
Under review as submission to TMLR

Continual learning via probabilistic exchangeable sequence
modelling

Anonymous authors
Paper under double-blind review

Abstract

Continual learning (CL) refers to the ability to continuously learn and accumulate new
knowledge while retaining useful information from past experiences. Although numerous
CL methods have been proposed in recent years, it is not straightforward to deploy them
directly to real-world decision-making problems due to their computational cost and lack of
uncertainty quantification. To address these issues, we propose CL-BRUNO, a probabilistic,
Neural Process-based CL model that performs scalable and tractable Bayesian update
and prediction via probabilistic exchangeable sequence modelling. Our proposed approach
uses deep-generative models to create a unified Bayesian probabilistic framework capable
of handling different types of CL problems such as task- and class-incremental learning
by modelling data from different tasks as sequences of exchangeable random variables,
allowing users to integrate information across different CL scenarios efficiently using a single
model, and give easy-to-interpret probabilistic predictions without the need of training or
maintaining separate classifiers. Our approach is able to prevent catastrophic forgetting
through distributional and functional regularisation without the need of retaining any
previously seen samples, making it appealing to applications where data privacy or storage
capacity is of concern. Experiments show that CL-BRUNO outperforms existing methods
on both natural image and biomedical data sets, confirming its effectiveness in real-world
applications.

1 Introduction

Continual learning (CL) enables an intelligent system to develop and refine itself adaptively in accordance
with real-world dynamics by incrementally accumulating and exploiting knowledge gained from previous
experience without the need to train any new model from scratch (Hassabis et al., 2017). The main challenge
CL has to tackle is known as catastrophic forgetting, which refers to previously learned knowledge being
drastically interfered by new information (McClelland et al., 1995; McCloskey and Cohen, 1989). In order
to deliver accurate and trustworthy predictions, a CL model in practice should, on one hand, be able to
integrate new knowledge efficiently based on the stream of new inputs from dynamic data distributions
(learning plasticity) and, on the other hand, maximally retain relevant information from the past and prevent
catastrophic forgetting (memory stability). The competition between these two conflicting objectives is
known as stability-plasticity dilemma, which has been widely studied from both biological and computational
perspectives (Ditzler et al., 2015; Parisi et al., 2019).

Numerous methods and strategies have been developed to address the CL problem under different scenarios
(Wang et al., 2024): Regularisation-based methods (Kirkpatrick et al., 2017; Schwarz et al., 2018; Wang et al.,
2021) aim to retain knowledge from history by introducing regularisation terms to balance the old and new
tasks. Such regularisation can either be at a parameter level, e.g. minimising changes to key model parameters
(under some data-driven parameter-wise importance measure) as new tasks are being learnt (Aljundi et al.,
2018; Zenke et al., 2017), or at a functional level using e.g. knowledge distillation to prevent the model’s
performance on previous tasks from drastic deterioration (Michel et al., 2024; Rudner et al., 2022; Titsias
et al., 2019). Architecture-based CL approaches (Thapa and Li, 2024; Gurbuz and Dovrolis, 2022; Mallya
et al., 2018; Dhar et al., 2019) seek to mitigate catastrophic forgetting and inter-task interference by allocating

1

Under review as submission to TMLR

specific sets of parameters to different tasks. Wortsman et al. (2020); Xue et al. (2022); Kang et al. (2022)
use binary masks to select and isolate the subset of dedicated parameters for different tasks in a fixed-size
model. Hung et al. (2019); Draelos et al. (2017) accommodate additional tasks by dynamically expanding the
model architecture, providing additional model capacity before the model “saturates" as more incremental
tasks are introduced. Another popular approach is rehearsal-based methods (Robins, 1995) where historical
information is retained by approximating and recovering historical data distributions. Wen et al. (2024); Shim
et al. (2021); Aljundi et al. (2019); Rebuffi et al. (2017) retain distributional information by selecting and
storing representative samples from the old data. Despite its conceptual simplicity, such approaches known
as experience replay can be infeasible due to storage or data privacy constraints. Generative replay methods
(Petit et al., 2023; Chen et al., 2022; Egorov et al., 2021; Shin et al., 2017) address this issue by summarising
old data distributions as generative models, and replay generated data instead of the actual samples.

In practice, experience-replay methods such as Jha et al. (2024) and Wen et al. (2024) are computationally
intensive and require storing historical data as part of their memory states, which could be infeasible in
many applications due to privacy or storage concerns. Generative (Petit et al., 2023; Gopalakrishnan et al.,
2022; Wu et al., 2018) and regularisation-based CL methods (Dohare et al., 2024; He and Zhu, 2022; Li
and Hoiem, 2017) avoid the need of storing historical data, but are also computational costly and lack
statistically principled updating or uncertainty quantification schemes. These limitations make it difficult to
deploy them directly to real-world problems. To address these limitations, we propose Continual Learning
Bayesian RecUrrent Neural mOdel (CL-BRUNO), a probabilistic, Neural Process-based CL model that
performs scalable and tractable Bayesian update and prediction. CL-BRUNO utilises deep generative
models, and extends the exchangeable sequence modelling framework given by Korshunova et al. (2020)
(Conditional-BRUNO) to provide a versatile probabilistic framework capable of performing probabilistic label
and task-identity estimation, and handling different CL scenarios such as task- and class-incremental learning
using a common, likelihood-based updating scheme. This means that users can handle different types of CL
problems using a single CL-BRUNO model in a statistically principled fashion, allowing knowledge to be
accumulated more efficiently. Our proposed method uses generative replay (Shin et al., 2017; Wu et al., 2018)
as a regularisation to prevent catastrophic forgetting without the need of retaining previously seen samples,
making it more appealing in real-world applications where data privacy or storage capacity is of concern.
Numerical experiments show that CL-BRUNO outperforms existing methods on both natural image and
biomedical datasets, confirming its effectiveness. This paper is structured as follows: We first give technical
background in Sec 2, then describe the proposed CL-BRUNO model in Sec 3. We highlight its connection
with existing works in Sec 4, and report numerical experiments in Sec 51. We conclude the paper with a brief
discussion.

2 Background

In this section, we give the technical background relevant to our proposed method.

2.1 Normalising flow

A discrete Normalising flow (NF) (Rezende and Mohamed, 2015; Dinh et al., 2016; Papamakarios et al.,
2017) models a continuous probability distribution by transforming a simple-structured base distribution (e.g.
isotropic multivariate Normal) to the more complex target using a bijective transformation T parameterised
as a composition of a series of smooth and invertible mappings f1, ..., fK with easy-to-compute Jacobians.
This T is applied to the “base" random variable z0 ∼ p0, where z0 ∈ RD and p0 is the known base density.
Let zk = fk ◦ fk−1 ◦ ... ◦ f1(z0) for k = 1, ..., K. By applying change of variable repeatedly, the final output
zK has density pK(zK) = p0(z0)

∏K
k=1 |det Jk(zk−1)|−1, where Jk is the Jacobian of the mapping fk. The

final density pK can be used to approximate target distributions with complex structure, and one can sample
from pK easily by applying T = fK ◦ fK−1 ◦ ... ◦ f1 to z0 ∼ p0. In order to evaluate pK efficiently, we are
restricted to transformations fk whose det Jk(z) is easy to compute. For example, Real-NVP (Dinh et al.,
2016) uses the following family of transformations: For m ∈ N such that 1 < m < d, let z1:m be the first m
entries of z ∈ RD, let × be element-wise multiplication and let µk, σk : Rm → RD−m be two neural nets. The

1Code reproducing the reported results can be found in https://anonymous.4open.science/r/cl_bruno-7313.

2

https://anonymous.4open.science/r/cl_bruno-7313

Under review as submission to TMLR

smooth and invertible transformation y = fk(z) for each step k in a Real-NVP is defined as

y1:m = z1:m, ym+1:d = µk(z1:m) + σk(z1:m)× zm+1:d (1)

The Jacobian Jk of fk is lower triangular, hence det Jk(z) =
∏D−m

i=1 σik(z1:m), where σik(z1:m) is the ith entry
of σk(z1:m). Continuous normalising flows (Chen et al., 2018; Onken et al., 2021; Lipman et al., 2023) further
extend model flexibility by replacing the series of transformations by a vector field continuously indexed by
pseudo-time.

2.2 Conditional-BRUNO

Korshunova et al. (2020) proposed Conditional Bayesian Recurrent Neural model (C-BRUNO), a Neural
Process (Garnelo et al., 2018; Kim et al., 2019; Xu et al., 2024) which models exchangeable sequences of high-
dimensional observations conditionally on a set of labels. Given a set of feature-label pairs {Xi, yi}N

i=1 where
Xi ∈ RD is a feature vector and yi its corresponding label, C-BRUNO assumes that the joint distribution
p(X1, ..., XN |y1, ..., yN) = p(Xπ(1), ..., Xπ(N)|yπ(1), ..., yπ(N)) for any permutation π. In other words, this
permutation invariance implies that the model is agnostic to the ordering of the pairs {Xi, yi}. Therefore,
the sequence is exchangeable as any reordering of the sequence does not change the joint distribution
p(X1, ..., XN |y1, ..., yN). C-BRUNO models p(X1, ..., XN |y1, ..., yN) by first transforming each feature vector
Xi into a latent variable zi = fθ(Xi; yi), where fθ(X; y) : RD → RD is a bijective conditional Real-
NVP depending on label y. Denote z

(d)
i as the dth entry of zi. It then models each dimension d of the

exchangeable latent sequence {zi}N
i=1 as an independent 1-D Gaussian process with Var(z(d)

i) = ν(d) and
Cov(z(d)

i , z
(d)
j) = ρ(d) for all i, j = 1, ..., N , where 0 < ρ(d) < ν(d) are trainable covariance parameters (Note

that we need 0 < ρ(d) < ν(d) to ensure positive definiteness of the covariance matrix). In other words, C-
BRUNO assumes that p(z1, . . . , zN) =

∏D
d=1 pd({z(d)

n }N
n=1) where pd({z(d)

n }N
n=1) = N ({z(d)

n }N
n=1; 0N , Σd), 0N

is a zero vector of length N , and Σd is a N ×N covariance matrix with diagonal element ν(d) and off-diagonal
element ρ(d). Suppose the bijective transformation fθ and the covariance parameters {ρ(d), ν(d)}D

d=1 have been
chosen. C-BRUNO generates a new sample from the predictive distribution p(X∗|y∗, X1:N , y1:N) conditioned
on new label y∗ and previously seen feature-label pairs by first sampling z∗ ∼ p(z∗|z1:N) and then computing
X∗ = f−1

θ (z∗; y∗). The predictive likelihood p(XN+1|yN+1, X1:N , y1:N) of a new pair (XN+1, yN+1) can be
evaluated in a similar fashion. Thanks to the specific covariance function used in C-BRUNO, sampling from
and evaluating p(z∗|z1:N) using the recursive formula given in Korshunova et al. (2020) has a time complexity
O(N) instead of the general case O(N3). This greatly improves the scalability of C-BRUNO as it scales
linearly with both sample size N and data dimension D.

Our proposed CL-BRUNO is built on the C-BRUNO framework: The exchangeability assumption in C-
BRUNO imposes a permutation-invariance architecture to the model. It includes the conditionally identically
and independently distributed (conditionally i.i.d.) assumption as a special case, therefore provides a more
flexible modelling framework to reason about future samples based on the observed ones with minimal
additional computational cost, and has been proven useful in e.g. few-shot learning and anomaly detection
(Korshunova et al., 2020). This feature is appealing in many CL scenarios where new datasets arrive
incrementally in batches: In comparison with generative-replay methods based on i.i.d. assumption, e.g.
Scardapane et al. (2020), modelling samples in each dataset as an exchangeable sequence using C-BRUNO
allows users to better capture and aggregate distributional information such as sample sizes and inter-sample
correlations. To see that, note C-BRUNO’s Gaussian process predictive base distribution p(z∗|z1:N) is
updated as the sample size N increases, while models based on the i.i.d. assumption, e.g. Scardapane et al.
(2020), ignore this dependency between z∗ and z1:N , and set p(z∗|z1:N) = p(z∗) to be some user-specified
distribution such as an isotropic Gaussian. This aggregation feature is useful for probabilistic prediction and
inference in a natural and statistically principled fashion. Furthermore, our proposed CL-BRUNO leverages
the efficient and exact density evaluation feature of C-BRUNO to directly estimate probability distributions
of both class and task identity of any test data (Sec 3.2). This means that compared with existing methods
such as Petit et al. (2023) and Wu et al. (2018), our proposed method does not require training or maintaining
separate neural network based classifiers, making it computationally more efficient. Additionally, the output
of CL-BRUNO can be interpreted as approximate Bayesian classifiers, which is more interpretable than the

3

Under review as submission to TMLR

logit scores given by a neural network based classifier. We give details of the proposed CL-BRUNO in the
following section.

3 Method

In this section, we give technical details of our proposed method. We start by specifying the notation.
Suppose there is a sequence of tasks labelled by t = 1, 2, . . . , T . Assuming all tasks are classification problems
with potentially different or disjoint label spaces (extensions to regression problems are straightforward).
We suppose each task t = 1, 2, . . . , T is associated with dataset Dt = {Xt,Yt} where Xt = {Xi,t}Nt

i=1 is the
feature set, Xi,t ∈ Rd is the feature vector of the i-th sample in the t-th task, Yt = {Yi,t}Nt

i=1 is the label
set, Yi,t ∈ {1, ..., Ct} is the i-th sample’s corresponding label, and Nt, Ct are the sample size of Dt and the
number of distinct labels in the t-th task respectively. Similar to Korshunova et al. (2020), for each dataset
Dt = {Xt,Yt}, we assume that (a) the corresponding density function pt(Xt,Yt) factorises as

pt(Xt,Yt) = p(Xt|t,Yt)p(Yt|t) = p(X1,t, ..., XNt,t|t, Y1,t, ..., YNt,t)
Nt∏
i=1

p(Yi,t|t), (2)

i.e. Yt are generated i.i.d. from some task-specific label prior p(·|t) independent to the generative process of
Xt, and (b) Xt is an exchangeable sequence of feature vectors conditioned on both task identity t and label
set Yt, i.e.

p(X1,t, ..., XNt,t|t, Y1,t, ..., YNt,t) = p(Xπ(1),t, ..., Xπ(Nt),t|t, Yπ(1),t, ..., Yπ(Nt),t) (3)
for any permutation π of size Nt.

We propose Continual Learning BRUNO (CL-BRUNO) under the distributional assumptions given above.
The key motivation of CL-BRUNO is to formulate continual learning problems as modelling streams of
data (one for each task), which may come in batches, as a collection of exchangeable sequences. From this
perspective, once N samples from a stream of data (i.e. a continual learning task) have been observed, users
can then extract distributional information from historical observations by modelling the joint distribution
p(X1:N,t, Y1:N,t), and predict a new sample and/or the associated label by inferring the one-step-ahead con-
ditional distribution p(XN+1,t, YN+1,t|X1:N,t, Y1:N,t) or p(YN+1,t|X1:N+1,t, Y1:N,t). Specifically, CL-BRUNO
consists of two modules: a C-BRUNO model that models feature vectors Xt from different task t as exchange-
able sequences, and an approximate Bayesian inference pipeline for label and task identity estimation. Let
p̂(Xt|t,Yt) be a C-BRUNO model that approximates p(Xt|t,Yt), the true conditional distribution of feature
vectors Xt given (t,Yt). CL-BRUNO aims to train a collection of C-BRUNO models {p̂(Xt|t,Yt)}t=1,2,...

incrementally over an expanding range of (t,Yt) by continually learning generative models p̂(Xt′ |t′,Yt′) from
new datasets Dt′ , while preventing those it has learnt from previous tasks from being interfered or disrupted:
If the incrementally trained C-BRUNO models could give p̂(Xt|t,Yt) that well approximates p(Xt|t,Yt) for
all previously seen tasks t throughout the continual learning process, then users could handle queries such
as estimating the task identity associated with a new feature vector X∗, or computing p̂(Y ∗|X∗, t,Dt), the
approximate posterior distribution of label Y ∗ associated with a new X∗ from the t-th task based on historical
data at any stage of the continual learning process in a statistically principled fashion.

3.1 Incremental learning scheme

In this section, we discuss the parametrisation and incremental training procedure of CL-BRUNO. Thanks to
the i.i.d. assumption on labels {Yt}T

t=1 in 2, the task-specific label priors p(Y |t) can be estimated directly
using their population proportions. For the remainder of the section, we focus on learning the conditional
distribution of Xt. Specifically, the C-BRUNO model used in our proposed method consists of a Conditional
Real-NVP2 fθ(·; t, Yt) : RD → RD parameterised by θ as a bijective transformation that depends on both
task identity t and label Yt. We parameterise each task identity t and each of the unique labels {1, . . . , Ct} in
the t-th task as trainable embeddings rt, sj,t ∈ Rl respectively for j = 1, . . . , Ct and t = 1, 2, For the rest
of the paper, the embeddings {rt, {sj,t}Ct

j=1}T
t=1 are viewed as parts of the Conditional Real-NVP parameter θ.

2It is straightforward to replace it with more sophisticated alternatives (Chen et al., 2018; Lipman et al., 2023; Shi et al.,
2024). We do not consider them here for sake of conceptual simplicity.

4

Under review as submission to TMLR

For t = 1, 2, . . . , let zi,t = fθ(Xi,t; t, Yi,t) for all i = 1, . . . , Nt, zt = {zi,t}Nt
i=1, and pλt

(zt) be the task-specific
latent distribution parametrised by λt = {ν(d)

t , ρ
(d)
t }D

d=1 as described in Sec 2.2. Denote λ = {λt}t=1,2,... the
set of latent distribution parameters. With a slight abuse of notation, we see X1:0,t, Y1:0,t and z1:0,t as empty
sets for the rest of the paper.

Learning from scratch

If there is no historical information or previously seen data, then we can extract and retain information in
these datasets by training a series of C-BRUNO models that approximate p(Xt|t,Yt) for all t = 1, . . . , T by
minimising the negative log likelihood

L(θ, λ; {Dt}T
t=1) = −

T∑
t=1

task-wise log likelihood︷ ︸︸ ︷
log pθ,λt

(Xt|t,Yt) (4)

= −
T∑

t=1

Nt∑
i=1

log pθ,λt
(Xi,t|Yi,t, t, X1:i−1,t, Y1:i−1,t)

= −
T,Nt∑
t,i=1

log
(

pλt(zi,t|z1:i−1,t)
∣∣∣∣det ∂fθ(Xi,t; t, Yi,t)

∂Xi,t

∣∣∣∣) ,

as suggested by Korshunova et al. (2020) where pθ,λt(Xt|t,Yt) denotes the C-BRUNO approximation to
p(Xt|t,Yt). Now, suppose (θ̂, λ̂) = arg minθ,λ L(θ, λ; {Dt}T

t=1), and ẑi,t = fθ̂(Xi,t; t, Yi,t) for all i = 1, . . . , Nt

and t = 1, . . . , T . Then for any task t = 1, . . . , T , p(X∗|Y ∗, t,Dt), the predictive distribution of new
observation X∗ given label Y ∗ and historical data Dt, can be summarised by a generative C-BRUNO model
with bijective mapping fθ̂ and multivariate Gaussian predictive distribution pλ̂t

(·|ẑ1:Nt,t). See also Fig 1 (a)
for a schematic illustration.

We stress that even though p
λ̂

(T)
t

(·|ẑ1:Nt,t) is a multivariate Gaussian distribution whose mean and covariance
depend on ẑ1:Nt,t, evaluating or sampling from it does not require access to ẑ1:Nt,t, see also Eqn (7) in
Korshunova et al. (2020). As a result, once the generative model has been trained, users can use it as a proxy
of {Dt}T

t=1, and handle queries without the need of revisiting any historical data. This learning strategy
allows users to retain knowledge and information from different tasks without storing any sample from any
dataset. However, under a CL setup, such a learning scheme via joint likelihood maximisation is not feasible
as datasets Dts are observed in a sequential fashion, and we do not necessarily have access to any previously
seen datasets. On the other hand, sequentially maximising L(θ, λ;Dt), t = 1, 2, . . . naively whenever a new
dataset Dt arrives will drastically disrupt what it has learnt from historical data due to catastrophic forgetting
(McCloskey and Cohen, 1989), rendering it unusable for any prediction task except for the most recent one.
To address this issue, our proposed CL-BRUNO uses generative replay to prevent catastrophic forgetting
through both distributional and functional regularisation. We demonstrate our incremental learning strategy
under two common CL scenarios known as Task- and Class-Incremental learning. Other scenarios such as
Domain- or Instance- Incremental learning (Wang et al., 2024) can be handled in a similar fashion.

Task-incremental learning

Suppose our CL model has been trained on T tasks. Let fθ̂(T) , {pλ̂
(T)
t

(·|ẑ1:Nt,t)}T
t=1 be the trained normalising

flow and predictive latent distributions respectively. Suppose now a new task T + 1 and the associated
dataset DT +1 arrive. Our goal is to update the generative model so that it adapts to DT +1 while retaining
the historical knowledge the old generative model has learnt regarding the previous T tasks. This scenario is
known as Task-Incremental learning (TIL) (Van de Ven and Tolias, 2019).

To achieve this goal, we update the old CL-BRUNO by estimating 1) a new bijective transformation fθ

parametrised by θ, and 2) λT +1 for the latent distribution of the T +1-th task. The rest of the old CL-BRUNO
model (i.e. latent distributions associated with previous tasks) are kept unchanged. Specifically, we first
generate pseudo datasets D′

t = {X ′
j,t, Y ′

j,t}N ′

j=1 for each previously seen task t = 1, 2, . . . , T from the old
CL-BRUNO model as follows. Denote N ′ the size of pseudo datasets, for each D′

t and j = 1, . . . , N ′, the

5

Under review as submission to TMLR

Training/ Knowledge aggregation Inference/ Generation

Feature
vector

Label-
dependent
mapping

Latent
variable

Updating Approximating

Generating pseudo datasets from old model

Task-Incremental
Learning

Generated from old model

Learnt in TIL phase

Inherited from old model

Dataset of the new task

(a)

(b)

Figure 1: (a) Schematic illustration of how C-BRUNO learns the sequence distribution p(Xt|Yt) =∏N
i=1(Xi,t|X1:i−1,t, Y1:i,t). For each feature vector Xi,t in the sequence, C-BRUNO first transform it to the

corresponding latent variable using the label-dependent mapping ẑi,t = f(Xi,t|t, Yi,t), then approximates the
one-step-ahead conditional p(Xi,t|X1:i−1,t, Y1:i,t) by pt(ẑi,t|ẑ1:i−1)

∣∣∣det ∂ẑi,t

∂Xi,t

∣∣∣. Exchangeability is guaranteed
by the specific covariance function in the latent distribution p(ẑ1:Nt

). In the generation/inference phase,
given a label Y ∗, a new latent variable z∗ is first generated from p(·|ẑ1:N,t), a multivariate Gaussian whose
mean and covariance depend on the observed sequence, and then transformed to the generated feature vector
X∗ = f−1(z∗|t, Y ∗) under label Y ∗. (b) Schematic illustration of TIL in CL-BRUNO. Pseudo datasets
are generated from the previous latent predictive distributions p(·|ẑ1:Nt,t) and the bijective mapping fold.
Note that in the TIL phase, the new bijective mapping fnew learns to 1) map the new dataset DT +1 to a
series of latent variables and compute the corresponding latent predictive p(·|ẑ1:NT +1,T +1) (i.e. learning from
new data) and 2) map the pseudo-datasets D̂t back to latent variables that resemble samples drawn from the
previous latent predictive distributions p(·|ẑ1:Nt,t) (i.e. retaining learnt knowledge).

pseudo label Y ′
j,t associated with the t-th task is sampled according to the population label proportion of Dt,

then the pseudo feature vector X ′
j,t is generated by first drawing latent variable z′

j,t ∼ pλ̂t
(·|ẑ1:Nt,t), then set

X ′
j,t = fθ̂(T)(z′

j,t; t, Y ′
j,t). Once the T pseudo datasets based on the old CL-BRUNO has been generated, one

can then update the CL-BRUNO by updating parameters {θ, λT +1} using the joint likelihood optimisation
approach in Eq 4 based on the augmented dataset {D′

t}T
t=1 ∪DT +1. See Fig 1 (b) for a schematic illustration.

To further prevent the historical knowledge in fθ̂(T) from being disrupted by the new dataset DT +1, we adopt
the functional regularisation technique in Wu et al. (2018) that penalises the L2 distance between outputs
of the old and new models generated from the same set of input noises. Specifically, for a new bijective fθ

6

Under review as submission to TMLR

parametrised by θ, the regularisation takes the form

R(θ; θ̂(T), {D′
t}T

t=1) =
T,N ′∑
t,i=1

||f−1
θ (z′

i,t; t, Y ′
i,t)−X ′

i,t||22, (5)

where f−1
θ (z′

i,t; t, Y ′
i,t) and X ′

i,t are the outputs of the new and old normalising flows based on the common
noise z′

i,t. Combining the augmented datasets and the functional regularisation, the new generative model fθ

and the base distribution parameter λT +1 of the new task T + 1 under the TIL scenario is chosen by solving
minθ,λT +1 LTIL(θ, λT +1) where LTIL(θ, λT +1) is the regularised joint negative log likelihood

LTIL(θ, λT +1) =
neg log likelihood of new task︷ ︸︸ ︷

L(θ, λT +1;DT +1) + α1L′(θ, {λ̂(T)
t }T

t=1; {D′
t}T

t=1)︸ ︷︷ ︸
distributional regulariser

+ α2R(θ; θ̂(T), {D′
t}T

t=1)︸ ︷︷ ︸
functional regulariser

, (6)

where

L′(θ, {λ̂(T)
t }T

t=1; {D′
t}T

t=1) = −
T,N ′∑
t,j=1

log
[
p

λ̂
(T)
t

(fθ(X ′
j,t; t, Y ′

j,t)|ẑ1:Nt,t)
]
−

T,N ′∑
t,j=1

log
[∣∣∣∣∣det

∂fθ(X ′
j,t; t, Y ′

j,t)
∂X ′

i,t

∣∣∣∣∣
]

, (7)

is the negative log likelihood associated with the T pseudo datasets and α1, α2 > 0 controls the strength of
regularisation. Note that in comparison with Eqn 4, the latent distributions in L′ are informed by historical
samples {ẑ1:Nt,t} as we expect fθ to be able to map X ′

j,t back to latent variables that resemble samples drawn
from p(·|ẑ1:Nt,t). See also Fig 1 (b).

Class-incremental learning

So far we focused on task-incremental learning where all samples associated with a new task are presented to
the model as a single dataset DT +1. It is not always the case in practice as samples associated with the same
task may also come in batches. In particular, each batch may contain labels not seen in any previous batches.
This scenario is known as Class-Incremental learning (CIL) (Zhou et al., 2024). We here demonstrate how
CL-BRUNO handles CIL under the scenario where labels in different data batches are disjoint (the extension
to the non-disjoint case is straightforward).

Our goal now is to learn from a new batch of data D(1)
k = {X(1)

i,k , Y
(1)

i,k }
N

(1)
k

i=1 associated with a previously seen
and known task k ∈ {1, .., T} such that Y

(1)
i,k ̸= Yj,k for all Y

(1)
i,k in D(1)

k and Yj,k in Dk (i.e. disjoint labels).
Such problem can be addressed by updating the normalising flow fθ using the same regularisation approach
as in Sec 3.1. Similar to LTIL in Eqn 6, CL-BRUNO under the CIL scenario is updated by finding a fθ that
minimizes a regularised augmented negative log likelihood

LCIL(θ) =

neg log lkd of new batch given old︷ ︸︸ ︷
− log p

θ,λ̂
(T)
k

(X (1)
k |k,Y(1)

k ,Dk) +α1L′(θ, {λ̂(T)
t }T

t=1; {D′
t}T

t=1) + α2R(θ; θ̂(T), {D′
t}T

t=1), (8)

where

log p
θ,λ̂

(T)
k

(X (1)
k |k,Y(1)

k ,Dk) =
N

(1)
k∑

i=1
log
(

p
λ̂

(T)
k

(z(1)
i,k |z

(1)
1:i−1,k, ẑ1:Nk,k)×

∣∣∣∣∣det
∂fθ(X(1)

i,k ; k, Y
(1)

i,k)
∂X

(1)
i,k

∣∣∣∣∣
)

, (9)

is the conditional likelihood of the new feature set X (1)
k = {X(1)

i,k }
N

(1)
k

i=1 given the corresponding label set

Y(1)
k = {Y (1)

i,k }
N

(1)
k

i=1 and previous data batch Dk associated with the same task, and z(1)
i,k = fθ(X(1)

i,k ; k, Y
(1)

i,k) is
the transformed latent variable generated by the new normalising flow fθ. Note that given the predictive

7

Under review as submission to TMLR

latent distribution p
λ̂

(T)
k

(·|ẑ1:Nk,k) from the old CL-BRUNO, p
λ̂

(T)
k

(z(1)
i,k |z

(1)
1:i−1,k, ẑ1:Nk,k) in 9 can be evaluated

efficiently using the recursive formula in Korshunova et al. (2020) for all i = 1, . . . , N
(1)
k without access to

ẑ1:Nk,k. In comparison with 6, the parameter of latent distribution λ̂
(T)
k associated with task k in LCIL is

taken from the old CL-BRUNO and not updated alongside with θ. We choose to do so as it simplifies the
computation and ensures the tractability of p

λ̂
(T)
k

(·|ẑ1:Nk,k). This choice can also be viewed as an additional
regularisation that aims to mitigate the impact of catastrophic forgetting. See Supplementary material A.1
for additional discussion on LCIL.

3.2 Label and task identity prediction

In the previous section, we discussed a unified incremental learning strategy for both task- and class-
incremental learning. In particular, we focused on incrementally modelling the feature vectors p(Xt|t,Yt) for
tasks t = 1, . . . , T . In this section, we discuss the probabilistic inference pipeline for label and task identity
prediction. Let fθ̂(T) , {pλ̂

(T)
t

(·|ẑ1:Nt,t)}T
t=1 be the normalising flow and predictive latent distributions trained

over T tasks. Let X∗ be a generic test point and Y ∗ be the unknown label of interest. We start from the
case where the task identity t is known. Under the assumption given in 2, we approximate the posterior label
distribution p(Y ∗|t, X∗,Dt) by

p̂(Y ∗|t, X∗,Dt) ∝ pθ̂(T),λ̂t
(X∗|t, Y ∗,Dt)p(Y ∗|t) ∝ pλ̂t

(z∗
Y ∗,t|ẑ1:Nt,t)

∣∣∣∣det
∂fθ̂(T)(X∗; t, Y ∗)

∂X∗

∣∣∣∣ p(Y ∗|t), (10)

for all Y ∗ ∈ {1, . . . , Ct}, where z∗
Y ∗,t = fθ̂(T)(X∗; t, Y ∗) is the transformed latent variable associated with X∗

conditioned on label Y ∗, and p(Y ∗|t) is the prior distribution over the Ct classes associated with the t-th
task.

However, the task identity associated with X∗ in practice is not always available, and task identity estimation is
itself a challenging problem in CL (Lee et al., 2020). Here we give an easy-to-interpret probabilistic estimate of
task identity of a test point X∗ under the assumption that X∗ is indeed a sample from the underlying generative
process of one of the T previously seen datasets {Dt}T

t=1 (See Supplementary material A.2 for discussion on
other possibilities). Denote p(t) a user specified prior over the T tasks, and Ct = {1, . . . , Ct} the label set
associated with the t-th task. We approximate the task identity distribution p(X∗ from task t|{Dt}T

t=1) for
t = 1, . . . , T by

p̂(X∗ from task t|{Dt}T
t=1) ∝ p(t)

∑
Y ∗∈Ct

pθ̂(T),λ̂t
(X∗|t, Y ∗,Dt)p(Y ∗|t), (11)

which can be interpreted as the predictive likelihood of observing X∗ as the next new sample given previous
ones Dt averaged over all possible labels Y ∗. We summarise the training and inference procedures of CL-
BRUNO for TIL in Alg 1. CL-BRUNO for CIL and their combination work similarly. In addition, if all tasks
share the same label space, we can then further marginalise out the uncertainty of task identity in label
prediction by

p̂(Y ∗|X∗, {Dt}T
t=1) =

T∑
t=1

p̂(Y ∗|t, X∗,Dt)× p̂(X∗ from task t|{Dt}T
t=1). (12)

This is particularly useful in biomedical settings where a single CL model incrementally learns to distinguish
healthy vs unhealthy from a sequence of datasets collected from patients from different hospitals or regions
(i.e. different tasks).

4 Related works

4.1 Bayesian continual learning

Various Bayesian continual learning methods have been developed for different tasks (Adel, 2025): Bonnet
et al. (2025) and Yan et al. (2022) use sequential Bayesian inference to update parameters of Bayesian neural

8

Under review as submission to TMLR

Algorithm 1: CL-BRUNO for TIL
Data: Dataset {Dt}T

t=1 of the initial T tasks; Regularisation parameters α1, α2 ≥ 0; Pseudo data size
N ′ ∈ N+; Datasets {DT +t′}T ′

t′=1 of the subsequent (T + 1)th to (T + T ′)th tasks.
Result: Predicted label and task identity of a generic input X∗.
Train the initial model from scratch by finding {θ̂(T), λ̂} minimising L(θ, λ; {Dt}T

t=1) in Eq 4 using
stochastic gradient descent.

for t′ ← 1 to T ′ do
/* Here we assume that the model incorporates one new task DT +t′ at a time.

Incorporating multiple tasks at the same time works similarly. */
Update the initial model by finding {θ̂(T +t′), λ̂T +t′} minimising LT IL(θ, λT +t′) given by Eq 6, which
depends on the regularisation hyperparameters α1, α2, N ′, using stochastic gradient descent.

end

return The predicted task identity distribution p̂(X∗ from task t|{Dt}T +T ′

t=1) in Eq 11 and label
distributions p̂(Y ∗|t, X∗,Dt) in Eq 10 for all t = 1, ..., (T + T ′) of some generic data X∗.

networks while retaining the knowledge learnt from historical data. Raichur et al. (2025) combines Bayesian
learning-driven dynamic weighting mechanism (Kendall et al., 2018) and contrastive learning to continually
update both the parameters and the architectures of a neural network model in a CIL setting. Jha et al.
(2024) propose Neural Process Continual Learning (NPCL), which combines attentive Neural Processes (Kim
et al., 2019) and experience replay (Chaudhry et al., 2019), under a Bayesian updating framework. Both
CL-BRUNO and NPCL use Neural processes to capture uncertainty in prediction. However, we would like to
highlight that NPCL uses Neural Processes to model the posterior distributions of labels p(Y ∗|t, X∗,Dprev)
as a random function of task identity t, test point X∗ and historical data Dprev. In contrast, our approach
uses Neural Processes to model the distribution of feature vectors p(Xt|t,Yt) associated with different tasks
and labels. Unlike NPCL, our method leverages generative replay to retain learned knowledge without the
need for storing any previous samples, making it more appealing to applications where data privacy or storage
is of concern. In addition, thanks to the specific covariance function used in C-BRUNO, our proposed method
scales linearly with both the sample size and the dimension of feature vector. In contrast, NPCL exhibits
quadratic complexity relative to the training sample size due to the attention architecture.

4.2 Conditional generative continual learning

The generative replay strategy used in our proposed method is closely related to Continual Learning for
Conditional Generation (CLCG) (Wang et al., 2024), which also aims to mitigate catastrophic forgetting
by recovering previously-learned data distributions. Recent CLCG methods such as MeRGANs Wu et al.
(2018), Boo-VAE (Egorov et al., 2021), Hyper-LifelongGAN (Zhai et al., 2021) and FILIT (Chen et al., 2022)
use GAN (Goodfellow et al., 2020) or VAE (Kingma and Welling, 2013) as their underlying conditional
generative models and require separate discriminative models for label prediction. Scardapane et al. (2020)
uses normalizing flows to retain distributional information at the feature embedding level, but still requires
separate encoders and discriminators. In comparison, CL-BRUNO utilises a tractable deep generative model
that supports both conditional generation and density estimation on feature vectors. This enables tractable,
efficient, and statistically principled label prediction and task identity estimation without the need for separate
discriminators or any other modules, improving both interpretability and computational efficiency.

5 Experiments

In this section, we first empirically evaluate our algorithm on four image benchmarking datasets. We then
demonstrate the efficacy and versatility of CL-BRUNO using two real-world biomedical datasets.

9

Under review as submission to TMLR

5.1 Benchmarking on image classification tasks

We evaluate the proposed method on both class and task incremental learning (IL) settings. For class-IL
(CIL), we use three public datasets: incremental CIFAR10 (iCIFAR-10) (Lopez-Paz and Ranzato, 2017),
incremental CIFAR100(iCIFAR-100) (Zenke et al., 2017), and sequential Tiny ImageNet (S-TinyImageNet)
(Chaudhry et al., 2019). For task-IL(TIL), we use the MNIST dataset (LeCun, 1998). iCIFAR-10, iCIFAR100,
and S-TinyImageNet contain 3-channel images of size 32 × 32, 32 × 32 and 64 × 64 from 10, 100 and 200
classes, and each class includes 5000, 500, 500 training images and 500, 50, 50 test images. The MNIST
dataset consists of single-channel 28 × 28 images of handwritten digits from 0 to 9, and each digit includes
∼ 6000 training images and ∼ 1000 test images. Under the CIL setting, the numbers of sequential batches
for iCIFAR-10, iCIFAR-100 and S-Tiny-ImageNet are 5 (2 classes per batch), 10 (10 classes per batch) and
10 (20 classes per batch) respectively. Under the TIL setting, we follow the experiment setup in Egorov et al.
(2021), and split the MNIST dataset into 5 batches, where each batch consists of images of two digits. We
view each batch as a binary classification task (0 vs 1, 2 vs 3, ..., 8 vs 9).

We compare CL-BRUNO with both experience replay-based methods including ER (Riemer et al., 2018),
DER (Buzzega et al., 2020), NPCL (Jha et al., 2024) and CSReL-LODE (Tong et al., 2025), and exemplar-free
methods including EWC (Kirkpatrick et al., 2017), oEWC-MACL (Wang and Huang, 2024), LwF (Li and
Hoiem, 2017), SSRE (Zhu et al., 2022), DS-AL (Zhuang et al., 2024), MeRGAN (Wu et al., 2018), FeTRIL
(Petit et al., 2023), NICE (Gurbuz et al., 2024), PRER (Scardapane et al., 2020), ReReLRP (Bogacka et al.,
2025) and Boo-VAE (Egorov et al., 2021). The default or recommended settings are used for all the above
methods. For all experience replay-based methods, we fix the buffer size M = 500.

Our CL-BRUNO is specified as follows: We use a Resnet18 (He et al., 2016) as a feature extractor (i.e. using
the output of the second-last layer of Resnet18, a 512-dimensional real vector, as the transformed feature of
the corresponding input image) and apply CL-BRUNO to the 512-dimensional feature vectors. Specifically,
the Resnet18 feature extractor here is only trained using the images from the first batch of data in the initial
state, and is then frozen for the reminder of the class- or task-incremental learning process. Similar strategies
have been used in exemplar-free methods such as Petit et al. (2023). (In principle, we could directly specify
a generative model on raw images instead of feature vectors. However, we do not consider it here as our
method is motivated by tabular rather than image data.) In this example, we set the number of coupling
layers in CL-BRUNO to be 6, the dimension of class embedding to be 128, size of pseudo data N ′ = 128 (i.e.
N ′ pseudo samples are generated to compute the distributional regulariser in Eq 6 or 8 for every gradient
descent step) and regularisation strength α1 = α2 = 1. We report the classification accuracy on test set for
each of the methods in Table 1. We see that CL-BRUNO either outperforms existing exemplar-free methods
or achieves competitive performance across multiple experimental settings. We further report the ranking of
the performance of different methods in Supp Fig 4. Note that CL-BRUNO does not perform as well on
S-TinyImagenet. This is likely due to the fact that the fixed feature extractor trained on the first batch may
not be sufficient to capture the distributional difference in the forthcoming data.

Memory overhead

We then investigate the memory overhead of CL-BRUNO in comparison with other methods using the
iCIFAR100 dataset as an example. Since we follow the setup in Jha et al. (2024) and Boschini et al. (2022),
CL-BRUNO use Resnet18, which consists of 11.7M parameters, as a backbone model. In addition to the
backbone model, CL-BRUNO also maintains a C-BRUNO model consisting of ∼1.38M parameters, and
100 class embeddings (12.8K parameters). As a result, CL-BRUNO in total requires storing ∼1.39M extra
parameters in addition to the backbone Resnet18 model. In comparison, the replay-based method requires
storing exemplar samples from historical datasets instead of extra model parameters. In our setup where the
buffer size is fixed at 500, maintaining this buffer requires storing ∼1.54M floating point numbers, which
is larger than the memory required by CL-BRUNO. In addition to exemplar samples, NPCL also requires
maintaining an attention-based network consisting of another ∼12.8M parameters. Among exemplar-free
models, EWC, LwF, oEWC-MACL and DS-AL maintain single discriminative models based on Resnet18
or Resnet34, which consists of ∼ 11.7M and ∼ 21.1M parameters respectively. MeRGAN requires ∼7.15M
parameters under the default setting. FeTriL has a smaller extra memory requirement (∼0.3M parameters)

10

Under review as submission to TMLR

Type Method iCIFAR10
CIL

iCIFAR100
CIL

S-TinyImagenet
CIL

MNIST
TIL

(a) ER 0.577 0.221 0.099 0.972
DER 0.705 0.366 0.178 0.983

NPCL3 0.702 0.198 0.135 -
CSReL-LODE 0.398 0.420 0.228 -

(b) EWC 0.182 0.092 0.056 0.441
oEWC-MACL 0.206 0.088 0.079 -

LwF 0.196 0.145 0.094 0.472
SSRE 0.355 0.179 0.110 -
DS-AL 0.408 0.205 0.122 -

MeRGAN 0.251 0.122 0.078 0.670
FeTriL 0.417 0.208 0.115 -
NICE 0.551 0.203 0.120 -
PRER 0.412 0.197 0.108 -

ReReLRP 0.399 0.058 0.033 -
Boo-VAE - - - 0.892

CL-BRUNOα2=0 0.257 0.146 0.056 0.734
CL-BRUNO 0.421 0.212 0.117 0.947

Table 1: Classification accuracy of different CL methods on iCIFAR10, iCIFAR100, S-TinyImagenet and
MNIST. - indicates method is not applicable to the problem setting. (a) Experience replay with buffer
size M = 500 (b) Exemplar-free. The best and second best results in (b) are highlighted in boldface and
underline respectively. CL-BRUNOα2=0 refers to CL-BRUNO without functional regulariser.

Experience replay Exemplar-free
Dataset/Method ER DER NPCL FeTriL NICE CL-BRUNO

iCIFAR10 0.455 0.299 0.210 0.310 0.268 0.245
iCIFAR100 0.646 0.248 0.199 0.358 0.472 0.303

Table 2: Expected Calibration Error (ECE) of different methods. Lowest ECE in Exemplar-free methods is
highlighted in boldface.

in addition to the backbone Resnet18 or Resnet34 as it encodes and stores historical data sets as fixed-length
vectors instead of a full generative model. Although MeRGAN and FeTriL require less memory than CL-
BRUNO, we see that CL-BRUNO outperforms them in terms of classification accuracy. In addition, we would
like to highlight that CL-BRUNO is more versatile than exemplar-free CIL methods as it offers additional
functionalities such as task incremental learning (Sec 3.1), task identity estimation (Sec 3.2) and outlier
detection (Supplementary material A.2).

Prediction calibration

To demonstrate CL-BRUNO’s uncertainty quantification feature, we compare the Expected Calibration Error
(ECE) (Guo et al., 2017) of CL-BRUNO with both experience-replay and exemplar-free CL baselines in a
similar fashion to (Jha et al., 2024). In Table 2 we see CL-BRUNO attains lower ECE than exemplar-free
CL methods with similar accuracies (FeTriL and NICE), and show comparable performance to experience-
replay methods on both iCIFAR10 and iCIFAR100 datasets. This suggests that the probabilistic nature of
CL-BRUNO benefits it in terms of prediction calibration.

3The authors of NPCL reported classification accuracy 37.4% and 15.3% on the iCIFAR100 and S-TinyImagenet dataset. Our
independent run using the publicly available implementation provided by the authors under the same setup gave classification
accuracies of 19.8% and 13.5% respectively. Our code for reproducing the NPCL results on iCIFAR100 and S-TinyImagenet can
be found in https://anonymous.4open.science/r/reproducing-2BE8.

11

https://anonymous.4open.science/r/reproducing-2BE8

Under review as submission to TMLR

Method/Data PANCAN ICI
CL-BRUNO 0.139(0.0233) 0.118(0.0351)

EWC 0.569(0.0265) 0.331(0.0392)
LwF 0.322(0.0217) 0.157 (0.0433)

MeR-GAN 0.518(0.0521) -

Table 3: Misclassification rate of different methods on PANCAN and ICI datasets. Results are
averaged over 5 repeated runs. Standard deviations of the misclassification rates are reported in brackets.-
indicates method is not applicable to the problem setting. Best results are in boldface.

Ablation study

In Sec 3 we have demonstrated how the distributional regulariser L′ naturally arises from the Bayesian
updating rule. However, the inclusion of the functional regulariser R is not justified. Therefore, we first
investigate the role of the functional regulariser R in the training of CL-BRUNO. We apply CL-BRUNO
without the functional regulariser (CL-BRUNOα2=0) to the same datasets described above, and report the
classification accuracies in Table 1. We see that the default CL-BRUNO outperforms CL-BRUNOα2=0 by a
large margin across all experimental settings. This confirms that the functional regulariser R contributes to
the performance of CL-BRUNO.

We next investigate the size of pseudo data N ′. We use the iCIFAR100 dataset and run CL-BRUNO under
four choices of pseudo samples N ′

1 = 32, N ′
2 = 64, N ′

3 = 128 and N ′
4 = 256. The final classification accuracy

of the four models is 10.9%, 17.1%, 21.2% and 22.8%, respectively, showing that increasing N ′ leads to a
diminishing increase in classification accuracy. We further investigate the impact of N ′ on the computational
cost of the proposed method. The running times of the four models are 2569s, 2726s, 2917s, and 3562s,
respectively. We see that increasing N ′ by a factor of 8 (from 32 to 256) leads to a ∼ 40% increase in
the running time of CL-BRUNO. This also confirms that increasing N ′ does not drastically increase the
computational cost of CL-BRUNO.

5.2 Pan-Cancer Atlas dataset

We here demonstrate CL-BRUNO under a CIL scenario using the Pan-Cancer Atlas (PANCAN) dataset
(Hoadley et al., 2018). The PANCAN dataset consists of pre-processed RNAseq readings of N = 10, 535
tumour samples from 33 cancer types. In our analysis, we use only the top P = 2, 000 most variable genes
as the feature vector associated with each tumour sample, and split the PANCAN dataset into 6 groups
according to their cancer types: the first consists of 8 cancer types, while each of the rest consists of 5 cancer
types. Cancer types are partitioned in a way such that all 6 groups of data have similar sample sizes. Our
goal is to predict cancer type from the RNAseq data of a tumour under a CIL scenario, where 6 groups
of data are presented to the model sequentially. In this example, we set the number of coupling layers in
CL-BRUNO to be 6, the dimension of task and label embedding to be 256, size of pseudo data N ′ = 128 (i.e.
N ′ pseudo samples are generated to compute the distributional regulariser in Eq 6 or 8 for every gradient
descent step) and regularisation strength α1 = α2 = 1. Each group of data is randomly split into a training
set consisting of 80% of the samples and a test set containing the rest, and the performance is measured
by the misclassification rate on all test sets after the model has been incrementally trained on all training
sets. We compare CL-BRUNO with three exemplar-free CL methods: EWC (Kirkpatrick et al., 2017),
LwF (Li and Hoiem, 2017) and MeR-GAN (Wu et al., 2018) under default or recommended settings. The
misclassification rates on test sets are reported in Table 3. We also demonstrate in Fig 2(a) how CL-BRUNO
retains previously learnt knowledge by reporting the misclassification rate associated with each of the 6 test
sets at each incremental learning step, and compare them with results from an oracle CL-BRUNO model that
has access to all historical data (i.e. trained by directly minimising Eqn 4) at each incremental learning step.
Figure 2 (a) shows how CL-BRUNO retains historical knowledge in terms of prediction accuracy compared
to the oracle model.

12

Under review as submission to TMLR

Figure 2: (a-b) Evolution of misclassification rate specific to each incremental PANCAN batch.
Each point represents the misclassification rate specific to an incremental dataset evaluated at a specific
training step using the incrementally trained CL-BRUNO. Each triangle represents the same quantity given
by a CL-BRUNO who has access to all historical datasets (oracle). (a) PANCAN dataset under a CIL
scenario, (b) ICI dataset under a TIL scenario. Note that ICI dataset contains tasks with only one class,
which leads to zero test error. (c)-(d) ICI dataset. (c): Heat map of predicted task identity. Each row
corresponds to the categorical task identity distribution 11 averaged over test samples from each task. (d):
t-SNE (Van der Maaten and Hinton, 2008) projection of the pre-processed RNAseq measurement associated
with different therapy types in ICI dataset.

5.3 Immune Checkpoint Inhibitors dataset

We also tested CL-BRUNO under a TIL scenario using the Molecular Response to Immune Checkpoint
Inhibitors (ICI) dataset (Eddy et al., 2020). Immune Checkpoint Inhibitors are designed to block (checkpoint)
proteins expressed by some cancers which allow it to avoid detection by the immune system. Blocking the
checkpoints, reactivates the immune system to target the cancer.. The ICI dataset contains pre-processed
RNAseq data from N = 1, 142 patients’ tumour samples under 7 different types of immunotherapy treatments.
This included four single therapy only regimes: Atezolizumab (Atezo), Nivolumab (Nivo), Pembrolizumab
(Pembro), Ipilimumab (Ipi), two combination therapies (Ipi+Pembro, Ipi+Nivo) and a non-treatment/placebo

13

Under review as submission to TMLR

group (None). Each ICI is designed to block a certain checkpoint protein. As a consequence, ICIs are only
effective against those cancers that express the targeted checkpoint protein. Our goal is to determine if CL-
BRUNO could learn the molecular signatures associated with immunotherapy effectiveness which is by proxy
a cancer type prediction problem given the RNAseq data. In this example, we split the dataset into 7 groups
according to the therapy the patients received, and treat the classification problem under each therapy as an
individual task. The 7 tasks consists of N1 = 524, N2 = 224, N3 = 218, N4 = 89, N5 = 42, N6 = 32, N7 = 13
samples and C1 = 2 ({Bladder, Kidney}), C2 = 3 ({Brain, Skin, Kidney}), C3 = 3 ({Stomach, Brain,
Skin}), C4 = 1 ({Kidney}), C5 = 1 ({Skin}), C6 = 1 ({Skin}), C7 = 2 ({Kidney, Skin}) unique cancer
types respectively. We use the same set of hyperparameters and training strategy as in the last example to
train the CL-BRUNO, and compare its performance with EWC and LwF under default or recommended
settings.4 This example is challenging due to the relatively small and imbalanced sample sizes. We report
the misclassification rates given by different methods in Table 3. The knowledge retention curves compared
to the oracle model is reported in Fig 2(b). We report the task identity estimates given by the trained
CL-BRUNO model under a uniform task prior in Fig 2(c). We see that the task identity estimates put most
of the probability mass on the correct task identities (the diagonal line), indicating good prediction accuracy.

In addition to prediction accuracy, we also demonstrate that CL-BRUNO is able to give probabilistic
predictions that correctly reflects the uncertainty when tasks are indeed indistinguishable: Pal et al. (2022)
report that Atezo is ineffective for kidney cancers. Hence we expect patients given Atezo for kidney cancer
to be indistinguishable from patients who received no ICI treatment None as both are effectively equivalent
to no treatment. To verify if CL-BRUNO captures this relationship, we first split the test set of Atezo into 4
subgroups depending on their cancer type (Kidney vs Non-kidney) and response to the therapy (Responder
vs Non-responder), then compute the averaged predicted probabilities separately. From Fig 3(c) we see
CL-BRUNO is much more likely to assign kidney cancer patients given Atezo to None in comparison with
non-kidney cancer patients regardless of the response status. This agrees with previous studies, and is also
confirmed by visualisation, as we see from Fig 3 (a) that patients from None overlap with a cluster of kidney
cancer samples in Atezo.

By the same rationale, since both Nivo and Ipi are given to patients with skin cancer, we expect non-
responders in Nivo with skin cancer to be indistinguishable from non-responders in Ipi, which consists of
solely patients with skin cancer. To verify if CL-BRUNO captures this relationship, we split the test set
of Nivo and compute the averaged predicted probabilities in a similar fashion as before. From Fig 3 (d)
we see non-responders in Nivo with skin cancer are much more likely to be classified as Ipi in comparison
with the rest. This is supported by the visualisation in Fig 3 (b) as we can see a clear overlap between the
non-responders to Nivo and Ipi with skin cancer. This unique pattern suggests that CL-BRUNO accurately
captures the inter-task relationship between Nivo and Ipi, and further confirms that CL-BRUNO is capable
of capturing inter-task relationships under a TIL scenario.

6 Conclusion

We propose CL-BRUNO, a probabilistic, exemplar-free CL model based on exchangeable sequence modelling.
Compared with existing generative continual learning methods, our proposed method provides a unified
probabilistic framework capable of handling different types of CL problems such as TIL and CIL, and giving
easy-to-interpret probabilistic predictions without the need of training or maintaining a separate classifier.
These features make our approach appealing in applications where data privacy and uncertainty quantification
are of concern.

Broader Impact Statement

In this work, we propose CL-BRUNO, a generative-replay approach for continual learning that avoids storing
explicit exemplar samples, thereby offering a potential advantage in privacy-sensitive applications. We
acknowledge that generative models trained on real data can encode and reproduce distributional and/or
identifiable patterns of the training data. One potential solution to this issue is to incorporate pretrained

4We did not include MeR-GAN here as it is designed for CIL.

14

Under review as submission to TMLR

Figure 3: Visualisation of subsets of ICI dataset (a): t-SNE projection of samples from Atezo and
None. (b): t-SNE projection of samples from Nivo and Ipi. (c): Averaged predicted probabilities for different
groups of patients under treatment Atezo. Patients are split into four groups based on cancer type (Kidney
cancer vs Non-kidney cancer) and responsiveness to treatment (Responder vs Non-responder). (d): Averaged
predicted probabilities for groups of patients under treatment Nivo. Patients are split into four groups in a
similar fashion to (c).

feature extractors in a similar fashion to the image datasets. By doing so, the model would only remember
the distributional patterns of the feature vectors instead of the original data, hence preventing the model from
reproducing the original training data. Although our experiments do not involve user-specific or sensitive
biometric data (PANCAN and ICI datasets are both non-identifiable data sets made available for research),
we recognise that applying such models to real-world, privacy-critical domains would necessitate more rigorous
safeguards. Future work should incorporate privacy-preserving techniques, e.g. differential privacy, to ensure
that generated samples do not leak sensitive information.

We also recognise the potential for bias amplification in continual learning settings, particularly when using
biometric datasets that may exhibit class imbalance or uneven demographic representation. Although
our current study focuses on methodological contributions rather than fairness-specific evaluations, we
believe that integrating fairness-aware strategies is essential for real-world deployment. Addressing these
ethical considerations is a key direction for future research, particularly for applications involving socially or
demographically sensitive data.

References
Adel, T. (2025). The bayesian approach to continual learning: An overview. arXiv preprint arXiv:2507.08922.

15

Under review as submission to TMLR

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018). Memory aware synapses:
Learning what (not) to forget. In Proceedings of the European conference on computer vision (ECCV),
pages 139–154.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. (2019). Gradient based sample selection for online continual
learning. Advances in neural information processing systems, 32.

Bogacka, K., Höfler, M., Ganzha, M., Samek, W., and Wasielewska-Michniewska, K. (2025). Rerelrp–
remembering and recognizing tasks with lrp. arXiv preprint arXiv:2502.10789.

Bonnet, D., Cottart, K., Hirtzlin, T., Januel, T., Dalgaty, T., Vianello, E., and Querlioz, D. (2025). Bayesian
continual learning and forgetting in neural networks. arXiv preprint arXiv:2504.13569.

Boschini, M., Bonicelli, L., Buzzega, P., Porrello, A., and Calderara, S. (2022). Class-incremental continual
learning into the extended der-verse. IEEE transactions on pattern analysis and machine intelligence,
45(5):5497–5512.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calderara, S. (2020). Dark experience for general
continual learning: a strong, simple baseline. Advances in neural information processing systems, 33:15920–
15930.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., and Ranzato, M.
(2019). On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486.

Chen, P., Zhang, Y., Li, Z., and Sun, L. (2022). Few-shot incremental learning for label-to-image translation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3697–3707.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential
equations. Advances in neural information processing systems, 31.

Dhar, P., Singh, R. V., Peng, K.-C., Wu, Z., and Chellappa, R. (2019). Learning without memorizing. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5138–5146.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real nvp. arXiv preprint
arXiv:1605.08803.

Ditzler, G., Roveri, M., Alippi, C., and Polikar, R. (2015). Learning in nonstationary environments: A survey.
IEEE Computational Intelligence Magazine, 10(4):12–25.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman, P., Mahmood, A. R., and Sutton, R. S. (2024). Loss
of plasticity in deep continual learning. Nature, 632(8026):768–774.

Draelos, T. J., Miner, N. E., Lamb, C. C., Cox, J. A., Vineyard, C. M., Carlson, K. D., Severa, W. M., James,
C. D., and Aimone, J. B. (2017). Neurogenesis deep learning: Extending deep networks to accommodate
new classes. In 2017 international joint conference on neural networks (IJCNN), pages 526–533. IEEE.

Eddy, J. A., Thorsson, V., Lamb, A. E., Gibbs, D. L., Heimann, C., Yu, J. X., Chung, V., Chae, Y., Dang, K.,
Vincent, B. G., et al. (2020). Cri iatlas: an interactive portal for immuno-oncology research. F1000Research,
9.

Egorov, E., Kuzina, A., and Burnaev, E. (2021). Boovae: Boosting approach for continual learning of vae.
Advances in Neural Information Processing Systems, 34:17889–17901.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., and Teh, Y. W. (2018).
Neural processes. arXiv preprint arXiv:1807.01622.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11):139–144.

16

Under review as submission to TMLR

Gopalakrishnan, S., Singh, P. R., Fayek, H., Ramasamy, S., and Ambikapathi, A. (2022). Knowledge capture
and replay for continual learning. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pages 10–18.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural networks. In
International conference on machine learning, pages 1321–1330. PMLR.

Gurbuz, M. B. and Dovrolis, C. (2022). Nispa: Neuro-inspired stability-plasticity adaptation for continual
learning in sparse networks. arXiv preprint arXiv:2206.09117.

Gurbuz, M. B., Moorman, J. M., and Dovrolis, C. (2024). Nice: Neurogenesis inspired contextual encoding
for replay-free class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 23659–23669.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017). Neuroscience-inspired artificial
intelligence. Neuron, 95(2):245–258.

He, J. and Zhu, F. (2022). Exemplar-free online continual learning. In 2022 IEEE International Conference
on Image Processing (ICIP), pages 541–545. IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., Shen, R., Taylor, A. M., Cherniack,
A. D., Thorsson, V., et al. (2018). Cell-of-origin patterns dominate the molecular classification of 10,000
tumors from 33 types of cancer. Cell, 173(2):291–304.

Hung, C.-Y., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan, Y.-M., and Chen, C.-S. (2019). Compacting, picking
and growing for unforgetting continual learning. Advances in neural information processing systems, 32.

Hyndman, R. J. (1996). Computing and graphing highest density regions. The American Statistician,
50(2):120–126.

Jha, S., Gong, D., Zhao, H., and Yao, L. (2024). Npcl: Neural processes for uncertainty-aware continual
learning. Advances in Neural Information Processing Systems, 36.

Kang, H., Mina, R. J. L., Madjid, S. R. H., Yoon, J., Hasegawa-Johnson, M., Hwang, S. J., and Yoo, C. D.
(2022). Forget-free continual learning with winning subnetworks. In International Conference on Machine
Learning, pages 10734–10750. PMLR.

Kendall, A., Gal, Y., and Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene
geometry and semantics. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 7482–7491.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., and Teh, Y. W. (2019).
Attentive neural processes. In International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526.

Korshunova, I., Gal, Y., Gretton, A., and Dambre, J. (2020). Conditional bruno: A neural process for
exchangeable labelled data. Neurocomputing, 416:305–309.

LeCun, Y. (1998). The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/.

Lee, S., Ha, J., Zhang, D., and Kim, G. (2020). A neural dirichlet process mixture model for task-free
continual learning. arXiv preprint arXiv:2001.00689.

17

Under review as submission to TMLR

Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. (2023). Flow matching for generative
modeling. In The Eleventh International Conference on Learning Representations.

Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic memory for continual learning. Advances in neural
information processing systems, 30.

Mallya, A., Davis, D., and Lazebnik, S. (2018). Piggyback: Adapting a single network to multiple tasks by
learning to mask weights. In Proceedings of the European conference on computer vision (ECCV), pages
67–82.

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there are complementary learning
systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models
of learning and memory. Psychological review, 102(3):419.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. Elsevier.

Michel, N., Wang, M., Xiao, L., and Yamasaki, T. (2024). Rethinking momentum knowledge distillation in
online continual learning. arXiv preprint arXiv:2309.02870.

Onken, D., Fung, S. W., Li, X., and Ruthotto, L. (2021). Ot-flow: Fast and accurate continuous normalizing
flows via optimal transport. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 9223–9232.

Pal, S. K., Uzzo, R., Karam, J. A., Master, V. A., Donskov, F., Suarez, C., Albiges, L., Rini, B., Tomita, Y.,
Kann, A. G., et al. (2022). Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at
increased risk of recurrence following resection (immotion010): a multicentre, randomised, double-blind,
phase 3 trial. The Lancet, 400(10358):1103–1116.

Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked autoregressive flow for density estimation.
Advances in neural information processing systems, 30.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual lifelong learning with
neural networks: A review. Neural networks, 113:54–71.

Petit, G., Popescu, A., Schindler, H., Picard, D., and Delezoide, B. (2023). Fetril: Feature translation for
exemplar-free class-incremental learning. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pages 3911–3920.

Raichur, N. L., Heublein, L., Feigl, T., Rügamer, A., Mutschler, C., and Ott, F. (2025). Bayesian learning-
driven prototypical contrastive loss for class-incremental learning. Transactions on Machine Learning
Research.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). icarl: Incremental classifier and
representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 2001–2010.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In International conference
on machine learning, pages 1530–1538. PMLR.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and Tesauro, G. (2018). Learning to learn
without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):123–146.

Rudner, T. G., Smith, F. B., Feng, Q., Teh, Y. W., and Gal, Y. (2022). Continual learning via sequential
function-space variational inference. In International Conference on Machine Learning, pages 18871–18887.
PMLR.

18

Under review as submission to TMLR

Scardapane, S., Uncini, A., et al. (2020). Pseudo-rehearsal for continual learning with normalizing flows. In
4th Lifelong Machine Learning Workshop at ICML 2020.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell, R.
(2018). Progress & compress: A scalable framework for continual learning. In International conference on
machine learning, pages 4528–4537. PMLR.

Shi, Y., De Bortoli, V., Campbell, A., and Doucet, A. (2024). Diffusion schrödinger bridge matching. Advances
in Neural Information Processing Systems, 36.

Shim, D., Mai, Z., Jeong, J., Sanner, S., Kim, H., and Jang, J. (2021). Online class-incremental continual
learning with adversarial shapley value. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 9630–9638.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep generative replay. Advances
in neural information processing systems, 30.

Thapa, J. and Li, R. (2024). Bayesian adaptation of network depth and width for continual learning. In
Forty-first International Conference on Machine Learning.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R., and Teh, Y. W. (2019). Functional
regularisation for continual learning with gaussian processes. arXiv preprint arXiv:1901.11356.

Tong, R., Liu, Y., Shi, J. Q., and Gong, D. (2025). Coreset selection via reducible loss in continual learning.
In The Thirteenth International Conference on Learning Representations.

Van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research,
9(11).

Wang, L., Zhang, M., Jia, Z., Li, Q., Bao, C., Ma, K., Zhu, J., and Zhong, Y. (2021). Afec: Active
forgetting of negative transfer in continual learning. Advances in Neural Information Processing Systems,
34:22379–22391.

Wang, L., Zhang, X., Su, H., and Zhu, J. (2024). A comprehensive survey of continual learning: theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Wang, Z. and Huang, H. (2024). Model sensitivity aware continual learning. Advances in Neural Information
Processing Systems, 37:132583–132613.

Wen, Y., Tan, Z., Zheng, K., Xie, C., and Huang, W. (2024). Provable contrastive continual learning. arXiv
preprint arXiv:2405.18756.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari, M., Yosinski, J., and Farhadi, A. (2020).
Supermasks in superposition. Advances in Neural Information Processing Systems, 33:15173–15184.

Wu, C., Herranz, L., Liu, X., Van De Weijer, J., Raducanu, B., et al. (2018). Memory replay gans: Learning
to generate new categories without forgetting. Advances in neural information processing systems, 31.

Xu, J., Dupont, E., Märtens, K., Rainforth, T., and Teh, Y. W. (2024). Deep stochastic processes via
functional markov transition operators. Advances in Neural Information Processing Systems, 36.

Xue, M., Zhang, H., Song, J., and Song, M. (2022). Meta-attention for vit-backed continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 150–159.

Yan, Q., Gong, D., Liu, Y., Van Den Hengel, A., and Shi, J. Q. (2022). Learning bayesian sparse networks
with full experience replay for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 109–118.

19

Under review as submission to TMLR

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic intelligence. In International
conference on machine learning, pages 3987–3995. PMLR.

Zhai, M., Chen, L., and Mori, G. (2021). Hyper-lifelonggan: Scalable lifelong learning for image conditioned
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2246–2255.

Zhou, D.-W., Wang, Q.-W., Qi, Z.-H., Ye, H.-J., Zhan, D.-C., and Liu, Z. (2024). Class-incremental learning:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Zhu, K., Zhai, W., Cao, Y., Luo, J., and Zha, Z.-J. (2022). Self-sustaining representation expansion for
non-exemplar class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9296–9305.

Zhuang, H., He, R., Tong, K., Zeng, Z., Chen, C., and Lin, Z. (2024). Ds-al: A dual-stream analytic
learning for exemplar-free class-incremental learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17237–17244.

20

Under review as submission to TMLR

A Additional discussion on CL-BRUNO

A.1 Discussion on CIL loss

In this section, we justify the choice of LCIL in Sec 3.1. LCIL takes the form

LCIL(θ) =

neg log lkd of new batch given old︷ ︸︸ ︷
− log p

θ,λ̂
(T)
k

(X (1)
k |k,Y(1)

k ,Dk) +α1L′(θ, {λ̂(T)
t }T

t=1; {D′
t}T

t=1) + α2R(θ; θ̂(T), {D′
t}T

t=1), (6)

where

log p
θ,λ̂

(T)
k

(X (1)
k |k,Y(1)

k ,Dk) =
N

(1)
k∑

i=1
log
(

p
λ̂

(T)
k

(z(1)
i,k |z

(1)
1:i−1,k, ẑ1:Nk,k)×

∣∣∣∣∣det
∂fθ(X(1)

i,k ; k, Y
(1)

i,k)
∂X

(1)
i,k

∣∣∣∣∣
)

. (7)

Recall that under the TIL scenario, the trained CL-BRUNO does not depend on the ordering of samples
in each dataset, as we assumed that samples within each task are exchangeable. Similarly, under the CIL
scenario, we also expect the trained model to not depend on the ordering of data batches the model has
been trained on (e.g. a model first trained on {Xk,Yk} and then {X (1)

k ,Y(1)
k } should be the same as a

model trained on the reverse order). This requirement is easily satisfied by our CL-BRUNO model under
the assumption that the concatenated {Xk,X (1)

k } is jointly exchangeable given {Yk,Y(1)
k }, i.e. the two data

batches {Xk,Yk} {X (1)
k ,Y(1)

k } associated with the k-th task are “segments" of a sequence generated from an
underlying exchangeable generative process.

In particular, under the distributional assumption above, CL-BRUNO aims to learn the joint distribution
p(X (1)

k ,Xk|t,Y(1)
k ,Yk) of the concatenated exchangeable sequence {X (1)

k ,Xk} given the label {Y(1)
k ,Yk} while

retaining the marginal p
θ̂(T),λ̂

(T)
k

(Xk|t,Yk) the model has learnt from historical dataset. In other words, terms
in LCIL associated with the k-th task can be interpreted as learning the joint

p(X (1)
k ,Xk|t,Y(1)

k ,Yk) = p(X (1)
k |t,Y

(1)
k ,Xk,Yk)p(Xk|t,Yk)

under the constraint that
p(Xk|t,Yk) = p

θ̂(T),λ̂
(T)
k

(Xk|t,Yk).

Note that the first term in LCIL forces the normalising flow to learn the conditional p(X (1)
k |t,Y

(1)
k ,Xk,Yk)

under the marginal constraint, while the regularisers in LCIL related to the k-th task in 6 enforce the marginal
constraint by penalising both distributional and functional deviation between the new p

θ,λ̂
(T)
k

(Xk|t,Yk) and

the old p
θ̂(T),λ̂

(T)
k

(Xk|t,Yk). The latent distribution parameter λ̂
(T)
k are not updated alongside with the

normalising flow parameter θ. We choose to do so as it simplifies the computation and ensures the tractability
of p

λ̂
(T)
k

(·|ẑ1:Nk,k). This choice can also be viewed as an additional regularisation that aims to mitigate the
impact of catastrophic forgetting.

21

Under review as submission to TMLR

iCIFAR10 iCIFAR100 S-Tinyimage

R
an
k

Datasets

NICE CL-BRUNO DS-AL

CL-BRUNO FeTriL NICE

FeTriL DS-AL CL-BRUNO

PRER NICE FeTriL

DS-AL PRER SSRE

ReReLRP SSRE PRER

SSRE MeRGAN LwF

MeRGAN LwF oEWC-MACL

oEWC-MACL EWC MeRGAN

LwF oEWC-MACL EWC

 EWC ReReLRP ReReLRP

Figure 4: Rankings performance of exemplar-free methods based on their accuracies in Table 1. Note that
our proposed CL-BRUNO show competitive performance across all experiments.

A.2 Outlier detection using CL-BRUNO

In Sec 3.1, we give task-identity estimate of a generic test point X∗ under the assumption that X∗ is indeed
drawn from the generative process of one of the previously seen Dts. This assumption no longer holds when
X∗ is e.g. an outlier. Thanks to the tractable generative modelling framework of CL-BRUNO, users can
identify outliers in a straightforward fashion using e.g. level sets (Hyndman, 1996): For each task t, we first
generate a pseudo dataset D̂t as in Sec 3.1 and discard the pseudo labels Ŷi,t, then for each generated pseudo
feature vector X̂i,t, i = 1, ..., N ′, we evaluate

p̂t(X̂i,t) = pθ̂(T),λ̂t
(X̂i,t|t,Dt) (8)

=
∑

Y ∗∈Ct

pθ̂(T),λ̂t
(X̂i,t|t, Y ∗,Dt)p(Y ∗|t), (9)

the approximate predictive density of observing X̂i,t as the next sample conditioned on Dt marginalised over
all labels Y ∗ ∈ Ct where p(·|t) is the prior that generates the pseudo labels Ŷi,t. Note that by definition,
each X̂i,t is indeed a sample drawn from pθ̂(T),λ̂t

(·|t,Dt), the approximate marginal predictive distribution of
feature vectors from the t-th task learnt by CL-BRUNO under the chosen label prior p(·|t). Let α ∈ (0, 1) and
p̂α,t be the α% quantile of {p̂t(X̂i,t)}N ′

i=1. By Hyndman (1996), level set St = {X ′ : p̂t(X ′) > p̂α,t} defines a
(1− α)% approximate highest density region of pθ̂(T),λ̂t

(·|t,Dt). As a result, one could test if X∗ is a typical
feature vector associated with the t-th task in a natural and interpretable fashion by comparing p̂t(X∗) with
the threshold p̂α,t.

B Additional experiments

We include additional synthetic and real-world examples in this section.

B.1 Synthetic data

Here we demonstrate CL-BRUNO using a synthetic dataset. We set data dimension D = 1000, and consider
T = 4 tasks. Each task t = 1, ..., T is associated with a classification problem with Ct = t + 1 distinct classes.
Each synthetic dataset Dt consists of Nt = 500 samples, where labels Yi,t ∼ Unif({1, ..., Ct}), and features
Xi,t|Yi,t ∼ N(µi,t, 0.5ID) with ID being a D×D identity matrix, µi,t = {µ(d)

i,t }D
i=1 and µ

(d)
i,t =

√
t sin(2πYi,t/Ct)

22

Under review as submission to TMLR

Figure 5: Scatter plots of the first two dimensions of samples in the test set (cross) and samples generated
from the trained CL-BRUNO (circle) for each of the 4 tasks.

if d is odd and µ
(d)
i,t =

√
t cos(2πYi,t/Ct) if d is even. See Fig () for an illustration of the synthetic datasets.

We first initialise our proposed model on task 1 by training the generative on D1, then we incrementally
present task 2 (D2) and 3 (D3) to the model. We then demonstrate the class-incremental scenario using task
4: We split D4 into two groups, one containing data associated with the first three out of the five classes
in D4, and the other containing the rest two classes. We then present the two groups of data sequentially
to the model. As a result, the example consists of 5 incremental training steps in total (1 for initialisation,
2 for task-incremental learning and 2 for class-incremental learning). We parameterise task ID t and each
distinct label associated with task t for each task t = 1, ..., T as trainable embeddings of length 16. After the
training phase, we test the classification accuracy on all four tasks using separate test sets drawn from the
same generative process. Note that no samples in training data {D}T

t=1 is retained in our trained model.

For all four tasks, the trained model attains < 1% misclassification rate on test sets of size 1000 samples.
CL-BRUNO is also able to accurately predict task identities of samples from test sets, attaining < 5%
misclassification rate on all tasks. To visualise the fit of CL-BRUNO, we report scatter plots of the first two
dimension of samples from the test set and samples generated by the trained CL-BRUNO in Fig 5. We see
CL-BRUNO is able to accurately capture the feature distributions associated with each class within each
task. This confirms the effectiveness of CL-BRUNO.

23

Under review as submission to TMLR

B.2 Discussion on computational cost

We inspect the computational cost of CL-BRUNO in terms of wall clock time using the same S-CIFAR-100
example. All examples are executed on our machine with an AMD Ryzen7 2700 CPU and NVIDIA RTX
2060 GPU. Under the experiment setup described above, CL-BRUNO takes around 2.9× 103s to complete.
In comparison, the running time of non-generative, exemplar-free LwF and EWC are around 2.4 × 103s,
whereas the generative, exemplar-free FeTriL takes around 3.2× 103s. The experience replay-based NPCL
takes around 3.5× 105s to run. We see in this example that the computational cost of CL-BRUNO is on a
scale comparable to the existing exemplar-free CL models.

24

	Introduction
	Background
	Normalising flow
	Conditional-BRUNO

	Method
	Incremental learning scheme
	Label and task identity prediction

	Related works
	Bayesian continual learning
	Conditional generative continual learning

	Experiments
	Benchmarking on image classification tasks
	Pan-Cancer Atlas dataset
	Immune Checkpoint Inhibitors dataset

	Conclusion
	Additional discussion on CL-BRUNO
	Discussion on CIL loss
	Outlier detection using CL-BRUNO

	Additional experiments
	Synthetic data
	Discussion on computational cost

