
Capturing Deep Tail Risk via Sequential Learning of

Quantile Dynamics ∗

Qi Wu† Xing Yan‡

September 2019

Abstract

This paper develops a conditional quantile model that can learn long term and

short term memories of sequential data. It builds on sequential neural networks

and yet outputs interpretable dynamics. We apply the model to asset return time

series across eleven asset classes using historical data from the 1960s to 2018. Our

results reveal that it extracts not only the serial dependence structure in condi-

tional volatility but also the memories buried deep in the tails of historical prices.

We further evaluate its Value-at-Risk forecasts against a wide range of prevailing

models. Our model outperforms the GARCH family as well as models using fil-

tered historical simulation, conditional extreme value theory, and dynamic quantile

regression. These studies indicate that conditional quantiles of asset return have

persistent sources of risk that are not coming from those responsible for volatility

clustering. These findings could have important implications for risk management

in general and tail risk forecasts in particular.
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1 Introduction

Many institutional decisions in financial risk management rely on good forecasts of the

conditional distributions of asset returns, especially their left tails. These decisions in-

clude the setting of bank capital requirement [Committee et al., 2016] and the posting

of collateral in lending and clearing [BIS, 2013]. What keeps risk managers awake at

night, however, are not daily price fluctuations but (unexpected) downfalls of unusual

magnitudes. The concern is that they may trigger systemic spirals that bring down the

system. Researchers have conducted in-depth research on what constitutes a good mea-

surement of tail risk [Kou et al., 2013][Kou and Peng, 2016]. Meanwhile, it is of broad

interest to be able to forecast into the far-left tail in any risk class and for any asset

type. However, unusual movements of asset prices do not happen often. By definition, a

1%-quantile-breaching event occurs about twice a year. It is thus useful to first look at

what could cause them before discussing how to forecast them using historical data.

The most recognized causes for price drawdowns of unusual magnitudes are extreme

events with a broad market impact. Examples include the 1987 stock market crash, the

burst of the dot com bubble in 2000, the Lehman default, and the ensuing 2008 financial

crisis. However, idiosyncratic shocks such as short selling [Geraci et al., 2018], fire sales

[Cont and Wagalath, 2016], and flash crashes [Kirilenko et al., 2017] can cause similar

damages. When these events occur, markets destabilize rapidly, either through positive

feedback between drying up of market liquidity and funding liquidity [Brunnermeier and

Pedersen, 2008] or arising from complex interactions among participants [Easley et al.,

2011]. Even if there are no severe external shocks, studies show that accumulations of

ordinary-sized shocks could still give rise to large price swings. A case in point is the

widely-observed empirical regularity called volatility clustering [Cont, 2007]. [Glasserman

and Wu, 2018] shows that the self-exciting nature of volatility can turn conditionally

light-tailed innovations into unconditionally heavy-tail ones.

If we allow data to speak, there is no reason to believe that asset returns have memories

only in the lower moments such as volatility. On the contrary, it is likely that markets

remember those more extreme episodes as well, though occurred less commonly, and

leave footprints in the motions of price skewness, price kurtosis, and so on. This thinking

motivates us to find out whether real data exhibits different degrees of serial dependence

at different probability levels in the conditional distribution of asset returns. If the

conditional distribution of asset return indeed exhibits distinct lengths of memory at

different probability levels, risk managers would be better informed when they forecast.

In other words, the predictions of near-extreme price movements should improve if one

captures the driving forces of tail events beyond those responsible for volatility clustering.

To do so, one needs a dynamic model that exhibits different lengths of memory at

different levels of probability in the conditional distribution. Allowing data to speak
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demands a non-parametric component in the model, which differs from the parametric

ideas used in constructing models such as the GARCH family, as well as those models

based on the Extreme Value Theory. This is the reason why we take a semi-parametric

machine learning approach in this paper. The model we construct inherits the flexibility

of a recurrent neural network (RNN) in capturing nonlinear dynamics and memory effects

of different lengths. We also overcome the black-box shortcoming of typical end-to-end

neural networks by adding to the output layer a parametrization of quantile function so

that the “learning” is statistically interpretable. By formulating the model training as a

quantile regression problem, our earlier studies show that serial dependencies of condi-

tional quantiles at low probability levels indeed contain risk factors that are independent

of those driving the second moments [Yan et al., 2018].

1.1 Methodology Review

In discrete time, forecasting conditional quantiles of asset returns is to find the time-t

conditional α-quantile qt of a scalar Yt where P (Yt ≤ qt|It−1) = α, given the probability

α : 0 < α < 1 and the information set It−1 up to time t−1. There are three approaches to

this problem: fully parametric, non-parametric, and semi-parametric, depending on how

one approaches the conditional distribution of Yt: F (y, θt|It−1) where θt is the unknown

parameter of F , which controls the dynamics of the conditional distribution.

Fully parametric models are interpretable ones. They assume functional forms for the

conditional distribution F , and specify parametric dynamics of how F evolves through

time. The leading parametric models used to model discrete-time asset return dynamics

are the GARCH family. However, a GARCH model assumes no extra risk factors for the

dynamics of tail behavior other than those driving the clustered conditional volatility.

The conditional kurtosis as well as conditional skewness are constant over time. Within

the parametric family, an important attempt to improve GARCH is to allow time-varying

higher conditional moments. It starts with Bruce Hansen [Hansen, 1994] and later fol-

lowed by [Rockinger and Jondeau, 2002][León et al., 2005] and [Bali et al., 2008]. These

improvements allow parameters controlling the tail heaviness in F (y, θt|It−1) to be time-

varying (autoregressive structures), but not giving them extra risk drivers. In other

words, the autoregressive structures for different moments share one stochastic term, i.e.,

the innovation term.

By contrast, non-parametric models do not assume particular functional forms. In-

stead, kernel methods are used for estimating the conditional distribution. The limitation

is the lack of structural interpretation. Historical Simulation (HS) is one of the leading

non-parametric methods for Value-at-Risk (VaR) forecasts and is based on the rectan-

gular kernel. In practice, the filtered version, called the filtered Historical Simulation

(FHS), is used more often to accommodate data that are not independent and identically
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distributed (i.i.d.) [Barone-Adesi et al., 1999]. In a FHS model, a location-scale model

such as GARCH is used to pre-filter the data. One shortcoming of the FHS approach

is that its forecasts are very sensitive to the length of historical data, e.g., whether to

include the event of the 1987 stock market crash.

Semi-parametric models strike a balance between flexibility and structure. They typ-

ically focus solely on particular quantile levels of interest, leaving the rest of the condi-

tional distribution unspecified. Two semi-parametric approaches are considered the best:

the conditional Extreme Value Theory (CEVT), and the dynamic quantile regression

(DQR). The CEVT approach [McNeil and Frey, 2000] specifies the tail distribution as

one of three possible forms for the limiting distribution of extreme order statistic. The

question is whether distributions of the extreme are good proxies of near-extreme quan-

tiles at probability levels that are small, e.g., 1% or 0.1%, but not 10−10. For this reason,

[McNeil and Frey, 2000] proposed to fit a GARCH model first to the data and then apply

extreme distributions to the standardized residuals, which are assumed to be i.i.d. This is

in the same spirit of the FHS approach. On the other hand, the DQR approach cares less

about parametrizing the tail distribution. Instead, it focuses on the dynamics of specific

quantiles. A notable example is the conditionally autoregressive VaR (CAViaR) model

in [Engle and Manganelli, 2004]. The common issue with DQR models is that they are

prone to the problem of quantile crossing.

1.2 Our Contribution

We take a semi-parametric approach in constructing a dynamic return model, recognizing

that parametrization allows interpretability whereas data-driven demands flexibility. In

particular, our contributions are three folds.

i) A novel parametric construction of conditional quantile function. In our

setup, we construct a novel quantile function of conditional asset return directly, making

sure it not only covers a wide range of tail heaviness but also treats the left and right tails

separately. It is fully parametric and it allows one to avoid the difficult choice of which

conditional density is better. This parametric quantile function is parsimonious and yet

flexible enough to model asymmetric heavy tails.

ii) A machine learning approach to estimate the parameter dynamics. The

non-parametric component of our approach lies in the way we specify the dynamics of

the quantile function’s parameters. We use a sequential neural network, called Long

Short Term Memory (LSTM), to learn them from historical data. The advantage of

this approach, comparing to the GARCH family, is that it can capture a) unspecified

dynamics that is potentially nonlinear in a given data set as well as b) memories that

could exhibit different lengths at different probability levels. This approach is also flexible

to expand information sets. The training of the neural network can also be easily cast
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into a quantile regression formulation.

iii) Captures high-order memories beyond volatility persistence. Through a

combination of simulation experiment and comprehensive testing on real data, we show

that our model captures well long memory in the dynamics of the conditional distribution

of asset returns. We focus on the higher moment dynamics and the left-tail quantile

dynamics. For conditional skewness and kurtosis, our model discovers the existence of

long memory that is independent of that responsible for volatility persistence. Similarly,

the left-tail quantiles, e.g., the 0.01-quantile, also exhibit very long memories that differ

from the dynamics of volatility clustering, and an ARMA model can numerically explain

these extra serial dependencies. All of these imply that there exist extra risk factors that

drive the dynamics of high moments or tail-side quantiles.

iv) Improves VaR forecast for a wide range of asset classes. At last, across

a wide range of asset classes including international equity indexes, exchange rates, and

commodities, our method performs quite well in out-of-sample VaR forecasts comparing

to the GARCH family, and models using FHS, CEVT, and CAViaR. All these findings

have important implications for asset pricing and risk management.

We organize the rest of the paper as follows. We introduce some related works in

Section 2. In Section 3 and 4, we introduce the LSTM neural network and describe

our proposed model respectively. A simulation experiment is conducted in Section 5,

followed by the information of some real-world data we collect in Section 6. In Section

7, we present the empirical findings by our model about the tail dynamics or quantile

dynamics learned from data. In Section 8, we perform the comparisons of several models

on VaR forecasts through statistical backtesting and loss function. At last, we conclude

our paper and give some discussions about future works.

2 Related Works

Let Pt be the asset price at time t and rt = log(Pt) − log(Pt−1) be the asset return over

the period t−1 to t. The models we are going to compare assume rt follows the following

process [Engle and Patton, 2001]:

rt = µt + σtεt, εt ∼ i.i.d. F (·) , (1)

where µt and σt are conditional mean and conditional volatility respectively, and F is the

cumulative distribution function of ε. A complete model should specify the distribution

F and how µt and σt depend on past information set. For example, GARCH(1,1) model

[Engle, 1982][Bollerslev, 1986] chooses a standard normal distribution for ε and evolves

σt according to

σ2
t = β0 + β1(σt−1εt−1)2 + β2σ

2
t−1. (2)
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Extensions like EGARCH [Nelson, 1991] and GJR-GARCH [Glosten et al., 1993] make

reasonable changes to the above equation. Alternatives can also be made in the choice

of the distribution F , e.g., the heavy-tailed t-distribution or the (generalized) skewed-t

distribution proposed by [Hansen, 1994]. However, the degrees of the freedom which

represent the tail heaviness and the degree of asymmetry are constant over time. The

motivation for using asymmetric heavy-tailed distribution is that numerous studies have

highlighted the empirical facts of heavy tails and asymmetry of financial returns, see

[Cont, 2001] for a summary. While the heavy tail phenomenon is a consensus, the evidence

of asymmetry is not statistically as strong as the heavy tailness. Although the asymmetry

is moderate, it cannot be ignored. For example, [Chen et al., 2001] and [Albuquerque,

2012] documented some facts about the skewness of single stock and stock index, pictured

that stock index returns are negatively skewed while single stock returns are positively

skewed, and proposed theories for explaining this.

The conditional mean µt is often modeled in a linear auto-regressive way: µt = γ0 +

γ1rt−1. Throughout the paper, we will denote GARCH-type models with t-distribution

innovation and linear auto-regressive conditional mean as AR-GARCH-t, AR-EGARCH-

t, etc. Unless specifically stated, in this paper we set the orders of the GARCH terms

and ARCH terms both to be 1 for all GARCH-type models, like GARCH(1,1) described

above.

Besides the GARCH family, FHS and CEVT methods that filter the original return

series by a GARCH first can also be written in Equation (1). The differences are in the

descriptions of ε. An FHS model uses the samples of {εt} (the residuals after filtering)

to estimate the empirical quantiles of ε non-parametrically. The CEVT approach would

model ε with a non-parametric kernel distribution for the interior and an extreme value

distribution for the tail sides, such as the generalized Pareto distribution.

The Equation (1) gives us an important indication that for different probability level

α, the α-quantile of rt, denoted as qt(α), is linearly related to the α-quantile of ε:

qt(α) = µt + σtF
−1(α). (3)

If we fix α and look at the temporal behavior of qt(α), we can find that {qt(α)} behaves

proportionally to the volatility series {σt} (plus {µt}). Thus it generates very similar

quantile dynamics for different α. This limitation holds for the GARCH family as well

as models based on FHS and CEVT and may restrict the model to express the real

data. There has been literature dealing with this issue. In [Hansen, 1994][Rockinger

and Jondeau, 2002][León et al., 2005][Bali et al., 2008], authors use skewed heavy-tailed

innovation distribution and let the skewness and kurtosis be time-varying. The dynamics

of the skewness and kurtosis are like linear autoregression too, just as the volatility. The

difficulties are in the choice of an appropriate probability density and the complexity of
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its mathematical form.

In CAViaR [Engle and Manganelli, 2004], Engle and Manganelli also criticize that in

GARCH, the negative extremes follow the same process as the volatility. Their point is

that different quantiles may have very different dynamics. They thus propose to model

the quantile dynamics separately for different α, instead of specifying the full conditional

distribution. The fitting of CAViaR is done through quantile regression with the loss

function: Lα(r, q) = (α−I(r < q))(r−q). However, since different quantiles are estimated

separately, CAViaR may suffer from the common issue of quantile regression, i.e., the

quantile crossing. That is the possible occurrence of qt(α1) > qt(α2) when α1 < α2.

Another big family of models that are related to conditional distribution forecasts

is stochastic volatility (SV) models. Some comparisons between GARCH-type and SV

models were made in [Taylor, 1994][Fleming and Kirby, 2003][Carnero et al., 2004][Franses

et al., 2007]. SV models are applied in situations when volatility contains extra risk

driver. In continuous time, if driven by Brownian Motion, they are Markovian, which is

essentially different from GARCH family and our proposed model and may not be suitable

for modeling serial dependence of volatility. What are comparable with our model and

are consistent with the focus of this paper, are long-memory volatility models driven by,

e.g., fractional Brownian Motion or Hawkes process, and preferably in discrete time.

2.1 Quantile Regression

For two variables x and y, quantile regression aims to estimate the α-quantile q of the

conditional distribution p(y|x), see [Koenker and Bassett Jr, 1978][Koenker and Hallock,

2001] for a general background. To do this, without making any assumption on p(y|x),

a parametric function q = fθ(x) is chosen, for example, a linear one q = w>x + b. Note

that q is an unobservable quantity, a specially designed loss function between y and q

makes the estimation feasible in quantile regression:

Lα(y, q) =

{
α|y − q| y > q

(1− α)|y − q| y ≤ q
. (4)

Then we minimize the expected loss in a traditional regression way to get the estimated

parameter θ̂:

min
θ

E[Lα(y, fθ(x))]. (5)

Given a dataset {xi, yi}Ni=1, the empirical average loss 1
N

∑N
i=1 Lα(yi, fθ(xi)) is minimized

instead. When we want to estimate multiple conditional quantiles q1, q2, . . . , qK for differ-

ent probability levels α1 < α2 < · · · < αK , K different parametric functions qk = fθk(x)
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are chosen and the losses are summed up to be minimized simultaneously:

min
θ1,...,θK

1

K

1

N

K∑
k=1

N∑
i=1

Lαk(yi, fθk(xi)). (6)

Because θj and θk are estimated separately in the optimization, this combination

is prone to the issue of quantile crossing, i.e., for some x and αj < αk, it is possible

that fθj(x) > fθk(x) which contradicts the probability theory. To overcome this issue,

additional constraints on the monotonicity of the quantiles can be added to the opti-

mization to ensure non-crossing [Takeuchi et al., 2006]. Another simpler solution is post-

processing, i.e., sorting or rearranging the original estimated quantiles to be monotone

[Chernozhukov et al., 2010]. Another shortcoming of the conventional quantile regression

is that the number of parameters grows with the size of the set of α, i.e., K. For a more

elaborate description of a distribution, large K is necessary in some cases.

3 Long Short-term Memory

Since the AI player AlphaGo beat the top human player in Go matchup, deep learning

[LeCun et al., 2015] has become more and more popular in many other fields rather

than just computer science and engineering. In the financial industry, leading investment

banks and hedge funds start to invite AI experts from the computer science field to their

newly formed AI research groups, to help apply machine learning in all business units

like trading execution, risk management, and portfolio management. To economists and

management scientists, machine learning, including deep learning, can provide a new class

of applied econometric or statistical approaches [Mullainathan and Spiess, 2017] that may

have significant advantages over traditional models because of their data-driven property

and their fewer restrictions on model assumptions. There are possibilities that machine

learning can generate new insights into traditional research problems in finance.

With many parameters, deep learning models can extract complex nonlinear rela-

tionships contained in rich data, despite the lack of interpretability to some extent. The

linearity assumption in many econometric models may not reflect the real word and is not

sufficient when there is a large amount of data. So, sometimes we would rather sacrifice

some interpretability in exchange for the model capability and performance improvement.

Recent advances in optimization algorithms and computing hardware make the efficient

fitting of deep models possible. Moreover, counterintuitively, many parameters do not

necessarily lead to overfitting because of some useful machine learning techniques one can

adopt. Deep learning has achieved breakthroughs in many application areas like com-

puter vision, machine translation, and bioinformatics. However, successful applications

in financial context are less reported.
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The most common deep learning architecture is the deep neural network, in which

nonlinearity is represented by compositions of the chosen nonlinear activation functions.

For modeling time series data, in deep learning, Long Short-term Memory (LSTM) is a

popular sequential neural network model designed for capturing both long-term and short-

term dependencies or complex dynamics in sequences. Recently remarkable successes

have been made in its applications like speech recognition, machine translation, protein

structure prediction, etc. So it is a natural choice for us to model the dynamics of

the conditional distribution of financial asset return series. Mathematically, LSTM is

a highly composite nonlinear function that maps a sequence of vectors x1, . . . , xn to

another sequence of vectors y1, . . . , yn (or to just one vector y), through hidden state

vectors h1, . . . , hn. Examples include machine translation from a Chinese sentence to an

English sentence and the classification of a music clip to its genre.

Before describing the full mathematics of it, we first introduce the simple recurrent

neural network (RNN), which is the understructure of LSTM and has the form:

hj = σh(Whxj + Uhhj−1 + bh), (7)

yj = σy(Wyhj + by), (8)

for j = 1, . . . , n. Wh, Uh, bh,Wy, by are the parameters need to be learned from the data

and σh, σy are nonlinear activation functions. It models a nonlinear functional relationship

between x1, . . . , xn and y1, . . . , yn. One can stack this structure multiple times to get a

multi-layered or deep RNN, i.e., obtain layer k’s hidden state vectors hk1, . . . , h
k
n through

hk−1
1 , . . . , hk−1

n : hkj = σh(W
k
hh

k−1
j + Uk

hh
k
j−1 + bkh).

LSTM extends this understructure and has the equations:

fj = σg(Wfxj + Ufhj−1 + bf ), (9)

ij = σg(Wixj + Uihj−1 + bi), (10)

oj = σg(Woxj + Uohj−1 + bo), (11)

gj = σh(Wgxj + Ughj−1 + bg), (12)

cj = fj ∗ cj−1 + ij ∗ gj, (13)

hj = oj ∗ σh(cj), (14)

where ∗ represents element-wise multiplication of two vectors. At last, the output yj is

any chosen nonlinear function of hj, like:

yj = σh(Wyhj + by). (15)

All W,U, b are parameters that need to be learned and σg, σh are nonlinear activation

functions, which are chosen as the S-shaped logistic function and tanh function respec-
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tively in this paper. In the case of outputting only one vector y, one can use the average

of all hidden state vectors 1
n

∑
hj or just the last one hn, e.g., y = σh(Wyhn + by), like

in our Equation (22). The logistic function and tanh function are the two most popu-

lar activation functions in all deep neural network models, playing the role of nonlinear

transformation which maps the support of arguments to a bounded domain. Multiple

compositions of these activation functions can approximate complex nonlinear relation-

ships between input vectors x1, . . . , xn and output vectors y1, . . . , yn or y.

3.1 The Long Memory

To illustrate the flexible serial dependence structure that LSTM can represent, especially

the long memory, and the comparison to simple RNN, we examine the derivative of hidden

state hj with respect to the former D input xj−D, and see how it varies as D becomes

large. To make analysis easier, we suppose all vectors and matrix degenerate to scalars

in the network. For the simple RNN:

∂hj
∂xj−D

=
∂hj
∂hj−1

∂hj−1

∂xj−D
= · · · = ∂hj−D

∂xj−D

D∏
k=1

∂hj−k+1

∂hj−k
(16)

= (1− h2
j−D)WhU

D
h

D∏
k=1

(1− h2
j−k+1). (17)

The usual situation is |Uh| < 1. Now |∂hj/∂xj−D| ≤ |Wh||Uh|D is exponentially decaying

with respect to D, suggesting a short memory of the network only. If |Uh| > 1, the

derivative may explode, which is another known issue of simple RNN.

For LSTM, to make things simple, we replace hj = oj ∗ σh(cj) by hj = cj, and set fj

and ij to be constant (do not change according to j, this can be done by setting Wf , Uf ,

Wi, and Ui to be 0). Now hj = fjhj−1 + ijgj, and

∂hj
∂xj−D

=
∂hj
∂hj−1

∂hj−1

∂xj−D
= · · · = ∂hj−D

∂xj−D

D∏
k=1

∂hj−k+1

∂hj−k
(18)

=
∂hj−D
∂xj−D

D∏
k=1

(
fj−k+1 + ij−k+1(1− g2

j−k+1)Ug
)
. (19)

One can treat fj−k+1, ij−k+1 ∈ (0, 1) be the weights of 1 and (1− g2
j−k+1)Ug respectively.

The term in the multiple product is a re-balance between 1 and (1− g2
j−k+1)Ug no matter

|Ug| < 1 or |Ug| > 1. If fj−k+1 is close to 1 and ij−k+1 is close to 0, the vanishing or

exploding derivative will not appear when D grows. This suggests a long memory of

the LSTM network. Moreover, when fj−k+1, ij−k+1 are set to be varying, it allows more

flexible memory structure of LSTM.
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Figure 1: Q-Q plots against N (0, 1): (a) t(2); (b) HTQF with u = 1.0 and v = 0.1; (c)
HTQF with u = 0.6 and v = 1.2. For all three distributions, µ = 1 and σ = 1.5. For
HTQF, A = 4.

4 The LSTM-HTQF Model

We first describe the proposed parametric quantile function, then use it to model the

conditional distribution p(rt|It−1) of financial return series and show how to model its

dependence on past information set. We then complete the proposed method by fitting

the model with quantile regression formulation.

4.1 A Novel Heavy-tailed Quantile Function

There are three common ways to fully express a continuous distribution, through proba-

bility density function (PDF), cumulative distribution function (CDF), or quantile func-

tion. To model financial data, people pay much attention to how to choose an appropriate

parametric PDF that is consistent with the empirical facts of financial returns, like heavy

tails. As far as we know, no literature does it with an appropriate CDF or quantile func-

tion. In this paper, we design a parsimonious parametric quantile function that allows

varying heavy tails with intuitive parameters.

Our idea starts with the Q-Q plot, which is a popular method to determine whether a

set of observations follows a normal distribution. The theory behind this is quite simple:

the α-quantile of a normal distribution N (µ, σ2) is µ + σZα, where Zα is the α-quantile

of the standard normal one. When α takes different values in (0, 1), their Q-Q plot

forms a straight line. If the Q-Q plot yields an inverted S shape, it indicates that the

corresponding distribution is heavy-tailed (see Figure 1 (a) for an example of the Q-Q

plot of t-distribution with 2 degrees of freedom against N (0, 1)).

We construct a parsimonious parametric quantile function, as a function of Zα, to let

it have a controllable-shape Q-Q plot against the standard normal distribution. Specifi-

cally, the up tail and down tail of the inverted S-shaped Q-Q plot are controlled by two

parameters respectively. Our proposed heavy-tailed quantile function (abbreviated as
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HTQF) has the following form:

Q(α|µ, σ, u, v) = µ+ σZα

(
euZα

A
+
e−vZα

A
+ 1

)
, (20)

where µ, σ are location and scale parameters respectively, A is a relatively large positive

constant; u ≥ 0 controls the up tail of the inverted S shape, i.e., the right tail of the

corresponding distribution; v ≥ 0 controls the down tail, i.e., the left tail of the corre-

sponding distribution. The larger u or v, the heavier the tail. When u = v = 0, the

HTQF degenerates to the quantile function of a normal distribution.

To understand these, suppose that in Equation (20), Zα is first multiplied by a simpler

factor fu(Zα) = euZα/A+ 1, then multiplied by σ and added by µ (for simplicity one can

set µ = 0 and σ = 1). The factor fu is a monotonically increasing and convex function

of Zα, and satisfies fu → 1 as Zα → −∞. So Zαfu(Zα) will exhibit the up tail of the

inverted S only. The same analysis applies to Zαfv(Zα) = Zα(e−vZα/A + 1) too. Thus,

Zα(fu(Zα) + fv(Zα))/2 exhibits the whole inverted S-shaped Q-Q plot (we replace 2A

by A in Equation (20)). The roles of A are to let fu(0) and fv(0) be close to 1, and

to ensure the HTQF is monotonically increasing with Zα. Figure 1 (b) and (c) show

the Q-Q plots of HTQF with different values of u and v against N (0, 1). They exhibit

different degrees of tailedness and the tails can flexibly change according to u and v. In

addition, an HTQF with fixed parameters is the quantile function of a unique probability

distribution because its inverse function exists and is a CDF. Please refer to the proof in

the Appendix A.

4.2 The LSTM-HTQF Model

For the distribution p(rt|It−1), different from GARCH-type models, we do not make as-

sumptions on the PDF of it. Instead, we assume its quantile function being an HTQF,

denoted by Q(α|µt, σt, ut, vt), where µt, σt are time-varying parameters representing the

location and scale; and ut, vt control the shapes of left tail and right tail of the corre-

sponding distribution.

We assume the time-t parameters µt, σt, ut, vt are functions of past return history. To

model that, we select a subsequence of fixed length from rt−1, rt−2, . . . to construct a

feature vector sequence, and apply an LSTM to learn the mapping between the feature

vectors and the HTQF parameters. LSTM [Hochreiter and Schmidhuber, 1997] is a

popular and powerful sequential neural network model in machine learning, and is a

natural choice in our method (see [Lipton et al., 2015] for a comprehensive review of

LSTM). In detail, a fixed length L is chosen, and then a feature vector sequence of length
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L is constructed from rt−1, . . . , rt−L:

xt1, . . . , x
t
L =


rt−L

(rt−L − r̄t)2

(rt−L − r̄t)3

(rt−L − r̄t)4

 , . . . ,


rt−1

(rt−1 − r̄t)2

(rt−1 − r̄t)3

(rt−1 − r̄t)4

 , (21)

where r̄t = 1
L

∑L
i=1 rt−i. The intuition behind this construction is straightforward, which

is to extract information contained in raw quantities associated with the first, second,

third, and fourth central moments of past L samples. We believe the high-order moments

in the past contain direct information for future conditional distribution, especially for

future left/right tail heaviness. This construction will make the neural network extract

useful information more easily comparing to only including the first two moments. After

this construction, we model the four HTQF parameters µt, σt, ut, vt as the output of an

LSTM when feeding input xt1, . . . , x
t
L:

[µt, σt, ut, vt]
> = tanh(W oht + bo), ht = LSTMΘ(xt1, . . . , x

t
L), (22)

where Θ is the LSTM parameters, ht is the last hidden state vector of LSTM. W o, bo are

the output layer parameters.

At last, for fitting our model, we select K fixed probability levels 0 < α1 < α2 < · · · <
αK < 1 and minimize the average quantile regression loss between rt and its conditional

quantiles Q(αk|µt, σt, ut, vt) over all k and t, like in traditional quantile regression:

min
Θ,W o,bo

1

K

1

T − L

K∑
k=1

T∑
t=L+1

Lαk (rt, Q(αk|µt, σt, ut, vt)) . (23)

Combine Equation (20)(21)(22)(23) to complete our proposed LSTM-HTQF model and

its fitting. After fitting, for subsequent out-of-sample series {rt′}t′>T , the time-varying

HTQF parameters µt′ , σt′ , ut′ , vt′ can be calculated directly from historical returns with

the learned model parameters Θ̂, Ŵ o, b̂o. So the full conditional distribution at time t′ can

be estimated, as well as the conditional quantiles or any moments of interest. Then we

can analyze the dynamics of the conditional distribution learned. Besides, our paper also

focuses on the quantile or VaR forecasting. To evaluate the performance on the out-of-

sample set, one can obtain the quantile sequence forecasted and apply some common VaR

backtesting procedures as suggested by the regulatory authorities, or evaluate through a

loss function.
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4.3 Remarks

One of the advantages of the LSTM-HTQF model is that the proposed HTQF is more

intuitive to understand and flexible enough to model asymmetric dynamics of heavy

tails. It has a simpler mathematical form comparing to the distributions in EVT and the

PDFs in GARCH-type models, such as the generalized skewed t-distribution in [Hansen,

1994] and [Bali et al., 2008]. Besides, the LSTM in our model is data-driven and can

learn nonlinear dependence and long memory on past information set from the data

while the linear auto-regressive FHS, CEVT, CAViaR, and GARCH family may not.

Furthermore, from another perspective, comparing to traditional quantile regression, our

model overcomes the issue of quantile crossing since the HTQF is monotonically increasing

with α.

Generally, the feature vector sequence xt1, x
t
2, . . . , x

t
L can be designed to contain any

information that is related to the conditional distribution of rt or is helpful to the pre-

diction, like trading volume, related assets, or fundamentals. To keep consistency with

GARCH family and other related models, and to ensure the fairness of the comparisons,

we construct xt1, x
t
2, . . . , x

t
L only from past returns rt−1, rt−2, . . . . In real applications of

our method, more information can be included in the feature vector sequence.

Our method is widely applicable in quantile prediction or time series modeling in

many other non-financial fields. Time series data exhibiting time-varying asymmetrical

tail behavior and nonlinear serial dependence of conditional distribution, e.g., hydrologic

data, internet traffic data, or electricity price and demand, is most suited. One can also

change the standard normal distribution in the Q-Q plot to other baseline distribution,

i.e., replace Zα in HTQF in Equation (20) by other quantile function, to let the HTQF

have a controllable-shaped Q-Q plot against the specified distribution, like exponential

one or lognormal one, the choice of which relies on specific domain knowledge.

5 Simulation Studies

The purpose of the simulation experiment is to verify whether our method can learn the

serial dependence of conditional distribution whose higher moments exhibit strong time-

varying effects. Similar to a GARCH specification, we generate a simulated time series

in discrete time according to

rt = µt + σtzt, (24)

µt = 0.052 + 0.172rt−1, (25)

σ2
t = 0.293 + 0.161(σt−1zt−1)2 + 0.575σ2

t−1, (26)
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but with a skew-t distributed innovation where λ, η are parameters controlling the skew-

ness and kurtosis (degrees of freedom):

z ∼ skew-t(λ, η).

Its density is given by:

f(z|λ, η) = c
(

1 +
2(g − ρ2)

(
z + ρ/

√
g − ρ2

)2

(η + 1)
(
1 + λ sign

(
z + ρ/

√
g − ρ2

))2

)− η+1
2
,where (27)

c =
(2(g − ρ2)

η + 1

)1/2
B(

η

2
,
1

2
)−1 (28)

ρ = 2λ
(η + 1

2

)1/2
B(

η − 1

2
, 1)B(

η

2
,
1

2
)−1 (29)

g = (1 + 3λ2)
η + 1

2
B(

η

2
,
1

2
)−1B(

η − 2

2
,
3

2
) (30)

and B(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt is the Beta function.

To impose parametric dynamics to the skewness parameter λt and the kurtosis pa-

rameter ηt so that their evolutions are known as a prior, we modify the setup in [Bali

et al., 2008] as such:

λt = −1 + 2/(1 + exp(−λ̃t)),where (31)

λ̃t = −0.038 + 0.076z3
t−1 + 0.463λ̃t−1; (32)

ηt = 2 + 2 exp(3− η̃t),where (33)

η̃t = 0.136 + 0.057z4
t−1 + 0.717η̃t−1 . (34)

We generate 30,000 data points in total and treat the last one-tenth as the out-of-

sample data set. Another one-tenth are extracted to form the validation set, which is

used to stop the fitting process when the loss on this set begins to increase, to prevent

overfitting. In LSTM we set L = 25, H = 8 and in HTQF we set A = 4 without change.

K = 21 probability levels are chosen into the α set for model fitting: [α1, . . . , α21] = [0.01,

0.05, 0.1, . . . , 0.9, 0.95, 0.99].

After fitting, we forecast the conditional distribution for every day on the out-of-

sample set through forecasting the four HTQF parameters and compare them to the true

parameters that generate the time series: {µt}, {σt}, {λt}, {ηt}. Denoting the forecasted

HTQF parameters as {µ̂t}, {σ̂t}, {ût}, {v̂t}, we use {ût− v̂t} as the proxy of skewness and

{ût + v̂t} as the proxy of kurtosis. We use these proxies because they are intuitive and,

the true skewness or kurtosis may not exist for some λt and ηt (λt and ηt are proxies too).

We plot in Figure 2 the pairs of the true/forecasted location, scale, skewness, and kurtosis

parameters respectively, where the red lines are the true parameters and the blue ones are
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Figure 2: Comparisons between the true parameters (red lines) of the simulated time
series and the forecasted HTQF parameters (blue lines) by our model on the out-of-
sample set. The linear correlation coefficients between the four pairs of parameters are
0.9780, 0.9104, 0.8014, and -0.7867 respectively. Linear transformations are made before
plotting.

the forecasted. Linear transformations are made before plotting, to let them be in similar

ranges. One can see that the forecasted parameters are highly linearly correlated to the

true ones, which means that our model has successfully learned the temporal behavior

of the conditional distribution of rt. The linear correlation coefficients between the four

pairs of parameters are 0.9780, 0.9104, 0.8014, and -0.7867, respectively. The negative

sign is because the heavier the tail, the bigger ût or v̂t, but the smaller ηt.

6 Empirical Studies

6.1 Daily Return Data

We select 11 representative assets coming from 3 different asset classes including equity

indexes, foreign exchange rates, and spot commodities. They are equity index NASDAQ

100, HSI, Nikkei 225, FTSE 100, DAX, exchange rates of USD to EUR/GBP/JPY/AUD,

and spot crude oil/gold. For every asset, we collect the time series of its daily returns

that has the maximum possible length. The start date, the end date, and the length of

each time series are shown in Table 1. We adopt a rolling-window forecast setting that

every time 250 days are used as the out-of-sample set for forecasting and then these 250
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Table 1: The whole period and the out-of-sample period of every asset return time series.
We roll forward 250 days every time and re-fit the model.

Asset Start Date End Date
Out-of-sample
Start Date

Out-of-sample
Set Length

Total Length

NASDAQ 100 1985-10-01 2018-07-02 1996-08-26 5500 8257
HSI 1986-12-31 2018-06-29 1998-03-26 5000 8031
Nikkei 225 1965-01-05 2018-07-02 1975-11-17 10500 13785
FTSE 100 1983-12-30 2018-08-16 1994-11-17 6000 8767
DAX 1987-12-30 2018-07-02 1998-10-20 5000 7873
USDEUR 1975-01-02 2018-07-09 1985-07-11 8500 11162
USDGBP 1971-01-04 2018-07-09 1981-02-20 9750 12394
USDJPY 1971-01-04 2018-07-09 1981-02-24 9750 12395
USDAUD 1971-01-05 2018-07-09 1981-12-09 9500 12111
Crude Oil 1983-03-31 2018-07-13 1993-10-25 6250 8906
Gold 1979-12-27 2018-07-13 1990-09-18 7250 9995

days are included into the in-sample set and the model is re-fitted. The in-sample set

always starts from the beginning of the time series. In Table 1, we also list the start

date and the length of the whole out-of-sample set for every time series. All returns are

calculated by rt = ln(Pt/Pt−1), where Pt is the price or rate at time t. Each time series

is normalized to have zero sample mean and unit sample variance.

Whenever the model is fitted, a quarter subset is extracted from the in-sample set to

form the validation set, which is a machine learning technique used for selecting hyper-

parameters, and for stopping the optimization iterations when the loss on the validation

set begins to increase, to prevent overfitting. Our model has two hyper-parameters:

the length L of past series rt−1, . . . , rt−L on which time-t HTQF parameters µt, σt, ut, vt

depend, and the hidden state dimension H of the LSTM. In our experiments, we find

that values greater than L = 100 and H = 16 do not increase the performance evidently

for most of the assets while the performance of smaller L or H such as L = 25 or H = 4

is noticeably inferior. Hence, we set L = 100 and H = 16 uniformly for every asset in the

following empirical studies to avoid the problem of fine-tuning for each individual asset.

The A in the HTQF is set to be 4. We choose K = 21 probability levels into the α set

for model fitting: [α1, . . . , α21] = [0.01, 0.05, 0.1, . . . , 0.9, 0.95, 0.99], in the optimization

in Equation (23).

To accelerate the training of neural networks, we use the commonly used mini-batch

technique, which avoids performing the gradient descent over the full data set. We first

divide the in-sample set randomly into five equal parts called five batches. Then, for

every five iterations, we apply the gradient descent over each one of the five batches in

turn to update the neural network parameters. This is feasible because the loss function

that needs to be minimized in Equation (23) is a sum of the loss for every data point,
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or for every time t, with shared parameters. In every iteration, only a small part of all

t is used to calculate the gradient and update the model parameters. For more about

mini-batch, please see [Keskar et al., 2016]. We adopt Adam optimization algorithm in

[Kingma and Ba, 2014] with suggested default setting implemented by TensorFlow [Abadi

et al., 2016]. The training for one asset takes a few hours using a desktop PC with two

3.30GHz quad-core CPUs.

6.2 High-Frequency Data

In addition to the daily return data collected above, we also collect some high-frequency

data from the Hong Kong stock market. Specifically, 5-minute returns of 8 component

stocks contained in the HSI index are obtained by us. They come from 4 different sectors

and are the most liquid blue-chip stocks with the largest market capitalization, e.g.,

HSBC, Tencent, AIA, etc. We use the exchange codes like 0005.HK to denote them.

Their return time series all start from May 27, 2015 and end on April 17, 2019 with over

60,000 observations. The first 5-minute return of each day is calculated using the close

price of the first 5 minutes and the close price of the previous day. All prices we obtain

are trade prices.

We set the first two-thirds of each return time series as the in-sample set and the

remaining one third as the out-of-sample set without rolling. However, like the daily data,

a quarter subset is extracted uniformly from the in-sample set to form the validation set

for our model. All other experiment settings are the same as the daily data case. However,

one issue of using high-frequency data is the intra-day seasonal effect. For example, the

intra-day volatility is highest near the market open and close, and forms a U shape in

the whole trading day. To neutralize the seasonal effect, every return in a 5-minute bin

is divided by the standard deviation of all returns in that bin across all trading days,

assuming their mean is 0. We only use the data after this pre-processing.

7 Tail Dynamics Learned

Because our adoption of LSTM does not assume any particular parametric form for the

conditional distribution dynamics, in this section, we examine what dynamics our model

has learned from the daily return data. These dynamics include the dynamics of moments

and quantiles of the conditional distribution.

7.1 Moment Dynamics

On the out-of-sample set {rt′}, our model predicts the HTQF parameters µ̂t′ , σ̂t′ , ût′ , v̂t′ for

every t′, which completely determine the conditional distribution of rt′ through its quan-

tile function Q(α|µ̂t′ , σ̂t′ , ût′ , v̂t′). Hence, we can randomly sample from this distribution
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and calculate the sample moments for estimating the true moments of the distribution.

Then we examine how these moments behave temporally to see what dynamics our model

has learned from the data. The sampling is quite simple as we only need to sample a

number z from the standard normal and then put it into the HTQF:

µ̂t′ + σ̂t′z

(
eût′z

A
+
e−v̂t′z

A
+ 1

)
. (35)

This is a sample of a random variable that follows the distribution whose quantile function

is Q(α|µ̂t′ , σ̂t′ , ût′ , v̂t′). We take the equity index NASDAQ 100 as an example. For

every t′, after sampling 100,000 times, we calculate the sample mean, volatility, skewness,

and kurtosis respectively. They are the estimations of the conditional mean, volatility,

skewness, and kurtosis of rt′ . Thus we obtain four sequences of moments for the out-of-

sample set.

Next, we examine the length of dependence or memory of these moment sequences

through the autocorrelation function. To examine the volatility dynamics learned by

our model, we plot in Figure 3 the autocorrelation function of the volatility sequence

forecasted by our model on NASDAQ 100 out-of-sample set. One can see that our model

generates very persistent volatility whose autocorrelation function is slowly decaying. In

the second subplot of Figure 3, we show the memory length of the skewness after linearly

regressing the skewness to the mean and volatility to remove correlations, and obtain

the residuals. This subplot shows the autocorrelation function of the residual sequence,

which also exhibits a long memory that is significant for even 300 days’ lag, despite the

relatively small magnitude comparing to volatility memory.

From these observations, we can conclude that the skewness itself has dynamics that

differs from that of the volatility, which is implicitly proved by the skewness memory

length after we remove the mean and volatility. It suggests that existing models may

miss extra risk drivers and new stochastic terms would be needed to drive the skewness

process. Because the kurtosis may not exist at some time points, we cannot show its

memory length through the autocorrelation function. However, in the next section, we

will examine the memories of the left-tail quantiles instead.

7.2 Quantile Dynamics

Our LSTM-HTQF model predicts the conditional quantiles for all probability levels too.

We analyze the length of dependence or memory of the forecasted quantile sequence

again through the autocorrelation function, also taking NASDAQ 100 index as an exam-

ple. Note that the quantile must be greatly correlated to the mean and volatility. So,

on the out-of-sample set of NASDAQ 100, we linearly regress the forecasted quantile to

the forecasted mean and volatility (calculated through sampling) and analyze the auto-
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Figure 3: Autocorrelation functions of the volatility and skewness sequences forecasted
by our model on NASDAQ 100 out-of-sample set. The skewness is regressed to the mean
and volatility first and the residual sequence is used instead.

correlation function of the residual sequence. This can reveal the independent dynamics

of the quantile that separates from the mean and volatility.

We choose four left-tail quantiles of probability levels 0.01, 0.05, 0.1, 0.15, and plot

the autocorrelation functions of their residuals obtained by regression in Figure 4. One

can see very long dependences in all four quantile sequences, proving that the quantile

itself has independent dynamics. Besides, as the probability level increases from 0.01 to

0.15, the magnitude of the dependence becomes larger and larger. This provides evidence

that different quantiles may have different dynamics according to probability levels.

To figure out what dynamics the regressed quantile sequences most likely follow, we

fit an ARMA model to them respectively. Then we check the autocorrelation func-

tion of the ARMA residual sequence to see if any serial dependence exists. After fit-

ting an ARMA(2,2), the ARMA residuals of the quantile sequences (regressed to mean

and volatility) for all probability levels have no serial dependence at all, as indicated

by their autocorrelation functions in Figure 5 (taking 0.01 and 0.05-quantiles as exam-

ples). The autocorrelations almost always lie between the significance bounds. Fitting

an ARMA(1,1) cannot generate ARMA residuals that have autocorrelation functions like

this. It suggests that the regressed quantile sequences have dynamics that are very close

to ARMA(2,2). The fitted ARMA equations are also provided in the caption of Figure

5. At last, the conclusions made in this section hold not only for NASDAQ 100 but also

for all other assets in Table 1.

8 VaR Forecasts

In this section, we quantitatively compare the VaR forecasts using our model and using

some well-known competing models on the out-of-sample sets of the assets mentioned in

Section 6, through some statistical backtesting procedures of VaR forecasts, as well as

the loss function criteria. Our competing models are mainly GARCH family, from which
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Figure 4: Autocorrelation functions of the forecasted quantile sequences (regressed to
mean and volatility) on the out-of-sample set of NASDAQ 100.

we select some popular ones for comparisons: AR-GARCH-t, AR-EGARCH-t, and AR-

GJR-GARCH-t. The orders of the GARCH terms and ARCH terms are all 1. We also

compare with some other popular models for forecasting VaR, including FHS, CEVT,

symmetric CAViaR, and asymmetric CAViaR. We adopt the rolling-window setting for

all models.

In order to improve the flexibility of our HTQF for better performance, we can replace

Zα in the HTQF by other baseline quantile function, e.g., the one of t-distribution, and

re-define the HTQF as:

Q(α|µ, σ, u, v) = µ+ σZν
α

(
euZ

ν
α

A
+
e−vZ

ν
α

A
+ 1

)
, (36)

where Zν
α is the quantile function of t-distribution with ν degrees of freedom. When

ν = +∞, Zν
α becomes the quantile function of a standard normal and the above definition

is equivalent to the original one. In the forecasting, in every rolling, we select the best

ν from the set {4, 6, 8, 10,+∞} for our model using the validation set. We treat it as

a hyper-parameter and choose the one that yields the minimum loss on the validation

set. It is not easy to train the model if we set ν to be time-varying and to be the neural

network output, because generally neural network training needs symbolic derivatives of

the loss function with respect to model parameters.

To figure out whether LSTM and HTQF both help in the modeling, we implement
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Figure 5: Fit an ARMA(2,2) to the regressed 0.01 and 0.05-quantile sequences of NAS-
DAQ 100 out-of-sample set and plot the autocorrelation functions of the ARMA residuals.
The fitted ARMA equation for 0.01-quantile is yt = −0.0000− 0.1502yt−1 + 0.7814yt−2 +
εt + 0.5512εt−1 − 0.3888εt−2, and for 0.05-quantile is yt = −0.0000 + 1.5439yt−1 −
0.5457yt−2 + εt − 1.2713εt−1 + 0.2958εt−2.

a degenerated model of our LSTM-HTQF, in which we set u = v = 0 and also use

Zν
α as the baseline quantile function. Now HTQF becomes the quantile function of a

t-distribution, and the degrees of freedom ν is obtained by applying an AR-GARCH-t

model first. This new model denoted as LSTM-t is very similar to AR-GARCH-t. They

use the same innovation distribution, with the only difference that the dependence on past

information set is modeled by an LSTM now, instead of the linear autoregressive way.

It is also different from LSTM-HTQF that the tail heaviness does not vary with time.

We compare it with AR-GARCH-t to see whether LSTM helps to model the dependence,

and compare it with LSTM-HTQF to see whether HTQF helps to model the conditional

distribution well.

8.1 Backtesting

On daily return data, the evaluation of VaR forecasts is done through backtesting. Con-

sider a sequence of realized returns or observations {rt′} on out-of-sample set and a

sequence of VaR forecasts {qt′} for a fixed probability level α by any model. In order to

implement the testing procedure, we need the definition of hitting sequence of quantile

violations:

It′ =

{
1 if rt′ < qt′

0 if rt′ ≥ qt′
. (37)

Ideally, {It′} should be an i.i.d. Bernoulli distribution sequence with parameter α. To

test that, we use three likelihood ratio tests.

The Kupiec’s unconditional coverage test [Kupiec, 1995] checks if the unconditional

distribution of {It′} is the Bernoulli distribution, i.e., if the proportion of quantile viola-
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tions is equal to α. The test statistic is given by:

LRuc := −2 ln
[ (1− α)n0αn1

(1− n1/(n0 + n1))n0 (n1/(n0 + n1))n1

]
, (38)

where n0, n1 are the number of zeros and ones respectively in the hit sequence {It′}.
Christoffersen’s independence test [Christoffersen, 1998] checks if It′ is independent

of It′−1, i.e., current violation (or not) is independent of previous violation (or not). Its

test statistic reads:

LRind := −2 ln
[ (1− p)n00+n10pn01+n11

(1− p0)n00pn01
0 (1− p1)n10pn11

1

]
, (39)

where nij is the number of observations of i followed by j in the hit sequence, and

p0 = n01/(n00 + n01), p1 = n11/(n10 + n11), p = (n01 + n11)/(n00 + n01 + n10 + n11).

A mixed conditional coverage test jointly checks these two null hypotheses: LRcc :=

LRuc + LRind. LRuc and LRind are asymptotically chi-square distributed with 1 degree of

freedom and LRcc are asymptotically chi-square distributed with 2 degrees of freedom.

The VaR forecast model fails (hypothesis is rejected) if they exceed critical values under

a certain confidence level, say 95% chosen by us in this paper. One can refer to [Dias,

2013] for details of the three tests. We report the statistics of these tests for α = 0.01

VaR forecasts given by 9 models on the 11 representative assets in following Table 2, 3,

and 4.

In the unconditional coverage test in Table 2, our LSTM-HTQF model performs quite

well on all 11 assets without a single rejection, while other models all receive at least 3

rejections. Especially, on equity indexes, the test statistic given by our model is very

close to 0, which means that the proportion of quantile violations is close to α and the

tail risk is accurately forecasted. FHS method also performs well on equity indexes, but

not on exchange rates. The performances of LSTM-t are mixed too. In the independence

test in Table 3, there are few rejections overall and it seems the majority of models have

acceptable performances. In the conditional coverage test in Table 4, we also receive no

rejection while others receive at least two. In summary, our model beats all competing

models in some cases and generates comparable forecast results in other cases. Besides,

the performances of LSTM-t are good in some cases, but not as good as LSTM-HTQF,

which indicates that both LSTM and HTQF contribute to the performance improvement

of forecasts.

8.2 Loss Function

On high-frequency data described in Section 6.2, the loss function in quantile regression

is used for evaluating VaR forecasts instead of backtesting since it is more comprehensive
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to compare by different criteria. The loss function is given by Lα(r, q) = (α − I(r <

q))(r−q) where r is the realization of return in out-of-sample set and q is the quantile/VaR

forecasted. We choose three different probability levels α = 0.01, 0.05, and 0.1 for VaR,

sum their loss functions together, and take the average over the entire out-of-sample set.

The final losses of all methods on the 5-minute return data of the eight stocks are reported

in Table 5.

It is shown that on 6 out of 8 assets, our LSTM-HTQF model outperforms all the

remaining models on the loss, verifying its significant power in high-frequency situation.

Besides, LSTM-t model also performs better than GARCH family and other competitors,

indicating that high-frequency data may have very long memory that is only captured by

LSTM. Moreover, the improvements from LSTM-t to LSTM-HTQF verify our proposed

HTQF is flexible and capable enough. All of these are consistent with the intuition and

empirical evidence that high-frequency data has heavier tails and longer memory than

low-frequency data. And the rich of the high-frequency data makes our model’s ability

fully released.

9 Conclusions

To summarize, we proposed a novel parametric HTQF to represent the asymmetric heavy-

tailed conditional distribution of financial return series. The dependence of HTQF’s

four parameters on past information set was modeled by a non-parametric data-driven

machine learning approach, the sequential neural network LSTM. The training of our

LSTM-HTQF model was casted into a quantile regression formulation. After learning

from data, our model captured the dynamics of the conditional distribution. We examined

the dynamics of the higher moments and tail-side quantiles, which all show quite long

memories that are independent of that responsible for volatility clustering. This imply

that there exists extra risk factors that drive the dynamics of higher moments or tail-side

quantiles. Besides, our method can forecast conditional VaR with better accuracy on a

wide range of assets, comparing to some popular existing models.

In the future, more advanced models that can learn more elaborately the dynamics of

the conditional distribution of financial time series are necessary, e.g., improving the flex-

ibility of the HTQF or modifying the way how LSTM is used may be needed. Moreover,

the feature vector sequence that is fed into the LSTM can contain more information than

just the past return history. All of these aim at learning more details of the conditional

distribution dynamics and producing more accurate VaR forecasts.
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Table 2: Unconditional coverage test for α = 0.01 VaR forecasts. The test statistic
shown below has an asymptotically chi-square distribution with one degree of freedom.
The threshold for rejecting the null hypothesis with 95% confidence level is 3.8415. The
superscript ∗ represents the threshold is exceeded (the number is also displayed in gray).
In the parentheses, we report the number of quantile violations given by each model
against the ideal number of violations.

(a)
Method\Asset NASDAQ 100 HSI Nikkei 225 FTSE 100 DAX

AR-GARCH-t
1.4133
(64/55)

0.0201
(51/50)

2.3475
(121/105)

19.4220∗

(97/60)
1.2297
(58/50)

AR-EGARCH-t
2.4726
(67/55)

0.1855
(47/50)

1.8077
(119/105)

22.4351∗

(100/60)
5.2762∗

(67/50)

AR-GJR-t
1.4133
(64/55)

1.3672
(42/50)

1.3358
(117/105)

10.0344∗

(86/60)
0.3150
(54/50)

FHS
0.0183
(56/55)

0.3321
(46/50)

2.9420
(88/105)

2.6612
(73/60)

0.9471
(57/50)

CEVT
3.3793
(42/55)

6.6343∗

(33/50)
6.5507∗

(80/105)
0.0167
(61/60)

3.1719
(38/50)

CAViaR-s
0.3012
(51/55)

2.6444
(39/50)

0.1520
(109/105)

3.0717
(74/60)

3.1542
(63/50)

CAViaR-a
4.3063∗

(71/55)
0.7579
(44/50)

6.4844∗

(132/105)
1.3008
(69/60)

4.6992∗

(66/50)

LSTM-t
1.7354
(65/55)

0.0203
(49/50)

1.3358
(117/105)

15.6991∗

(93/60)
0.9471
(57/50)

LSTM-HTQF
1.2363
(47/55)

0.0201
(51/50)

0.0874
(102/105)

0.0169
(59/60)

0.1855
(47/50)

(b)
Method\Asset USDEUR USDGBP USDJPY USDAUD Oil Gold

AR-GARCH-t
1.3802
(96/85)

1.1037
(108/98)

65.4023∗

(187/98)
93.5326∗

(203/95)
2.3735
(75/62)

0.1735
(69/72)

AR-EGARCH-t
0.9981
(76/85)

57.9293∗

(33/98)
24.5914∗

(53/98)
88.2707∗

(20/95)
0.0041
(62/62)

5.8437∗

(53/72)

AR-GJR-t
1.3802
(96/85)

1.5544
(110/98)

64.0866∗

(186/98)
95.0794∗

(204/95)
3.1644
(77/62)

0.1680
(76/72)

FHS
0.0479
(83/85)

6.2406∗

(74/98)
8.6883∗

(70/98)
7.9435∗

(69/95)
0.5037
(57/62)

1.0480
(64/72)

CEVT
4.6473∗

(66/85)
19.9744∗

(57/98)
156.1795∗

(5/98)
171.4737∗

(2/95)
1.8898
(52/62)

4.6548∗

(55/72)

CAViaR-s
4.0048∗

(104/85)
0.0026
(98/98)

0.0026
(97/98)

7.1128∗

(122/95)
0.0367
(61/62)

6.4948∗

(52/72)

CAViaR-a
2.8692
(101/85)

0.0026
(98/98)

0.0234
(96/98)

9.8478∗

(127/95)
0.5037
(57/62)

5.2306∗

(54/72)

LSTM-t
1.1448
(95/85)

6.8108∗

(73/98)
4.0800∗

(118/98)
3.2725
(78/95)

0.8751
(70/62)

1.6153
(62/72)

LSTM-HTQF
0.1873
(89/85)

2.2938
(83/98)

0.1254
(101/98)

3.2725
(78/95)

3.6933
(48/62)

0.6069
(66/72)
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Table 3: Independence test for α = 0.01 VaR forecasts. The test statistic shown below
has an asymptotically chi-square distribution with one degree of freedom. The threshold
for rejecting the null hypothesis with 95% confidence level is 3.8415. The superscript ∗

represents the threshold is exceeded (the number is also displayed in gray).

(a)
Method\Asset NASDAQ 100 HSI Nikkei 225 FTSE 100 DAX

AR-GARCH-t 1.4910 1.0514 1.4565 0.1131 0.1418

AR-EGARCH-t 3.5885 0.8922 1.5696 0.8962 0.0115

AR-GJR-t 1.4910 0.7117 1.6878 0.4150 0.2512

FHS 0.2705 0.8544 4.0652∗ 1.0576 0.1660

CEVT 0.9379 0.4386 4.9888∗ 0.2006 1.0885

CAViaR-s 0.4544 0.6133 2.2140 0.0083 0.0507

CAViaR-a 0.0075 0.7814 0.0727 0.0508 0.0186

LSTM-t 1.4112 0.9701 6.3550∗ 0.1561 4.6768∗

LSTM-HTQF 3.3355 1.0514 0.8317 0.2551 0.5307

(b)
Method\Asset USDEUR USDGBP USDJPY USDAUD Oil Gold

AR-GARCH-t 2.1936 0.4603 0.8649 3.8543∗ 1.0573 0.1578

AR-EGARCH-t 1.3715 0.2242 1.0843 4.5127∗ 0.2070 0.6854

AR-GJR-t 2.1936 0.4014 0.8301 3.9227∗ 0.9098 1.3137

FHS 1.6371 1.1320 1.0125 1.0098 1.0494 0.2778

CEVT 1.0331 0.6705 0.0051 0.0008 0.8727 0.5950

CAViaR-s 0.0645 0.8242 0.8673 0.1131 1.2027 0.7336

CAViaR-a 0.4559 0.8242 0.0032 0.0523 1.0494 0.6393

LSTM-t 0.0038 0.3069 1.3523 4.6918∗ 0.0560 5.6604∗

LSTM-HTQF 2.9766 0.1099 2.4897 0.1754 0.7498 5.0284∗
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Table 4: Conditional coverage test for α = 0.01 VaR forecasts. The test statistic shown
below has an asymptotically chi-square distribution with two degree of freedom. The
threshold for rejecting the null hypothesis with 95% confidence level is 5.9915. The
superscript ∗ represents the threshold is exceeded (the number is also displayed in gray).

(a)
Method\Asset NASDAQ 100 HSI Nikkei 225 FTSE 100 DAX

AR-GARCH-t 2.9042 1.0714 3.8041 19.5351∗ 1.3715

AR-EGARCH-t 6.0612∗ 1.0777 3.3773 23.3313∗ 5.2877

AR-GJR-t 2.9042 2.0790 3.0237 10.4494∗ 0.5663

FHS 0.2888 1.1866 7.0073∗ 3.7188 1.1132

CEVT 4.3172 7.0729∗ 11.5395∗ 0.2173 4.2603

CAViaR-s 0.7556 3.2578 2.3660 3.0799 3.2050

CAViaR-a 4.3138 1.5394 6.5571∗ 1.3516 4.7178

LSTM-t 3.1467 0.9905 7.6909∗ 15.8552∗ 5.6239

LSTM-HTQF 4.5718 1.0714 0.9191 0.2721 0.7162

(b)
Method\Asset USDEUR USDGBP USDJPY USDAUD Oil Gold

AR-GARCH-t 3.5737 1.5639 66.2672∗ 97.3869∗ 3.4308 0.3313

AR-EGARCH-t 2.3696 58.1535∗ 25.6757∗ 92.7834∗ 0.2110 6.5291∗

AR-GJR-t 3.5737 1.9558 64.9167∗ 99.0021∗ 4.0742 1.4817

FHS 1.6851 7.3726∗ 9.7008∗ 8.9533∗ 1.5532 1.3258

CEVT 5.6804 20.6448∗ 156.1846∗ 171.4745∗ 2.7625 5.2498

CAViaR-s 4.0693 0.8268 0.8699 7.2259∗ 1.2393 7.2285∗

CAViaR-a 3.3251 0.8268 0.0266 9.9001∗ 1.5532 5.8698

LSTM-t 1.1485 7.1177∗ 5.4323 7.9643∗ 0.9311 7.2756∗

LSTM-HTQF 3.1639 2.4037 2.6152 3.4479 4.4431 5.6353

30



T
ab

le
5:

T
h
e

lo
ss

fu
n
ct

io
n

b
et

w
ee

n
re

tu
rn

re
al

iz
at

io
n

an
d

q
u
an

ti
le

fo
re

ca
st

ed
re

p
or

te
d

b
el

ow
is

d
efi

n
ed

in
q
u
an

ti
le

re
gr

es
si

on
.

T
h
e

lo
ss

is
th

e
su

m
fo

r
th

re
e

d
iff

er
en

t
p
ro

b
ab

il
it

y
le

ve
ls
α

=
0.

01
,0
.0

5,
0.

1
an

d
is

th
e

av
er

ag
e

ov
er

th
e

en
ti

re
ou

t-
of

-s
am

p
le

se
t.

S
o

th
is

is
a

co
m

p
ar

is
on

of
th

e
th

re
e

co
rr

es
p

on
d
in

g
V

aR
fo

re
ca

st
ed

.
W

e
h
ig

h
li
gh

t
th

e
m

o
d
el

of
th

e
b

es
t

p
er

fo
rm

an
ce

w
it

h
b

ol
d

n
u
m

b
er

.

M
et

h
o
d
\A

ss
et

00
01

.H
K

00
02

.H
K

00
05

.H
K

00
16

.H
K

07
00

.H
K

09
39

.H
K

09
41

.H
K

12
99

.H
K

A
R

-G
A

R
C

H
-t

0.
10

17
67

0.
10

52
93

0.
09

09
12

0.
09

99
54

0.
10

93
87

0.
09

72
39

0.
10

07
1

0.
10

09
17

A
R

-E
G

A
R

C
H

-t
0.

10
17

57
0.

10
52

38
0.

09
13

02
0.

10
00

54
0.

10
92

97
0.

09
77

77
0.

10
06

62
0.

10
09

35
A

R
-G

J
R

-t
0.

10
17

45
0.

10
54

04
0.

09
09

15
0.

09
99

5
0.

10
91

19
0
.0
9
7
1
9
5

0.
10

06
92

0.
10

08
16

F
H

S
0.

10
17

67
0.

10
52

74
0.

09
08

19
0.

09
99

61
0.

10
92

95
0.

09
72

83
0.

10
07

17
0.

10
09

12
C

E
V

T
0.

10
17

53
0.

10
53

09
0.

09
10

63
0.

10
00

33
0.

10
92

57
0.

09
72

84
0.

10
07

18
0.

10
09

49
C

A
V

ia
R

-s
0.

10
22

73
0.

10
60

78
0.

09
19

06
0.

10
06

18
0.

10
86

16
0.

09
90

17
0.

10
12

41
0.

10
10

16
C

A
V

ia
R

-a
0.

10
21

01
0.

10
55

23
0.

09
18

09
0.

10
03

26
0.

10
84

7
0.

09
90

88
0.

10
11

39
0.

10
09

21
L

S
T

M
-t

0.
10

16
92

0
.1
0
4
7
6
8

0.
09

07
2

0.
09

92
33

0.
10

81
84

0.
09

76
21

0.
10

01
02

0.
10

07
42

L
S
T

M
-H

T
Q

F
0
.1
0
1
4
7
0

0.
10

49
43

0
.0
9
0
4
3
6

0
.0
9
8
9
2
4

0
.1
0
7
9
4
8

0.
09

76
60

0
.0
9
9
8
8
5

0
.1
0
0
7
2
8

31



Appendix A. The Proof of the Existence of HTQF’s

Unique Probability Distribution

The proof idea is to show that HTQF is continuously differentiable, is strictly monoton-

ically increasing over (0, 1), and approaches −∞/+∞ as α tends to 0/1. So the inverse

function of HTQF exists and is a cumulative distribution function.

The HTQF has the specification:

Q(α|µ, σ, u, v) = µ+ σZα

(
euZα

A
+
e−vZα

A
+ 1

)
= µ+ σg(Zα), (40)

where g(x) = x( e
ux

A
+ e−vx

A
+ 1). Zα is the quantile function of the standard normal

distribution, so we only need to prove that g(x) is continuously differentiable, is strictly

monotonically increasing over (−∞,+∞), and approaches −∞/+∞ as x tends to −∞/+

∞. Obviously g(x) is continuously differentiable and limx→−∞/+∞ g(x) = −∞/+∞. To

prove the monotonicity, we calculate the derivative of g(x):

g′(x) =

(
eux

A
+
e−vx

A
+ 1

)
+ x

(
u
eux

A
− ve

−vx

A

)
(41)

=
eux

A
(1 + ux) +

e−vx

A
(1− vx) + 1 (42)

=
1

A
h(ux) +

1

A
h(−vx) + 1. (h(x) = ex(1 + x)) (43)

Next we prove h(x) ≥ −1, ∀x. This is equivalent to 1 + x ≥ −e−x, or 1 + x + e−x ≥ 0,

∀x. A simple monotonic analysis on the function 1 + x + e−x can reveal that its global

minimum is reached at x = 0, so 1 + x+ e−x ≥ 2 ≥ 0. So, h(x) ≥ −1 and

g′(x) ≥ − 1

A
− 1

A
+ 1. (44)

If we choose A ≥ 3, then g′(x) ≥ −1
3
− 1

3
+ 1 = 1

3
> 0 holds for all x. So g(x) is strictly

monotonically increasing and our proof is completed.
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