
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLAIND: UNIFYING MODEL, DATA, AND
TRAINING ATTRIBUTION TO STUDY MODEL BEHAVIOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-hoc interpretability methods typically attribute a model’s behavior to its com-
ponents, data, or training trajectory in isolation. This leads to explanations that lack
a unified view and may miss key interactions. While combining existing methods or
applying them at different training stages offers broader insights, such approaches
usually lack theoretical support. In this work, we present ExPLAIND, a unified
framework that integrates all these perspectives. First, we generalize recent work
on gradient path kernels, which reformulate models trained by gradient descent as
a kernel machine, to realistic settings like AdamW. We empirically validate that a
CNN and a Transformer are accurately replicated by this reformulation. Second,
we derive novel parameter- and step-wise influence scores from the kernel feature
maps. Their effectiveness for parameter pruning is comparable to existing meth-
ods, demonstrating their value for model component attribution. Finally, jointly
interpreting model components and data over the training process, we leverage
ExPLAIND to analyze a Transformer that exhibits Grokking. Our findings support
previously proposed stages of Grokking, while refining the final phase as one of
alignment of input embeddings and final layers around a representation pipeline
learned after the memorization phase. Overall, ExPLAIND provides a theoretically
grounded, unified framework to interpret model behavior and training dynamics.

1 INTRODUCTION

model
components

training
data

training

∑ ϕs(θ, x, x′￼)j
II . Explain by accumulating
scores from different
perspectives and granularities

ϕs(θ, x, x′￼)j

I. Model decomposes into
influence scores

Figure 1: The ExPLAIND framework is based on
the decomposition of the model along its compo-
nents, training data, and training steps. Explana-
tions are obtained by accumulating the resulting
influence scores.

Understanding the latent mechanisms of deep neu-
ral networks remains one of the central challenges
in machine learning (Rudin et al., 2021; Rai et al.,
2024; Zhang et al., 2025). As models become in-
creasingly complex, interpretability has become
an increasingly crucial tool — not just for debug-
ging or improving transparency, but for building
trust, ensuring fairness, and guiding further devel-
opment (Doshi-Velez & Kim, 2017). Much of the
recent progress in interpretability has focused on
attributing a model’s behavior to one of three main
factors: its components, the data it was trained on,
or the dynamics of the training process itself.

However, these approaches are often applied in
isolation. Explanations focused on model compo-
nents may ignore the influence of individual train-
ing examples or how these components evolved
during optimization. Data-centric explanations
can overlook how different parts of the model in-
ternalize those examples. This fragmentation thus
limits our understanding, leaving important inter-
actions unexplored. While some work has probed
training dynamics (Müller-Eberstein et al., 2023;
Tigges et al., 2024; Prakash et al., 2024), their insights often remain only loosely connected to
analyses of model architecture or input data and lack a theoretical connection between checkpoints.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address this fragmentation, we propose Exact Path-Level Attribution Integrating Network and
Data (ExPLAIND), a unified framework that captures how data, model components, and training
dynamics jointly influence model behavior. ExPLAIND builds on the Exact Path Kernel (EPK, Bell
et al., 2023) view of gradient-based learning, but extends it to modern training regimes. With this,
ExPLAIND provides a theoretically grounded lens through which we can analyze how individual
training examples influence model components throughout training. This unified perspective helps,
for example, to interpret emergent learning phenomena such as Grokking (Power et al., 2022).

Our work makes the following contributions:

(i) Theoretical extension of EPK. We generalize the EPK to modern training regimes with
optimizers that include first- and second-order gradient estimates, weight decay, dynamic
learning rates, and mini-batching (see Section 3). We empirically validate that our kernel
accurately represents both a CNN on a vision task and a Transformer on a math task.

(ii) ExPLAIND framework. Based on this theoretical foundation, we derive novel influence
scores that quantify how individual parameters, training samples and training steps contribute
to model predictions (see Section 4). The framework can be applied at different levels of
granularity and from different perspectives, such as parameter level, data level and training-
step level, cf. Figure 1. We validate the effectiveness of these scores for model component
attribution via competitive parameter pruning.

(iii) Case study of Grokking. To demonstrate the capabilities of ExPLAIND, we apply the
framework to a Transformer model known to exhibit Grokking (see Section 5). For the
widely studied modulo addition Transformer, we uncover a previously unreported alignment
phase where input embeddings and final layers interestingly align around a representation
pipeline learned in the preceding training steps.

Thereby, ExPLAIND offers a theoretically grounded, empirically validated, and practically useful
framework for analyzing modern machine learning architectures in a holistic manner.

2 RELATED WORK

We highlight the most directly relevant works and provide a more detailed discussion of the related
literature in Appendix B.

Post-hoc interpretability. Post-hoc interpretability methods typically attribute model behavior to
one of input features (Ribeiro et al., 2016), training data (Koh & Liang, 2017), or model components
(Alain & Bengio, 2018). However, many approaches lack a theoretical foundation (Lipton, 2017;
Saphra & Wiegreffe, 2024; Doshi-Velez & Kim, 2017; Basu et al., 2020; Bae et al., 2022) and
can trade faithfulness for plausibility of explanations (Jacovi & Goldberg, 2020). Other work has
extended interpretability into the temporal dimension, attributing model behavior to the training
dynamics. For example, probing or circuit finding has been applied at different model checkpoints
to identify learning phases (Müller-Eberstein et al., 2023; Tigges et al., 2024; Prakash et al., 2024).
However, these approaches typically treat each training step independently, lacking a theoretical
framework for integrating changes in model behavior over time.

Path kernel methods. Gradient path kernels (Domingos, 2020) reformulate a model trained by
gradient descent as a kernel machine. Bell et al. (2023) extended this perspective to an exact
equivalence, deriving the Exact Path Kernel (EPK). However, their formulation does not cover
realistic learning scenarios involving gradient updates based on first- and second-order estimates,
weight decay, dynamic learning rates, and mini-batching. Central to the EPK reformulation is the
stepwise comparison of training and test sample gradients via dot products. This connects the EPK to
the Neural Tangent Kernel (Jacot et al., 2018), which it generalizes over the training trajectory. The
data attribution method TracIn (Pruthi et al., 2020) also measures dot-product gradient similarities
across training steps for data attribution, but it lacks a theoretical connection to model predictions.

3 AN EXACT PATH KERNEL EQUIVALENCE FOR ADAMW

ExPLAIND is based on the EPK by decomposing the model predictions into fine-grained units of
influence along the training data, model parameters, and training steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To capture the dynamics of modern optimization, including weight decay, moment estimates, learning
rate schedules, and mini-batching, we focus on the AdamW optimizer (Loshchilov & Hutter, 2019).
Here, the parameter update at step s ∈ {1, ..., N} is of the form

θs = θ̂s−1 − αs ·
m̂s

(
√
v̂s + ϵ)

with θ̂s−1 = θs−1 − αsλθs−1 (1)

where αs ∈ R>0 denotes the learning rate schedule, λ ∈ R>0 the weight decay, and Batchs ⊆ D
denotes the mini-batch drawn from the training set D = {(x1, y1), . . . , (xM , yM)}. The first and
second moments ms, vs and their bias-corrected estimates are computed recursively via

ms = β1 ·ms−1 + (1− β1) · ∇θL(θs−1) m̂s =
ms

1− βs
1

vs = β2 · vs−1 + (1− β2) · (∇θL(θs−1))
2 v̂s =

vs
1− βs

2

.

To reformulate models trained with AdamW as kernel machines over their training trajectory, we
generalize the EPK to account for weight-decay, mini-batching and moment estimates. The following
theorem states our main result for AdamW. A corresponding corollary then specializes this extension
to gradient descent with momentum and weight decay.
Theorem 3.1 (Extension of Bell et al. (2023) to AdamW). Let fθ : X → Y be a model with
parameters θ ∈ Θ mapping inputs x ∈ X ⊆ RI to outputs y ∈ Y ⊆ RO. Further assume
that the final parameters θN are the result of optimizing fθ0 from an initialization θ0 on a dataset
D = {(x1, y1), ..., (xM , yM)} with M samples and loss L : Y × Y → R≥0 using AdamW with
weight decay λ ∈ R≥0 over batches Batchs ⊆ D and learning rates αs ∈ R>0, s ∈ {1, ..., N}.
Then the final model prediction fθN (x) of a sample x ∈ X decomposes into

fθN (x) = fθ0(x)−
M∑
k=1

N∑
s=1

ϕtests (x) · ϕtrains (xk)
⊤ · ak,s−

N∑
s=1

ϕtests (x) · rs (2)

where θs(t) := θs − t(θs − θs+1) is the linear mixture of parameters between step s and s+ 1, and

ak,s :=

(
dL(fθs(0)(xk), yk)

dfθs(0)(xk)

)⊤

∈ RO

αs,i:= αs(1− β1)β
s−i
1

√
1− βs

2

1− βs
1

∈ R

rs:= αsλθs(0) ∈ RD

ϕtests (x) :=

∫ 1

0

∇θfθs(t)(x) dt ∈ RO×D

ϕtrains (x) :=

s∑
i=0

αs,i

1x∈Batchi
∇θfθi(0)(x)√
vs

∈ RO×D.

Sketch of Proof. We follow similar arguments as Bell et al. (2023). The key difference is to start from
the parameter update given in Eq. (1) and to account for mini-batches through indicator variables.
The complete proof is in Appendix D.1.

Corollary 3.2 (Gradient Descent with Momentum). In the same setup as in Theorem 3.1, but for
gradient descent with momentum β and learning rates αs with update equation

θs = θs−1 − αsβbs

where bs is defined recursively as

b0 = ∇θf(θ0), bs = βbs−1 +∇θf(θs−1) + λθs−1

we derive a similar decomposition as in Theorem 3.1, but with the regularization term changing to
rs = αs

∑s−1
j=0 β

s−jθj(0).

Proof. We follow a similar approach as in Theorem 3.1. The key difference is the absence of the
second-order term and that the regularization term moves into the momentum term, which results in
the reformulation of the respective terms. The full proof can be found in Appendix D.1.

We further derive the following corollary which decomposes the trajectories of intermediate model
activations (such as layers) as well as the loss. We can use this later for the interpretation of
intermediate model activations, for example, at an intermediate layer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Corollary 3.3 (Loss and intermediate activations). Assume the setup of Theorem 3.1 holds. Further-
more, let the model be of the form fθ = hκ ◦ gι. Then the loss L(fθN (x), y) and the intermediate
activations gι(x) decompose analogously to the equation in Theorem 3.1.

Proof. For the loss, we can set L̃ = id and f̃(x) = L(fθN (x), y) and apply Theorem 1. Analogously,
we can set L̃(y′, y) = L̃(hκ(y

′), y) and f̃(x) = gι to derive the second statement.

3.1 VALIDATION OF EXACT MODEL REPRESENTATION

Table 1: We report the accuracy of the EPK
representation with respect to model predic-
tions, and the output similarity measured by
KL divergence. For 100 integration steps,
the EPK matches the trained model.

Model ResNet9 Transformer
Data CIFAR-2 MOD-113

Integration Steps 10 100 10 100
EPK Accuracy 0.997 1.0 0.748 1.0
KL Divergence 0.0 0.0 0.885 0.0

To empirically validate the exact equivalence of Theo-
rem 3.1 and Theorem 3.2, we compute the EPK for a
Transformer model and a CNN.1 For this, we evaluate
different numbers of integration steps in the test feature
map ϕtest and summarize the results in Table 1. The de-
rived formulation provides an accurate approximation
for both models, reproducing 100% of their classifica-
tion decisions. Furthermore, the output distributions
closely match those of the original models, indicated
by near-zero KL divergences. We therefore use 100
integration steps for ϕtest for the rest of this study.

4 THE EXPLAIND FRAMEWORK

We now build on the established EPK of the training with realistic optimizers such as AdamW and
define the ExPLAIND framework, which attributes prediction at the level of training samples, model
parameters, and training steps. The key idea is a tensor of influences which indexes contributions by
training steps, parameters, training samples, and outputs. Different explanations are then obtained by
accumulating this tensor along selected axes, leading to parameter-, data-, and step-wise attributions
at arbitrary levels of granularity, as visualized in Figure 1. We denote the influence of a parameter
θ(i) at step s due to training sample xk on the prediction of class j of a sample x as

ψs(θ
(i), x, xk)j := ϕtrains (xk)j,i · ϕtests (x)j,i · (ak,s)j ∈ R

and the influence of the regularization at step s on the same prediction as

ψreg
s (θ(i), x)j := ϕtests (x)j,i · (rs)i ∈ R.

We collect all atomic scores into one multi-dimensional object, with axes corresponding to steps,
parameters, test samples, training samples, and outputs.
Definition 4.1 (Tensor of Influences). For a set of training steps S ⊂ {1, 2, ..., N}, model parameters
Θ ⊂ {θ(1), θ(2)..., θ(D)}, predictions Xtest ⊂ Dtest, training samples Xtrain ⊂ Dtrain, and outputs
J ⊂ {1, ..., O} we define the respective tensor of influences as

ΓS(Θ,Xtest,Xtrain)J := (ψs(θ, x, x
′)j)s∈S,θ∈Θ,x∈Xtest,x′∈Xtrain,j∈J (3)

where, by convention, if e is not already a set we identify it with the singleton {e}.

Rewriting Theorem 3.1 using this definition, the j-th coordinate of the model output can be written as

fθN (x)j = fθ0(x)j −
M∑
k=1

N∑
s=1

D∑
i=1

ψs(θ
(i), x, xk)j −

N∑
s=1

ψreg
s (θ(i), x)j . (4)

Hence, the scores ψs(θ
(i), x, xk)j are additive and sum up to the model prediction. The naturally

arising backbone of our ExPLAIND framework is the accumulation of these scores over different
(sub-)sets of parameters, training and test samples, as well as training steps. We make this explicit
with the following definition.

1We provide our code in the supplementary material, and report technical details in Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 4.2 (Accumulated influence). Given the same setup as in Definition 4.1, the accumulated
influence is the sum of the tensor of influences over selected axes:

ΨS(Θ,Xtest,Xtrain)J := sum(ΓS(Θ,Xtest,Xtrain)J) (5)

where sum sums up the elements along all dimensions of the tensor. Furthermore, we define leaving
out a category in the arguments of Ψ or Γ as summing over the complete set along it.2

To account for differences in sign across influences to different predictions and outputs, we further
define the accumulated importance as follows

Ψ̄S(Θ,Xtest,Xtrain)J :=
∑

x∈Xtest

∑
j∈J

|ΨS(Θ, x,Xtrain)j |. (6)

We denote the analogous definitions for the regularization scores with Γreg , Ψreg, and Ψ̄reg .

This formulation allows us to explain model behavior in a unified way across different dimensions.
By choosing which axes of the influence tensor to keep and which to sum over, we obtain different
perspectives such as parameter-level, data-level, or step-level attribution. Within each perspective,
the granularity of the explanation depends on the size of the sets we consider. For example, if we
want to study the influence of a single parameter θ(i) on a given prediction of a sample x, we can
accumulate parameter-wise kernel scores over the training set as Ψ(θ(i), x). In order to zoom out
to the layer level per training step, we sum up the scores of all parameters that are a part of a layer
ΘL of the dataset at step s, i.e. compute Ψs(ΘL, x). We provide more details and more examples in
Appendix D.3 and illustrate the power of such explanations when studying Grokking in Section 5.

To investigate the relative influence of the regularization term, we furthermore define the accumulated
parameter-wise difference of absolute influences.
Definition 4.3 (Influence of the regularization). With analogous definitions and conventions as above,
we define the parameter-wise relative regularization influence on the model behavior as the difference

DS,Xtrain,Xtest,J (Θ) :=
∑
θ∈Θ

(ΨS(θ,Xtest,Xtrain)J −Ψreg
S (θ,Xtest,Xtrain)J) . (7)

Finally, we define the similarity of two predictions with respect to different parts of the model
as the cosine similarity of their respective scores. This is a common avenue for interpreting high
dimensional spaces, and allows us to compare the high dimensional tensors.
Definition 4.4 (Similarity from the model’s perspective). With analogous definitions and conventions
as above, we define the similarity of two predictions x, x′ ∈ X as

SimS,Θ,Xtrain,J (x, x′) :=
flat(ΓS(Θ, x,Xtrain)J) · flat(ΓS(Θ, x

′,Xtrain)J)

||ΓS(Θ, x,Xtrain)J || · ||ΓS(Θ, x′,Xtrain)J ||
(8)

where flat transforms a tensor into a vector and || · || is the vector ℓ2-norm.

Similarly to the previous examples of influences of different granularities and unified perspectives,
our notions of similarity and regularization influence can be generalized along the other dimensions,
e.g., training samples, steps, or model components. Furthermore, we remark that explaining model
behavior through the influence tensors Γ, the backbone of the ExPLAIND framework, can also be
carried out using other forms of accumulation, which we leave to future work.

4.1 EFFICIENT IMPLEMENTATION

Recall that all previous derivations rely on accumulating slices of the influence tensors. Depending on
the desired lens, this design choice has implications for the efficiency of the resulting computations.
For example, for influence scores accumulated over the training data, the time-complexity is equivalent
to a single training run. Materializing all scores up to parameter level is expensive, however, as the
memory complexity alone is in O(NDMO) for N training steps, D parameters, M training samples,
and O dimensions. By making a suitable choice restricting these dimensions, ExPLAIND gives an

2For example, Ψ(Θ,Xtest,Xtrain) is the influence summed over all steps S and all output dimensions J .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

interface to control the trade-off between high and low granularity of explanations, i.e. whether they
are local or global along the aforementioned dimensions, and thereby also the level of faithfulness of
the explanations, which comes at a higher cost as argued before.

Although our empirical study and demonstration of ExPLAIND in Section 5 is focused on small
scenarios, this intuition offers a clear path for applying ExPLAIND to larger architectures and
datasets. There, we propose to rely on (1) (early) accumulation of relevant parts of the influences to
reduce computational and memory requirements (e.g. the gradients can be computed over the batches
directly if the data-perspective is more coarse-grained), and (2) on subsampling the influences to
reduce the number of steps, samples or parameters necessary to consider.

4.2 VALIDATION THROUGH PARAMETER PRUNING

0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2
Method

Random
ExPLAIND
Baseline

Pruning results (coarse) KL divergence

Frac. of param. pruned
KL

 d
iv

er
ge

nc
e

0.7 0.8 0.9 1
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

Method
Random
ExPLAIND
Baseline

Pruning results (coarse) Test accuracy

Frac. of param. pruned

Te
st

 a
cc

ur
ac

y

0.97 0.98 0.99 1
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
Method

Random
ExPLAIND
Baseline

Pruning results (fine) Test accuracy

Frac. of param. pruned

Te
st

 a
cc

ur
ac

y

Figure 2: We prune the CNN weights and achieve test
accuracy comparable to Li et al. (2017). Across all
sparsity levels, the KL divergence of our model outputs
is consistently lower. We report the means and standard
deviations over 5 runs.

To validate our EXPLAIND-derived pa-
rameter importance scores, we conduct
pruning experiments on the CNN model,
ranking each parameter θ by its kernel im-
portance score ΨS(θ). For a fraction c and
number of parameters D, we only keep the
TOP-cD parameters and set the rest to zero.
To retain the model’s ability to predict, we
do not prune the output layer. To contextu-
alize our results, we compare them against
an implementation of Li et al. (2017), a
popular pruning method proposed to com-
press CNN models, which is based on an
iterative procedure in which the model is
retrained in each step after pruning weights by magnitude importance. As shown in Figure 2, we find
that our approach performs competitively against Li et al. (2017)’s approach on sparsity levels from
70% to 99%. Furthermore, our score-based, training-free pruning replicates the original model more
closely than the baseline as is evidenced by the much lower KL divergences over all levels of sparsity.
This underlines that our influence scores are indeed able to accurately quantify the influence of the
parameters on the model’s predictions. Note that this comparison is to validate that our method finds
meaningful influence scores and does not aim to frame ExPLAIND as a SOTA pruning method.

5 GROKKING ‘EXPLAIND’

Grokking is a training phenomenon where models first memorize, and then, after prolonged training,
suddenly generalize (Power et al., 2022). Nanda et al. (2023) argue for multiple learning stages:
(1) memorization of the training data, (2) circuit formation, in which the model learns a robust mecha-
nism and thus generalizes, and (3) cleanup, during which the regularization “removes” memorization
components. Other evidence emphasizes the role of dataset size, model capacity, and regularization
(Huang et al., 2024; Wang et al., 2024a). We use ExPLAIND to revisit these hypotheses, integrating
perspectives on model components, training data, and training dynamics in a single analysis. We
further verify our insights through ablation experiments.

As a testbed, we use the well-studied modulo addition task (Varma et al., 2023) where the samples are
of the form [a][+][b][mod113 =] and the model predicts the correct result. We train a Transformer
with AdamW (details in Appendix C.2). As shown in the top-left plot of Figure 3a, the model exhibits
Grokking: training accuracy rises sharply, reaching nearly perfect performance around step 800.
During this phase, test accuracy remains close to zero, but subsequently increases until reaching
100% at step 1939, at which point training is stopped.

5.1 INFLUENCE DECOMPOSITION

To study Grokking with ExPLAIND, we begin by decomposing the model’s predictions into kernel
and regularization influences over the full training trajectory (see Figure 3a). We then study their
layer-wise decompositions. This provides a global view of the training dynamics before, during, and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

500 1000 1500
0

0.5

1

Step

A
cc
ur
ac
y

A
cc

ur
ac

y

500 1000 1500
0

2

4

6 Train
Test

Step

Lo
ss

Step
0 500 1000 1500
0

2B

4B

Step

Ψ̄
s
(Θ

la
y
e
r
)

Step

0 500 1000 1500
0

20k

40k
Kernel
Regularization

Step

Ψ̄
s
(Θ

),
Ψ̄

r
e
g

s
(Θ

)

Step
0 500 1000 1500

−1M

0

1M

Step

D
s
(Θ

la
y
e
r
)

Step

Linear 2

Linear 1

Embedding

Decoder

Att. Encoder

Att. Decoder

71 + 42 mod 113

0

R
epresentation Pipeline

Legend (Transformer)

(a) Left: Accuracy and importances of kernel and regularization over the
training of the Transformer model. Right: Layer-wise importance of the
kernel (top) and influence of the regularization (bottom). As shown in the
legend on the right, the Transformer consists of an attention layer (Att.
Encoder and Att. Decoder) and an MLP (Linear 1 and Linear 2).

0 100 200

0

0.5

1

test
train

Step

A
cc
ur
ac
y

A
cc

ur
ac

y

Step

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

A
cc

ur
ac

y

Step

(b) We train a model initialized
with the representation pipeline
from the final model (top) and
from step 1539 (bottom) and ini-
tialize the rest at random.

Figure 3: Training statistics, influences, and validation of our representation pipeline hypothesis.

after generalization, and highlights which model components drive these phases. ExPLAIND reveals
the following trends in how kernel and regularization influences evolve across layers:

Kernel versus regularization balance. The absolute influences Ψ̄s(Θ) and Ψ̄reg
s (Θ) (bottom left

of Figure 3a) grow together from the start of memorization (around epoch 200), both peaking near
step 1700 before declining. In the final phase, Ψ̄reg

s (Θ) dominates which indicates that the final
training phase is governed by a higher relative influence of regularization.

Decoder dominance in memorization. On the layer level, the memorization phase coincides with a
peak in regularization influence Ds(Θlayer) (bottom right), and absolute influences Ψ̄s(Θlayer) (top
right) of the decoder. This establishes the decoder as the most influential component for memorization.

Middle-layer alternation and circuit formation. The second peak of the decoder influence (top
right) is preceded by peaks of the attention and linear layers, suggesting a single alternation between
fitting the decoder and the intermediate layers. This marks the beginning of the circuit formation
and hints at a representation pipeline forming in the middle layers.3 Their influence then decreases,
supporting this interpretation. With respect to regularization, both layers have a rather low influence,
indicating that regularization acts primarily on the embedding and decoder layers.

Late embedding dominance. The embedding layer only begins to influence predictions in the circuit
formation phase, evidenced by its sharp relative regularization dominance in Ds(Θlayer) and its rise
in Ψ̄s(Θlayer). Remarkably, the latter continues to increase slightly during the rest of the training
while all other layers’ influences decrease during this phase.

These insights suggest that the model progresses through a sequence of shifts in influence: decoder-
driven memorization, middle-layer alternation for circuit formation, and eventual embedding-decoder
dominance under higher regularization influence. The rapid increase in test accuracy can thus be
explained by a simultaneous alignment of the input embeddings and decoder around the representation
pipeline in the intermediate layers (marked in red in the Transformer in Figure 3a).

To confirm that the alignment around this representation pipeline is causal, we train models initialized
at random but replace only the Attention and Linear-1 layers with their grokked counterparts, which
we hypothesize to be central to the representation pipeline. As shown in Figure 3b, this initialization
leads to instant generalization within the first 200 training steps, and, in particular, bypasses the usual
memorization phase. Additional experiments (Appendix Figure 8) confirm that even using only the
attention layer produces the same phenomenon. Starting from earlier checkpoints leads to a similarly

3This interpretation is further supported by the simultaneous emergence of cyclic patterns on the influence
level around steps 450 - 500 (see Section 5.2 and Appendix Figure 10).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Train Set

Te
st

Se
t

Step 200 - 250 Step 1050 - 1100 Step 1850 - 1900

Ψ
(log)

Figure 4: At different training stages, we show the influences ΨS(Θdec, x, x
′) of the training examples

x′ on the test samples x of the decoder layer Θdec, summed over the output dimensions, for predictions
on the test set and the training set, accumulated over the preceding 50 steps. The plots are labeled and
ordered by the sum of inputs a+ b and the corresponding result (a+ b mod 113). Corresponding
figures for the other layers are provided in the Appendix in Figure 6.

rapid generalization, albeit with slightly lower final accuracy. This suggests a continuous refinement
of the representation pipeline during the circuit formation phase.

To further probe this effect, we swap grokked layers into intermediate checkpoints (see Appendix
Figure 8). The outer layers identified above consistently improve the predictions of these checkpoints,
whereas other combinations decrease performance. This shows that the aligned final embedding and
decoder layers can already operate effectively around a pipeline that is not yet fully generalized.

In sum, our findings refine the three-stage description of Grokking by Nanda et al. (2023) by showing
that in the final phase the model outer’ layers align around a generalized representation pipeline.
They also connect to the efficiency perspective by Huang et al. (2024): our findings suggest that once
a robust representation pipeline has formed, the influence of the regularization suppresses inefficient
memorization solutions. In next section we show that this representation pipeline encodes a cyclic
data geometry that becomes increasingly robust during training.

5.2 CYCLIC GEOMETRY

Next, we apply ExPLAIND from the data perspective to examine what structure the model learns. We
study two complementary objects: Ψs(Θdec, x, x

′) (Figure 4) capturing how training samples x′ influ-
ence predictions x with respect to the decoder and the similarity matrices SimΘlayer

(x, x′) (Figure 5)
which capture how samples are represented relative to each other. We find:

Emergence of cyclic patterns in the kernel. The vertical bands in Figure 4 reveal that at all training
stages, each training sample has a global influence. After memorization, off-diagonal patterns emerge
and sharpen, aligning with modular equivalence classes (a+ b mod 113). Initially, these cycles have
high frequency (about 2), i.e. the influence is strong for training samples whose label differences are
a multiple of 2. Later in training, this cyclic geometry continuously shifts towards lower frequencies.

Generalizable Data Geometry. Similarity matrices (Figure 5) suggest a similar emergence of cyclic
patterns, especially in the higher layers of the model. This indicates that the model indeed learns to
represent the samples in a space where similarity is approximately a cosine of frequency 113.
We test this hypothesis by fitting a Lasso regression to the similarity matrix accumulated over epochs
1850 to 1900 of the decoder, where we take as input features all cosines and sines of the pairwise
differences of frequencies 2 to 113. The result is shown in Appendix Figure 9 and indeed confirms
our qualitative observation with the coefficient of the cosine of frequency 113 being by far the largest.
Furthermore, we note that in the final model this representation emerges only in the attention decoders,
suggesting that the model first needs to combine the two input numbers and then proceeds to refining
the cyclic geometry observed in higher layers.

Revisiting our layer-swapping experiment, when comparing the confusion matrices of the swapped
and original checkpoints (see Appendix Figure 7 (b) to (e)), we observe that the systematic cyclic error
patterns on the off-diagonals are greatly reduced once the final model’s outer layers are swapped in,
further supporting the cyclic geometry identified and suggesting that the alignment of the embedding
and decoder indeed changes the prediction algorithm to one that uses the cyclic representations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Step att. encoder att. decoder linear 2 decoder

10
50

-1
10

0
18

50
-1

90
0

Figure 5: Similarity SimΘlayer
(x, x′) of predictions of the test set of the Transformer model accumu-

lated over different training stages. All layers and other training stages shown in Appendix Figure 10.

Our observations agree with Nanda et al. (2023), who find that neurons in the linear layers are
computing combinations different cosines and sines. As ExPLAIND reveals, the fine-grained, neuron-
level mechanisms that they describe result in a cyclic global pattern that is simple to interpret and the
result of a continuous refinement from cycles of higher to lower frequency.

Taken together, these results show that Grokking reflects the progressive refinement of a cyclic data
geometry and its alignment with input and output layers in the modulo addition Transformer.

6 DISCUSSION AND CONCLUSION

ExPLAIND offers a unified framework that bridges model components, data, and training dynamics,
addressing a gap in post-hoc interpretability. Building on gradient path theory, it extends the Exact
Path Kernel to realistic optimization regimes which is of independent interest. We validate the
EPK representation and demonstrate the effectiveness of the resulting scores in parameter pruning.
Through its theoretical foundation, ExPLAIND provides additive parameter-wise influence scores
that can be aggregated to different levels of granularity and viewed from multiple perspectives. This
positions ExPLAIND as a useful toolbox for unified attribution of model behavior.

Our exploratory study on Grokking highlights the utility of ExPLAIND by uncovering a novel
perspective on its learning phases, with a central role for alignment and capability reuse. In particular,
we identify an alignment phase characterized by the high relative influence of regularization on the
outer layers preceded by the building of a representation pipeline. In grokked models, this suggests
that further training serves to refine and re-use existing representations rather than build new ones.
Once a robust latent structure has formed, generalization may emerge through alignment of input and
output layers, challenging optimal training strategies.

Limitations. The ExPLAIND framework focuses on weight-level analysis and does not provide
mechanistic or causal explanations. In addition, the insights by ExPLAIND are of qualitative nature
and cannot yet be applied in an automated fashion. Besides, our study is limited to smaller models
and tasks. Finally, computing our influence scores has high complexity (see Section 4.1), although
we propose strategies to reduce runtime, in particular through increased granularity, which enable the
analysis of larger scenarios.

Future Work. ExPLAIND should be used to study larger models through the lenses provided. In
particular, it would be interesting whether our insights on Grokking in the modulo Transformer gen-
eralize to larger models and more complex tasks. More broadly, our results indicate that attributions
to data and model components vary substantially across training, with critical patterns emerging at
specific stages. Future interpretability methodology should therefore be designed to better surface
these critical stages. Finally, more of possible perspectives and granularities provided by ExPLAIND
should be studied. For example, Corollary 3.3 suggests that ExPLAIND can be used to interpret loss
and activation level attributions, pointing to another promising direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experimental methodology is described in detail in Appendix C, and all experiments are fully
reproducible. Source code will be released upon acceptance and is also provided as part of the
supplementary material. The proof of the main statement, Theorem 3.1, and Corollary 3.2 is included
in Appendix D, the proofs of the remaining statements are part of the main text.

LLM USAGE STATEMENT

We used large language models (LLMs) for editing the manuscript, including for grammar, spelling,
and rephrasing. We further use LLMs for support with coding. For both, we made sure to check
the validity and security of all LLM outputs. AI tools do not contribute substantively to the ideas,
research contributions, or results.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
November 2018. URL http://arxiv.org/abs/1610.01644.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in Language Models Is Mediated by a Single Direction, July 2024. URL
http://arxiv.org/abs/2406.11717.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B. Grosse. If
Influence Functions are the Answer, Then What is the Question? Advances in
Neural Information Processing Systems, 35:17953–17967, December 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
7234e0c36fdbcb23e7bd56b68838999b-Abstract-Conference.html.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Baker Grosse. Training Data Attribution via
Approximate Unrolling. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, November 2024. URL https://openreview.net/forum?id=3NaqGg92KZ&
noteId=rqHLyAT32Q.

Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence Functions in Deep Learning Are Fragile.
In International Conference on Learning Representations, October 2020. URL https://
openreview.net/forum?id=xHKVVHGDOEk.

Brian Bell, Michael Geyer, David Glickenstein, Amanda Fernandez, and Juston Moore. An Exact
Kernel Equivalence for Finite Classification Models, August 2023. URL http://arxiv.org/
abs/2308.00824.

Alexander Binder, Grégoire Montavon, Sebastian Bach, Klaus-Robert Müller, and Wojciech Samek.
Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers, April
2016. URL http://arxiv.org/abs/1604.00825.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. HYDRA: Hypergradient
Data Relevance Analysis for Interpreting Deep Neural Networks, December 2022. URL http:
//arxiv.org/abs/2102.02515.

Pedro Domingos. Every Model Learned by Gradient Descent Is Approximately a Kernel Machine,
November 2020. URL http://arxiv.org/abs/2012.00152.

Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable Machine Learning,
March 2017. URL http://arxiv.org/abs/1702.08608.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henigha, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy Models of Super-
position, September 2022. URL https://transformer-circuits.pub/2022/toy_
model/index.html#motivation.

10

http://arxiv.org/abs/1610.01644
http://arxiv.org/abs/2406.11717
https://proceedings.neurips.cc/paper_files/paper/2022/hash/7234e0c36fdbcb23e7bd56b68838999b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/7234e0c36fdbcb23e7bd56b68838999b-Abstract-Conference.html
https://openreview.net/forum?id=3NaqGg92KZ¬eId=rqHLyAT32Q
https://openreview.net/forum?id=3NaqGg92KZ¬eId=rqHLyAT32Q
https://openreview.net/forum?id=xHKVVHGDOEk
https://openreview.net/forum?id=xHKVVHGDOEk
http://arxiv.org/abs/2308.00824
http://arxiv.org/abs/2308.00824
http://arxiv.org/abs/1604.00825
http://arxiv.org/abs/2102.02515
http://arxiv.org/abs/2102.02515
http://arxiv.org/abs/2012.00152
http://arxiv.org/abs/1702.08608
https://transformer-circuits.pub/2022/toy_model/index.html#motivation
https://transformer-circuits.pub/2022/toy_model/index.html#motivation

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Amirata Ghorbani and James Zou. Data Shapley: Equitable Valuation of Data for Machine Learning.
In Proceedings of the 36th International Conference on Machine Learning, pp. 2242–2251. PMLR,
May 2019. URL https://proceedings.mlr.press/v97/ghorbani19c.html.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying Large
Language Model Generalization with Influence Functions, August 2023. URL http://arxiv.
org/abs/2308.03296.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified View of Grokking,
Double Descent and Emergent Abilities: A Perspective from Circuits Competition, February 2024.
URL http://arxiv.org/abs/2402.15175.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting Predictions from Training Data, February 2022. URL http://arxiv.org/
abs/2202.00622.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Con-
vergence and Generalization in Neural Networks. In Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc., 2018. URL
https://proceedings.neurips.cc/paper_files/paper/2018/hash/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

Alon Jacovi and Yoav Goldberg. Towards Faithfully Interpretable NLP Systems: How Should We
Define and Evaluate Faithfulness? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 4198–4205, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.386. URL https://aclanthology.org/2020.acl-main.386/.

Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions. In
Proceedings of the 34th International Conference on Machine Learning, pp. 1885–1894. PMLR,
July 2017. URL https://proceedings.mlr.press/v70/koh17a.html.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. https://www.cs.
toronto.edu/~kriz/cifar.html, 2014.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
Efficient ConvNets, March 2017. URL http://arxiv.org/abs/1608.08710.

Zachary C. Lipton. The Mythos of Model Interpretability, March 2017. URL http://arxiv.
org/abs/1606.03490.

Jiacheng Liu, Taylor Blanton, Yanai Elazar, Sewon Min, YenSung Chen, Arnavi Chheda-Kothary,
Huy Tran, Byron Bischoff, Eric Marsh, Michael Schmitz, Cassidy Trier, Aaron Sarnat, Jenna
James, Jon Borchardt, Bailey Kuehl, Evie Cheng, Karen Farley, Sruthi Sreeram, Taira Anderson,
David Albright, Carissa Schoenick, Luca Soldaini, Dirk Groeneveld, Rock Yuren Pang, Pang Wei
Koh, Noah A. Smith, Sophie Lebrecht, Yejin Choi, Hannaneh Hajishirzi, Ali Farhadi, and Jesse
Dodge. OLMoTrace: Tracing Language Model Outputs Back to Trillions of Training Tokens,
April 2025. URL http://arxiv.org/abs/2504.07096.

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking Beyond Algorithmic Data,
March 2023. URL http://arxiv.org/abs/2210.01117.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019. URL
http://arxiv.org/abs/1711.05101.

Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions, November
2017. URL http://arxiv.org/abs/1705.07874.

11

https://proceedings.mlr.press/v97/ghorbani19c.html
http://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2402.15175
http://arxiv.org/abs/2202.00622
http://arxiv.org/abs/2202.00622
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://aclanthology.org/2020.acl-main.386/
https://proceedings.mlr.press/v70/koh17a.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/2504.07096
http://arxiv.org/abs/2210.01117
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1705.07874

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Max Müller-Eberstein, Rob van der Goot, Barbara Plank, and Ivan Titov. Subspace Chronicles: How
Linguistic Information Emerges, Shifts and Interacts during Language Model Training, October
2023. URL http://arxiv.org/abs/2310.16484.

Neel Nanda. Attribution Patching: Activation Patching At Industrial Scale, 2023.
URL https://www.neelnanda.io/mechanistic-interpretability/
attribution-patching.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, October 2023. URL http://arxiv.org/abs/
2301.05217.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom In: An Introduction to Circuits. Distill, 5(3):e00024.001, March 2020. ISSN 2476-0757. doi:
10.23915/distill.00024.001. URL https://distill.pub/2020/circuits/zoom-in.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
Attributing Model Behavior at Scale, April 2023. URL http://arxiv.org/abs/2303.
14186.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization Beyond Overfitting on Small Algorithmic Datasets, January 2022. URL http:
//arxiv.org/abs/2201.02177.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-Tuning
Enhances Existing Mechanisms: A Case Study on Entity Tracking, February 2024. URL http:
//arxiv.org/abs/2402.14811.

Garima Pruthi, Frederick Liu, Mukund Sundararajan, and Satyen Kale. Estimating Training Data
Influence by Tracing Gradient Descent, November 2020. URL http://arxiv.org/abs/
2002.08484.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A Practical Review of
Mechanistic Interpretability for Transformer-Based Language Models, July 2024. URL http:
//arxiv.org/abs/2407.02646.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier, August 2016. URL http://arxiv.org/abs/1602.04938.

Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi Zhong.
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges, July 2021.
URL http://arxiv.org/abs/2103.11251.

Naomi Saphra and Sarah Wiegreffe. Mechanistic?, October 2024. URL http://arxiv.org/
abs/2410.09087.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu Wei,
and Ji-Rong Wen. Language-Specific Neurons: The Key to Multilingual Capabilities in Large
Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), ACL 2024, pp.
5701–5715, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.309. URL https://aclanthology.org/2024.acl-long.
309.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT Rediscovers the Classical NLP Pipeline.
In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 4593–4601, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL https:
//aclanthology.org/P19-1452/.

Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. LLM Circuit Analyses Are Con-
sistent Across Training and Scale. In The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems, November 2024. URL https://openreview.net/forum?id=
3Ds5vNudIE.

12

http://arxiv.org/abs/2310.16484
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
http://arxiv.org/abs/2301.05217
http://arxiv.org/abs/2301.05217
https://distill.pub/2020/circuits/zoom-in
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2201.02177
http://arxiv.org/abs/2201.02177
http://arxiv.org/abs/2402.14811
http://arxiv.org/abs/2402.14811
http://arxiv.org/abs/2002.08484
http://arxiv.org/abs/2002.08484
http://arxiv.org/abs/2407.02646
http://arxiv.org/abs/2407.02646
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/2103.11251
http://arxiv.org/abs/2410.09087
http://arxiv.org/abs/2410.09087
https://aclanthology.org/2024.acl-long.309
https://aclanthology.org/2024.acl-long.309
https://aclanthology.org/P19-1452/
https://aclanthology.org/P19-1452/
https://openreview.net/forum?id=3Ds5vNudIE
https://openreview.net/forum?id=3Ds5vNudIE

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency, September 2023. URL http://arxiv.org/abs/2309.
02390.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, December 2017. URL http:
//arxiv.org/abs/1706.03762.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating Gender Bias in Language Models Using Causal Mediation Analysis.
In Advances in Neural Information Processing Systems, volume 33, pp. 12388–12401. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
92650b2e92217715fe312e6fa7b90d82-Abstract.html.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked Transformers are Implicit Reasoners: A
Mechanistic Journey to the Edge of Generalization, May 2024a. URL http://arxiv.org/
abs/2405.15071.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of Implicit Reasoning in Transformers:
A Mechanistic Journey to the Edge of Generalization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, November 2024b. URL https://openreview.
net/forum?id=D4QgSWxiOb.

Sarah Wiegreffe and Yuval Pinter. Attention is not not Explanation. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 11–20, Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1002. URL https://aclanthology.
org/D19-1002.

Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks, Novem-
ber 2013. URL http://arxiv.org/abs/1311.2901.

Shichang Zhang, Tessa Han, Usha Bhalla, and Himabindu Lakkaraju. Building Bridges, Not Walls –
Advancing Interpretability by Unifying Feature, Data, and Model Component Attribution, February
2025. URL http://arxiv.org/abs/2501.18887.

Xuekai Zhu, Yao Fu, Bowen Zhou, and Zhouhan Lin. Critical Data Size of Language Models from a
Grokking Perspective, May 2024. URL http://arxiv.org/abs/2401.10463.

13

http://arxiv.org/abs/2309.02390
http://arxiv.org/abs/2309.02390
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
http://arxiv.org/abs/2405.15071
http://arxiv.org/abs/2405.15071
https://openreview.net/forum?id=D4QgSWxiOb
https://openreview.net/forum?id=D4QgSWxiOb
https://aclanthology.org/D19-1002
https://aclanthology.org/D19-1002
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/2501.18887
http://arxiv.org/abs/2401.10463

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SUPPLEMENT TO THE PAPER “EXPLAIND: UNIFYING MODEL, DATA, AND
TRAINING ATTRIBUTION TO STUDY MODEL BEHAVIOR”

A ETHICAL CONSIDERATIONS AND BROADER IMPACTS

Interpretability for Fairness and Accountability. Interpretability is a foundational requirement for
building machine learning systems that are transparent, trustworthy, and legally accountable. Our
framework, ExPLAIND, contributes to this goal by offering explanations that connect model behavior
back to training data and model components. This is especially important in high-stakes domains
(e.g. healthcare, criminal justice, finance), where decisions made by machine learning models must
be auditable and understandable. Transparent systems are essential for identifying and mitigating
biases, ensuring compliance with regulatory standards, and enabling meaningful human oversight.

Causality, Overinterpretation, and Misleading Explanations. Although ExPLAIND provides
rigorous weight-level influence scores, they are inherently statistical and not causal. Misinterpreting
these scores as direct causal claims about model behavior could lead to incorrect conclusions or mis-
guided policy decisions. Practitioners and researchers must exercise caution when drawing inferences
from post-hoc explanations and should clearly communicate the implications and limitations of an
explanation.

Respecting Data Ownership. Recent investigations have revealed that major AI companies have
utilized large-scale datasets containing pirated content, such as Library Genesis (LibGen), to train
their models without obtaining permission from the original authors or rights holders. This practice
not only infringes upon the intellectual property rights of creators but also raises significant ethical
concerns regarding consent and fair compensation. Theoretically grounded attribution of training data
and model components like ExPLAIND opens the door for mechanisms that acknowledge, attribute,
and compensate the creators of influential data, thus respecting intellectual property rights.

Unequal Access to Computational Resources.

The development and application of computationally intensive interpretability methods, such as
ExPLAIND, underscore a significant ethical concern: the disparity in access to necessary computa-
tional resources. This "compute divide" disproportionately favors well-funded industry players and
elite academic institutions, enabling them to conduct advanced AI research and model auditing. In
contrast, smaller institutions and independent researchers often lack the resources to engage in such
work, limiting their participation in critical areas such as model interpretability and accountability.
This imbalance not only hampers diverse contributions to the field but also raises concerns about
whose models are scrutinized and whose voices are heard in shaping AI’s future.

Environmental Costs and the Role of Efficient Interpretability.

Training large models, and by extension applying post-hoc interpretability methods like ExPLAIND,
comes with significant computational and environmental costs. While our method is computationally
expensive — often comparable to a single training run — we argue that this cost is justified in contexts
where theoretical robustness and faithful attribution are necessary. Nonetheless, we acknowledge
the environmental impact and advocate for minimizing computational overhead through algorithmic
optimization, more efficient implementations and minimizing redundant applications. Future work
should investigate scalable approximations of ExPLAIND to reduce emissions while preserving
interpretability guarantees.

B EXTENDED LITERATURE REVIEW

This section provides an extended version of the literature review (see 2), including additional material
relevant to the present work that was omitted from the main paper due to space constraints.

Post-hoc interpretability. There are many more approaches to post-hoc interpretability methodology
that fall into one the three traditional explainability types, input feature attribution (Ribeiro et al.,
2016; Lundberg & Lee, 2017; Binder et al., 2016; Zeiler & Fergus, 2013), the training data attribution
(Park et al., 2023; Grosse et al., 2023; Chen et al., 2022; Ilyas et al., 2022; Bae et al., 2024; Liu et al.,
2025; Ghorbani & Zou, 2019; Koh & Liang, 2017), and model component attribution (Tenney et al.,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2019; Wiegreffe & Pinter, 2019; Vig et al., 2020; Nanda, 2023; Arditi et al., 2024; Tang et al., 2024;
Olah et al., 2020; Elhage et al., 2022; Rai et al., 2024).

Grokking. Grokking refers to a training phenomenon where models initially overfit but eventually
generalize after prolonged training (Power et al., 2022). Liu et al. (2023) expanded this study to a
broader suite of tasks and model architectures, providing a systematic characterization of Grokking’s
occurrence. More recent work (Wang et al., 2024b; Zhu et al., 2024; Huang et al., 2024) explores
the implicit reasoning capabilities that arise during Grokking, the critical role of dataset size, and
their connection to the double descent phenomenon. Nanda et al. (2023) argue that Grokking occurs
in three phases: memorization, circuit formation, and cleanup. Our work refines this narrative,
instead suggesting a progression through memorization, representation pipeline formation, and
embedding-decoder alignment.

C TECHNICAL DETAILS AND HYPERPARAMETERS

In the next two sections, we specify the technical details of our models and data, as well as the
hyperparameters we use. All implementation is provided in the supplementary material. In Section
C.3 we detail the computation resources we used.

C.1 CNN MODEL

We train a ResNet 9 model (He et al., 2016) with with 5 layers and two residual blocks, each consisting
of two additional convolution layers with max-pooling, ReLU activations and a logarithmic softmax
over the two dimensional output. We take the CIFAR-2 subset of CIFAR-10 (Krizhevsky et al., 2014)
consisting of the classes dog and cat (10000 samples) and train using SGD with momentum of 0.9 for
12 epochs with a mini-batch size of 256 and weight decay of 0.005. We use a learning rate schedule
that peaks in epoch 5 at 0.1. The loss is a cross entropy loss assuming logarithmic probability inputs.

C.2 TRANSFORMER MODEL

The Transformer model, which was proposed by Varma et al. (2023) and used by Nanda et al. (2023),
has a single layer encoder as described by Vaswani et al. (2017) and a decoder that consists of a
single, fully connected layer mapping from the hidden dimension of 64 to the 115-token vocabulary.
We use a 115-token input embedding without positional encoding, followed by a multi-head attention
layer with four heads, each mapping to a space of dimension 16. We refer to the modules mapping to
the lower dimensional spaces, that are used to compute the attention scores, as attention encoder, and
accordingly call the modules reading from the representations after applying attention as attention
decoder. The MLP layer on top of that consists of two fully connected layers (Linear 1 and Linear
2), which map to and read from a 512-dimensional latent space. We visualize the transformer in the
legend of Figure 3a.

We train on full batches using AdamW with a fixed learning rate of 0.001, weight decay of 4.0, and
β1 = 0.98, β2 = 0.99 for the scaling parameters of the first and second moment estimates of the
gradient, respectively.

The dataset consists of 4000 samples which each contain four tokens, namely the number [a], an
addition token [+], the number [b] and the token [mod 113 =]. Here, a, b ∈ {0, 1, ..., 112} and
we always enforce a ≥ b, leading to a total number of 113·112

2 = 6328 possible data points of which
we include 4000 randomly sampled ones in the train set and another 2000 in the test set labeled with
the correct output token [c] containing the correct result c = (a + b) mod 113 which has to be
predicted.

C.3 COMPUTE RESOURCES USED IN OUR EXPERIMENTS

Model training and retraining were carried out on a 20GB partition of NVIDIA A100 GPU for a
total of less than 5 hours. Applying ExPLAIND to both models was much more compute intensive,
resulting in about 20 hours of computation on a H200 GPU with 140GB GPU-RAM. Debugging and
running the ablations presented, we carried out 12 such full runs of the EPK predictions computing
ExPLAIND influence scores, leading to a total of about 240 H200 GPU-hours.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D PROOFS AND MATHEMATICAL DETAILS

D.1 PROOF OF THE EPK EQUIVALENCE FOR ADAMW

We first restate the Theorem.

Statement (Kernel Equivalence for AdamW, repetition from Theorem 3.1 in main text)

Let fθ : X → Y be a model with parameters θ ∈ Θ mapping inputs x ∈ X ⊆ RI to outputs
y ∈ Y ⊆ RO. Further assume that the final parameters θN are the result of optimizing fθ0
from an initialization θ0 on a dataset D = {(x1, y1), ..., (xM , yM)} with M samples and loss
L : Y × Y → R≥0 using AdamW with weight decay λ ∈ R≥0 over batches Batchs ⊆ D and
learning rates αs ∈ R>0, s ∈ {1, ..., N}. Then the final model prediction fθN (x) of a sample x ∈ X
decomposes into

fθN (x) = fθ0(x)−
M∑
k=1

N∑
s=1

ϕtests (x) · ϕtrains (xk)
⊤ · ak,s−

N∑
s=1

ϕtests (x) · rs (9)

where θs(t) := θs − t(θs − θs+1) is the linear mixture of parameters between step s and s+ 1, and

ak,s :=

(
dL(fθs(0)(xk), yk)

dfθs(0)(xk)

)⊤

∈ RO

αs,i:= αs(1− β1)β
s−i
1

√
1− βs

2

1− βs
1

∈ R

rs:= αsλθs(0) ∈ RD

ϕtests (x) :=

∫ 1

0

∇θfθs(t)(x) dt ∈ RO×D

ϕtrains (x) :=

s∑
i=0

αs,i

1x∈Batchi∇θfθi(0)(x)√
vs

∈ RO×D.

Proof. Let x ∈ X and ys = fθs(x). To rewrite each change ys+1 − ys in terms of a gradient flow,
we parameterize the derivative of the parameters as follows

dθs(t)

dt
= θs+1 − θs∫

dθs(t)

dt
dt =

∫
θs+1 − θsdt

θs(t) = θs + t(θs+1 − θs)

(10)

Each AdamW update step can be written as

θs = θs−1 − αs ·
√
1− βs

2

1− βs
1

· ms√
vs

− αsλθs−1−

Rewriting the Adam update rule we obtain

ms = β1 ·ms−1 + (1− β1) · ∇θL(θs−1) =

s∑
i=1

(1− β1) · βs−i
1 · ∇θL(θi−1)

vs = β2 ·ms−1 + (1− β2) · (∇θL(θs−1))
2 =

s∑
i=1

(1− β2) · βs−i
2 · (∇θL(θi−1))

2.

(11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Note that the regularization term does not flow into the momentum term ms for AdamW. Combining
the above, for the gradient flow, we can thus write

dθs(t)

dt
= −αs

√
1− βs

2

1− βs
1

ms√
vs

− αsλθs−1

= −αs

√
1− βs

2

1− βs
1

∑s
i=1(1− β1)β

s−i
1 ∇θL(θi−1(0))√
vs

− αsλθs−1

= −
s∑

i=1

αs,i∇θL(θi−1(0))
√
vs

−1 − αsλθs(0)

= −
s∑

i=1

αs,i ·

(
M∑
k=1

dL(fθi−1(0)(xk), yk)

∂θ

)
√
vs

−1 − αsλθs(0)

= −
M∑
k=1

s∑
i=1

αs,i ·
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θ
(
√
vs)

−1 − αsλθs(0)

(12)

where we introduce the step learning rate to declutter the notation

αs,i := αs(1− β1)β
s−i
1

√
1− βs

2

1− βs
1

. (13)

Spelling out the dot product of the gradients via the sum that runs over index j, we can use this
substitution to find that

dfθs(t)

dt
=
df

dθ
· dθ
dt

=
df

dθ
·

[
−

M∑
k=1

s∑
i=1

αs,i ·
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θ
(
√
vs)

−1 − αsλθs(0)

]

= −
M∑
k=1

D∑
j=1

s∑
i=1

αs,i ·
dfθs(t)(x)

∂θj

dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj
(
√
vs)

−1
j

− αsλ
df

dθ
θs(0)

(14)

where, for now, we stick to full-batch parameter updates in the substitution of the gradients and later
account for the mini-batches through indicator variables. Since

dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj
∈ R,

we have

dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj
=

(
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

dfθi−1(0)(xk)

∂θj

)⊤

. (15)

Combining that with the fact that for suitable matrices A,B,C we have A(BC)⊤ = AC⊤B⊤ we
can rewrite

dfθs(t)

dt
= −

M∑
k=1

D∑
j=1

s∑
i=1

αs,i

dfθs(t)(x)

∂θj

(
dfθi−1(0)(xk)

∂θj
(
√
vs)

−1
j

)⊤(
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)

)⊤

− αsλ
df

dθ
θs(0)

= −
M∑
k=1

s∑
i=1

αs,i∇θfθs(t)(x)

(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k − αsλ∇θfθs(t)(x) · θs(0)

(16)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where we define

ai,k :=
dL(fθi−1(0)(xk), yk)

dfθi−1(0)(xk)
=

(
∂L

∂f0

∂L

∂f2
· · · ∂L

∂fT

)⊤

. (17)

Using the second fundamental theorem of calculus, we can compute

fs+1(x)− fs(x) =

∫ 1

0

dfθs(t)(x)

dt
dt

=

∫ 1

0

(
−

M∑
k=1

s∑
i=1

αs,i∇θfθs(t)(x)

(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k −

αsλ∇θfθs(t)(x) · θs(0)

)
dt

= −
M∑
k=1

s∑
i=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k

−
N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0)

= −
s∑

i=1

M∑
k=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k−

N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0).

(18)

Combining over the full path of the gradients during training, we thus have

fθN (x) = fθ0(x) +

N∑
s=1

fs+1(x)− fs(x)

= fθ0(x)−
N∑
s=1

s∑
i=1

M∑
k=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k

−
N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0)

(19)

which is of the form we wanted to derive. For mini-batch updates, we only need to consider the
gradients ∇θfθi−i(0)(xk) of the training samples xk that were present in Batchi. We express this by
introducing an indicator variable 1xk∈Batchi

to the train feature map which is one iff sample x was
in the mini-batch Batchi of step i. With this, we only calculate the train feature map with respect to
the actual training samples involved in each step:

fθN (x) = fθ0(x)−
N∑
s=1

s∑
i=1

M∑
k=1

αs,i

(∫ 1

0

∇θfθs(t)(x) dt

)(
1xk∈Batchi

∇θfθi−1(0)(xk)√
v̂s

)⊤

· ai,k

−
N∑
s=1

αsλ

(∫ 1

0

∇θfθs(t)(x) dt

)
· θs(0)

= fθ0(x)−
M∑
k=1

N∑
s=1

ϕtests (x) · ϕtrains (x′) · ak −
N∑
s=1

ϕtests (x) · rs

(20)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where we further define

ϕtests (x) :=

∫ 1

0

∇θfθs(t)(x) dt

ϕtrains (x) :=

s−1∑
i=0

αs,i

1xk∈Batchi∇θfθi−1(0)(xk)√
v̂s

rs := αsλθs(0).

(21)

Remark. If the ai,k = ak are constant over the training process, we can further simplify to

fθN (x) = fθ0(x)−
M∑
k=1

[
N∑
s=1

ϕtests (x) · ϕtrains (xk)

]
· ak −

N∑
s=1

ϕtests (x) · rs

= fθ0(x)−
M∑
k=1

I(x, xk) · ak −
N∑
s=1

ϕtests (x) · rs

(22)

for function I(x, xk) :=
∑N

s=1 ϕ
test
s (x) · ϕtrains (xk).

In practice, this holds for many scenarios. For example, it is the case for the logarithmic cross
entropy loss we are using for our models. There, we assume the model outputs fθi−1(0)(xk) to be
log-probabilities (implemented by a final log-softmax non-linearity) and thus have

L(yk, fθi−1(0)(xk)) = −
C∑

c=1

(yk)c(fθi−1(0)(xk))c (23)

where C is the number of classes and which implies that

ai,k =
dL(yk, fθi−1(0)(xk))

dfθi−1(0)(xk)
= −yk (24)

are constant over the training steps i.

Remark. If fθ0 is constant, then the above reformulation is the regularized kernel machine (see Bell
et al. (2023)). In order for I to become a kernel function, one has to introduce a conditional, unified
feature map that computes the correct result depending on the nature of the input sample.

D.2 PROOF OF COROLLARY 3.2

For the CNN model, we use a GD optimizer where the regularization term introduced by weight
decay flows into the momentum term. We therefore derive the EPK also for this optimizer.

We first restate the statement:

Statement (Kernel Equivalence for GD with Momentum, repetition of Corollary 3.2 in main text)

We consider gradient descent with momentum β, learning rate schedule αs, and weight decay λ, i.e.
the update equation is

θs = θs−1 − αsβbs

where bs is defined recursively as

b0 = ∇θf(θ0), bs = βbs−1 +∇θf(θs−1) + λθs−1.

We derive the same EPK decomposition

fθN (x) = fθ0(x)−
M∑
k=1

N∑
s=1

ϕtrains (xk) · ϕtests (x)⊤ · a⊤k,s − λαs

N∑
s=1

ϕtests (x) · rs

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where

ak,s =
dL(fθs(0)(xk), yk)

dfθs(0)(xk)

αs,i = αs · βs−i

ϕtests (x) =

∫ 1

0

∇θfθs(t)(x) dt

ϕtrains (x) = 1x∈Batchi

s−1∑
i=0

αs,i∇θfθi(0)(x)

rs =

s−1∑
i=0

αs,iθi.

We note that compared to Theorem 3.1 the regularization term changes to

rs = αs

s−1∑
j=0

βs−jθj(0).

Proof. Writing out the recursive definition of bs, we thus have

θs = θs−1 − αsβ

(
s∑

i=1

βs−i (∇θf(θi−1) + λθi−1)

)

= θs−1 −
s−1∑
i=0

αsβ
s−i∇θf(θi)− αs

s−1∑
i=0

λβs−iθi.

From this observation, we can follow analogous arguments as in the proof of Theorem 3.1 to obtain
the EPK of GD with momentum.

D.3 INFLUENCE ACCUMULATION

The ExPLAIND formulation of influence gives us a tensor that enables the attribution of model
behavior to each of these dimensions across different, unified perspectives—these are the dimensions
of influence we sum over—and granularities, corresponding to the size of the sets we sum over. Here
we expand the examples given in the main text:

• Single parameter. The influence of a single parameter θ(i) on a given prediction of a sample
x, is given by the accumulation of parameter-wise kernel scores over the training set , i.e.

Ψ(θ(i), x)j =

M∑
k=1

N∑
s=1

D∑
i=1

ψs(θ
(i), x, xk)j .

• Layer-level at a specific training step. The influence of all parameters in a layer ΘL at
training step s on the prediction for x is

Ψs(ΘL, x) =
∑

θ(i)∈ΘL

M∑
k=1

O∑
j=1

ψs(θ
(i), x, xk)j .

• Data partition through a layer. The influence of a layer ΘL on x due to a subset of training
data X ⊆ Dtrain (for example, a data class) at step s is

Ψs(ΘL, x,X) =
∑

θ(i)∈ΘL

∑
xk∈X

O∑
j=1

ψs(θ
(i), x, xk)j .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

In this appendix, we provide additional figures from our experiments that were omitted from the main
text.

Train Set

Te
st

Se
t

E
m

bedding

Te
st

Se
t

A
tt.E

ncoder

Te
st

Se
t

A
tt.D

ecoder

Te
st

Se
t L

inear1

Te
st

Se
t L

inear2

Te
st

Se
t D

ecoder

Te
st

Se
t M

odel

Step 250 Step 500 Step 1100 Step 1900

EPKS

(log)

Figure 6: Other slices of the kernel matrix of the Transformer model. The EPK of all layers for
predictions of the test set and the training set accumulated over preceding 50 steps, labeled with sum
of inputs a+ b and respective result (a+ b mod c).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 500 1000 1500

−0.1

0

0.1

Emb.+Lin2+Dec. Decoder
All but att. Emb.
Emb.+Dec.

StepD
iff

. i
n

A
cc

ur
ac

y

(a) Accuracy changes when swapping in different lay-
ers from checkpoints over the training. The layers not
part of the representation pipeline generally improve
performance after the pipeline has startet to develop.

(b) Step 1100 (c) Step 1100, swapped

(d) Step 1700 (e) Step 1700, swapped

Figure 7: Layer swapping validations. Left: We swap different layers of the final Transformer
model into checkpoints across the training trajectory and find that the layers involved in the final
alignment phase (the embedding, second linear layer and the decoder), improve accuracy by over 15%,
supporting our hypothesis of a pipeline of intermediate layers developing a generalizing representation
before the final Grokking phase. Right: Confusion matrices of two unedited checkpoints and their
respective swapped versions. Note the decrease in systematic errors on the off-diagonals.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Param. from Att. + Lin. 1 Att. Emb. + Lin. 2 + Dec.

St
ep

19
39

0 100 200

0

0.5

1

Step

A
cc
ur
ac
y

0 50 100 150 200

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

St
ep

18
39

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

St
ep

17
39

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

St
ep

15
39

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

St
ep

11
39

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

St
ep

53
9

0 200 400

0

0.2

0.4

0.6

Step

A
cc
ur
ac
y

0 200 400

0

0.2

0.4

0.6

0.8

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

St
ep

33
9

0 200 400

0

0.2

0.4

0.6

Step

A
cc
ur
ac
y

0 200 400

0

0.5

Step

A
cc
ur
ac
y

0 200 400

0

0.5

1

Step

A
cc
ur
ac
y

0 50 100 150 200

0

0.5

1

test
train

Step

A
cc
ur
ac
y

Figure 8: Training on grokked intermediate representation pipelines. We train a model initialized
with the different parameters taken from different checkpoints and model components and initialize
the rest at random. This leads to rapid, and direct generalization over 5 different runs when we take
the attention weights (here ‘Att.’ refers to both the encoder and decoder of the attention layer) from
later training steps, when the intermediate pipeline has already generalized. We report the mean over
five runs and standard deviation as dotted error bars.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 9: Lasso regression on influence similarities. We fit the second linear layers similarity
domain introduced in steps 1850 to 1900 with a lasso regression. Features are the cosines and sines of
frequencies from 2 to 113 of the pairwise differences of the sums of the samples. Shown: Predictions
of the similarity as predicted by the regression. The resulting similarity pattern indicates that the
model indeed learns to map the samples into space where distance is approximately a cosine of
frequency 113. We report the exact regression coefficients in Table 2.

Table 2: Lasso regression on influence similarities. We fit the second linear layers similarity
domain introduced in steps 1850 to 1900 with a lasso regression. Features are the cosines and sines
of frequencies from 2 to 113 of the pairwise differences of the sums of the samples. The table shows
all non-zero regressions coefficients of cosines frequency.

cos frequency Regression Coefficient
113 0.112333
76 0.008232
51 0.004451
75 0.003616
52 0.001763
37 0.000679
13 0.000483
28 0.000259
38 0.000093

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Step 200 - 250 450 - 500 1050 - 1100 1850 - 1900

em
be

dd
in

g
at

t.
en

co
de

r
at

t.
de

co
de

rs
lin

ea
r1

lin
ea

r2
de

co
de

r

Figure 10: Full similarity plots. Similarity plots of test set predictions of the Transformer model
accumulated over different training stages.

25

	Introduction
	Related work
	An Exact Path Kernel Equivalence for AdamW
	Validation of exact model representation

	The ExPLAIND framework
	Efficient Implementation
	Validation through parameter pruning

	Grokking `ExPLAIND'
	Influence decomposition
	Cyclic geometry

	Discussion and Conclusion
	Ethical Considerations and Broader Impacts
	Extended Literature Review
	Technical Details and Hyperparameters
	CNN Model
	Transformer Model
	Compute resources used in our experiments

	Proofs and mathematical details
	Proof of the EPK Equivalence for AdamW
	Proof of Corollary 3.2
	Influence Accumulation

	Additional results

