
SimTeG: A Frustratingly Simple Approach Improves Textual Graph
Learning

Anonymous ACL submission

Abstract

Textual graphs (TGs) are graphs whose nodes001
correspond to text (sentences or documents),002
which are widely prevalent. The representa-003
tion learning of TGs involves two stages: (i)004
unsupervised feature extraction and (ii) super-005
vised graph representation learning. In recent006
years, extensive efforts have been devoted to007
the latter stage, where Graph Neural Networks008
(GNNs) have dominated. However, the for-009
mer stage for most existing graph benchmarks010
still relies on traditional feature engineering011
techniques. This motivates us to investigate012
the outcomes of enhancing only the text em-013
beddings in benchmark models. While it is014
anticipated that advanced text embeddings will015
boost GNN performance, key questions remain016
underexplored: the extent of this improvement,017
particularly how advanced text features can en-018
hance a rudimentary GNN architecture. There-019
fore, in this work, we investigate the impact of020
enhancing benchmark text embeddings exclu-021
sively and evaluate it on two fundamental graph022
representation learning tasks: node classifica-023
tion and link prediction. Through extensive024
experiments, we show that better text embed-025
dings significantly improves the performance026
of various GNNs, especially basic GNN base-027
lines, on multiple graph benchmarks. Remark-028
ably, when additional supporting text provided029
by large language models (LLMs) is included,030
a simple two-layer GraphSAGE trained on an031
ensemble of text embeddings achieves an accu-032
racy of 77.48% on OGBN-Arxiv, comparable to033
state-of-the-art (SOTA) performance obtained034
from far more complicated GNN architectures.035
We will release our code and generated node036
features soon.037

1 Introduction038

Textual Graphs (TGs) offer a graph-based repre-039

sentation of text data where relationships between040

phrases, sentences, or documents are depicted041

through edges. TGs are ubiquitous in real-world042

applications, including citation graphs (Hu et al.,043

2020; Yang et al., 2016), knowledge graphs (Wang 044

et al., 2021), and social networks (Zeng et al., 2019; 045

Hamilton et al., 2017), provided that each entity 046

can be represented as text. Different from tradi- 047

tional NLP tasks, instances in TGs are correlated 048

with each other, which provides non-trivial and spe- 049

cific information for downstream tasks. In general, 050

graph benchmarks are usually task-specific (Hu 051

et al., 2020), and most TGs are designed for two 052

fundamental tasks: node classification and link pre- 053

diction. For the first one, we aim to predict the 054

category of unlabeled nodes while for the second 055

one, our goal is to predict missing links among 056

nodes. For both tasks, text attributes offer critical 057

information. 058

In recent years, TG representation learning fol- 059

lows a two-stage paradigm: (i) upstream: unsu- 060

pervised feature extraction that encodes text into 061

numeric embeddings, and (ii) downstream: super- 062

vised graph representation learning that further 063

transform the embeddings utilizing the graph struc- 064

ture. While Graph Neural Networks (GNNs) have 065

dominated the latter stage, with an extensive body 066

of academic research published, the former stage 067

surprisingly still relies on traditional feature engi- 068

neering techniques. For example, in most existing 069

graph benchmarks (Hu et al., 2020; Yang et al., 070

2016; Zeng et al., 2019), node features are con- 071

structed using skip-gram (Mikolov et al., 2013). 072

This intuitively limits the performance of down- 073

stream GNNs, as it fails to fully capture textual 074

semantics, fostering an increasing number of GNN 075

models with more and more complex structures. 076

Consequently, our research aims to investigate 077

the impact of enhancing benchmark text embed- 078

dings exclusively. While an anticipated outcome 079

is an improved GNN performance by introducing 080

advanced text embeddings, key inquiries remain 081

underexplored: the extent of this improvement, and 082

specifically, the potential enhancement of a basic 083

GNN architecture by advanced text features. This 084

1

inquiry holds practical significance, as industry ap-085

plications of GNN architectures are limited by com-086

putational efficiency. To date, a notable exception087

is Pinsage (Ying et al., 2018), a GraphSAGE-based088

recommendation system for Pinterest. If incorpo-089

rating advanced text features could bypass the ne-090

cessity of using complex GNN models, it would091

significantly boost the application of GNNs in in-092

dustry. We take an step forwards to explore the093

above research questions by introducing a simple094

and straightforward framework SimTeG on TGs095

and empirically evaluating it on two fundamental096

graph tasks: node classification and link prediction.097

We first parameter-efficiently finetune (PEFT) an098

LM on the textual corpus of a TG with task-specific099

labels and then use the finetuned LM to generate100

node representations given its text by removing the101

head layer. Afterward, a GNN is trained with the102

derived node embeddings on the same downstream103

task for final evaluation. with extensive experi-104

ments on three prestigious graph benchmarks on105

node classification and link prediction, we find sev-106

eral key observations:107

❶ Good language modeling could generally im-108

prove the learning of GNNs on both node classi-109

fication and link prediction. We evaluate SimTeG110

on three prestigious graph benchmarks for either111

node classification or link prediction, and find that112

SimTeG consistently outperforms the official fea-113

tures and the features generated by pretrained LMs114

(without finetuning) by a large margin. Notably,115

backed with SOTA GNN, we achieve new SOTA116

performance of 78.02% on OGBN-Arxiv. See117

Sec. 5.1 and Appendix A1 for details.118

❷ Incorporating advanced text features, a sim-119

ple two-large GraphSAGE achieves on-par SOTA120

performance on node classfication and link pre-121

diction tasks. Notably, a simple two-layer Graph-122

SAGE (Hamilton et al., 2017) trained on SimTeG123

with proper LM backbones achieves on-par SOTA124

performance of 77.48% on OGBN-Arxiv (Hu et al.,125

2020). To date, It achieves the top three rank on126

the leaderboard, while the original result for sole127

GraphSAGE is ranked 62.128

❸ PEFT are crucial when finetuning LMs to129

generate representative embeddings, because full-130

finetuning usually leads to extreme overfitting due131

to its large parameter space and the caused fitting132

ability. The overfitting in the LM finetuning stage133

will hinder the training of downstream GNNs with134

a collapsed feature space. See Sec. 5.2 for details.135

❹ SimTeG is moderately sensitive to the se- 136

lection of LMs. Generally, the performance of 137

SimTeG is positively correlated with the corre- 138

sponding LM’s performance on text embedding 139

tasks, e.g. classification and retrieval. In addi- 140

tion, the performance is not closely correlated with 141

the number of parameters in the LM. We refer to 142

Sec. 5.3 for details. Based on this, we expect fur- 143

ther improvement of SimTeG once more powerful 144

LMs for text embedding are available. 145

2 Related Works 146

Leveraging LMs on TGs. Focusing on leveraging 147

the power of LMs to TGs, there are several works 148

that are existed and directly comparable with ours. 149

For these works, they either focus on (i) designing 150

specific strategies to generate node embeddings 151

using LMs (He et al., 2023; Chien et al., 2021) 152

or (ii) jointly training LMs and GNNs within a 153

framework (Zhao et al., 2022; Mavromatis et al., 154

2023). Representatively, for the former one, Chien 155

et al. (2021) proposed a self-supervised graph learn- 156

ing task integrating XR-Transformers (Zhang et al., 157

2021b) to extract node representation, which shows 158

superior performance on multiple graph bench- 159

marks, validating the necessity for acquiring high- 160

quality node features for attributed graphs. Jin 161

et al. (2023) proposed two pretraining strategies 162

for network-contextualized masked language mod- 163

eling and masked node prediction to capture se- 164

mantics and structure information at once. Be- 165

sides, He et al. (2023) utilizes ChatGPT (OpenAI, 166

2023) to generate additional supporting text with 167

LLMs. For the latter mechanism, Zhao et al. (2022) 168

proposed a variational expectation maximization 169

joint-training framework for LMs and GNNs to 170

learn powerful graph representations. Mavromatis 171

et al. (2023) designs a graph structure-aware frame- 172

work to distill the knowledge from GNNs to LMs. 173

Generally, the joint-training framework requires 174

specific communication between LMs and GNNs, 175

e.g. pseudo labels (Zhao et al., 2022) or hidden 176

states (Mavromatis et al., 2023). It is worth noting 177

that the concurrent work He et al. (2023) proposed 178

a close method to ours. However, He et al. (2023) 179

focuses on generating additional informative texts 180

for nodes with LLMs, which is specifically for 181

citation networks on node classification task. In 182

contrast, we focus on generally investigating the 183

effectiveness of our proposed method, which could 184

be widely applied to unlimited datasets and tasks. 185

Utilizing the additional text provided by He et al. 186

2

(2023), we further show that our method could187

achieve now SOTA on OGBN-Arxiv. In addition to188

the main streams, there are related works trying to189

fuse the architecture of LM and GNN for end-to-190

end training. Yang et al. (2021) proposed a nested191

architecture by injecting GNN layers into LM lay-192

ers. However, due to the natural incompatibleness193

regarding training batch size, this architecture only194

allows 1-hop message passing, which significantly195

reduce the learning capability of GNNs.196

More “Related” Works. ❶ Graph Transform-197

ers (Wu et al., 2021; Ying et al., 2021; Hussain198

et al., 2022; Park et al., 2022; Chen et al., 2022):199

Nowadays, Graph Transformers are mostly used to200

denote Transformer-based architectures that embed201

both topological structure and node features. Dif-202

ferent from our work, these models focus on graph-203

level problems (e.g. graph classification and graph204

generation) and specific domains (e.g. molecular205

datasets and protein association networks), which206

cannot be adopted on TGs. ❷ Leveraging GNNs on207

Texts (Zhu et al., 2021; Huang et al., 2019; Zhang208

et al., 2020): Another seemingly related line on209

integrating GNNs and LMs is conversely applying210

GNNs to textual documents. Different from TGs,211

GNNs here do not rely on ground-truth graph struc-212

tures but the self-constructed or synthetic ones.213

3 Preliminaries214

Notations. To make notations consistent, we use215

bold uppercase letters to denote matrices and vec-216

tors, and calligraphic font types (e.g. T) to de-217

note sets. We denote a textual graph as a set218

G = (V, E , T), where V and E are a set of nodes219

and edges, respectively. T is a set of text and each220

textual item is aligned with a node v ∈ V . For221

practical usage, we usually rewrite E into A ∈222

{0, 1}|V|×|V|, which is a sparse matrix, where entry223

Ai,j denotes the link between node vi, vj ∈ V .224

Problem Formulations. We focus on two funda-225

mental tasks in TGs: (i) node classification and (ii)226

link prediction. For node classification, given a TG227

G, we aim to learn a model Φ : V → Y , where Y is228

the ground truth labels. For link prediction, given a229

TG G, we aim to learn a model Φ : V×V → {0, 1},230

where f(vi, vj) = 1 if there is a link between vi231

and vj , otherwise f(vi, vj) = 0. Different from232

traditional tasks that are widely explored by the233

graph learning community, evolving original text234

into learning is non-trivial. Particularly, when ab-235

lating the graphs structure, node classification and236

link prediction problem are collapsed to text clas- 237

sification and text similarity problem, respectively. 238

This sheds light on how to leverage LMs for TG 239

representation learning. 240

Node-level Graph Neural Networks. Nowadays, 241

GNNs have dominated graph-related tasks. Here 242

we focus on GNN models working on node-level 243

tasks (i.e. node classification and link prediction). 244

These models work on generating node represen- 245

tations by recursively aggregating features from 246

their multi-hop neighbors, which is usually noted 247

as message passing. Generally, one can formulate 248

a graph convolution layer as: Xl+1 = Ψl(CXl), 249

where C is the graph convolution matrix (e.g. 250

C = D−1/2AD−1/2 in Vanilla GCN (Kipf and 251

Welling, 2016)) and Ψl is the feature transforma- 252

tion matrix. For the node classification problem, a 253

classifier (e.g., an MLP) is usually appended to the 254

output of a k-layer GNN model; while for link pre- 255

diction, a similarity function is applied to the final 256

output to compute the similarity between two node 257

embeddings. As shown above, as GNNs inherently 258

evolve the whole graph structure for convolution, 259

it is notoriously challenging for scaling it up. It 260

is worth noting that evolving sufficient neighbors 261

during training is crucial for GNNs. Many stud- 262

ies (Duan et al., 2022; Zou et al., 2019) have shown 263

that full-batch training generally outperforms mini- 264

batch for GNNs on multi graph benchmarks. In 265

practice, the lower borderline of batch size for train- 266

ing GNNs is usually thousands. However, when 267

applying it to LMs, it makes the GNN-LM end-to- 268

end training intractable, as a text occupies far more 269

GPU memories than an embedding. 270

Text Embeddings and Language Models. Trans- 271

forming text in low-dimensional dense embeddings 272

serves as the upstream of textual graph representa- 273

tion learning and has been widely explored in the 274

literature. To generate sentence embeddings with 275

LMs, two commonly-used methods are (i) average 276

pooling (Reimers and Gurevych, 2019) by taking 277

the average of all word embeddings along with at- 278

tention mask and (ii) taking the embedding of the 279

[CLS] token (Devlin et al., 2018). With the de- 280

velopment of pre-trained language models (Devlin 281

et al., 2018; Liu et al., 2019), particular language 282

models (Li et al., 2020; Reimers and Gurevych, 283

2019) for sentence embeddings have been proposed 284

and shown promising results in various bench- 285

marks (Muennighoff et al., 2022). 286

3

G: 𝐴, 𝑋

Downstream Task Loss Downstream Task Loss

𝑋: text embedding

Stage 1: Train LM with Lora Stage 2: Train GNN

1-hop

2-hop

Title: BERT: Pretraining of Deep
Bidirectional Transformers for Language
Understanding; Abstract: We introduce a
new language representation model
called BERT, which stands for
Bidirectional Encoder Representations
from Transformers. Unlike recent
language representation models (Peters et
al., 2018a; Rad- ford et al., 2018),
BERT is designed to pretrain deep
bidirectional representations from
unlabeled text by jointly conditioning on
both left and right context in all layers.
As a result, the pretrained BERT model
can be finetuned with just one additional
output layer to create state-of-the-art
models for a wide range of tasks, such as
question answering and language
inference, without substantial task-
specific architecture modifications.

Consistent

e.g., node classification

𝑋: text embedding

𝐴: graph structure

LM w. Lora GNN (Message Passing)

Figure 1: The overview of SimTeG. In stage 1, we train a LM with lora (Hu et al., 2022) and then generate the
embeddings X as the representation of text. In stage 2, we train a GNN on top of the embeddings X , along with the
graph structure. The two stages are guided with consistent loss function, e.g., link prediction or node classification.

4 SimTeG: Methodology287

We propose an extremely simple two-stage training288

manner that decouples the training of gnn(·) and289

lm(·). We first finetune lm on T with the down-290

stream task loss:291

Losscls = Lθ

(
ϕ(lm(T)),Y

)
,292

Losslink = Lθ

(
ϕ
(
lm(Tsrc), lm(Tdst)

)
,Y

)
, (1)293

where ϕ(·) is the classifier (left for node classifi-294

cation) or similarity function (right for link predic-295

tion) and Y is the label. After finetuning, we gener-296

ate node representations X with the finetuned LM297
ˆlm. In practice, we follow Reimers and Gurevych298

(2019) to perform mean pooling over the output of299

the last layer of the LM and empirically find that300

such a strategy is more stable and converges faster301

than solely taking the <CLS> token embedding as302

representation (Zhao et al., 2022). In the second303

stage, we train gnn on (A,X) with the same task.304

The corresponding loss is computed by replacing305

lm(T) with gnn(A,X). The two stage is fully de-306

coupled and one can take advantage of any existing307

GNN and LM models. We illustrate the two stages308

in Fig. 1.309

Regularization with PEFT. When fully finetuning310

a LM, the inferred features are prone to overfit the311

training labels, which results in collapsed feature312

space and thus hindering the generalization in GNN313

training. Though PEFT was proposed to accelerate314

the finetuning process without loss of performance,315

in our two-stage finetuning stage, we empirically316

find PEFT (Hu et al., 2022; Houlsby et al., 2019; 317

He et al., 2022) could alleviate the overfitting issue 318

to a large extent and thus provide well-regularized 319

node features. See Sec. 5.2 for empirical analysis. 320

In this work, We take the popular PEFT method, 321

lora (Hu et al., 2022), as the instantiation. 322

Feature space without graph structures is 323

already easily differentiable. We plot the 324

two-dimensional feature space computed by T- 325

SNE (Van der Maaten and Hinton, 2008) of X- 326

SimTeG, X-Fix (features generated by pretrained 327

LM without finetuning), and X-OGB regarding 328

labels on OGBN-Arxiv and OGBN-Products in 329

Fig. 2. In detail, we randomly select 100 nodes 330

each with various labels and use T-SNE to com- 331

pute its two-dimensional features. As shown below, 332

X-SimTeG has a significantly more distinguish- 333

able feature space as it captures more semantic 334

information and is finetuned on the downstream 335

dataset. Besides, we find that X-Fix is more dis- 336

tinguishable than X-OGB, which illustrates the 337

inner semantic capture ability of LMs. Further- 338

more, in comparison with OGBN-Arixv, features 339

in OGBN-Products is visually indifferentiable, in- 340

dicating the weaker correlation between seman- 341

tic information and task-specific labels. It ac- 342

counts for the less improvement of SimTeG on 343

OGBN-Products in Sec. 5.1. 344

5 Experiments 345

In the experiments, we aim at answering three re- 346

search questions as proposed in the introduction 347

4

−20

0

20

−30 −20 −10 0 10 20

O
G

B
N

−
A

rx
iv

X−SimTeG

−25

0

25

−20 −10 0 10 20 30

X−Fix

−20

−10

0

10

20

−10 0 10

X−OGB

−20

0

20

−20 0 20

O
G

B
N

−
P

ro
du

ct
s

X−SimTeG

−40

−20

0

20

−20 −10 0 10 20 30

X−Fix

−10

−5

0

5

10

15

−10 0 10

X−OGB

Label

0

8

16

24

32

Label

0

8

16

24

32

40

Figure 2: The two-dimensional feature space of X-SimTeG, X-Fix, and X-OGB for OGBN-Arixv, and
OGBN-Products. X-SimTeG denotes the features generated by the finetuned LM. different values and shapes
refer to different labels on the specific dataset. The feature values are computed by T-SNE. The LM backbone is
e5-large (Wang et al., 2022).

(Sec. 1). For a clear statement, we split and refor-348

mat them into the following research questions.349

Q1: How much could SimTeG generally improve350

the learning of GNNs on node classification and351

link prediction? Q2: Is PEFT a necessity for LM352

finetuning stage? Q3: How sensitive is GNN train-353

ing to the selection of LMs?354

Datasets. Focusing on two fundamental tasks355

node classification and link prediction, we con-356

duct experiments on three prestigious benchmarks:357

OGBN-Arxiv (Arxiv), OGBN-Products (Products),358

and OGBL-Citation2 (Hu et al., 2020). The for-359

mer two are for node classification while the lat-360

ter one is for link prediction. For the former two,361

we follow the public split, and all text resources362

are provided by the officials. For the latter one,363

OGBL-Citation2, as no official text resources are364

provided, we take the intersection of it and another365

dataset ogbn-papers100M w.r.t. unified paper ids,366

which results in a subset of OGBL-Citation2 with367

about 2.7M nodes. The public split is further up-368

dated according to this subset. In comparison, the369

original OGBL-Citation2 has about 2.9M nodes,370

which is on par with the TG version, as the pub-371

lic valid and test split occupies solely 2% over-372

all. As a result, we expect roughly consistent373

performance for methods on the TG version of374

OGBL-Citation2 and the original one. We intro-375

duce the statistics of the three datasets in Table. A9376

and the details in Appendix A2.1. 377

Baselines. We compare SimTeG with the offi- 378

cial features X-OGB (Hu et al., 2020), which 379

is the mean of word embeddings generated by 380

skip-gram (Mikolov et al., 2013). In addition, 381

for node classification, we include another two 382

SOTA methods: X-GIANT (Chien et al., 2021) 383

and GLEM (Zhao et al., 2022). Particularly, X-* 384

are methods are different at learning node embed- 385

dings and any GNN model could be applied in 386

the downstream task for a fair comparison. To 387

make things consistent, we denote our method as 388

X-SimTeG without further specification. 389

GNN Backbones. Aiming at investigating the gen- 390

eral improvement of SimTeG, for each dataset, we 391

select two commonly-used baselines GraphSAGE 392

and MLP besides one corresponding SOTA GNN 393

models based on the official leaderboard1. For 394

OGBN-Arxiv, we select RevGAT (Li et al., 2021); 395

for OGBN-Products, we select SAGN+SCR (Sun 396

et al., 2021; Zhang et al., 2021a); and for 397

ogbn-citation2, we select SEAL (Zhang and 398

Chen, 2018). 399

LM Backbones. For retrieval LM backbones, we 400

select three popular LMs on MTEB (Muennighoff 401

et al., 2022) leaderboard2 w.r.t. model size and 402

1https://ogb.stanford.edu/docs/leader_
nodeprop

2https://huggingface.co/spaces/mteb/

5

https://ogb.stanford.edu/docs/leader_nodeprop
https://ogb.stanford.edu/docs/leader_nodeprop
https://huggingface.co/spaces/mteb/leaderboard

Table 1: The performance of SOTA GNN, GraphSAGE and MLP on OGBN-Arxiv, OGBN-Products,
OGBL-Citation2, which are averaged over 10 runs (Please note the we solely train LM once to generate the
node embeddings). The results of GLEM is from the orignal paper. We bold the best results w.r.t. the same GNN
backbone and red color the smallest ∆MLP and ∆GNN.

Dataset Metric Method
SOTA GNN A 2-layer Simple MLP / GNN

RevGAT MLP ∆MLP GraphSAGE ∆GNN

Arxiv Acc. (%)

X-OGB 74.01 ± 0.29 47.73 ± 0.29 25.24 71.80 ± 0.20 3.40
X-GIANT 75.93 ± 0.22 71.08 ± 0.22 4.85 73.70 ± 0.09 2.23
GLEM 76.97 ± 0.19 - - 75.50 ± 0.24 1.47

X-SimTeG 77.04 ± 0.13 74.06 ± 0.13 2.98 76.84 ± 0.34 0.20

Dataset Metric Method
SOTA GNN A 2-layer Simple MLP / GNN

SAGN+SCR MLP ∆MLP GraphSAGE ∆GNN

Products Acc. (%)

X-OGB 81.82 ± 0.44 50.86 ± 0.26 30.96 78.81 ± 0.23 3.01
X-GIANT 86.12 ± 0.34 77.58 ± 0.24 8.54 82.84 ± 0.29 3.28
GLEM 87.36 ± 0.07 - - 83.16 ± 0.19 4.20

X-SimTeG 85.40 ± 0.28 76.73 ± 0.44 8.67 84.59 ± 0.44 0.81

Dataset Metric Method
SOTA GNN A 2-layer Simple MLP / GNN

SEAL MLP ∆MLP GraphSAGE ∆GNN

Citation2
MRR (%)

X-OGB 86.14 ± 0.40 25.44 ± 0.01 60.70 77.31 ± 0.90 8.83
X-SimTeG 86.66 ± 1.21 72.90 ± 0.14 13.76 85.13 ± 0.73 1.53

Hits@3 (%)
X-OGB 90.92 ± 0.32 28.22 ± 0.02 62.70 85.56 ± 0.69 5.36
X-SimTeG 91.42 ± 0.19 80.55 ± 0.13 10.87 91.62 ± 0.87 -0.20

performance on classification and retrieval: all-403

MiniLM-L6-v2 (Reimers and Gurevych, 2019), all-404

roberta-large-v1 (Reimers and Gurevych, 2019),405

and e5-large-v1 (Wang et al., 2022). We present406

the properties of the three LMs in Table. A11.407

Hyperparameter search. We utilize optuna (Ak-408

iba et al., 2019) to perform hyperparameter search409

on all tasks. The search space for LMs and GNNs410

on all datasets is presented in Appendix A2.3.411

5.1 Q1: How much could SimTeG generally412

improve the learning of GNNs on node413

classification and link prediction?414

In this section, we conduct experiments to show the415

superiority of SimTeG on improving the learning416

of GNNs on node classification and link predic-417

tion. The reported results are selected based on418

the validation dataset. We present the results based419

on e5-large backbone in Table. 1 and present the420

comprehensive results of node classification and421

link prediction with all the three selected back-422

bones in Table A5 and Table A6. Specifically, in423

Table 1, we present two comparison metric ∆MLP424

leaderboard

and ∆GNN to describe the performance margin of 425

(SOTA GNN, MLP) (SOTA GNN, GraphSAGE), re- 426

spectively. The smaller the value is, even negative, 427

the better the performance of simple models is. In 428

addition, we ensemble the GNNs with multiple 429

node embeddings generated by various LMs and 430

text resources on OGBN-Arxiv and show the results 431

in Table 2. We find several interesting observations 432

as follows. 433

Observation 1: (X-SimTeG + GraphSAGE) con- 434

sistently outperforms (X-OGB + SOTA GNN) on 435

all the three datasets. This finding implies that the 436

incorporation of advanced text features can bypass 437

the necessity of complex GNNs, which is why we 438

perceive our method to be frustratingly simple. Fur- 439

thermore, when replacing GraphSAGE with the cor- 440

responding SOTA GNN in X-SimTeG, although 441

the performance is improved moderately, this mar- 442

gin of improvement is notably smaller compared to 443

the performance gap on X-OGB. Particularly, we 444

show that the simple 2-layer GraphSAGE achieves 445

comparable performance with the dataset-specific 446

SOTA GNNs. Particularly, on OGBN-Arxiv, Graph- 447

SAGE achieves 76.84%, taking the 4-th place in 448

the corresponding leaderboard (by 2023-08-01). 449

6

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

Table 2: The performance of GraphSAGE and RevGAT trained on OGBN-Arxiv with additional text attributes
provided by He et al. (2023). LMs for ensembling are e5-large and all-roberta-large-v1. We select the top-3 SOTA
methods from the leaderboard of OGBN-Arxiv (accessed on 2023-07-18) for comparison and gray color our results
(reported over 10 runs).

.

Rank Method GNN Backbone Valid Acc. (%) Test Acc. (%)

1 TAPE + SimTeG (ours) RevGAT 78.46 ± 0.04 78.03 ± 0.07
2 TAPE (He et al., 2023) RevGAT 77.85 ± 0.16 77.50 ± 0.12
3 TAPE + SimTeG (Ours) GraphSAGE 77.89 ± 0.08 77.48 ± 0.11
4 GraDBERT (Mavromatis et al., 2023) RevGAT 77.57 ± 0.09 77.21 ± 0.31
5 GLEM (Zhao et al., 2022) RevGAT 77.46 ± 0.18 76.94 ± 0.25

Besides, on OGBL-Citation2, GraphSAGE even450

outperforms the SOTA method SEAL on Hits@3.451

Observation 2: With additional text attributes,452

SimTeG with Ensembling achieves new SOTA453

performance on OGBN-Arxiv. We further demon-454

strate the effectiveness of SimTeG by ensembling455

the node embeddings generated by different LMs456

and texts. For text, we use both the original text457

provided by Hu et al. (2020) and the additional458

text attributes3 provided by He et al. (2023), which459

is generated by ChatGPT. For LMs, we use both460

e5-large and all-roberta-large-v1. We train Graph-461

SAGE or RevGAT on those node embeddings gen-462

erated by various LMs and texts, and make the final463

predictions with weighted ensembling (taking the464

weighted average of all predictions). As shown465

in Table 2, with RevGAT, we achieve new SOTA466

performance on OGBN-Arxiv with 78.03% test ac-467

curacy, more than 0.5 % higher than the previous468

SOTA performance (77.50%) achieved by He et al.469

(2023). It further validates the importance of text470

features and the effectiveness of SimTeG.471

Observation 3: Text attributes are unequally472

important for different datasets. As shown in Ta-473

ble 1, we compute ∆MLP which is the performance474

gap between MLP and SOTA GNNs. Empirically,475

this value indicates the importance of text attributes476

on the corresponding dataset, as MLP is solely477

trained on the texts (integrated with SOTA LMs)478

while SOTA GNN additionally takes advantage of479

graph structures. Therefore, approximately, the480

less ∆MLP is, the more important text attributes are.481

As presented in Table 1, ∆MLP on OGBN-Arxiv482

is solely 2.98, indicating the text attributes are483

more important, in comparison with the ones in484

OGBN-Products and OGBL-Citation2. This em-485

3It is worth noting that as GPT-4 used by He et al. (2023)
does not release their training recipe, we do not know whether
the arxiv papers are included during training, which may lead
to a label leakage problem.

pirically indicates why the performance of SimTeG 486

in OGBN-Products does not perform as well as 487

the one in OGBN-Arxiv. We show a sample of 488

text in OGBN-Arxiv and OGBN-Products respec- 489

tively in Appendix A2.1. We find that the text in 490

OGBN-products resembles more a bag of words, 491

which account for the less improvement when us- 492

ing LM features. 493

5.2 Q2: Is PEFT a necessity for LM 494

finetuning stage? 495

In this ablation study, we analyze the effectiveness 496

of PEFT for LM finetuning stage in SimTeG. We 497

summarize the training, validation, and test accu- 498

racy of two stages: LM finetuning stage and GNN 499

training stage. The results of node classification 500

are presented in Table 4. 501

Observation 4: PEFT could significantly alle- 502

viate the overfitting problem during finetuning 503

LM and further facilitate the training of GNNs 504

with regularized features. As shown in Table 4, 505

due to the excessively strong learning capacity 506

of LMs, finetuning LMs on the downstream task 507

causes a severe overfitting problem. Although full- 508

finetuning outperforms PEFT in LM stage, training 509

GNNs on the derived features gains notably less 510

improvement. In contrast, PEFT could significantly 511

mitigate the overfitting issue according to ∆overfit 512

in LM finetuning stage and assist the training of 513

GNNs with regularized features to gain consider- 514

able improvement compared with full-finetuning. 515

5.3 Q3: How sensitive is GNN training to the 516

selection of LMs? 517

Observation 5: GNN’s training is moderately 518

sensitive to the selection of LMs. We select three 519

retrieval LMs based on their rank in MTEB leader- 520

board in terms of the classification and retrieval per- 521

formance. Interestingly, based on the leaderboard, 522

the performance ranking is e5-large > all-roberta- 523

7

Arxiv Citation2 Products

all−
MiniLM−L6

all−
roberta−large

e5−large

all−
MiniLM−L6

all−
roberta−large

e5−large

all−
MiniLM−L6

all−
roberta−large

e5−large

0

20

40

60

80

A
cc

ur
ac

y

Model

GraphSAGE

MLP

LM

all−MiniLM−L6

all−roberta−large

e5−large
72

74

76

GraphSAGE MLP

A
cc

ur
ac

y

LM

all−MiniLM−L6−v2

all−roberta−large−v1

deberta−v2−xxlarge

e5−large

instructor−xl

Figure 3: (Left): The performance of GraphSAGE trained on SimTeG with different LM backbones. (Right): GNN’s
performance on OGBN-Arxiv using LMs of various sizes, indicated by the bubble size.

Table 3: The performance of Graph and MLP trained on SimTeG backed with all-roberta-large-v1 and roberta-large,
which have the same model architecture. we bold the best results for each comparison in X-Fix and X-SimTeG.
all results are reported based on 10 runs.

datasets Metric
X_type X-Fix X-SimTeG

LM Backbone roberta-large all-roberta-large-v1 roberta-large all-roberta-large-v1

Arxiv Acc.
MLP 61.15 ± 0.83 72.58 ± 0.25 71.55 ± 0.24 74.32 ± 0.12
GraphSAGE 72.15 ± 0.59 75.51 ± 0.23 75.48 ± 0.16 76.18 ± 0.37

Products Acc.
MLP 68.14 ± 0.23 70.10 ± 0.08 78.45 ± 0.14 77.48 ± 0.19
GraphSAGE 77.65 ± 0.34 82.38 ± 0.60 83.56 ± 0.21 83.68 ± 0.32

Citation2 MRR
MLP 00.20 ± 0.01 70.12 ± 0.12 63.15 ± 0.20 72.90 ± 0.14
GraphSAGE 79.71 ± 0.27 83.20 ± 0.40 84.37 ± 0.34 85.13 ± 0.73

Table 4: The training results of finetuning LM (LM
stage) and further training GNN on top of derived fea-
tures (GNN stage). We compare the results of PEFT
(SimTeG) with full-finetuning (X-FULL). The LM
backbone is e5-large and the GNN backbone is Graph-
SAGE. We bold the better results on each comparison.
∆overfit computes (Train Acc. - Test Acc.) to measure
the overfitting.

datasets Stage X_type Train Acc. Valid Acc Test Acc. ∆overfit

Arxiv
LM

X-FULL 82.33 75.85 74.77 7.56
X-SimTeG 75.72 75.40 74.31 1.41

GNN
X-FULL 84.39 76.73 75.28 9.11
X-SimTeG 79.37 77.47 76.85 2.52

Products
LM

X-FULL 95.46 91.70 78.70 16.76
X-SimTeG 89.45 88.85 77.81 11.64

GNN
X-FULL 96.42 93.18 81.80 14.62
X-SimTeG 95.37 93.57 84.58 10.79

large-v1 > all-MiniLM-L6-v2, which is consistent524

with their overall performance in left subfigure Fig-525

ure 3. Based on the right subfigure of Figure 3, we526

find that the performance of downstream GNN is527

not closely correlated with the LM size, but proba-528

bly with ability to generate representative text em-529

beddings. To further validate this, we perform an530

ablation study regarding the comparison between531

a pretrained LM and the same LM finetuned for 532

retrieval tasks. The results are shown in Table 3. 533

We observe that given the same architecture, the 534

models specifically finetuned for retrieval tasks (all- 535

roberta-large-v1) generally perform better on tasks 536

of TG representation learning. 537

6 Conclusion 538

In this work, we propose a frustratingly simple 539

approach SimTeG for TG representation learning. 540

We show that with a parameter-efficiently finetuned 541

LM on the same downstream task first, a simple 542

two-layer GraphSAGE trained on the generated 543

node embeddings can achieve on-par state-of-the- 544

art (SOTA) performance on OGBN-Arxiv (77.48 545

%). It indicates that when incorporating advaced 546

text features, one can bypass the necessity of us- 547

ing complex GNN architectures and the combina- 548

tion of LM + Simple GNN is capable of achieving 549

satisfactory results on graph tasks including node 550

classification and link prediction. 551

8

References552

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru553
Ohta, and Masanori Koyama. 2019. Optuna: A next-554
generation hyperparameter optimization framework.555
In Proceedings of the 25th ACM SIGKDD interna-556
tional conference on knowledge discovery & data557
mining, pages 2623–2631.558

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt.559
2022. Structure-aware transformer for graph repre-560
sentation learning. In International Conference on561
Machine Learning, pages 3469–3489. PMLR.562

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-563
Fu Yu, Jiong Zhang, Olgica Milenkovic, and In-564
derjit S Dhillon. 2021. Node feature extraction by565
self-supervised multi-scale neighborhood prediction.566
arXiv preprint arXiv:2111.00064.567

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and568
Kristina Toutanova. 2018. Bert: Pre-training of deep569
bidirectional transformers for language understand-570
ing. arXiv preprint arXiv:1810.04805.571

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng,572
Kaixiong Zhou, Tianlong Chen, Xia Hu, and573
Zhangyang Wang. 2022. A comprehensive study574
on large-scale graph training: Benchmarking and575
rethinking. In Advances in Neural Information Pro-576
cessing Systems, volume 35, pages 5376–5389.577

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.578
Inductive representation learning on large graphs. In579
NeuIPS, pages 1024–1034.580

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-581
Kirkpatrick, and Graham Neubig. 2022. Towards a582
unified view of parameter-efficient transfer learning.583
In International Conference on Learning Representa-584
tions.585

Xiaoxin He, Xavier Bresson, Thomas Laurent, and586
Bryan Hooi. 2023. Explanations as features: Llm-587
based features for text-attributed graphs. arXiv588
preprint arXiv:2305.19523.589

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,590
Bruna Morrone, Quentin De Laroussilhe, Andrea591
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.592
Parameter-efficient transfer learning for nlp. In In-593
ternational Conference on Machine Learning, pages594
2790–2799. PMLR.595

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan596
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and597
Weizhu Chen. 2022. LoRA: Low-rank adaptation of598
large language models. In International Conference599
on Learning Representations.600

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,601
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure602
Leskovec. 2020. Open graph benchmark: Datasets603
for machine learning on graphs. Advances in neural604
information processing systems, 33:22118–22133.605

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong 606
Zhang, and Houfeng Wang. 2019. Text level graph 607
neural network for text classification. arXiv preprint 608
arXiv:1910.02356. 609

Md Shamim Hussain, Mohammed J Zaki, and Dhar- 610
mashankar Subramanian. 2022. Global self-attention 611
as a replacement for graph convolution. In Proceed- 612
ings of the 28th ACM SIGKDD Conference on Knowl- 613
edge Discovery and Data Mining, pages 655–665. 614

Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, 615
Xinyang Zhang, Qi Zhu, and Jiawei Han. 2023. Pat- 616
ton: Language model pretraining on text-rich net- 617
works. arXiv preprint arXiv:2305.12268. 618

Thomas N Kipf and Max Welling. 2016. Semi- 619
supervised classification with graph convolutional 620
networks. arXiv preprint arXiv:1609.02907. 621

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, 622
Yiming Yang, and Lei Li. 2020. On the sentence em- 623
beddings from pre-trained language models. arXiv 624
preprint arXiv:2011.05864. 625

Guohao Li, Matthias Müller, Bernard Ghanem, and 626
Vladlen Koltun. 2021. Training graph neural net- 627
works with 1000 layers. In International conference 628
on machine learning, pages 6437–6449. PMLR. 629

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 630
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 631
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 632
Roberta: A robustly optimized bert pretraining ap- 633
proach. arXiv preprint arXiv:1907.11692. 634

Costas Mavromatis, Vassilis N Ioannidis, Shen Wang, 635
Da Zheng, Soji Adeshina, Jun Ma, Han Zhao, Chris- 636
tos Faloutsos, and George Karypis. 2023. Train your 637
own gnn teacher: Graph-aware distillation on textual 638
graphs. arXiv preprint arXiv:2304.10668. 639

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor- 640
rado, and Jeff Dean. 2013. Distributed representa- 641
tions of words and phrases and their compositionality. 642
Advances in neural information processing systems, 643
26. 644

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and 645
Nils Reimers. 2022. Mteb: Massive text embedding 646
benchmark. arXiv preprint arXiv:2210.07316. 647

OpenAI. 2023. Introducing chatgpt. https:// 648
openai.com/blog/chatgpt. Accessed: 2023-07- 649
18. 650

Wonpyo Park, Woong-Gi Chang, Donggeon Lee, Juntae 651
Kim, et al. 2022. Grpe: Relative positional encod- 652
ing for graph transformer. In ICLR2022 Machine 653
Learning for Drug Discovery. 654

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 655
Sentence embeddings using siamese bert-networks. 656
arXiv preprint arXiv:1908.10084. 657

9

https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

Chuxiong Sun, Hongming Gu, and Jie Hu. 2021.658
Scalable and adaptive graph neural networks659
with self-label-enhanced training. arXiv preprint660
arXiv:2104.09376.661

Laurens Van der Maaten and Geoffrey Hinton. 2008.662
Visualizing data using t-sne. Journal of machine663
learning research, 9(11).664

Liang Wang, Nan Yang, Xiaolong Huang, Binxing665
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,666
and Furu Wei. 2022. Text embeddings by weakly-667
supervised contrastive pre-training. arXiv preprint668
arXiv:2212.03533.669

Luyu Wang, Yujia Li, Ozlem Aslan, and Oriol670
Vinyals. 2021. Wikigraphs: A wikipedia text-671
knowledge graph paired dataset. arXiv preprint672
arXiv:2107.09556.673

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia674
Mirhoseini, Joseph E Gonzalez, and Ion Stoica. 2021.675
Representing long-range context for graph neural net-676
works with global attention. Advances in Neural677
Information Processing Systems, 34:13266–13279.678

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo679
Li, Defu Lian, Sanjay Agrawal, Amit Singh,680
Guangzhong Sun, and Xing Xie. 2021. Graphform-681
ers: Gnn-nested transformers for representation learn-682
ing on textual graph. Advances in Neural Information683
Processing Systems, 34:28798–28810.684

Zhilin Yang, William Cohen, and Ruslan Salakhudi-685
nov. 2016. Revisiting semi-supervised learning with686
graph embeddings. In International conference on687
machine learning, pages 40–48. PMLR.688

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin689
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-690
Yan Liu. 2021. Do transformers really perform badly691
for graph representation? Advances in Neural Infor-692
mation Processing Systems, 34:28877–28888.693

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-694
chai, William L Hamilton, and Jure Leskovec. 2018.695
Graph convolutional neural networks for web-scale696
recommender systems. In Proceedings of the 24th697
ACM SIGKDD international conference on knowl-698
edge discovery & data mining, pages 974–983.699

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ra-700
jgopal Kannan, and Viktor Prasanna. 2019. Graph-701
saint: Graph sampling based inductive learning702
method. arXiv preprint arXiv:1907.04931.703

Chenhui Zhang, Yufei He, Yukuo Cen, Zhenyu Hou, and704
Jie Tang. 2021a. Improving the training of graph neu-705
ral networks with consistency regularization. arXiv706
preprint arXiv:2112.04319.707

Jiong Zhang, Wei-Cheng Chang, Hsiang-Fu Yu, and708
Inderjit Dhillon. 2021b. Fast multi-resolution trans-709
former fine-tuning for extreme multi-label text classi-710
fication. Advances in Neural Information Processing711
Systems, 34:7267–7280.712

Muhan Zhang and Yixin Chen. 2018. Link prediction 713
based on graph neural networks. In Advances in 714
Neural Information Processing Systems, pages 5165– 715
5175. 716

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen 717
Wen, and Liang Wang. 2020. Every document owns 718
its structure: Inductive text classification via graph 719
neural networks. arXiv preprint arXiv:2004.13826. 720

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian 721
Liu, Rui Li, Xing Xie, and Jian Tang. 2022. Learning 722
on Large-scale Text-attributed Graphs via Variational 723
Inference. arXiv preprint arXiv:2210.14709. 724

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, 725
Markus Pelger, Tianqi Yang, Liangjie Zhang, Ruofei 726
Zhang, and Huasha Zhao. 2021. Textgnn: Improving 727
text encoder via graph neural network in sponsored 728
search. In Proceedings of the Web Conference 2021, 729
pages 2848–2857. 730

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou 731
Sun, and Quanquan Gu. 2019. Layer-dependent im- 732
portance sampling for training deep and large graph 733
convolutional networks. Advances in neural informa- 734
tion processing systems, 32. 735

10

http://arxiv.org/abs/2210.14709
http://arxiv.org/abs/2210.14709
http://arxiv.org/abs/2210.14709
http://arxiv.org/abs/2210.14709
http://arxiv.org/abs/2210.14709

A1 More Experiment Results 736

A1.1 Comprehensive Results of Main Experiments 737

Table A5: Node Classification Accuracy of X-SimTeG on ogbn-arxiv (Arxiv) and ogbn-products (Products).
All reported results are averaged over 10 runs in the format of mean ± std. We red color the best results and
blue color the runner-ups with the same GNN backbone. ↑ (%) denotes the improvement of X-SimTeG over

the original feature X-OGB. ∆MLP and ∆GNN denotes the extreme value difference among all methods (including
MLP) and GNNs, respectively.

Datasets GNN Acc. (%)
Baselines X-SimTeG

X-OGB X-GIANT GLEMa MiniLM-L6 ↑ (%) e5-large ↑ (%) roberta-large ↑ (%)

Arxiv

MLP
val 49.14 ± 0.27 72.02 ± 0.16 - 71.59 ± 0.07 22.45 75.08 ± 0.09 26.66 74.80 ± 0.07 25.66
test 47.73 ± 0.29 71.08 ± 0.22 - 70.56 ± 0.09 22.83 74.06 ± 0.13 26.33 74.32 ± 0.12 26.59

GraphSAGE
val 72.80 ± 0.18 74.58 ± 0.20 76.45 ± 0.05 75.92 ± 0.17 3.12 77.47 ± 0.14 4.67 76.86 ± 0.13 4.06
test 71.80 ± 0.20 73.70 ± 0.09 75.50 ± 0.24 75.14 ± 0.30 3.34 76.84 ± 0.34 5.04 76.18 ± 0.37 4.38

GAMLP
val 71.49 ± 0.41 76.36 ± 0.09 76.95 ± 0.14 76.75 ± 0.11 5.26 77.90 ± 0.12 6.41 77.57 ± 0.15 6.08
test 70.61 ± 0.52 75.26 ± 0.15 75.62 ± 0.23 75.46 ± 0.17 4.85 76.92 ± 0.10 6.31 76.72 ± 0.19 6.11

SAGN
val 72.74 ± 0.39 75.76 ± 0.21 - 76.84 ± 0.08 4.10 78.03 ± 0.05 5.29 77.63 ± 0.16 4.89
test 71.76 ± 0.41 74.39 ± 0.38 - 75.50 ± 0.23 3.74 76.85 ± 0.12 5.09 76.59 ± 0.17 4.83

RevGAT
val 75.10 ± 0.15 76.97 ± 0.08 77.49 ± 0.17 76.86 ± 0.24 1.76 77.68 ± 0.07 2.58 76.32 ± 0.18 1.22
test 74.01 ± 0.29 75.93 ± 0.22 76.97 ± 0.19 75.96 ± 0.21 1.95 77.04 ± 0.13 3.03 75.88 ± 0.58 1.87

∆MLP/∆GNN 25.24 / 3.40 4.85 / 2.23 - 5.40 / 0.82 - 2.98 / 0.20 - 2.40 / 0.84 -

Products

MLP
val 63.44 ± 0.30 89.67 ± 0.07 - 86.82 ± 0.02 23.38 88.75 ± 0.04 25.31 90.01 ± 0.03 26.57
test 50.86 ± 0.26 77.58 ± 0.24 - 72.36 ± 0.12 21.50 76.73 ± 0.44 25.87 77.48 ± 0.19 26.62

GraphSAGE
val 90.03 ± 0.08 93.49 ± 0.09 93.84 ± 0.12 93.49 ± 0.08 3.46 93.57 ± 0.20 3.54 93.34 ± 0.09 3.31
test 78.81 ± 0.23 82.84 ± 0.29 83.16 ± 0.19 82.04 ± 0.57 3.23 84.59 ± 0.44 5.78 83.68 ± 0.32 4.87

SAGN+SCR
val 91.83 ± 0.24 94.04 ± 0.12 94.00 ± 0.03 92.89 ± 0.07 1.06 94.12 ± 0.10 2.29 94.13 ± 0.12 2.30
test 81.82 ± 0.44 86.12 ± 0.34 87.36 ± 0.07 82.43 ± 0.40 0.61 85.40 ± 0.28 3.58 85.23 ± 0.32 3.41

∆MLP/∆GNN 30.96 / 3.01 8.54 / 3.28 - 10.07 / 0.39 8.67 / 0.81 - 7.75 / 1.55 -
a results are from the original papers.

A1.2 P value analysis 738

As shown in the upper sub-table in Table A7, all p values are lower than 0.05, indicating the significant 739

improvement of SimTeG. It is worth noting that as the results of GLEM are reported by the original 740

paper and we do not have the results for each individual experiment, we are not able to compute the 741

corresponding p values. We do acknowledge that there is a subtle difference between SimTEG and GLEM 742

and GLEM outperforms SimTEG on OGBN-Products. This phenomenon is discussed in our Observation 743

4 in Section 5.1 of the paper. 744

In addition, as shown in the bottom sub-table in Table A7, the p values of SimTeG are signifi- 745

cantly smaller than the baseline embeddings. Specifically, the p values of SimTeG on OGBN-Arxiv 746

and OGBL-Citation2 are close or larger than 0.05. This further supports our key findings: in cooperation 747

with advanced text embeddings, one can bypass the necessity of using complex GNN models. 748

A1.3 Comparison with More LM-involved Methods 749

The results of GraphFormer on OGBN-Arxiv and OGBN-Products are directly borrowed from the GLEM 750

paper (Zhao et al., 2022). since the datasets and split are exactly the same. We run GraphFormer on 751

ogbl-citation2 for 10 times and report the mean with std. For the hyperparameter setting, we use the 752

default parameters, and the batch size is set to 100 to make it consistent with the reported results in GLEM. 753

As shown in the table, SimTeG performs consistently better than GraphFormer. It is possibly because 754

(i) the GNN-nested architecture of GraphFormer solely allows 1-hop message passing, which limits the 755

express ability of GNN models; (ii) GraphFormer’s implementation modifies the architecture code of 756

BERT (Devlin et al., 2018) and cannot be easily extended to other SOTA embedding models nowadays. 757

A1.4 More Results of Ablation Studies 758

Towards a comprehensive understanding of the effectiveness of SimTeG, we further investigate the 759

convergence of GNNs with SimTeG. We compare the training convergence and the corresponding 760

validation performance of GNNs trained on SimTeG, X-OGB, and X-FIX, where X-FIX denotes the 761

node embeddings generated by the pretrained LMs without finetuning. The illustration is placed in Fig. A4. 762

A11

Table A6: Link prediction results on OGBL-Citation2-2.7M (Citation2). All reported results are averaged over 10
runs. We red color the best results and blue color the runner-ups with the same GNN backbone. ↑ (%) denotes
the improvement of X-SimTeG over the original feature X-OGB. ∆MLP and ∆GNN denotes the margin of (MLP,
SEAL) and (GraphSAGE, SEAL), respectively. We use blue color denoting the negative values and red denoting
positive. Specifically, in the context of ∆, positives indicate MLP/GraphSAGE performs better than SEAL.

Metrics GNN Split
Baselines X-SimTeG

X-OGB MiniLM-L6 ↑ (%) roberta-large ↑ (%) e5-large ↑ (%)

MRR

MLP
val 25.37 ± 0.09 64.56 ± 0.15 39.19 70.20 ± 0.19 44.83 72.79 ± 0.17 47.42
test 25.44 ± 0.01 64.49 ± 0.18 39.05 70.32 ± 0.22 44.88 72.90 ± 0.14 47.46

GraphSAGE
val 77.40 ± 0.88 83.13 ± 0.72 5.73 85.27 ± 0.78 7.87 85.20 ± 0.69 7.80
test 77.31 ± 0.90 83.09 ± 0.75 5.78 85.29 ± 0.70 7.98 85.13 ± 0.73 7.82

SEAL
val 87.21 ± 0.03 88.33 ± 0.30 1.12 88.29 ± 0.45 1.08 88.56 ± 0.38 1.35
test 86.14 ± 0.40 86.69 ± 0.43 0.55 87.02 ± 0.46 0.88 86.66 ± 1.21 0.52

∆MLP/∆GNN -60.70 / -8.83 -22.20 / -3.60 - -16.70 /-1.73 - -13.76 / -1.53 -

Hits@1

MLP
val 15.04 ± 0.09 52.29 ± 0.18 37.25 59.46 ± 0.19 44.42 62.21 ± 0.23 47.17
test 15.11 ± 0.06 52.18 ± 0.25 37.07 59.66 ± 0.26 44.55 62.31 ± 0.19 47.20

GraphSAGE
val 67.28 ± 1.20 74.83 ± 1.02 7.55 77.98 ± 1.20 10.70 77.73 ± 0.89 10.45
test 67.09 ± 1.25 74.79 ± 1.10 7.70 77.99 ± 0.89 10.90 77.66 ± 0.91 10.57

SEAL
val 82.76 ± 0.14 84.35 ± 0.42 1.59 84.25 ± 0.79 1.49 84.70 ± 0.58 1.94
test 81.74 ± 0.46 81.40 ± 0.96 -0.34 82.34 ± 0.79 0.60 81.15 ± 2.04 -0.59

∆MLP/∆GNN -66.63 / -14.65 -29.22 /-6.61 - -22.68 / -4.35 - -18.84 / -3.39 -

Hits@3

MLP
val 28.06 ± 0.10 72.60 ± 0.16 44.54 77.56 ± 0.23 49.50 80.42 ± 0.15 52.36
test 28.22 ± 0.02 72.62 ± 0.19 44.40 77.66 ± 0.24 49.44 80.55 ± 0.13 52.33

GraphSAGE
val 85.54 ± 0.69 90.17 ± 0.61 4.63 91.55 ± 0.98 6.01 91.72 ± 0.90 6.18
test 85.56 ± 0.69 90.16 ± 0.51 4.60 91.57 ± 1.10 6.01 91.62 ± 0.87 6.06

SEAL
val 91.36 ± 0.44 92.00 ± 0.07 0.64 92.15 ± 0.19 0.79 91.75 ± 0.18 0.39
test 90.92 ± 0.32 91.42 ± 0.60 0.50 91.52 ± 0.56 0.60 91.42 ± 0.19 0.50

∆MLP/∆GNN -62.70 / -5.36 -18.80 / -1.26 - -13.86 / 0.05 - -10.87 / 0.20 -

Hits@10

MLP
val 46.73 ± 0.14 87.62 ± 0.06 40.89 89.80 ± 0.20 43.07 91.74 ± 0.08 45.01
test 46.59 ± 0.11 87.57 ± 0.12 40.98 89.66 ± 0.14 43.07 91.74 ± 0.10 45.15

GraphSAGE
val 94.29 ± 0.19 96.25 ± 0.13 1.96 96.61 ± 0.12 2.32 96.71 ± 0.09 2.42
test 94.37 ± 0.17 96.30 ± 0.13 1.93 96.64 ± 0.12 2.27 96.74 ± 0.11 2.37

SEAL
val 94.59 ± 0.14 94.88 ± 0.25 0.29 95.08 ± 0.12 0.49 95.08 ± 0.21 0.49
test 93.90 ± 0.49 94.40 ± 0.07 0.50 93.95 ± 0.37 0.05 94.54 ± 0.25 0.64

∆MLP/∆GNN -47.31 / -0.47 -6.83 /1.90 - -4.29 / 2.66 - -2.80 / 2.20 -

It is worth noting that we use the training accuracy on OGBN-Arxiv and OGBN-Products to denote their763

convergence since we utilize label smoothing during training which make the training loss not directly764

comparable on them. Based on Fig. A4, we have the following observation:765

Observation 6: SimTeG moderately speeds up and stabilizes the training of GNNs. As shown in766

Fig. A4, GNNs with SimTeG generally converge faster than the ones with X-OGB and X-FIX. With767

SimTeG, GraphSAGE could converge within 2 epochs on OGBN-Arxiv and OGBN-Products. In contrast,768

training on the features directly generated by the pretrained LMs (i.e., X-FIX) converges much slower,769

even slower than one of X-OGB (possibly due to a larger hidden dimension). This further indicates the770

benefits of SimTeG.771

A2 Reproducibility Statement772

A2.1 Details of TG Version for the three OGB datasets773

In this section, we present the details of the TG version of OGBN-Arxiv, OGBN-Products, and774

OGBL-Citation2. The statistics of the three datasets are shown in Table A9 and the text resources775

are shown in Table A10.776

OGBN-Arxiv. OGBN-Arxiv is a directed academic graph, where node denotes papers and edge denotes777

directed citation. The task is to predict the category of each paper as listed in https://arxiv.org. For778

its TG version, we use the same split as Hu et al. (2020). The text for each node is its title and abstract. We779

concatenate them for each node with the format of "title: {title}; abstract: {abstract}" as the corresponding780

A12

https://arxiv.org

Table A7: The p values for two comparisons, SimTeG v.s. baseline (GIANT/OGB) and GraphSAGE v.s. SOTA
GNN on three datasets. p value smaller than 0.05 means that SimTeG (or SOTA GNN) is significantly better than
the baseline (GraphSAGE)

Dataset GNN SimTeG Baseline P-Value P <0.05

OGBN-Arxiv
RevGAT 77.04 75.93 7.77e-14 True
GraphSAGE 76.84 73.70 4.11e-17 True

OGBN-Products
SAGN+SLE 85.40 86.12 4.15e-06 True
GraphSAGE 84.59 82.84 9.01e-10 True

OGBL-Citation2
SEAL 91.42 90.92 0.0023 True
GraphSAGE 91.62 85.13 5.01e-12 True

Dataset Embeddings GraphSAGE SOTA GNN P-Value P <0.05

OGBN-Arxiv
X-SimTeG 76.84 77.04 0.0427 True
X-GIANT 73.70 75.93 7.79e-22 True

OGBN-Products
X-SimTeG 84.59 85.40 8.74e-06 True
X-GIANT 82.84 86.12 7.87e-17 True

OGBL-Citation2
X-SimTeG 91.62 91.42 0.1380 False
X-OGB 85.13 90.92 2.98e-15 True

Table A8: The results of more LM-involved methods. All results are averaged over 10 runs.

Method ogbn-arxiv ogbn-products ogbl-citation (MRR)

GraphFormer 72.81 ± 0.20 74.72 ± 0.16 82.78 ± 0.24
SimTeG + GraphSAGE 76.84 ± 0.34 84.59 ± 0.44 85.13 ± 0.73
SimTeG + SOTA GNN 77.04 ± 0.13 85.40 ± 0.28 86.66 ± 1.21

Table A9: Statistics of OGBN-Arxiv, OGBN-Products, and OGBL-Citation2-2.7M

Datasets #Nodes #Edges Avg. Degree #Task Metric

OGBN-Arxiv (Arxiv) 169, 343 1, 166, 243 13.7 node classification Accuracy
OGBN-Products (Products) 2, 449, 029 61, 859, 140 50.5 node classification Accuracy
OGBL-Citation2-2.7M (Citation2) 2, 728, 032 27, 731, 705 10.2 link prediction MRR / Hits

node’s text. For example, "title: multi view metric learning for multi view video summarization; abstract: 781

Traditional methods on video summarization are designed to generate summaries for single-view video 782

records; and thus they cannot fully exploit the redundancy in multi-view video records. In this paper, we 783

present a multi-view metric learning framework for multi-view video summarization that combines the 784

advantages of maximum margin clustering with the disagreement minimization criterion. ..." 785

OGBN-Products. OGBN-Products is a co-purchase graph, where node denotes a product on Amazon and 786

an edge denotes the co-purchase relationship between two products. The task is to predict the category of 787

each product (node classification). We follow the public split as Hu et al. (2020) and the text processing 788

strategy of GLEM (Zhao et al., 2022). For each node, the corresponding text is its item description. For 789

example, "My Fair Pastry (Good Eats Vol. 9)" "Disc 1: Flour Power (Scones; Shortcakes; Southern 790

Biscuits; Salmon Turnovers; Fruit Tart; Funnel Cake; Sweet or Savory; Pte Choux) Disc 2: Super Sweets 791

4 (Banana Spitsville; Burned Peach Ice Cream; Chocolate Taffy; Acid Jellies; Peanut Brittle; Chocolate 792

Fudge; Peanut Butter Fudge) ..." 793

OGBL-Citation2-2.7M. OGBL-Citation2-2.7M is a citation graph, where nodes denote papers and 794

A13

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20

Epoch

tr
ai

n_
ac

c
OGBN−Arxiv

0.00

0.25

0.50

0.75

0 5 10 15 20

Epoch

tr
ai

n_
ac

c

OGBN−Products

0.2

0.4

0.6

5 10 15 20

Epoch

lo
ss

OGBL−Citation2

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20

Epoch

va
l_

ac
c

OGBN−Arxiv

0.00

0.25

0.50

0.75

0 5 10 15 20

Epoch

va
l_

ac
c

OGBN−Products

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20

Epoch

va
l_

m
rr

OGBL−Citation2

X_type e5−large e5−large_fix ogb

Figure A4: Training convergence and validation results of GNNs with X-SimTeG, X-OGB, and X-FIX. The LM
backbone is e5-large. The learning rate and batch size are consistent.

edges denote the citations. The task is to predict the missing citation among papers (link prediction). All795

papers are collected by the official from Mircrosoft Academic Graph whereas the text resources are not pro-796

vided. Though MAG IDs for all papers are provided, we cannot find all corresponding text resources due to797

the close of MAG project 4. Hence, we take an intersection of OGBL-Citation2 and OGBN-Papers100M798

whose text resources are provided by the official, and build a subgraph, namely OGBL-Citation2-2.7M.799

It contains 93% nodes of OGBL-Citation2 and offers a roughly on-par performance for baselines.800

Table A10: The URLs of text resources for ogbn-arxiv, ogbn-products, and OGBL-Citation2.

Dataset Text Resource URL

OGBN-Arxiv https://snap.stanford.edu/ogb/data/misc/ogbn_arxiv/titleabs.tsv.gz
OGBN-Products https://drive.google.com/u/0/uc?id=1gsabsx8KR2N9jJz16jTcA0QASXsNuKnN&export=download
OGBL-Citation2-2.7M https://drive.google.com/u/0/uc?id=19_hkbBUDFZTvQrM0oMbftuXhgz5LbIZY&export=download

A2.2 Properties of Language Models801

Table A11: Properties of the selected LM backbones. Repositories are hosted by huggingface.

LM #Params. #Layers #Hidden Dim. Repository

all-MiniLM-L6-v2 23M 6 384 sentence-transformer/all-MiniLM-L6-v2
all-roberta-large-v1 355M 24 1024 sentence-transformer/all-roberta-large-v1
e5-large 335M 24 1024 intfloat/e5-large

A2.3 Hyperparameter Search Space802

For language models, we design the hyperparameter (HP) search space as in Table A12. Please note that803

for link prediction, the label smoothing factor is omitted. For HP searching, we utilize optuna (Akiba et al.,804

4https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

A14

https://snap.stanford.edu/ogb/data/misc/ogbn_arxiv/titleabs.tsv.gz
https://drive.google.com/u/0/uc?id=1gsabsx8KR2N9jJz16jTcA0QASXsNuKnN & export=download
https://drive.google.com/u/0/uc?id=19_hkbBUDFZTvQrM0oMbftuXhgz5LbIZY & export=download
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

2019) to search the best HPs for each dataset and each model. For LMs, we take 10 trials. For GNNs, we 805

take 20 trials. The final HP setting for LMs and GNNs are placed as shell scripts in our repository.

Table A12: The search space of LMs and GNNs.

LM GNN
hyperparameter search space type hyperparameter search space type

learning rate [1e-6, 1e-4] continual learning rate [1e-4, 1e-2] continual
weight decay [1e-7, 1e-4] continual weight decay [1e-7, 1e-4] continual
label smoothing [0.1, 0.7] continual label smoothing [0.1, 0.7] continual
header dropout [0.1, 0.8] continual dropout [0.1, 0.8] continual
lora r [1, 2, 4, 8] descrete num of layers [2, 3, 4, 6, 8] descrete
lora alpha [4, 8, 16, 32] descrete
lora dropout [0.1, 0.8] continual

806

A15

