(y)/qT−t(xt))

RT−t(y, xt)sT−t(y, xt)

]

= Ext∼ ⃗qt

[ ∑
y ̸=xt

RT−t(y, xt)

(
sT−t(y, xt)−

qT−t(y)

qT−t(xt)
+

qT−t(y)

qT−t(xt)
log

qT−t(y)/qT−t(xt)

sT−t(y, xt)

)]
= LSE(T − t; sT−t)

where the last line follows from the definition of score-entropy in (4).

G Proof of Theorem 2
In this section, we provide the proof of Theorem 2. Before we start, the following assumption
characterizes those general approximate deterministic-step-size samplers (i.e., approximation to the
Kolmogorov samplers) that can sample efficiently.
Definition 1 (Approximate Sampling Method). The sampling rate R̂t is piecewise constant, i.e.,
constant within t ∈ [tk, tk+1). Also, given xtk ∈ [S]d, we have R̂t(xtk , ·) = R̂tk(xtk , ·).
Definition 1 is especially useful for discrete diffusion models where the exact solution of the Kol-
mogorov equation of the sampling CTMC is computationally hard to obtain. In particular, Definition 1
is satisfied for the rate of τ -leaping (see (7)). It will also be satisfied for the truncated τ -leaping
method later (see (30)).

G.1 Step 1: Decomposing total error
To begin, we can employ the general result of Theorem 1 and get that

KL( ⃗qtN ||ptN )

≤ KL( ⃗q0||p0) +
N−1∑
k=0

Extk
∼ ⃗qk

[
KL( ⃗qtk+1|tk(·|xtk)||ptk+1|tk(·|xtk))

]
≤ KL( ⃗q0||p0) +

N−1∑
k=0

∫ tk+1

tk

Ext∼ ⃗qt

∑
y ̸=xt

R̂t(xt, y)− ⃗Rt(xt, y) + ⃗Rt(xt, y) log
⃗Rt(xt, y)

R̂t(xt, y)


︸ ︷︷ ︸

=:gt(xt)

dt.

(26)

Note that gt is a Bregman divergence (generated by the negative entropy function) for each x, and
thus gt(x) ≥ 0 for all x ∈ [S]d. To see this, we fix xt and consider two vectors p and q such
that py := ⃗Rt(xt, y) and qy := R̂t(xt, y) such that y ̸= xt. Also, let ϕ(p) :=

∑
y ̸=xt

py log py
(i.e., the negative entropy function, which is convex), and the corresponding Bregman divergence is
Dϕ(p, q) = ϕ(p)− ϕ(q)− ⟨y− x, ϕ(y)⟩ =

∑
y ̸=xt

py log py − qy log qy − (py − qy)(1+ log qy) =∑
y ̸=xt

py log(py/qy)− py + qy, which is exactly gt. We further decompose gt into three different
terms:

KL( ⃗qT ||pT ) ≤ KL( ⃗q0||p0) +
N−1∑
k=0

∫ tk+1

tk

Ext∼ ⃗qt [gt(xt)] dt

= KL( ⃗q0||p0)︸ ︷︷ ︸
initialization error

+

N−1∑
k=0

(tk+1 − tk)Extk
∼ ⃗qtk

[gtk(xtk)]︸ ︷︷ ︸
estimation error

+

N−1∑
k=0

∫ tk+1

tk

E xt∼ ⃗qt
xtk

∼ ⃗qtk

[gt(xt)− gt(xtk)] + Extk
∼ ⃗qtk

[gt(xtk)− gtk(xtk)] dt︸ ︷︷ ︸
discretization error

. (27)
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From [19, Proposition 2] and [18, Theorem C.1], the initialization error satisfies that

KL( ⃗q0||p0) ≲ (d logS)e−T .

Recall (3) and (5). Note that the estimation error term can be upper-bounded as

N−1∑
k=0

(tk+1 − tk)Extk
∼ ⃗qtk

[gtk(xtk)]

=

N−1∑
k=0

(tk+1 − tk)Extk
∼qT−tk

 ∑
y ̸=xtk

R̂tk(xtk , y)− ⃗Rtk(xtk , y) +
⃗Rtk(xtk , y) log

⃗Rtk(xtk , y)

R̂tk(xtk , y)


=

N−1∑
k=0

(tk+1 − tk)Extk
∼qT−tk

∑
y ̸=xtk

RT−tk(y, xtk)×(
sT−tk(y, xtk)−

qT−tk(y)

qT−tk(xtk)
+

qT−tk(y)

qT−tk(xtk)
log

qT−tk(y)/qT−tk(xtk)

sT−tk(y, xtk)

)
=

N−1∑
k=0

(tk+1 − tk)LSE(T − tk; sT−tk)

≤ εscore,

where the last line follows from Assumption 1. As follows, the goal is to provide an upper bound for
the discretization error.

G.2 Step 2: Identifying dominant term for discretization error
As shown in (27), the discretization error can be decomposed into two terms, one for the time-
difference in the argument of gt (in expected value), and the other for the difference in gt itself. In the
following lemma, we show that the former term decays faster than the other, which further implies
that the latter term is the dominant error term for the discretization error.
Lemma 1. For each k = 0, . . . , N − 1 and t ∈ [tk, tk+1), We have

E xt∼ ⃗qt
xtk

∼ ⃗qtk

[gt(xt)− gt(xtk)] ≲ (t− tk)d · Ext∼ ⃗qt [gt(xt)] .

Proof. See Appendix I.1.

As a result of Lemma 1, suppose that tk+1 − tk ≤ κ, we further have∫ T−δ

0

E xt∼ ⃗qt
xtk

∼ ⃗qtk

[gt(xt)− gt(xtk)] ≤ κ ·O

(∫ T−δ

0

Ext∼ ⃗qt [gt(xt)] dt

)

= κ ·O

(
εscore +

∫ T−δ

0

Extk
∼ ⃗qtk

[gt(xtk)− gtk(xtk)] dt

)
.

(28)

Here the last line follows from the decomposition of gt as in (27). Thus, this term (corresponding to
the difference in xt in expectation) does not contribute to the overall rate as long as κ→ 0.

G.3 Step 3: Bounding dominant term for discretization error
Now, we control the second term in the discretization error in (27), which is also the dominant error
term as shown in Step 2. We also explicitly express its parameter dependencies. The following lemma
provides a useful score bound for further analysis, which is similar to [18, Remark B.3] and [19,
Lemma 2] and provided here for completeness.
Lemma 2. Fix t > 0 and x ̸= y such that Ham(x, y) = 1. Given the forward process in (1) with a
rate given in (2), we have

qt(y)

qt(x)
≲ S ·max{1, t−1}.
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Proof. See Appendix I.2.

Now, we can upper-bound the error due to difference in gt as a difference in the likelihood ratio, as
shown in the following lemma.
Lemma 3. Fix t ∈ [tk, tk+1). Under Assumption 2 and Definition 1, we have

Extk
∼ ⃗qtk

(gt(xtk)− gtk(xtk)) ≲ (1 + log(MSδ−1))Extk
∼ ⃗qtk

∑
y ̸=xtk

∣∣∣ ⃗Rt(xtk , y)− ⃗Rtk(xtk , y)
∣∣∣ .

Proof. See Appendix I.3.

Now, for any xtk ∈ [S]d, the sum difference in the reverse rate can be further calculated using (3) as

Extk
∼ ⃗qtk

∑
y ̸=xtk

∣∣∣ ⃗Rtk(xtk , y)− ⃗Rt(xtk , y)
∣∣∣

= Extk
∼ ⃗qtk

∑
y ̸=xtk

∣∣∣∣ qT−tk(y)

qT−tk(xtk)
RT−tk(y, xtk)−

qT−t(y)

qT−t(xtk)
RT−t(y, xtk)

∣∣∣∣
= Extk

∼ ⃗qtk

∑
y ̸=xtk

Ham(y,xtk)=1

∣∣∣∣ qT−tk(y)

qT−tk(xtk)
− qT−t(y)

qT−t(xtk)

∣∣∣∣RT−tk(y, xtk)

(29)

where the last line follows because RT−tk(y, xtk) = RT−t(y, xtk) whenever y ̸= xtk since βt ≡ 1.

Due to continuity of this ratio (i.e., the concrete score), one common way is to upper bound its
derivative uniformly for every fixed x and y such that Ham(x, y) = 1. Indeed, this is the approach
taken by [18, Proposition C.2] (cf. [9, Proposition 6]). For reasons of comparison, the following
upper-bound adopts the derivative-based method as in [18, Proposition C.2].
Lemma 4 (Following the idea in [18]). Fix s < t such that t − s is small. Fix x and y such that
Ham(x, y) = 1. Given the forward process in (1) with a rate given in (2), we have∣∣∣∣ qt(y)qt(x)

− qs(y)

qs(x)

∣∣∣∣ ≲ dS2 max
{
1, s−2

}
(t− s).

This further implies that

Extk
∼ ⃗qtk

∑
y ̸=xtk

Ham(y,xtk)=1

∣∣∣∣ qT−tk(y)

qT−tk(xtk)
− qT−t(y)

qT−t(xtk)

∣∣∣∣RT−tk(y, xtk)

≲ d2S2 max
{
1, (T − tk+1)

−2
}
(t− tk).

Proof. See Appendix I.4.

Then, we present our novel approach below that directly provides an upper bound in expectation.
This will finally result in a tighter upper bound with linear S dependency.
Lemma 5. Fix s < t such that t− s is small. Given the forward process in (1) with a rate given in
(2), we have

Ext∼qt

∑
y ̸=xt

Ham(y,xt)=1

∣∣∣∣ qt(y)qt(xt)
− qs(y)

qs(xt)

∣∣∣∣Rt(y, xt)

≲ dSmax{1, s−2}(t− s) + d2Smax{1, s−1}(t− s)

≲ d2Smax{1, s−2}(t− s).

Proof. See Appendix I.5.
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Thus, considering the two terms in (29), we have the following bound for the expected difference in
the reverse rate matrix:

Extk
∼ ⃗qtk

∑
y ̸=xtk

∣∣∣ ⃗Rtk(xtk , y)− ⃗Rt(xtk , y)
∣∣∣ ≲ d2Smax{1, (T − tk+1)

−2}(t− tk).

Collecting the results from Steps 1–3, we would arrive at
KL( ⃗qtN ||ptN )

≲ d(logS)e−T + εscore + d2S(1 + log(MSδ−1))

N−1∑
k=0

max{1, (T − tk+1)
−2}(tk+1 − tk)

2.

Finally, to determine the overall parameter dependencies in the above summation, we can consider
the particular step-size: tk+1 − tk = κmin {1, T − tk} and invoke [24, Lemma 18], which shows
that

N−1∑
k=0

max{1, (T − tk+1)
−2}(tk+1 − tk)

2 ≲ κ(T + log δ−1).

Also, from the last part of [17, Theorem 6], the perturbation due to early-stopping is
TV(q0, qδ) ≲ dδ, as δ → 0.

The proof for Theorem 2 is complete.

H Proof of Theorem 3
The proof of Theorem 3 consists of three parts. First, we construct a non-trivial approximate discrete
sampler, the truncated τ -leaping algorithm, with explicit intermediate rate that allows for categorical
per-step sampling. Then, we show that our truncated τ -leaping is asymptotically equivalent to both
the Euler method and Tweedie τ -leaping in terms of the categorical sampling probabilities. Finally,
we show that our proof of Theorem 2 is applicable even for such asymptotically equivalent samplers,
which is further evidence of the generality of our approach.

H.1 Step 1: Constructing an approximate sampler
To start, we propose an approximate discrete sampler that modifies the vanilla τ -leaping algorithm
and enables categorical sampling. We call this sampler the truncated τ -leaping algorithm (see
Appendix C). The intuition is that we only allow the first state change (a.k.a. truncated) for each
dimension according to (7). This intuition is made solid by the following proposition, which shows
explicitly the rate of truncated τ -leaping.
Lemma 6. Fix k ∈ {0, . . . , N − 1} and xtk ∈ [S]d. The truncated τ -leaping algorithm corresponds
to the following rate matrix: ∀t ∈ [tk, tk+1) and ∀(x, y) : x ̸= y,

R̂TTL
t (x, y) := R̂tk(xtk , y − x+ xtk)1 {nzind(y − x) ∈ zeros(x− xtk)} , (30)

where nzind(y − x) is the only index i∗ such that xi∗ ̸= yi
∗
, and zeros(v) := {i : vi = 0} is the set

of indices having zeros in a vector v ∈ [S]d.

Proof. See Appendix I.6.

H.2 Step 2: Establishing asymptotic equivalency
Then, we show that both the Euler method and Tweedie τ -leaping are (first-order) asymptotically
equivalent to truncated τ -leaping. This is summarized in the following proposition.
Lemma 7. Fix tk ∈ [0, T − δ], xtk ∈ [S]d, and i ∈ [d]. With some abuse of notation, write
P i

truncated(a), P
i
tweedie(a), and P i

euler(a) for the conditional probability of xi
tk+1

= a given xtk for these
three algorithms, respectively. Then, as tk+1 − tk → 0,

P i
truncated(a) = P i

euler(a)(1 + o(1)) = P i
tweedie(a)(1 + o(1)), ∀a ∈ [S].

Proof. See Appendix I.7.

In the context of Theorem 3, note that tk+1 − tk ≤ κ. Thus, Lemma 7 shows that the constructed
truncated τ -leaping is asymptotically equivalent to both the Euler method and Tweedie τ -leaping
when κ→ 0 (or equivalently, when N →∞).
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H.3 Step 3: Examining the error induced by asymptotically equivalent samplers
Let ptk+1|tk denote the (exact) conditional probability from truncated τ -leaping, and let p′tk+1|tk be
any conditional probability such that p′tk+1|tk(·|xtk) = ptk+1|tk(·|xtk)(1+o(1)) for fixed xtk ∈ [S]d,
as κ→ 0. Previously, from Lemma 7, we have shown that both Euler method and Tweedie τ -leaping
are special cases of such p′tk+1|tk .

A useful property for such p′tk+1|tk is that, for fixed xtk ∈ [S]d, as tk+1 − tk → 0,

KL( ⃗qtk+1|tk(·|xtk)||p′tk+1|tk(·|xtk))

=
∑

x̃∈[S]d

⃗qtk+1|tk(x̃|xtk) log
⃗qtk+1|tk(x̃|xtk)

p′tk+1|tk(x̃|xtk)

=
∑

x̃∈[S]d

⃗qtk+1|tk(x̃|xtk) log
⃗qtk+1|tk(x̃|xtk)

ptk+1|tk(x̃|xtk)
+
∑

x̃∈[S]d

⃗qtk+1|tk(x̃|xtk) log
1

1 + o(1)

=
∑

x̃∈[S]d

⃗qtk+1|tk(x̃|xtk) log
⃗qtk+1|tk(x̃|xtk)

ptk+1|tk(x̃|xtk)
−
∑

x̃∈[S]d

⃗qtk+1|tk(x̃|xtk)o(1)

=
∑

x̃∈[S]d

⃗qtk+1|tk(x̃|xtk) log
⃗qtk+1|tk(x̃|xtk)

ptk+1|tk(x̃|xtk)
+ o(1). (31)

Now we consider the decomposition in (26). We have

KL( ⃗qtN ||p′tN )

≤ KL( ⃗q0||p0) +
N−1∑
k=0

Extk
∼ ⃗qk

[
KL( ⃗qtk+1|tk(·|xtk)||p′tk+1|tk(·|xtk))

]
≲ KL( ⃗q0||p0) +

N−1∑
k=0

Extk
∼ ⃗qk

[
KL( ⃗qtk+1|tk(·|xtk)||ptk+1|tk(·|xtk))

]
where the last line follows from (31). Thus we have recovered the result in (26).

H.4 Step 4: Examining the rate of truncated τ -leaping
Now, we can verify that the rate matrix in (30) satisfies Definition 1, just as vanilla τ -leaping. Thus,
the rate of Theorem 2 still holds if we substitute τ -leaping with truncated τ -leaping. The proof of
Theorem 3 is now complete.

I Proofs of Auxiliary Lemmas
I.1 Proof of Lemma 1
With the forward process in (1), we have

E xt∼ ⃗qt
xtk

∼ ⃗qtk

[gt(xt)− gt(xtk)]

= Ext∼ ⃗qt

gt(xt)−
∑

xtk
∈[S]d

qT−tk|T−t(xtk |xt)gt(xtk)


= Ext∼ ⃗qt

gt(xt)−
∑

xtk
∈[S]d

(1 {xtk = xt}+Rt(xt, xtk)(t− tk)) gt(xtk)

+ o(t− tk)

= (t− tk)Ext∼ ⃗qt

− ∑
xtk

∈[S]d

Rt(xt, xtk)gt(xtk)

+ o(t− tk)

(i)

≤ (t− tk)Ext∼ ⃗qt [(−Rt(xt, xt))gt(xt)] + o(t− tk)
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= (t− tk)
S − 1

S
d · Ext∼ ⃗qt [gt(xt)] + o(t− tk)

where (i) follows because gt(x) ≥ 0 and Rt(x, y) ≥ 0 if x ̸= y. Also, for the last line, note that
Rt(x, x) = −

∑
y ̸=x Rt(x, y) = −S−1

S d when βt ≡ 1. The proof is now complete.

I.2 Proof of Lemma 2
Let j be the only index such that xj ̸= yj . First, we note that

qt(y)

qt(x)
=

1

qt(x)

∑
x0∈[S]d

q0(x0)qt|0(y|x0)

(i)
=

1

qt(x)

∑
x0∈[S]d

q0(x0)
∏
i∈[d]

qit|0(y
i|xi

0)

=
1

qt(x)

∑
x0∈[S]d

q0(x0)

∏
i∈[d]

qit|0(x
i|xi

0)

( qjt|0(y
j |xj

0)

qjt|0(x
j |xj

0)

)

(ii)
=

∑
x0∈[S]d

q0(x0)qt|0(x|x0)

qt(x)

(
qjt|0(y

j |xj
0)

qjt|0(x
j |xj

0)

)

= Ex0∼q0|t(·|x)
qjt|0(y

j |xj
0)

qjt|0(x
j |xj

0)
(32)

where both (i) and (ii) follow because with the chosen Rt in (2) each dimension propagates inde-
pendently in the forward process (cf. [9, Prop. 3]). Note that the reverse process does not propagate
independently.

To obtain an analytical solution for the conditional probability, we can solve the Kolmogorov forward
equation for the i-th dimension (∀i ∈ [d]) (cf. [19, Proposition 1]):

d

dt
qit|0(z|a) =

∑
z̃∈[S]

qit|0(z̃|a)R
tok
t (z̃, z),

whose solution is

qit|0(z|a) =
[
exp

(∫ t

0

Rtok
s ds

)]
(a, z) = [exp (tRbase)] (a, z) =

[
P exp (tΛ)P−1

]
(a, z)

=

{
S−1(1− e−t) if z ̸= a

S−1(1 + (S − 1)e−t) if z = a
(33)

where we recall that Rtok
t = Rbase when βt ≡ 1 and we denote the eigendecomposition of Rbase =

S−11S1
⊺
S − IS as Rbase = PΛP−1. Thus, plugging back into (32), we have

qjt|0(y
j |xj

0)

qjt|0(x
j |xj

0)
=


1 if xj ̸= xj

0 and yj ̸= xj
0

1−e−t

1+(S−1)e−t if xj = xj
0 but yj ̸= xj

0

1+(S−1)e−t

1−e−t if xj ̸= xj
0 but yj = xj

0

. (34)

Among the three cases above, since e−t ≥ 0, the second case satisfies that 1−e−t

1+(S−1)e−t ≤ 1. Also,
the third case satisfies that

1 + (S − 1)e−t

1− e−t
= 1 + S · 1

et − 1
≤
{
S + 1 if et ≥ 2
S
t otherwise

≲ S ·max{1, t−1}.

Therefore, the bound is as desired.
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I.3 Proof of Lemma 3
By definition of gt, we have

Extk
∼ ⃗qtk

(gt(xtk)− gtk(xtk))

= Extk
∼ ⃗qtk

∑
y ̸=xtk

(
R̂t(xtk , y)− R̂tk(xtk , y)

)
−
(

⃗Rt(xtk , y)− ⃗Rtk(xtk , y)
)

+

(
⃗Rt(xtk , y) log

⃗Rt(xtk , y)

R̂t(xtk , y)
− ⃗Rtk(xtk , y) log

⃗Rtk(xtk , y)

R̂tk(xtk , y)

)
(i)
= Extk

∼ ⃗qtk

∑
y ̸=xtk

(
⃗Rt(xtk , y) log

⃗Rt(xtk , y)

R̂tk(xtk , y)
− ⃗Rtk(xtk , y) log

⃗Rtk(xtk , y)

R̂tk(xtk , y)

)

−
(

⃗Rt(xtk , y)− ⃗Rtk(xtk , y)
)

≤ Extk
∼ ⃗qtk

∑
y ̸=xtk

∣∣∣ ⃗Rt(xtk , y)− ⃗Rtk(xtk , y)
∣∣∣ (1 + ∣∣∣log R̂tk(xtk , y)

∣∣∣)
+
∣∣∣ ⃗Rt(xtk , y) log

⃗Rt(xtk , y)− ⃗Rtk(xtk , y) log
⃗Rtk(xtk , y)

∣∣∣
(ii)

≲ (1 + log(MSδ−1)) · Extk
∼ ⃗qtk

∑
y ̸=xtk

∣∣∣ ⃗Rt(xtk , y)− ⃗Rtk(xtk , y)
∣∣∣

where (i) follows by Definition 1. We explain (ii) as follows. First, from (5), if x ̸= y,

R̂tk(x, y) = RT−tk(y, x)sT−tk(y, x) ∈ [M−1S−1,MS−1]

under Assumption 2, which further implies that
∣∣∣log R̂tk(x, y)

∣∣∣ ≤ log(MS). Also,∣∣∣ ⃗Rt(xtk , y) log
⃗Rt(xtk , y)− ⃗Rtk(xtk , y) log

⃗Rtk(xtk , y)
∣∣∣

(iii)

≤
(
1 +

∣∣∣log ⃗R∗
∣∣∣) ∣∣∣ ⃗Rt(xtk , y)− ⃗Rtk(xtk , y)

∣∣∣
(iv)

≲
(
1 + log(Sδ−1)

) ∣∣∣ ⃗Rt(xtk , y)− ⃗Rtk(xtk , y)
∣∣∣

where (iii) follows from the intermediate-value theorem for f(z) = z log z and ⃗R∗ is a num-
ber between ⃗Rtk(xtk , y) and ⃗Rt(xtk , y), and (iv) follows because, by Lemma 2, ⃗Rt(x, y) =

RT−t(y, x)
qT−t(y)
qT−t(x)

≲ max{1, (T − t)−1} ≤ δ−1 for all t > 0 if x ̸= y. Meanwhile, by sym-

metry, ⃗Rt(x, y) ≳ 1
S2 max{1,(T−t)−1} ≥

δ
S2 . The proof is now complete.

I.4 Proof of Lemma 4
The idea comes from [18, Proposition C.2]. When t− s is small, we note that the derivative of the
likelihood ratio w.r.t. t is equal to∣∣∣∣ ∂∂t

(
qt(y)

qt(x)

)∣∣∣∣ =
∣∣∣∣∣ ∂
∂tqt(y)

qt(x)
−

qt(y)
∂
∂tqt(x)

qt(x)2

∣∣∣∣∣ ≤
∣∣ ∂
∂tqt(y)

∣∣
qt(x)

+
qt(y)

∣∣ ∂
∂tqt(x)

∣∣
qt(x)2

.

Now, by Kolmogorov forward equation,∣∣∣∣∣ ∂
∂tqt(y)

qt(x)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

y′∈[S]d

qt(y
′)

qt(x)
Rt(y

′, y)

∣∣∣∣∣∣
=

1

S
· qt(y)
qt(x)

∑
y′∈[S]d

Ham(y,y′)=1

qt(y
′)

qt(y)
+ d

S − 1

S

qt(y)

qt(x)
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(i)

≲ dS2 max{1, t−1}2 + dSmax{1, t−1}
≲ dS2 max{1, t−1}2

where (i) follows from Lemma 2 and note that the summation has d(S − 1) terms in total. With a
similar argument, we have∣∣∣∣∣ ∂

∂tqt(x)

qt(x)

∣∣∣∣∣ = 1

S
·

∑
x′∈[S]d

Ham(x,x′)=1

qt(x
′)

qt(x)
+ d

S − 1

S
≲ dSmax{1, t−1}.

Therefore, ∣∣∣∣ ∂∂t
(
qt(y)

qt(x)

)∣∣∣∣ ≲ dS2 max{1, t−2},

and thus ∣∣∣∣ qt(y)qt(x)
− qs(y)

qs(x)

∣∣∣∣ ≲ ∣∣∣∣ ∂∂t
(
qt(y)

qt(x)

)∣∣∣∣ (t− s) ≲ dS2 max{1, t−2}(t− s),

as claimed. Especially note the quadratic dependency on S.

I.5 Proof of Lemma 5
First, fix xt and y and let i be the index such that xi

t ̸= yi. From (32), we have,∣∣∣∣ qt(y)qt(xt)
− qs(y)

qs(xt)

∣∣∣∣ =
∣∣∣∣∣Ex0∼q0|t(·|xt)

[
qit|0(y

i|xi
0)

qit|0(x
i
t|xi

0)

]
− Ex̃0∼q0|s(·|xt)

[
qis|0(y

i|x̃i
0)

qis|0(x
i
t|x̃i

0)

]∣∣∣∣∣
≤ Ex0∼q0|t(·|xt)

∣∣∣∣∣ q
i
t|0(y

i|xi
0)

qit|0(x
i
t|xi

0)
−

qis|0(y
i|xi

0)

qis|0(x
i
t|xi

0)

∣∣∣∣∣
+

∣∣∣∣∣Ex0∼q0|t(·|xt)

x̃0∼q0|s(·|xt)

[
qis|0(y

i|xi
0)

qis|0(x
i
t|xi

0)
−

qis|0(y
i|x̃i

0)

qis|0(x
i
t|x̃i

0)

]∣∣∣∣∣ . (35)

For the first term in (35), we note the expression of likelihood ratio in (34) and thus, for any fixed x0,
xt, and y,∣∣∣∣∣ q

i
t|0(y

i|xi
0)

qit|0(x
i
t|xi

0)
−

qis|0(y
i|xi

0)

qis|0(x
i
t|xi

0)

∣∣∣∣∣ =

0 if xi ̸= xi

0 and yi ̸= xi
0

1−e−t

1+(S−1)e−t − 1−e−s

1+(S−1)e−s if xi = xi
0 but yi ̸= xi

0

1+(S−1)e−t

1−e−t − 1+(S−1)e−s

1−e−s if xi ̸= xi
0 but yi = xi

0

.

Now, since ∣∣∣∣ ∂∂t
(

1− e−t

1 + (S − 1)e−t

)∣∣∣∣ = Set

(S + et − 1)2
≲ 1∣∣∣∣ ∂∂t

(
1 + (S − 1)e−t

1− e−t

)∣∣∣∣ = Set

(et − 1)2
≲

S

min {1, t}2
,

we have ∣∣∣∣∣ q
i
t|0(y

i|xi
0)

qit|0(x
i
t|xi

0)
−

qis|0(y
i|xi

0)

qis|0(x
i
t|xi

0)

∣∣∣∣∣ ≲ S

min {1, t}2
(t− s).

Note that this term does not depend on d. Thus,

Ext∼qt

∑
y ̸=xt

Ham(y,xt)=1

Ex0∼q0|t(·|xt)

∣∣∣∣∣ q
i
t|0(y

i|xi
0)

qit|0(x
i
t|xi

0)
−

qis|0(y
i|xi

0)

qis|0(x
i
t|xi

0)

∣∣∣∣∣Rt(y, xt)

≲ dSmax
{
1, t−2

}
(t− s).
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Now we turn to the second term in (35). Write f(z) :=
qis|0(y

i|z)
qi
s|0(x

i
t|z)

for brevity (recall that xt and y are

fixed and thus omitted in this expression). Note that from (34), an upper bound on f(z) is

sup
yi,xi

t,z∈[S]

f(z) = sup
yi,xi

t,z∈[S]

qis|0(y
i|z)

qis|0(x
i
t|z)

≲ S ·max{1, s−1}.

Thus, the second term in (35) can be upper-bounded (for each yi) as∣∣∣∣∣Ex0∼q0|t(·|xt)

x̃0∼q0|s(·|xt)

[
f(xi

0)− f(x̃i
0)
]∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x0∈[S]d

f(xi
0)(q0|t(x0|xt)− q0|s(x0|xt))

∣∣∣∣∣∣
≲ Smax{1, s−1}

∑
x0∈[S]d

∣∣q0|t(x0|xt)− q0|s(x0|xt)
∣∣ . (36)

Using Bayes’ rule, we have∑
x0∈[S]d

∣∣q0|t(x0|xt)− q0|s(x0|xt)
∣∣ = ∑

x0∈[S]d

q0(x0)

∣∣∣∣qt|0(xt|x0)

qt(xt)
−

qs|0(xt|x0)

qs(xt)

∣∣∣∣
≤ 1

qt(xt) · qs(xt)

∑
x0,y0∈[S]d

q0(x0)q0(y0)
∣∣qt|0(xt|x0)qs|0(xt|y0)− qs|0(xt|x0)qt|0(xt|y0)

∣∣
≤ 1

qt(xt) · qs(xt)
Ex0,y0∼q0

[ ∣∣qt|0(xt|x0)− qs|0(xt|x0)
∣∣ qs|0(xt|y0)

+
∣∣qs|0(xt|y0)− qt|0(xt|y0)

∣∣ qs|0(xt|x0)

]
=

1

qt(xt)
Ex0∼q0

∣∣qt|0(xt|x0)− qs|0(xt|x0)
∣∣+ 1

qt(xt)
Ey0∼q0

∣∣qs|0(xt|y0)− qt|0(xt|y0)
∣∣

=
2

qt(xt)
Ex0∼q0

∣∣qt|0(xt|x0)− qs|0(xt|x0)
∣∣ . (37)

Now, this term (without the constant factor 2) can be upper-bounded as

1

qt(xt)
Ex0∼q0

∣∣qt|0(xt|x0)− qs|0(xt|x0)
∣∣

≲
1

qt(xt)
(t− s)Ex0∼q0

∣∣∣∣ ∂∂tqt|0(xt|x0)

∣∣∣∣
(i)
=

1

qt(xt)
(t− s)Ex0∼q0

∣∣∣∣∣∣
∑

x̃t∈[S]d

qt|0(x̃t|x0)Rt(x̃t, xt)

∣∣∣∣∣∣
≤ 1

qt(xt)
(t− s)Ex0∼q0

∑
x̃t∈[S]d

qt|0(x̃t|x0) |Rt(x̃t, xt)|

= (t− s)
∑

x̃t∈[S]d

qt(x̃t)

qt(xt)
|Rt(x̃t, xt)| , (38)

where (i) follows from Kolmogorov forward equation. Thus, combining these intermediate results,
we have

Ext∼qt

∑
y ̸=xt

Ham(y,xt)=1

∣∣∣∣∣Ex0∼q0|t(·|xt)

x̃0∼q0|s(·|xt)

[
f(xi

0)− f(x̃i
0)
]∣∣∣∣∣Rt(y, xt)

(ii)

≲ dSmax{1, s−1} · Ext∼qt

[
1

qt(xt)
Ex0∼q0

∣∣qt|0(xt|x0)− qs|0(xt|x0)
∣∣]
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(iii)

≲ (t− s)dSmax{1, s−1}Ext∼qt

 ∑
x̃t∈[S]d

qt(x̃t)

qt(xt)
|Rt(x̃t, xt)|


= (t− s)dSmax{1, s−1}Ex̃t∼qt

∑
xt∈[S]d

|Rt(x̃t, xt)|

(iv)
≍ (t− s)d2Smax{1, s−1},

where (ii) follows from (36) and (37), (iii) follows from (38), and (iv) follows because−Rt(x, x) =∑
y ̸=x Rt(x, y) =

S−1
S d for all x, y ∈ [S]d. The proof is now complete.

I.6 Proof of Lemma 6
Note that R̂TTL

t (x, y) ≡ 0 whenever Ham(x, y) ≥ 2 by definition of R̂tk . Also recall the definition
of the token-wise rate R̂i

k in (9). Note that R̂i
k is a valid rate matrix since

∑
a∈[S] R̂

i
k(z, a) = 0 for

all z ∈ [S] and R̂i
k(z, a) ≥ 0 if z ̸= a.

Fix x and y such that Ham(x, y) = 1. Let i∗ ∈ [d] be the (only) index such that yi
∗ ̸= xi∗ . We now

divide into the following three cases:

1. Case 1: x = xtk . Then, zeros(x − xtk) = [S], and R̂TTL
t (x, y) = R̂tk(xtk , y) =

R̂i∗

k (xi∗

tk
, yi

∗
).

2. Case 2: x ̸= xtk , but xi∗ = xi∗

tk
. Thus, i∗ ∈ zeros(x − xtk), and R̂TTL

t (x, y) =

R̂tk(xtk , x
−i∗

tk
⊕i∗ yi

∗
) = R̂i∗

k (xi∗

tk
, yi

∗
).

3. Case 3: xi∗ ̸= xi∗

tk
(and also x ̸= xtk ). Then, i∗ /∈ zeros(x− xtk), and R̂TTL

t (x, y) = 0.

Thus, the overall CTMC is equivalent to S CTMC’s, one for each dimension. The transition rate
matrix on the i-th dimension is R̂i

k(z, a)1
{
z = xi

tk

}
. Notably, at most one state transition can

happen during t ∈ [tk, tk+1) (where the CTMC stops after its first transition). We can also calculate
the corresponding state transition probability by solving the Kolmogorov forward equation, which is
equal to (for example, see [52, Chap. 2])

P i
tk+1|tk

{
xi
tk+1

= a|xtk

}
=


exp

(
R̂i

k(x
i
tk
, xi

tk
)(tk+1 − tk)

)
if a = xi

tk

R̂i
k(x

i
tk

,a)

−R̂i
k(x

i
tk

,xi
tk

)

(
1− exp

(
R̂i

k(x
i
tk
, xi

tk
)(tk+1 − tk)

))
if a ̸= xi

tk

.

This is the same as the transition in (23). The proof is now complete.

I.7 Proof of Lemma 7
Recall the conditional probabilities from (23), (8), and (10). Also there we have defined R̂i

k such that

R̂i
k(x

i
tk
, a) = R̂tk(xtk , x

−i
tk
⊕i a), ∀a ̸= xi

tk
.

As follows, we only consider all a ∈ [S] such that a ̸= xi
tk

, since all probability vectors need to sum
up as 1.

We first focus on the Euler method. From (23),

P i
truncated(a) =

R̂i
k(x

i
tk
, a)

−R̂i
k(x

i
tk
, xi

tk
)

(
1− exp

(
R̂i

k(x
i
tk
, xi

tk
) · (tk+1 − tk)

))
=

R̂i
k(x

i
tk
, a)

−R̂i
k(x

i
tk
, xi

tk
)
(−R̂i

k(x
i
tk
, xi

tk
) · ((tk+1 − tk) + o(tk+1 − tk)))

= R̂i
k(x

i
tk
, a)(tk+1 − tk)(1 + o(1))

= P i
euler(a)(1 + o(1)).

Also, for Tweedie τ -leaping, from (10), we have

P i
tweedie(a)
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=
([

e−(β̄T−tk
−β̄T−tk+1

)Rbase
]a:

sT−tk(x
−i
tk
⊕i ·, xtk)

) [
e(β̄T−tk

−β̄T−tk+1
)Rbase

]a,xi
tk

=
[
δa − (β̄T−tk − β̄T−tk+1

)Rbase(a, ·)
]
sT−tk(x

−i
tk
⊕i ·, xtk)(β̄T−tk − β̄T−tk+1

)Rbase(a, x
i
tk
)(1 + o(1))

= sT−tk(x
−i
tk
⊕i a, xtk)(β̄T−tk − β̄T−tk+1

)Rbase(a, x
i
tk
)(1 + o(1))

= sT−tk(x
−i
tk
⊕i a, xtk)(tk+1 − tk)βT−tkRbase(a, x

i
tk
)(1 + o(1))

= sT−tk(x
−i
tk
⊕i a, xtk)RT−tk(x

−i
tk
⊕i a, xtk)(tk+1 − tk)(1 + o(1))

= R̂i
k(x

i
tk
, a)(tk+1 − tk)(1 + o(1))

= P i
euler(a)(1 + o(1)),

where δa is such that Ham(δa, 0) = 1 and [δa]
a = 1. The proof is now complete.

I.8 Lemma 8 and its proof

Lemma 8. Fix a ∈ [S]d. We have

lim
s↓tk

KL( ⃗qs|tk(·|a)||ps|tk(·|a)) = 0.

Proof of Lemma 8. First, we have

lim
s↓tk

KL( ⃗qs|tk(·|a)||ps|tk(·|a))

= lim
s↓tk

∑
x∈X

⃗qs|tk(x|a) log
⃗qs|tk(x|a)

ps|tk(x|a)

(∗)
=
∑
x∈X

lim
s↓tk

(
⃗qs|tk(x|a) log

⃗qs|tk(x|a)
ps|tk(x|a)

)
=
∑
x∈X

(
lim
s↓tk

⃗qs|tk(x|a)
)(

lim
s↓tk

log
⃗qs|tk(x|a)

ps|tk(x|a)

)
.

Here (∗) follows because, different from the case where X = Rd, we can safely interchange the limit
and summation because X has finite cardinality. Now, by definition of the CTMC process (see (1)),

lim
s↓tk

⃗qs|tk(x|a) = lim
s↓tk

ps|tk(x|a) = 1 {x = a} ,

which implies the desired result.

I.9 Lemma 9 and its proof

Lemma 9. Fix s < t (thus T − s > T − t) and a ∈ [S]d. We have

⃗Rt(x, y) =
⃗qt|s(y|a)
⃗qt|s(x|a)

RT−t|T−s(y, x|a), ∀x ̸= y.

Here RT−t|T−s(·, ·|a) is defined as the rate matrix for the forward CTMC at time T − t conditioned
on the future observation at time T − s being a. Indeed, we further have

RT−t|T−s(y, x|a) =
qT−s|T−t(a|x)
qT−s|T−t(a|y)

RT−t(y, x) ∈ [0,∞).

Proof of Lemma 9. Fix x ̸= y. First, by Bayes’ rule, ∀t̃ ∈ (s, t) (and thus T − s > T − t̃ > T − t),

⃗qt|t̃,s(y|x, a) = qT−t|T−t̃,T−s(y|x, a) = qT−t̃|T−t,T−s(x|y, a) ·
qT−t|T−s(y|a)
qT−t̃|T−s(x|a)

.

For the left-hand side, by the Markov property of the reverse process, we have that

lim
t̃→t

∂

∂t
⃗qt|t̃,s(y|x, a) = lim

t̃→t

∂

∂t
⃗qt|t̃(y|x) = ⃗Rt(x, y).
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For the right-hand side, we note that

lim
t̃→t

∂

∂t

(
qT−t̃|T−t,T−s(x|y, a) ·

qT−t|T−s(y|a)
qT−t̃|T−s(x|a)

)

= lim
t̃→t

(
∂

∂t
qT−t̃|T−t,T−s(x|y, a)

)
qT−t|T−s(y|a)
qT−t̃|T−s(x|a)

+ lim
t̃→t

qT−t̃|T−t,T−s(x|y, a)
∂
∂tqT−t|T−s(y|a)
qT−t̃|T−s(x|a)

(i)
= lim

t̃→t

(
∂

∂t
qT−t̃|T−t,T−s(x|y, a)

)
qT−t|T−s(y|a)
qT−t̃|T−s(x|a)

=

(
lim
t̃→t

∂

∂t
qT−t̃|T−t,T−s(x|y, a)

)
qT−t|T−s(y|a)
qT−t|T−s(x|a)

where (i) follows because limt̃→t qT−t̃|T−t,T−s(x|y, a) = 0 for x ̸= y. Also, by Kolmogorov
backward equation,

∂

∂t
qT−t̃|T−t,T−s(x|y, a) = −

∂

∂(T − t)
qT−t̃|T−t,T−s(x|y, a)

=
∑

x̃∈[S]d

qT−t̃|T−t,T−s(x̃|y, a)RT−t|T−s(x̃, x|a),

where RT−t|T−s(·, ·|a) is the rate matrix for the forward CTMC at time T − t conditioned on the
future event that the observation at time T − s is a. Then, combining both sides, we would get

⃗Rt(x, y) =
⃗qt|s(y|a)
⃗qt|s(x|a)

RT−t|T−s(y, x|a).

Lastly, we ensure that the conditioned rate is well-defined. Fix s′ < t′ < T ′. Note that

Rt′|T ′(y, x|a) = lim
s′→t′

∂

∂t′
qt′|s′,T ′(x|y, a).

Thus, we obviously have Rt′|T ′(y, x|a) = 0 for all x ̸= y if qT ′|t′(a|y) = 0. Otherwise, we have

Rt′|T ′(y, x|a)

= lim
s′→t′

∂

∂t′
qt′|s′,T ′(x|y, a)

= lim
s′→t′

1

qT ′|s′(a|y)
∂

∂t′
(
qT ′|s′,t′(a|y, x)qt′|s′(x|y)

)
= lim

s′→t′

1

qT ′|s′(a|y)
∂

∂t′
(
qT ′|t′(a|x)qt′|s′(x|y)

)
= lim

s′→t′

1

qT ′|s′(a|y)

−qt′|s′(x|y) ∑
x̃∈[S]d

Rt′(x, x̃)qT ′|t′(a|x̃) + qT ′|t′(a|x)
∑

x̃∈[S]d

qt′|s′(x̃|y)Rt′(x̃, x)


=

qT ′|t′(a|x)
qT ′|t′(a|y)

Rt′(y, x)

which is finite and non-negative when x ̸= y. The proof is now complete.
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