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ABSTRACT

Post-hoc interpretability methods typically attribute a model’s behavior to its com-
ponents, data, or training trajectory in isolation. This leads to explanations that lack
a unified view and may miss key interactions. While combining existing methods or
applying them at different training stages offers broader insights, such approaches
usually lack theoretical support. In this work, we present ExPLAIND, a unified
framework that integrates all these perspectives. First, we generalize recent work
on gradient path kernels, which reformulate models trained by gradient descent as
a kernel machine, to realistic settings like AdamW. We empirically validate that a
CNN and a Transformer are accurately replicated by this reformulation. Second,
we derive novel parameter- and step-wise influence scores from the kernel feature
maps. Their effectiveness for parameter pruning is comparable to existing meth-
ods, demonstrating their value for model component attribution. Finally, jointly
interpreting model components and data over the training process, we leverage
ExPLAIND to analyze a Transformer that exhibits Grokking. Our findings support
previously proposed stages of Grokking, while refining the final phase as one of
alignment of input embeddings and final layers around a representation pipeline
learned after the memorization phase. Overall, ExPLAIND provides a theoretically
grounded, unified framework to interpret model behavior and training dynamics.

1 INTRODUCTION

model  
components

training  
data

training

∑ ϕs(θ, x, x′￼)j
II . Explain by accumulating 
scores from different 
perspectives and granularities 

ϕs(θ, x, x′￼)j

I. Model decomposes into 
influence scores

Figure 1: The ExPLAIND framework is based on
the decomposition of the model along its compo-
nents, training data, and training steps. Explana-
tions are obtained by accumulating the resulting
influence scores.

Understanding the latent mechanisms of deep neu-
ral networks remains one of the central challenges
in machine learning (Rudin et al., 2021; Rai et al.,
2024; Zhang et al., 2025). As models become in-
creasingly complex, interpretability has become
an increasingly crucial tool — not just for debug-
ging or improving transparency, but for building
trust, ensuring fairness, and guiding further devel-
opment (Doshi-Velez & Kim, 2017). Much of the
recent progress in interpretability has focused on
attributing a model’s behavior to one of three main
factors: its components, the data it was trained on,
or the dynamics of the training process itself.

However, these approaches are often applied in
isolation. Explanations focused on model compo-
nents may ignore the influence of individual train-
ing examples or how these components evolved
during optimization. Data-centric explanations
can overlook how different parts of the model in-
ternalize those examples. This fragmentation thus
limits our understanding, leaving important inter-
actions unexplored. While some work has probed
training dynamics (Müller-Eberstein et al., 2023;
Tigges et al., 2024; Prakash et al., 2024), their insights often remain only loosely connected to
analyses of model architecture or input data and lack a theoretical connection between checkpoints.
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To address this fragmentation, we propose Exact Path-Level Attribution Integrating Network and
Data (ExPLAIND), a unified framework that captures how data, model components, and training
dynamics jointly influence model behavior. ExPLAIND builds on the Exact Path Kernel (EPK, Bell
et al., 2023) view of gradient-based learning, but extends it to modern training regimes. With this,
ExPLAIND provides a theoretically grounded lens through which we can analyze how individual
training examples influence model components throughout training. This unified perspective helps,
for example, to interpret emergent learning phenomena such as Grokking (Power et al., 2022).

Our work makes the following contributions:

(i) Theoretical extension of EPK. We generalize the EPK to modern training regimes with
optimizers that include first- and second-order gradient estimates, weight decay, dynamic
learning rates, and mini-batching (see Section 3). We empirically validate that our kernel
accurately represents both a CNN on a vision task and a Transformer on a math task.

(ii) ExPLAIND framework. Based on this theoretical foundation, we derive novel influence
scores that quantify how individual parameters, training samples and training steps contribute
to model predictions (see Section 4). The framework can be applied at different levels of
granularity and from different perspectives, such as parameter level, data level and training-
step level, cf. Figure 1. We validate the effectiveness of these scores for model component
attribution via competitive parameter pruning.

(iii) Case study of Grokking. To demonstrate the capabilities of ExPLAIND, we apply the
framework to a Transformer model known to exhibit Grokking (see Section 5). For the
widely studied modulo addition Transformer, we uncover a previously unreported alignment
phase where input embeddings and final layers interestingly align around a representation
pipeline learned in the preceding training steps.

Thereby, ExPLAIND offers a theoretically grounded, empirically validated, and practically useful
framework for analyzing modern machine learning architectures in a holistic manner.

2 RELATED WORK

We highlight the most directly relevant works and provide a more detailed discussion of the related
literature in Appendix B.

Post-hoc interpretability. Post-hoc interpretability methods typically attribute model behavior to
one of input features (Ribeiro et al., 2016), training data (Koh & Liang, 2017), or model components
(Alain & Bengio, 2018). However, many approaches lack a theoretical foundation (Lipton, 2017;
Saphra & Wiegreffe, 2024; Doshi-Velez & Kim, 2017; Basu et al., 2020; Bae et al., 2022) and
can trade faithfulness for plausibility of explanations (Jacovi & Goldberg, 2020). Other work has
extended interpretability into the temporal dimension, attributing model behavior to the training
dynamics. For example, probing or circuit finding has been applied at different model checkpoints
to identify learning phases (Müller-Eberstein et al., 2023; Tigges et al., 2024; Prakash et al., 2024).
However, these approaches typically treat each training step independently, lacking a theoretical
framework for integrating changes in model behavior over time.

Path kernel methods. Gradient path kernels (Domingos, 2020) reformulate a model trained by
gradient descent as a kernel machine. Bell et al. (2023) extended this perspective to an exact
equivalence, deriving the Exact Path Kernel (EPK). However, their formulation does not cover
realistic learning scenarios involving gradient updates based on first- and second-order estimates,
weight decay, dynamic learning rates, and mini-batching. Central to the EPK reformulation is the
stepwise comparison of training and test sample gradients via dot products. This connects the EPK to
the Neural Tangent Kernel (Jacot et al., 2018), which it generalizes over the training trajectory. The
data attribution method TracIn (Pruthi et al., 2020) also measures dot-product gradient similarities
across training steps for data attribution, but it lacks a theoretical connection to model predictions.

3 AN EXACT PATH KERNEL EQUIVALENCE FOR ADAMW

ExPLAIND is based on the EPK by decomposing the model predictions into fine-grained units of
influence along the training data, model parameters, and training steps.

2
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To capture the dynamics of modern optimization, including weight decay, moment estimates, learning
rate schedules, and mini-batching, we focus on the AdamW optimizer (Loshchilov & Hutter, 2019).
Here, the parameter update at step s ∈ {1, ..., N} is of the form

θs = θ̂s−1 − αs ·
m̂s

(
√
v̂s + ϵ)

with θ̂s−1 = θs−1 − αsλθs−1 (1)

where αs ∈ R>0 denotes the learning rate schedule, λ ∈ R>0 the weight decay, and Batchs ⊆ D
denotes the mini-batch drawn from the training set D = {(x1, y1), . . . , (xM , yM )}. The first and
second moments ms, vs and their bias-corrected estimates are computed recursively via

ms = β1 ·ms−1 + (1− β1) · ∇θL(θs−1) m̂s =
ms

1− βs
1

vs = β2 · vs−1 + (1− β2) · (∇θL(θs−1))
2 v̂s =

vs
1− βs

2

.

To reformulate models trained with AdamW as kernel machines over their training trajectory, we
generalize the EPK to account for weight-decay, mini-batching and moment estimates. The following
theorem states our main result for AdamW. A corresponding corollary then specializes this extension
to gradient descent with momentum and weight decay.
Theorem 3.1 (Extension of Bell et al. (2023) to AdamW). Let fθ : X → Y be a model with
parameters θ ∈ Θ mapping inputs x ∈ X ⊆ RI to outputs y ∈ Y ⊆ RO. Further assume
that the final parameters θN are the result of optimizing fθ0 from an initialization θ0 on a dataset
D = {(x1, y1), ..., (xM , yM )} with M samples and loss L : Y × Y → R≥0 using AdamW with
weight decay λ ∈ R≥0 over batches Batchs ⊆ D and learning rates αs ∈ R>0, s ∈ {1, ..., N}.
Then the final model prediction fθN (x) of a sample x ∈ X decomposes into

fθN (x) = fθ0(x)−
M∑
k=1

N∑
s=1

ϕtests (x) · ϕtrains (xk)
⊤ · ak,s−

N∑
s=1

ϕtests (x) · rs (2)

where θs(t) := θs − t(θs − θs+1) is the linear mixture of parameters between step s and s+ 1, and

ak,s :=

(
dL(fθs(0)(xk), yk)

dfθs(0)(xk)

)⊤

∈ RO

αs,i:= αs(1− β1)β
s−i
1

√
1− βs

2

1− βs
1

∈ R

rs:= αsλθs(0) ∈ RD

ϕtests (x) :=

∫ 1

0

∇θfθs(t)(x) dt ∈ RO×D

ϕtrains (x) :=

s∑
i=0

αs,i

1x∈Batchi
∇θfθi(0)(x)√
vs

∈ RO×D.

Sketch of Proof. We follow similar arguments as Bell et al. (2023). The key difference is to start from
the parameter update given in Eq. (1) and to account for mini-batches through indicator variables.
The complete proof is in Appendix D.1.

Corollary 3.2 (Gradient Descent with Momentum). In the same setup as in Theorem 3.1, but for
gradient descent with momentum β and learning rates αs with update equation

θs = θs−1 − αsβbs

where bs is defined recursively as

b0 = ∇θf(θ0), bs = βbs−1 +∇θf(θs−1) + λθs−1

we derive a similar decomposition as in Theorem 3.1, but with the regularization term changing to
rs = αs

∑s−1
j=0 β

s−jθj(0).

Proof. We follow a similar approach as in Theorem 3.1. The key difference is the absence of the
second-order term and that the regularization term moves into the momentum term, which results in
the reformulation of the respective terms. The full proof can be found in Appendix D.1.

We further derive the following corollary which decomposes the trajectories of intermediate model
activations (such as layers) as well as the loss. We can use this later for the interpretation of
intermediate model activations, for example, at an intermediate layer.

3
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Corollary 3.3 (Loss and intermediate activations). Assume the setup of Theorem 3.1 holds. Further-
more, let the model be of the form fθ = hκ ◦ gι. Then the loss L(fθN (x), y) and the intermediate
activations gι(x) decompose analogously to the equation in Theorem 3.1.

Proof. For the loss, we can set L̃ = id and f̃(x) = L(fθN (x), y) and apply Theorem 1. Analogously,
we can set L̃(y′, y) = L̃(hκ(y

′), y) and f̃(x) = gι to derive the second statement.

3.1 VALIDATION OF EXACT MODEL REPRESENTATION

Table 1: We report the accuracy of the EPK
representation with respect to model predic-
tions, and the output similarity measured by
KL divergence. For 100 integration steps,
the EPK matches the trained model.

Model ResNet9 Transformer
Data CIFAR-2 MOD-113

Integration Steps 10 100 10 100
EPK Accuracy 0.997 1.0 0.748 1.0
KL Divergence 0.0 0.0 0.885 0.0

To empirically validate the exact equivalence of Theo-
rem 3.1 and Theorem 3.2, we compute the EPK for a
Transformer model and a CNN.1 For this, we evaluate
different numbers of integration steps in the test feature
map ϕtest and summarize the results in Table 1. The de-
rived formulation provides an accurate approximation
for both models, reproducing 100% of their classifica-
tion decisions. Furthermore, the output distributions
closely match those of the original models, indicated
by near-zero KL divergences. We therefore use 100
integration steps for ϕtest for the rest of this study.

4 THE EXPLAIND FRAMEWORK

We now build on the established EPK of the training with realistic optimizers such as AdamW and
define the ExPLAIND framework, which attributes prediction at the level of training samples, model
parameters, and training steps. The key idea is a tensor of influences which indexes contributions by
training steps, parameters, training samples, and outputs. Different explanations are then obtained by
accumulating this tensor along selected axes, leading to parameter-, data-, and step-wise attributions
at arbitrary levels of granularity, as visualized in Figure 1. We denote the influence of a parameter
θ(i) at step s due to training sample xk on the prediction of class j of a sample x as

ψs(θ
(i), x, xk)j := ϕtrains (xk)j,i · ϕtests (x)j,i · (ak,s)j ∈ R

and the influence of the regularization at step s on the same prediction as

ψreg
s (θ(i), x)j := ϕtests (x)j,i · (rs)i ∈ R.

We collect all atomic scores into one multi-dimensional object, with axes corresponding to steps,
parameters, test samples, training samples, and outputs.
Definition 4.1 (Tensor of Influences). For a set of training steps S ⊂ {1, 2, ..., N}, model parameters
Θ ⊂ {θ(1), θ(2)..., θ(D)}, predictions Xtest ⊂ Dtest, training samples Xtrain ⊂ Dtrain, and outputs
J ⊂ {1, ..., O} we define the respective tensor of influences as

ΓS(Θ,Xtest,Xtrain)J := (ψs(θ, x, x
′)j)s∈S,θ∈Θ,x∈Xtest,x′∈Xtrain,j∈J (3)

where, by convention, if e is not already a set we identify it with the singleton {e}.

Rewriting Theorem 3.1 using this definition, the j-th coordinate of the model output can be written as

fθN (x)j = fθ0(x)j −
M∑
k=1

N∑
s=1

D∑
i=1

ψs(θ
(i), x, xk)j −

N∑
s=1

ψreg
s (θ(i), x)j . (4)

Hence, the scores ψs(θ
(i), x, xk)j are additive and sum up to the model prediction. The naturally

arising backbone of our ExPLAIND framework is the accumulation of these scores over different
(sub-)sets of parameters, training and test samples, as well as training steps. We make this explicit
with the following definition.

1We provide our code in the supplementary material, and report technical details in Appendix C.
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Definition 4.2 (Accumulated influence). Given the same setup as in Definition 4.1, the accumulated
influence is the sum of the tensor of influences over selected axes:

ΨS(Θ,Xtest,Xtrain)J := sum(ΓS(Θ,Xtest,Xtrain)J ) (5)

where sum sums up the elements along all dimensions of the tensor. Furthermore, we define leaving
out a category in the arguments of Ψ or Γ as summing over the complete set along it.2

To account for differences in sign across influences to different predictions and outputs, we further
define the accumulated importance as follows

Ψ̄S(Θ,Xtest,Xtrain)J :=
∑

x∈Xtest

∑
j∈J

|ΨS(Θ, x,Xtrain)j |. (6)

We denote the analogous definitions for the regularization scores with Γreg , Ψreg, and Ψ̄reg .

This formulation allows us to explain model behavior in a unified way across different dimensions.
By choosing which axes of the influence tensor to keep and which to sum over, we obtain different
perspectives such as parameter-level, data-level, or step-level attribution. Within each perspective,
the granularity of the explanation depends on the size of the sets we consider. For example, if we
want to study the influence of a single parameter θ(i) on a given prediction of a sample x, we can
accumulate parameter-wise kernel scores over the training set as Ψ(θ(i), x). In order to zoom out
to the layer level per training step, we sum up the scores of all parameters that are a part of a layer
ΘL of the dataset at step s, i.e. compute Ψs(ΘL, x). We provide more details and more examples in
Appendix D.3 and illustrate the power of such explanations when studying Grokking in Section 5.

To investigate the relative influence of the regularization term, we furthermore define the accumulated
parameter-wise difference of absolute influences.
Definition 4.3 (Influence of the regularization). With analogous definitions and conventions as above,
we define the parameter-wise relative regularization influence on the model behavior as the difference

DS,Xtrain,Xtest,J (Θ) :=
∑
θ∈Θ

(ΨS(θ,Xtest,Xtrain)J −Ψreg
S (θ,Xtest,Xtrain)J ) . (7)

Finally, we define the similarity of two predictions with respect to different parts of the model
as the cosine similarity of their respective scores. This is a common avenue for interpreting high
dimensional spaces, and allows us to compare the high dimensional tensors.
Definition 4.4 (Similarity from the model’s perspective). With analogous definitions and conventions
as above, we define the similarity of two predictions x, x′ ∈ X as

SimS,Θ,Xtrain,J (x, x′) :=
flat(ΓS(Θ, x,Xtrain)J ) · flat(ΓS(Θ, x

′,Xtrain)J )

||ΓS(Θ, x,Xtrain)J || · ||ΓS(Θ, x′,Xtrain)J ||
(8)

where flat transforms a tensor into a vector and || · || is the vector ℓ2-norm.

Similarly to the previous examples of influences of different granularities and unified perspectives,
our notions of similarity and regularization influence can be generalized along the other dimensions,
e.g., training samples, steps, or model components. Furthermore, we remark that explaining model
behavior through the influence tensors Γ, the backbone of the ExPLAIND framework, can also be
carried out using other forms of accumulation, which we leave to future work.

4.1 EFFICIENT IMPLEMENTATION

Recall that all previous derivations rely on accumulating slices of the influence tensors. Depending on
the desired lens, this design choice has implications for the efficiency of the resulting computations.
For example, for influence scores accumulated over the training data, the time-complexity is equivalent
to a single training run. Materializing all scores up to parameter level is expensive, however, as the
memory complexity alone is in O(NDMO) for N training steps, D parameters, M training samples,
and O dimensions. By making a suitable choice restricting these dimensions, ExPLAIND gives an

2For example, Ψ(Θ,Xtest,Xtrain) is the influence summed over all steps S and all output dimensions J .
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interface to control the trade-off between high and low granularity of explanations, i.e. whether they
are local or global along the aforementioned dimensions, and thereby also the level of faithfulness of
the explanations, which comes at a higher cost as argued before.

Although our empirical study and demonstration of ExPLAIND in Section 5 is focused on small
scenarios, this intuition offers a clear path for applying ExPLAIND to larger architectures and
datasets. There, we propose to rely on (1) (early) accumulation of relevant parts of the influences to
reduce computational and memory requirements (e.g. the gradients can be computed over the batches
directly if the data-perspective is more coarse-grained), and (2) on subsampling the influences to
reduce the number of steps, samples or parameters necessary to consider.

4.2 VALIDATION THROUGH PARAMETER PRUNING
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Figure 2: We prune the CNN weights and achieve test
accuracy comparable to Li et al. (2017). Across all
sparsity levels, the KL divergence of our model outputs
is consistently lower. We report the means and standard
deviations over 5 runs.

To validate our EXPLAIND-derived pa-
rameter importance scores, we conduct
pruning experiments on the CNN model,
ranking each parameter θ by its kernel im-
portance score ΨS(θ). For a fraction c and
number of parameters D, we only keep the
TOP-cD parameters and set the rest to zero.
To retain the model’s ability to predict, we
do not prune the output layer. To contextu-
alize our results, we compare them against
an implementation of Li et al. (2017), a
popular pruning method proposed to com-
press CNN models, which is based on an
iterative procedure in which the model is
retrained in each step after pruning weights by magnitude importance. As shown in Figure 2, we find
that our approach performs competitively against Li et al. (2017)’s approach on sparsity levels from
70% to 99%. Furthermore, our score-based, training-free pruning replicates the original model more
closely than the baseline as is evidenced by the much lower KL divergences over all levels of sparsity.
This underlines that our influence scores are indeed able to accurately quantify the influence of the
parameters on the model’s predictions. Note that this comparison is to validate that our method finds
meaningful influence scores and does not aim to frame ExPLAIND as a SOTA pruning method.

5 GROKKING ‘EXPLAIND’

Grokking is a training phenomenon where models first memorize, and then, after prolonged training,
suddenly generalize (Power et al., 2022). Nanda et al. (2023) argue for multiple learning stages:
(1) memorization of the training data, (2) circuit formation, in which the model learns a robust mecha-
nism and thus generalizes, and (3) cleanup, during which the regularization “removes” memorization
components. Other evidence emphasizes the role of dataset size, model capacity, and regularization
(Huang et al., 2024; Wang et al., 2024a). We use ExPLAIND to revisit these hypotheses, integrating
perspectives on model components, training data, and training dynamics in a single analysis. We
further verify our insights through ablation experiments.

As a testbed, we use the well-studied modulo addition task (Varma et al., 2023) where the samples are
of the form [a][+][b][mod113 =] and the model predicts the correct result. We train a Transformer
with AdamW (details in Appendix C.2). As shown in the top-left plot of Figure 3a, the model exhibits
Grokking: training accuracy rises sharply, reaching nearly perfect performance around step 800.
During this phase, test accuracy remains close to zero, but subsequently increases until reaching
100% at step 1939, at which point training is stopped.

5.1 INFLUENCE DECOMPOSITION

To study Grokking with ExPLAIND, we begin by decomposing the model’s predictions into kernel
and regularization influences over the full training trajectory (see Figure 3a). We then study their
layer-wise decompositions. This provides a global view of the training dynamics before, during, and

6
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kernel (top) and influence of the regularization (bottom). As shown in the
legend on the right, the Transformer consists of an attention layer (Att.
Encoder and Att. Decoder) and an MLP (Linear 1 and Linear 2).
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(b) We train a model initialized
with the representation pipeline
from the final model (top) and
from step 1539 (bottom) and ini-
tialize the rest at random.

Figure 3: Training statistics, influences, and validation of our representation pipeline hypothesis.

after generalization, and highlights which model components drive these phases. ExPLAIND reveals
the following trends in how kernel and regularization influences evolve across layers:

Kernel versus regularization balance. The absolute influences Ψ̄s(Θ) and Ψ̄reg
s (Θ) (bottom left

of Figure 3a) grow together from the start of memorization (around epoch 200), both peaking near
step 1700 before declining. In the final phase, Ψ̄reg

s (Θ) dominates which indicates that the final
training phase is governed by a higher relative influence of regularization.

Decoder dominance in memorization. On the layer level, the memorization phase coincides with a
peak in regularization influence Ds(Θlayer) (bottom right), and absolute influences Ψ̄s(Θlayer) (top
right) of the decoder. This establishes the decoder as the most influential component for memorization.

Middle-layer alternation and circuit formation. The second peak of the decoder influence (top
right) is preceded by peaks of the attention and linear layers, suggesting a single alternation between
fitting the decoder and the intermediate layers. This marks the beginning of the circuit formation
and hints at a representation pipeline forming in the middle layers.3 Their influence then decreases,
supporting this interpretation. With respect to regularization, both layers have a rather low influence,
indicating that regularization acts primarily on the embedding and decoder layers.

Late embedding dominance. The embedding layer only begins to influence predictions in the circuit
formation phase, evidenced by its sharp relative regularization dominance in Ds(Θlayer) and its rise
in Ψ̄s(Θlayer). Remarkably, the latter continues to increase slightly during the rest of the training
while all other layers’ influences decrease during this phase.

These insights suggest that the model progresses through a sequence of shifts in influence: decoder-
driven memorization, middle-layer alternation for circuit formation, and eventual embedding-decoder
dominance under higher regularization influence. The rapid increase in test accuracy can thus be
explained by a simultaneous alignment of the input embeddings and decoder around the representation
pipeline in the intermediate layers (marked in red in the Transformer in Figure 3a).

To confirm that the alignment around this representation pipeline is causal, we train models initialized
at random but replace only the Attention and Linear-1 layers with their grokked counterparts, which
we hypothesize to be central to the representation pipeline. As shown in Figure 3b, this initialization
leads to instant generalization within the first 200 training steps, and, in particular, bypasses the usual
memorization phase. Additional experiments (Appendix Figure 8) confirm that even using only the
attention layer produces the same phenomenon. Starting from earlier checkpoints leads to a similarly

3This interpretation is further supported by the simultaneous emergence of cyclic patterns on the influence
level around steps 450 - 500 (see Section 5.2 and Appendix Figure 10).
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Figure 4: At different training stages, we show the influences ΨS(Θdec, x, x
′) of the training examples

x′ on the test samples x of the decoder layer Θdec, summed over the output dimensions, for predictions
on the test set and the training set, accumulated over the preceding 50 steps. The plots are labeled and
ordered by the sum of inputs a+ b and the corresponding result (a+ b mod 113). Corresponding
figures for the other layers are provided in the Appendix in Figure 6.

rapid generalization, albeit with slightly lower final accuracy. This suggests a continuous refinement
of the representation pipeline during the circuit formation phase.

To further probe this effect, we swap grokked layers into intermediate checkpoints (see Appendix
Figure 8). The outer layers identified above consistently improve the predictions of these checkpoints,
whereas other combinations decrease performance. This shows that the aligned final embedding and
decoder layers can already operate effectively around a pipeline that is not yet fully generalized.

In sum, our findings refine the three-stage description of Grokking by Nanda et al. (2023) by showing
that in the final phase the model outer’ layers align around a generalized representation pipeline.
They also connect to the efficiency perspective by Huang et al. (2024): our findings suggest that once
a robust representation pipeline has formed, the influence of the regularization suppresses inefficient
memorization solutions. In next section we show that this representation pipeline encodes a cyclic
data geometry that becomes increasingly robust during training.

5.2 CYCLIC GEOMETRY

Next, we apply ExPLAIND from the data perspective to examine what structure the model learns. We
study two complementary objects: Ψs(Θdec, x, x

′) (Figure 4) capturing how training samples x′ influ-
ence predictions x with respect to the decoder and the similarity matrices SimΘlayer

(x, x′) (Figure 5)
which capture how samples are represented relative to each other. We find:

Emergence of cyclic patterns in the kernel. The vertical bands in Figure 4 reveal that at all training
stages, each training sample has a global influence. After memorization, off-diagonal patterns emerge
and sharpen, aligning with modular equivalence classes (a+ b mod 113). Initially, these cycles have
high frequency (about 2), i.e. the influence is strong for training samples whose label differences are
a multiple of 2. Later in training, this cyclic geometry continuously shifts towards lower frequencies.

Generalizable Data Geometry. Similarity matrices (Figure 5) suggest a similar emergence of cyclic
patterns, especially in the higher layers of the model. This indicates that the model indeed learns to
represent the samples in a space where similarity is approximately a cosine of frequency 113.
We test this hypothesis by fitting a Lasso regression to the similarity matrix accumulated over epochs
1850 to 1900 of the decoder, where we take as input features all cosines and sines of the pairwise
differences of frequencies 2 to 113. The result is shown in Appendix Figure 9 and indeed confirms
our qualitative observation with the coefficient of the cosine of frequency 113 being by far the largest.
Furthermore, we note that in the final model this representation emerges only in the attention decoders,
suggesting that the model first needs to combine the two input numbers and then proceeds to refining
the cyclic geometry observed in higher layers.

Revisiting our layer-swapping experiment, when comparing the confusion matrices of the swapped
and original checkpoints (see Appendix Figure 7 (b) to (e)), we observe that the systematic cyclic error
patterns on the off-diagonals are greatly reduced once the final model’s outer layers are swapped in,
further supporting the cyclic geometry identified and suggesting that the alignment of the embedding
and decoder indeed changes the prediction algorithm to one that uses the cyclic representations.
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Figure 5: Similarity SimΘlayer
(x, x′) of predictions of the test set of the Transformer model accumu-

lated over different training stages. All layers and other training stages shown in Appendix Figure 10.

Our observations agree with Nanda et al. (2023), who find that neurons in the linear layers are
computing combinations different cosines and sines. As ExPLAIND reveals, the fine-grained, neuron-
level mechanisms that they describe result in a cyclic global pattern that is simple to interpret and the
result of a continuous refinement from cycles of higher to lower frequency.

Taken together, these results show that Grokking reflects the progressive refinement of a cyclic data
geometry and its alignment with input and output layers in the modulo addition Transformer.

6 DISCUSSION AND CONCLUSION

ExPLAIND offers a unified framework that bridges model components, data, and training dynamics,
addressing a gap in post-hoc interpretability. Building on gradient path theory, it extends the Exact
Path Kernel to realistic optimization regimes which is of independent interest. We validate the
EPK representation and demonstrate the effectiveness of the resulting scores in parameter pruning.
Through its theoretical foundation, ExPLAIND provides additive parameter-wise influence scores
that can be aggregated to different levels of granularity and viewed from multiple perspectives. This
positions ExPLAIND as a useful toolbox for unified attribution of model behavior.

Our exploratory study on Grokking highlights the utility of ExPLAIND by uncovering a novel
perspective on its learning phases, with a central role for alignment and capability reuse. In particular,
we identify an alignment phase characterized by the high relative influence of regularization on the
outer layers preceded by the building of a representation pipeline. In grokked models, this suggests
that further training serves to refine and re-use existing representations rather than build new ones.
Once a robust latent structure has formed, generalization may emerge through alignment of input and
output layers, challenging optimal training strategies.

Limitations. The ExPLAIND framework focuses on weight-level analysis and does not provide
mechanistic or causal explanations. In addition, the insights by ExPLAIND are of qualitative nature
and cannot yet be applied in an automated fashion. Besides, our study is limited to smaller models
and tasks. Finally, computing our influence scores has high complexity (see Section 4.1), although
we propose strategies to reduce runtime, in particular through increased granularity, which enable the
analysis of larger scenarios.

Future Work. ExPLAIND should be used to study larger models through the lenses provided. In
particular, it would be interesting whether our insights on Grokking in the modulo Transformer gen-
eralize to larger models and more complex tasks. More broadly, our results indicate that attributions
to data and model components vary substantially across training, with critical patterns emerging at
specific stages. Future interpretability methodology should therefore be designed to better surface
these critical stages. Finally, more of possible perspectives and granularities provided by ExPLAIND
should be studied. For example, Corollary 3.3 suggests that ExPLAIND can be used to interpret loss
and activation level attributions, pointing to another promising direction.
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REPRODUCIBILITY STATEMENT

The experimental methodology is described in detail in Appendix C, and all experiments are fully
reproducible. Source code will be released upon acceptance and is also provided as part of the
supplementary material. The proof of the main statement, Theorem 3.1, and Corollary 3.2 is included
in Appendix D, the proofs of the remaining statements are part of the main text.

LLM USAGE STATEMENT

We used large language models (LLMs) for editing the manuscript, including for grammar, spelling,
and rephrasing. We further use LLMs for support with coding. For both, we made sure to check
the validity and security of all LLM outputs. AI tools do not contribute substantively to the ideas,
research contributions, or results.
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SUPPLEMENT TO THE PAPER “EXPLAIND: UNIFYING MODEL, DATA, AND
TRAINING ATTRIBUTION TO STUDY MODEL BEHAVIOR”

A ETHICAL CONSIDERATIONS AND BROADER IMPACTS

Interpretability for Fairness and Accountability. Interpretability is a foundational requirement for
building machine learning systems that are transparent, trustworthy, and legally accountable. Our
framework, ExPLAIND, contributes to this goal by offering explanations that connect model behavior
back to training data and model components. This is especially important in high-stakes domains
(e.g. healthcare, criminal justice, finance), where decisions made by machine learning models must
be auditable and understandable. Transparent systems are essential for identifying and mitigating
biases, ensuring compliance with regulatory standards, and enabling meaningful human oversight.

Causality, Overinterpretation, and Misleading Explanations. Although ExPLAIND provides
rigorous weight-level influence scores, they are inherently statistical and not causal. Misinterpreting
these scores as direct causal claims about model behavior could lead to incorrect conclusions or mis-
guided policy decisions. Practitioners and researchers must exercise caution when drawing inferences
from post-hoc explanations and should clearly communicate the implications and limitations of an
explanation.

Respecting Data Ownership. Recent investigations have revealed that major AI companies have
utilized large-scale datasets containing pirated content, such as Library Genesis (LibGen), to train
their models without obtaining permission from the original authors or rights holders. This practice
not only infringes upon the intellectual property rights of creators but also raises significant ethical
concerns regarding consent and fair compensation. Theoretically grounded attribution of training data
and model components like ExPLAIND opens the door for mechanisms that acknowledge, attribute,
and compensate the creators of influential data, thus respecting intellectual property rights.

Unequal Access to Computational Resources.

The development and application of computationally intensive interpretability methods, such as
ExPLAIND, underscore a significant ethical concern: the disparity in access to necessary computa-
tional resources. This "compute divide" disproportionately favors well-funded industry players and
elite academic institutions, enabling them to conduct advanced AI research and model auditing. In
contrast, smaller institutions and independent researchers often lack the resources to engage in such
work, limiting their participation in critical areas such as model interpretability and accountability.
This imbalance not only hampers diverse contributions to the field but also raises concerns about
whose models are scrutinized and whose voices are heard in shaping AI’s future.

Environmental Costs and the Role of Efficient Interpretability.

Training large models, and by extension applying post-hoc interpretability methods like ExPLAIND,
comes with significant computational and environmental costs. While our method is computationally
expensive — often comparable to a single training run — we argue that this cost is justified in contexts
where theoretical robustness and faithful attribution are necessary. Nonetheless, we acknowledge
the environmental impact and advocate for minimizing computational overhead through algorithmic
optimization, more efficient implementations and minimizing redundant applications. Future work
should investigate scalable approximations of ExPLAIND to reduce emissions while preserving
interpretability guarantees.

B EXTENDED LITERATURE REVIEW

This section provides an extended version of the literature review (see 2), including additional material
relevant to the present work that was omitted from the main paper due to space constraints.

Post-hoc interpretability. There are many more approaches to post-hoc interpretability methodology
that fall into one the three traditional explainability types, input feature attribution (Ribeiro et al.,
2016; Lundberg & Lee, 2017; Binder et al., 2016; Zeiler & Fergus, 2013), the training data attribution
(Park et al., 2023; Grosse et al., 2023; Chen et al., 2022; Ilyas et al., 2022; Bae et al., 2024; Liu et al.,
2025; Ghorbani & Zou, 2019; Koh & Liang, 2017), and model component attribution (Tenney et al.,

14
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2019; Wiegreffe & Pinter, 2019; Vig et al., 2020; Nanda, 2023; Arditi et al., 2024; Tang et al., 2024;
Olah et al., 2020; Elhage et al., 2022; Rai et al., 2024).

Grokking. Grokking refers to a training phenomenon where models initially overfit but eventually
generalize after prolonged training (Power et al., 2022). Liu et al. (2023) expanded this study to a
broader suite of tasks and model architectures, providing a systematic characterization of Grokking’s
occurrence. More recent work (Wang et al., 2024b; Zhu et al., 2024; Huang et al., 2024) explores
the implicit reasoning capabilities that arise during Grokking, the critical role of dataset size, and
their connection to the double descent phenomenon. Nanda et al. (2023) argue that Grokking occurs
in three phases: memorization, circuit formation, and cleanup. Our work refines this narrative,
instead suggesting a progression through memorization, representation pipeline formation, and
embedding-decoder alignment.

C TECHNICAL DETAILS AND HYPERPARAMETERS

In the next two sections, we specify the technical details of our models and data, as well as the
hyperparameters we use. All implementation is provided in the supplementary material. In Section
C.3 we detail the computation resources we used.

C.1 CNN MODEL

We train a ResNet 9 model (He et al., 2016) with with 5 layers and two residual blocks, each consisting
of two additional convolution layers with max-pooling, ReLU activations and a logarithmic softmax
over the two dimensional output. We take the CIFAR-2 subset of CIFAR-10 (Krizhevsky et al., 2014)
consisting of the classes dog and cat (10000 samples) and train using SGD with momentum of 0.9 for
12 epochs with a mini-batch size of 256 and weight decay of 0.005. We use a learning rate schedule
that peaks in epoch 5 at 0.1. The loss is a cross entropy loss assuming logarithmic probability inputs.

C.2 TRANSFORMER MODEL

The Transformer model, which was proposed by Varma et al. (2023) and used by Nanda et al. (2023),
has a single layer encoder as described by Vaswani et al. (2017) and a decoder that consists of a
single, fully connected layer mapping from the hidden dimension of 64 to the 115-token vocabulary.
We use a 115-token input embedding without positional encoding, followed by a multi-head attention
layer with four heads, each mapping to a space of dimension 16. We refer to the modules mapping to
the lower dimensional spaces, that are used to compute the attention scores, as attention encoder, and
accordingly call the modules reading from the representations after applying attention as attention
decoder. The MLP layer on top of that consists of two fully connected layers (Linear 1 and Linear
2), which map to and read from a 512-dimensional latent space. We visualize the transformer in the
legend of Figure 3a.

We train on full batches using AdamW with a fixed learning rate of 0.001, weight decay of 4.0, and
β1 = 0.98, β2 = 0.99 for the scaling parameters of the first and second moment estimates of the
gradient, respectively.

The dataset consists of 4000 samples which each contain four tokens, namely the number [a], an
addition token [+], the number [b] and the token [mod 113 =]. Here, a, b ∈ {0, 1, ..., 112} and
we always enforce a ≥ b, leading to a total number of 113·112

2 = 6328 possible data points of which
we include 4000 randomly sampled ones in the train set and another 2000 in the test set labeled with
the correct output token [c] containing the correct result c = (a + b) mod 113 which has to be
predicted.

C.3 COMPUTE RESOURCES USED IN OUR EXPERIMENTS

Model training and retraining were carried out on a 20GB partition of NVIDIA A100 GPU for a
total of less than 5 hours. Applying ExPLAIND to both models was much more compute intensive,
resulting in about 20 hours of computation on a H200 GPU with 140GB GPU-RAM. Debugging and
running the ablations presented, we carried out 12 such full runs of the EPK predictions computing
ExPLAIND influence scores, leading to a total of about 240 H200 GPU-hours.
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D PROOFS AND MATHEMATICAL DETAILS

D.1 PROOF OF THE EPK EQUIVALENCE FOR ADAMW

We first restate the Theorem.

Statement (Kernel Equivalence for AdamW, repetition from Theorem 3.1 in main text)

Let fθ : X → Y be a model with parameters θ ∈ Θ mapping inputs x ∈ X ⊆ RI to outputs
y ∈ Y ⊆ RO. Further assume that the final parameters θN are the result of optimizing fθ0
from an initialization θ0 on a dataset D = {(x1, y1), ..., (xM , yM )} with M samples and loss
L : Y × Y → R≥0 using AdamW with weight decay λ ∈ R≥0 over batches Batchs ⊆ D and
learning rates αs ∈ R>0, s ∈ {1, ..., N}. Then the final model prediction fθN (x) of a sample x ∈ X
decomposes into

fθN (x) = fθ0(x)−
M∑
k=1

N∑
s=1

ϕtests (x) · ϕtrains (xk)
⊤ · ak,s−

N∑
s=1

ϕtests (x) · rs (9)

where θs(t) := θs − t(θs − θs+1) is the linear mixture of parameters between step s and s+ 1, and

ak,s :=

(
dL(fθs(0)(xk), yk)

dfθs(0)(xk)

)⊤

∈ RO

αs,i:= αs(1− β1)β
s−i
1

√
1− βs

2

1− βs
1

∈ R

rs:= αsλθs(0) ∈ RD

ϕtests (x) :=

∫ 1

0

∇θfθs(t)(x) dt ∈ RO×D

ϕtrains (x) :=

s∑
i=0

αs,i

1x∈Batchi∇θfθi(0)(x)√
vs

∈ RO×D.

Proof. Let x ∈ X and ys = fθs(x). To rewrite each change ys+1 − ys in terms of a gradient flow,
we parameterize the derivative of the parameters as follows

dθs(t)

dt
= θs+1 − θs∫

dθs(t)

dt
dt =

∫
θs+1 − θsdt

θs(t) = θs + t(θs+1 − θs)

(10)

Each AdamW update step can be written as

θs = θs−1 − αs ·
√
1− βs

2

1− βs
1

· ms√
vs

− αsλθs−1−

Rewriting the Adam update rule we obtain

ms = β1 ·ms−1 + (1− β1) · ∇θL(θs−1) =

s∑
i=1

(1− β1) · βs−i
1 · ∇θL(θi−1)

vs = β2 ·ms−1 + (1− β2) · (∇θL(θs−1))
2 =

s∑
i=1

(1− β2) · βs−i
2 · (∇θL(θi−1))

2.

(11)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Note that the regularization term does not flow into the momentum term ms for AdamW. Combining
the above, for the gradient flow, we can thus write

dθs(t)

dt
= −αs

√
1− βs

2

1− βs
1

ms√
vs

− αsλθs−1

= −αs

√
1− βs

2

1− βs
1

∑s
i=1(1− β1)β

s−i
1 ∇θL(θi−1(0))√
vs

− αsλθs−1

= −
s∑

i=1

αs,i∇θL(θi−1(0))
√
vs

−1 − αsλθs(0)

= −
s∑

i=1

αs,i ·

(
M∑
k=1

dL(fθi−1(0)(xk), yk)

∂θ

)
√
vs

−1 − αsλθs(0)

= −
M∑
k=1

s∑
i=1

αs,i ·
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θ
(
√
vs)

−1 − αsλθs(0)

(12)

where we introduce the step learning rate to declutter the notation

αs,i := αs(1− β1)β
s−i
1

√
1− βs

2

1− βs
1

. (13)

Spelling out the dot product of the gradients via the sum that runs over index j, we can use this
substitution to find that

dfθs(t)

dt
=
df

dθ
· dθ
dt

=
df

dθ
·

[
−

M∑
k=1

s∑
i=1

αs,i ·
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θ
(
√
vs)

−1 − αsλθs(0)

]

= −
M∑
k=1

D∑
j=1

s∑
i=1

αs,i ·
dfθs(t)(x)

∂θj

dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj
(
√
vs)

−1
j

− αsλ
df

dθ
θs(0)

(14)

where, for now, we stick to full-batch parameter updates in the substitution of the gradients and later
account for the mini-batches through indicator variables. Since

dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj
∈ R,

we have

dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj
=

(
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj

)⊤

. (15)

Combining that with the fact that for suitable matrices A,B,C we have A(BC)⊤ = AC⊤B⊤ we
can rewrite

dfθs(t)

dt
= −

M∑
k=1

D∑
j=1

s∑
i=1

αs,i

dfθs(t)(x)

∂θj

(
dfθi−1(0)(xk)

∂θj
(
√
vs)

−1
j

)⊤(
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

)⊤

− αsλ
df

dθ
θs(0)

= −
M∑
k=1

s∑
i=1

αs,i∇θfθs(t)(x)

(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k − αsλ∇θfθs(t)(x) · θs(0)

(16)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where we define

ai,k :=
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)
=

(
∂L

∂f0

∂L

∂f2
· · · ∂L

∂fT

)⊤

. (17)

Using the second fundamental theorem of calculus, we can compute

fs+1(x)− fs(x) =

∫ 1

0

dfθs(t)(x)

dt
dt

=

∫ 1

0

(
−

M∑
k=1

s∑
i=1

αs,i∇θfθs(t)(x)

(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k −

αsλ∇θfθs(t)(x) · θs(0)

)
dt

= −
M∑
k=1

s∑
i=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k

−
N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0)

= −
s∑

i=1

M∑
k=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k−

N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0).

(18)

Combining over the full path of the gradients during training, we thus have

fθN (x) = fθ0(x) +

N∑
s=1

fs+1(x)− fs(x)

= fθ0(x)−
N∑
s=1

s∑
i=1

M∑
k=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k

−
N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0)

(19)

which is of the form we wanted to derive. For mini-batch updates, we only need to consider the
gradients ∇θfθi−i(0)(xk) of the training samples xk that were present in Batchi. We express this by
introducing an indicator variable 1xk∈Batchi

to the train feature map which is one iff sample x was
in the mini-batch Batchi of step i. With this, we only calculate the train feature map with respect to
the actual training samples involved in each step:

fθN (x) = fθ0(x)−
N∑
s=1

s∑
i=1

M∑
k=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(
1xk∈Batchi

∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k

−
N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0)

= fθ0(x)−
M∑
k=1

N∑
s=1

ϕtests (x) · ϕtrains (x′) · ak −
N∑
s=1

ϕtests (x) · rs

(20)
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where we further define

ϕtests (x) :=

∫ 1

0

∇θfθs(t)(x) dt

ϕtrains (x) :=

s−1∑
i=0

αs,i

1xk∈Batchi∇θfθi−1(0)(xk)√
v̂s

rs := αsλθs(0).

(21)

Remark. If the ai,k = ak are constant over the training process, we can further simplify to

fθN (x) = fθ0(x)−
M∑
k=1

[
N∑
s=1

ϕtests (x) · ϕtrains (xk)

]
· ak −

N∑
s=1

ϕtests (x) · rs

= fθ0(x)−
M∑
k=1

I(x, xk) · ak −
N∑
s=1

ϕtests (x) · rs

(22)

for function I(x, xk) :=
∑N

s=1 ϕ
test
s (x) · ϕtrains (xk).

In practice, this holds for many scenarios. For example, it is the case for the logarithmic cross
entropy loss we are using for our models. There, we assume the model outputs fθi−1(0)(xk) to be
log-probabilities (implemented by a final log-softmax non-linearity) and thus have

L(yk, fθi−1(0)(xk)) = −
C∑

c=1

(yk)c(fθi−1(0)(xk))c (23)

where C is the number of classes and which implies that

ai,k =
dL(yk, fθi−1(0)(xk))

dfθi−1(0)(xk)
= −yk (24)

are constant over the training steps i.

Remark. If fθ0 is constant, then the above reformulation is the regularized kernel machine (see Bell
et al. (2023)). In order for I to become a kernel function, one has to introduce a conditional, unified
feature map that computes the correct result depending on the nature of the input sample.

D.2 PROOF OF COROLLARY 3.2

For the CNN model, we use a GD optimizer where the regularization term introduced by weight
decay flows into the momentum term. We therefore derive the EPK also for this optimizer.

We first restate the statement:

Statement (Kernel Equivalence for GD with Momentum, repetition of Corollary 3.2 in main text)

We consider gradient descent with momentum β, learning rate schedule αs, and weight decay λ, i.e.
the update equation is

θs = θs−1 − αsβbs

where bs is defined recursively as

b0 = ∇θf(θ0), bs = βbs−1 +∇θf(θs−1) + λθs−1.

We derive the same EPK decomposition

fθN (x) = fθ0(x)−
M∑
k=1

N∑
s=1

ϕtrains (xk) · ϕtests (x)⊤ · a⊤k,s − λαs

N∑
s=1

ϕtests (x) · rs

19
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where

ak,s =
dL(fθs(0)(xk), yk)

dfθs(0)(xk)

αs,i = αs · βs−i

ϕtests (x) =

∫ 1

0

∇θfθs(t)(x) dt

ϕtrains (x) = 1x∈Batchi

s−1∑
i=0

αs,i∇θfθi(0)(x)

rs =

s−1∑
i=0

αs,iθi.

We note that compared to Theorem 3.1 the regularization term changes to

rs = αs

s−1∑
j=0

βs−jθj(0).

Proof. Writing out the recursive definition of bs, we thus have

θs = θs−1 − αsβ

(
s∑

i=1

βs−i (∇θf(θi−1) + λθi−1)

)

= θs−1 −
s−1∑
i=0

αsβ
s−i∇θf(θi)− αs

s−1∑
i=0

λβs−iθi.

From this observation, we can follow analogous arguments as in the proof of Theorem 3.1 to obtain
the EPK of GD with momentum.

D.3 INFLUENCE ACCUMULATION

The ExPLAIND formulation of influence gives us a tensor that enables the attribution of model
behavior to each of these dimensions across different, unified perspectives—these are the dimensions
of influence we sum over—and granularities, corresponding to the size of the sets we sum over. Here
we expand the examples given in the main text:

• Single parameter. The influence of a single parameter θ(i) on a given prediction of a sample
x, is given by the accumulation of parameter-wise kernel scores over the training set , i.e.

Ψ(θ(i), x)j =

M∑
k=1

N∑
s=1

D∑
i=1

ψs(θ
(i), x, xk)j .

• Layer-level at a specific training step. The influence of all parameters in a layer ΘL at
training step s on the prediction for x is

Ψs(ΘL, x) =
∑

θ(i)∈ΘL

M∑
k=1

O∑
j=1

ψs(θ
(i), x, xk)j .

• Data partition through a layer. The influence of a layer ΘL on x due to a subset of training
data X ⊆ Dtrain (for example, a data class) at step s is

Ψs(ΘL, x,X) =
∑

θ(i)∈ΘL

∑
xk∈X

O∑
j=1

ψs(θ
(i), x, xk)j .
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E ADDITIONAL RESULTS

In this appendix, we provide additional figures from our experiments that were omitted from the main
text.

Train Set
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Figure 6: Other slices of the kernel matrix of the Transformer model. The EPK of all layers for
predictions of the test set and the training set accumulated over preceding 50 steps, labeled with sum
of inputs a+ b and respective result (a+ b mod c).
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(a) Accuracy changes when swapping in different lay-
ers from checkpoints over the training. The layers not
part of the representation pipeline generally improve
performance after the pipeline has startet to develop.

(b) Step 1100 (c) Step 1100, swapped

(d) Step 1700 (e) Step 1700, swapped

Figure 7: Layer swapping validations. Left: We swap different layers of the final Transformer
model into checkpoints across the training trajectory and find that the layers involved in the final
alignment phase (the embedding, second linear layer and the decoder), improve accuracy by over 15%,
supporting our hypothesis of a pipeline of intermediate layers developing a generalizing representation
before the final Grokking phase. Right: Confusion matrices of two unedited checkpoints and their
respective swapped versions. Note the decrease in systematic errors on the off-diagonals.
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Figure 8: Training on grokked intermediate representation pipelines. We train a model initialized
with the different parameters taken from different checkpoints and model components and initialize
the rest at random. This leads to rapid, and direct generalization over 5 different runs when we take
the attention weights (here ‘Att.’ refers to both the encoder and decoder of the attention layer) from
later training steps, when the intermediate pipeline has already generalized. We report the mean over
five runs and standard deviation as dotted error bars.
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Figure 9: Lasso regression on influence similarities. We fit the second linear layers similarity
domain introduced in steps 1850 to 1900 with a lasso regression. Features are the cosines and sines of
frequencies from 2 to 113 of the pairwise differences of the sums of the samples. Shown: Predictions
of the similarity as predicted by the regression. The resulting similarity pattern indicates that the
model indeed learns to map the samples into space where distance is approximately a cosine of
frequency 113. We report the exact regression coefficients in Table 2.

Table 2: Lasso regression on influence similarities. We fit the second linear layers similarity
domain introduced in steps 1850 to 1900 with a lasso regression. Features are the cosines and sines
of frequencies from 2 to 113 of the pairwise differences of the sums of the samples. The table shows
all non-zero regressions coefficients of cosines frequency.

cos frequency Regression Coefficient
113 0.112333
76 0.008232
51 0.004451
75 0.003616
52 0.001763
37 0.000679
13 0.000483
28 0.000259
38 0.000093
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Figure 10: Full similarity plots. Similarity plots of test set predictions of the Transformer model
accumulated over different training stages.
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