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Abstract— Decentralized control for multi-robot systems
involves planning in complex, high-dimensional spaces. The
planning problem is particularly challenging in the presence of
potential collisions between robots and obstacles, and different
sources of uncertainty such as inaccurate dynamic models
and sensor noise. A multi-robot system can be represented
as a graphical model, in which nodes represent individual
robots and edges represent communication between robots. This
representation enables the use of graphical inference algorithms
for solving multi-robot control. In this short paper, we introduce
Stein Variational Belief Propogation (SVBP), a novel algorithm
for performing inference over the marginal distributions of nodes
in a graph. We present simulation results which demonstrate that
our method can represent complex, multi-modal distributions
in localization and control tasks.

I. INTRODUCTION

Multi-robot coordination is an essential capability for ap-
plications involving teams of robots, such as industrial robots,
delivery vehicles, and autonomous cars. Planning for multi-
robot systems is challenging due to the high-dimensionality
introduced by a large number of agents. Decentralized control
is one strategy for multi-robot coordination, in which each
robot performs local computations using information from
neighboring robots. This approach is well-suited to multi-
robot systems since it enables distributed algorithms which
solve lower-dimensional, local problems compared to the
expensive high-dimensional centralized approach.

Robot swarms have been represented as graphical models,
where each robot is a node in the graph, and edges connect
robots in communication range [1]–[4]. Decentralized control
can then be performed via a graphical inference technique
such as belief propagation. Belief propagation infers marginal
posteriors for each node in a graph using only messages from
immediate neighbors [5]. As a result, this algorithm enables
multi-hop information to be passed through the graph. In
this work, we represent a multi-robot system as a Markov
Random Field (MRF) and perform belief propagation to infer
the marginal belief for each robot (see Figure 1).

A number of belief propagation algorithms have been pro-
posed in the literature. Gaussian Belief Propagation (GaBP)
is an efficient algorithm when the node distributions and their
corresponding factors can be represented as Gaussian [6],
[7]. This method enables efficient computation and has been
shown to be effective for multi-robot collision avoidance
and localization [3], [4]. However, many applications in
robotics are complex and multi-modal, and cannot be fully
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Fig. 1: Stein Variational Belief Propagation (SVBP) computes marginal
trajectory distributions for each robot in a multi-robot system. SVBP
represents the relationships between robots as a Markov Random Field
(a) and maintains multi-modal distributions over each robot trajectory (b).
The final trajectory generated by SVBP for each robot is shown in (c), where
the colour represents time, and the robot is shown in its final position.

represented by Gaussian uncertainty. Nonparametric Belief
Propagation (NBP) [8], [9] represents distributions nonpara-
metrically as mixtures of Gaussians, but involves expensive
product operations between mixture distributions. Particle
Belief Propagation (PBP) [10] uses importance sampling
to iteratively update a set of particles representing the
belief, enabling the representation of arbitrarily complex
distributions. PBP relies on the definition of a sampling
distribution, which later work proposed to estimate via
expectation maximization [11]. Importance sampling is prone
to mode collapse, an effect which has been mitigated by using
multiple sampling distributions [12]. Belief propagation has
been applied to robotic perception of articulated objects, using
an efficient sampling-based message product technique [13],
learned unary factors [14], and end-to-end learned factors [15].
While these methods enable complex representations of belief
distributions, they rely on expensive sequential sampling
operations.

In this short paper, we propose Stein Variational Belief
Propagation (SVBP), an efficient method for performing non-
parametric belief propagation which employs Stein Variational
Gradient Descent (SVGD) [16]. SVGD is a technique for infer-
ence in which distributions are represented nonparametrically
using a set of particles which are iteratively updated using a
gradient rule. This method has been shown to mitigate mode
collapse and effectively represent multi-modal distributions
compared to sampling-based methods through a repulsive



force between particles arising from the use of the kernel
in the update rule. Since the particles are deterministically
updated through gradient steps, the algorithm is efficient and
parallelizable. SVGD has proven useful in a number of robotic
applications in recent years, including control, planning, and
point cloud matching [17]–[20]. SVGD has been applied
to graphical models to approximate the joint distribution
using kernels over local node neighborhoods [21], and the
conditional distributions over nodes [22]. Both these methods
rely on the conditional independence structure of MRFs and
as such only pass messages between immediate neighbors in
the graph. In contrast, our proposed method computes the
marginal beliefs over nodes using belief propagation, which
involves passing messages through the whole graph.

We formulate our algorithm by leveraging the particle
message update rules from PBP [10] combined with SVGD
to update marginal distributions, eliminating the need for
sampling and fully leveraging gradient information. We
demonstrate preliminary results on 2D multi-robot control
simulations which show that SVBP can maintain multi-modal
belief distributions in uncertain environments, leading to
improved performance compared to baselines.

II. BELIEF PROPAGATION

Let G = (V,E) denote a Markov Random Field (MRF)
with nodes V and edges E. Let X = {xs | s ∈ V } denote the
set of all hidden nodes in the graph, and Z = {zs | s ∈ V }
denote the observed nodes corresponding to each hidden node.
The joint probability of the graph G can be expressed as a
product of its clique potentials:

p(X ,Z) ∝
∏

(s,t)∈E

ψst(xs, xt)
∏
s∈V

ϕs(xs, zs). (1)

The function ψst is the pairwise potential, describing the
correspondence between neighboring nodes, and ϕs is the
unary potential, describing the correspondence of a hidden
variable xs with the observed variable zs. Belief propagation
estimates the marginal posterior distribution of a hidden node
s using the following equation:

p(xs | Z) ∝ ϕs(xs)
∏

t∈ρ(s)

mt→s(xs) (2)

where ρ(s) denotes the neighbors of s. The message from
node t to node s, mt→s, is defined as:

mt→s(xs) =

∫
xt

ϕt(xt)ψts(xt, xs)
∏

u∈ρ(t)\s

mu→t(xt) dxt

(3)
Note that we omit the observation, zs, from the unary potential
ϕs for brevity.

A. Particle Belief Propagation

Particle Belief Propagation (PBP) defines a sampling-based
algorithm for computing the messages in Equation (3) for
cases where the integral is intractable due to the complexity
of the state space [10]. PBP represents the belief at each
node with a set of N particles,

{
x
(i)
s | i ∈ 1 . . . N

}
. Given

samples x(1)t , . . . , x
(M)
t drawn from a candidate distribution

Wt, PBP defines the approximate message:

m̂t→s(x
(i)
s ) =

1

M

M∑
j=1

ϕt(x
(j)
t )

Wt(x
(j)
t )

ψts(x
(j)
t , x(i)s )

∏
u∈ρ(t)\s

mu→t(x
(j)
t ). (4)

This message definition is used to draw samples from the
marginal posterior, p(xs | Z), using importance sampling.

III. STEIN VARIATIONAL BELIEF PROPAGATION

Stein Variational Gradient Descent (SVGD) [16] approx-
imates the true posterior distribution with a nonparametric
candidate distribution which takes the form of a set of
particles. SVGD iteratively updates the set of particles in
order to minimize the KL-divergence between the true and
candidate posteriors. At an iteration k, the following update
rule is applied to each particle x(i)s :

x(i)s [k]← x(i)s [k − 1] + ϵγ(x(i)s [k − 1]) (5)
γ(xs) =

1

N

N∑
j=1

k(x(j)s , xs)∇x
(j)
s

log p(x(j)s ) +∇
x
(j)
s
k(x(j)s , xs)

(6)

where k(xs, ·) is a kernel function between particles corre-
sponding to node s. Intuitively, the kernel gradient term of the
above equation acts as a repulsive force between particles. In
practice, this characteristic prevents mode collapse in SVGD
and often requires less particles to cover the space.

Stein Variational Belief Propagation (SVBP) applies SVGD
to infer the marginal belief of each node, p(xs), from
Equation (2). Note that we drop the observation Z from
the posterior for brevity. Combining with Equation (6), the
update rule for the particles at node s is:

∇
x
(j)
s

log p(x(j)s ) = ∇
x
(j)
s

log ϕs(x
(j)
s )

+
∑

t∈ρ(s)

∇
x
(j)
s

logmt→s(x
(j)
s ), (7)

where mt→s(xs) is defined via the PBP message rule from
Equation (4). A distinct set of Stein particles represents
the posterior belief at each node. We note that the gradient
update from Equation (7) only involves evaluating gradient
information from immediate neighbors. This enables efficient
gradient updates since the algorithm only requires back-
propagating through immediate neighbors.

In practice, we use the current belief of the neighboring
node, p(xt), as the sampling distribution, Wt, where p(xt) is
represented by Stein particles for node t with equal weights.
This enables efficient computation of the messages since it
eliminates the need to run expensive sampling algorithms
like MCMC, as originally proposed in the PBP algorithm.

We employ a synchronous message passing scheme in
which all messages are computed prior to updating each node
belief. This enables efficient batch computations of factors
and messages suitable for execution on a GPU. However,
our algorithm can be employed with other message passing
schedules.



Fig. 2: Average error for each node estimate for multi-robot localization.
Results are shown for varying levels of noise, corresponding to the number
of noisy components added to the observation.

IV. PRELIMINARY RESULTS

To demonstrate the viability of the proposed approach, we
conduct two simulated experiments which represent robotic
problem domains in both multi-robot perception and control.
We provide supplemental video results at the following
webpage: https://progress.eecs.umich.edu/projects/stein-bp.

A. Multi-Robot Perception

The perception experiment involves localizing a collection
of agents in which the observation for each agent is multi-
modal. An example observation and the associated graph is
shown in Figure 3. Each robot is represented by a distinct
color, and its multi-modal sensor observation is represented
in the same color. In addition to a sensor observation, robots
observe each other, creating an edge between communicating
robots (shown in red). This experiment is a version of
the articulated “spider” localization problem from the NBP
literature [9], [13], [15].

The unary potential for each robot is a mixture of Gaus-
sians corresponding to the robot observation. The pairwise
potential is a function of the observed translation d between
neighboring robots:

ψts(xt, xs) = exp
(
− α

(
∥xs − xt∥ − d

))
. (8)

Note that we assume that d is known (we use d = 1 for all
edges). We restrict the graph to a chain structure for this
problem.

Baseline: We implement Particle Belief Propagation as a
baseline approach. We employ iterative importance sampling
over the particles at each node, where each particle is weighted
according to Equation (2) with the message definition of
Equation (4). We use the current particle set at each node
as the candidate distribution for message computation. We
apply random noise at the beginning of each iteration. The
same factor definitions and parameters are used for PBP and
SVBP.

Results: To generate an estimate for each node’s position,
we select the highest weighted particle according to the
marginal posteriors. The average error for each node over
10 runs for our SVBP algorithm against PBP is shown
in Figure 2. The x-axis represents the number of noisy
components added over all the Gaussian mixtures which
represent the node observations. For each run, the noisy
components are randomly assigned across nodes. SVBP ran
for 100 iterations, and PBP ran for 50 iterations.
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(a) SVBP (b) PBP

Fig. 3: Qualitative results for SVBP (ours) and PBP over iterations (k).
The red lines represent the true position of the nodes, and the colored ‘x’
markers represent the maximum likelihood estimate for each node. The
colored distributions represent the noisy observations for each node of the
corresponding color. Best viewed in color.

Our SVBP method performs comparatively to PBP for
low observation noise, but significantly outperforms PBP
in noisy cases. We observed that PBP tends to converge
quickly but was subjected to mode collapse which results
in locally optimal estimates. In contrast, SVBP maintains
multiple modes, making it more likely that the global solution
is represented in the candidate particle set. A visualization
of the belief distributions of SVBP and PBP for the highest
noise observation is shown in Figure 3.

B. Decentralized Multi-Robot Control
Our second experiment involves decentralized control of a

multi-robot system. Each robot must avoid obstacles and the
other robots in its trajectory to the goal. We take a planning
as inference approach [23]–[25] in which the nodes in the
graph represent the trajectory distribution for each robot over
a fixed horizon T , and the edges in the graph represent
robots in communication, as in Figure 1. We consider the
trajectories to be a sequence of acceleration commands, τs =
{us,k | 0 ≤ k ≤ T}, governed by known dynamics xs,k+1 =
fs(xs,k, us,k), where xs,k is the position and velocity of robot
s at time k.

For this experiment, we assume the graph is fully-
connected. We employ a loopy version of belief propagation,

https://progress.eecs.umich.edu/projects/stein-bp/


Fig. 4: Testing environments for the multi-robot control experiments. The
start and goal positions are marked with a triangle and star respectively.
Each color represents a single robot.

Fig. 5: Path length, path time, and success rate for each method considered
for the multi-robot control example. A trajectory is successful if it reaches
the goal within 15 cm. Only successful trajectories are included in path
length and path time.

in which the messages are initialized and iteratively updated.
This approach does not provide exact marginals but has proven
to be effective in practice [26]. The unary potential for each
robot trajectory consists of an obstacle avoidance potential,
a quadratic cost, and a goal potential. The pairwise poten-
tial between communicating robots employs the following
collision avoidance factor over the trajectory:

ψts(τt, τs) =

T∑
k=0

αk

(
1−

(
∥xs,k − xt,k∥

r

)β
)

(9)

where T is the time horizon, ∥xs,k − xt,k∥ is the distance
between the robot positions at timestep k, r is the desired
collision radius, and αk and 0 < β ≤ 1 are constants. In
our experiments, we use r = 0.5 and β = 0.3. We set αk to
decrease linearly over the horizon. We assume known, linear
dynamics which allows the gradients to be computed with
respect to the acceleration commands. At each timestep, we
execute the first action in the trajectory and replan, as in
model predictive control (MPC). This approach is akin to a
multi-robot version of Stein MPC [17].

Baseline: Our baseline for this scenario is the well-
established Optimal Reciprocal Collision Avoidance (ORCA)
algorithm [27]. ORCA assumes that neighboring agent’s
velocity can be perfectly known and calculates optimal
reciprocally collision-avoiding velocities that are closest to
the original preferred velocity. The scenario was implemented
using RVO2 library [28] for robots with radii of 20 cm and
40 cm that could achieve maximum velocities of 2 m/s. We
assume full connectivity.

Results: We present the total path length and the total
path time for ORCA and SVBP in Figure 5. Since ORCA
is sensitive to the robot radius parameter, we show results
for both a radius of 20 cm and 40 cm. We perform 10 runs
on each of the environments in Figure 4. The success rate
in Figure 5 represents the percentage of trajectories which
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Fig. 6: Qualitative results for the multi-robot control experiment for SVBP
and ORCA with a 20 cm collision radius.

successfully reached the goal with a threshold of 15 cm. Path
length and time are only computed for successfult trajectories.

We observe that the failure modes in SVBP are often due to
imprecision in achieving the goal location due to the tradeoff
between factors. Another failure mode results when robots
get stuck in local minima around large obstacles, such as in
the environment in Figure 4(c). OCRA with a 40 cm collision
radius fails for all runs in the environment in Figure 4(a).

When the robot collision radius is small, ORCA results in
comparable path lengths to SVBP, however, the robots move
much more conservatively in ORCA, which results in higher
path times. A qualitative comparison in the environment
in which the robots must cross a narrow gap is shown in
Figure 6.1

V. DISCUSSION & FUTURE WORK

This paper describes Stein Variational Belief Propagation,
an algorithm for performing inference over the marginal
distributions within a graph using Stein Variational Gradient
Descent. We present results in simulation on a multi-robot
perception task and a multi-robot decentralized control
task. Our results suggest that our algorithm is capable of
maintaining complex, multi-modal distributions in uncertain
and cluttered environments. We hypothesize that the particle
distributions in SVBP can be used to provide an uncertainty
estimate in noisy cases, such as the one shown in Figure 3.
This could be employed in robotic applications to improve
robustness to noise or within the context of active perception.

Future work will involve further characterization of the
convergence properties of the algorithm proposed. We will
characterize performance against other other baselines, includ-
ing the message passing algorithm from Pacheco et al. [12],
which shares the specific aim of maintaining modes in the
belief distribution. Our findings for the multi-robot control
experiment compared to the ORCA baseline are consistent
with the findings from Patwardhan et al. [3], but we do not
require that the trajectories are initialized with a trajectory
planner. Future work will compare this algorithm to SVBP.
We plan to evaluate our algorithm in the presence of real-
world uncertainty through robot experiments, and in higher
dimensional problems such as manipulation tasks.

1These results are best viewed in video form. See the website at:
https://progress.eecs.umich.edu/projects/stein-bp.
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