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Abstract

Machine learning models often preserve biases present in training data, leading to
unfair treatment of certain minority groups. Despite an array of existing firm-side
bias mitigation techniques, they typically incur utility costs and require organi-
zational buy-in. Recognizing that many models rely on user-contributed data,
end-users can induce fairness through the framework of Algorithmic Collective
Action, where a coordinated minority group strategically relabels its own data to
enhance fairness, without altering the firm’s training process. We propose three
practical, model-agnostic methods to approximate ideal relabeling and validate
them on real-world datasets. Our findings show that a subgroup of the minority can
substantially reduce unfairness with a small impact on the overall prediction error.

1 Introduction

As machine learning (ML) tools become increasingly accessible, more firms deploy them for decision-
making. However, ML models often perpetuate biases present in their data, leading to unfair outcomes
across demographic groups [[1]. Moreover, most fair-learning algorithms incur a non-negligible cost
in accuracy or computational resources [2} 13} 4} 5], which can discourage practical adoption.

Since firms control the training pipeline, end-users lack access to these algorithms and cannot directly
enforce fair treatment. Yet, affected users routinely generate and share data — through clicks, ratings,
or other contributions — that is used to train the firm’s models. Consequently, if underrepresented
minority groups collaboratively alter the data they share, they might be able to steer the learned model
towards fairer behavior, even without access to the firm’s training pipeline. This idea is reminiscent of
pre-processing fairness techniques [6, 7} (8} 9], which modify the data before model training. Unlike
these prior approaches, which assume centralized control over the data, we consider the setting
of algorithmic collective action [10, [11} 12} [13} [14], in which a small group of users strategically
modifies their own data to influence the correlations learned by the model.

We adapt the erasure strategy from Hardt et al. [10] to reduce correlation between group membership
and label by relabeling minority samples. The collective is restricted to the minority, because minority
members are more motivated to join minority collective action [[15}[16], and majority-group users may
be less inclined to disrupt the status quo. We show that when a classifier is trained on data affected
by this form of collective action, standard fairness metrics (e.g., demographic parity, equalized
odds) improve substantially. This improvement is illustrated in Figure[I] where a small collective of
minority samples significantly reduces unfairness with minimal impact on prediction error.

The key obstacle in implementing the erasure strategy is that it requires knowledge of each user’s
label under a counterfactual group membership. Computing such counterfactual labels exactly would
require access to an underlying causal model, which is typically infeasible in practice. To overcome
this challenge, we propose three model-agnostic methods to estimate the counterfactual labels.
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(a) Before collective action (b) After collective action
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Figure 1: Minority-only collective action can substantially improve fairness. With only 6 label flips,
the fairness violation of logistic regression goes down by over 75% with only a negligible increase in
prediction error. Circles and crosses represent majority and minority points, respectively.

2 Collective Action for Fairness

We consider a setting in which a firm uses ML to predict a binary label y € {0, 1}. The firm collects
data from its users, forming a dataset D = {(z;, a;, ;) },—,, where z; € R™ denotes user i’s feature
vector, a; € {0, 1} is a sensitive attribute indicating binary group membership (a; = 0 for the majority
group, a; = 1 for the minority), and y; € {0, 1} is the true label. We assume the users are drawn
independently and identically distributed (i.i.d.) from a distribution Py over R™ x {0,1} x {0, 1}.
The firm trains a classifier b : R™ — {0, 1} to minimize the prediction error, defined as

Error (h) =P[h(z) £ y]. (1)
To do so, the firm minimizes the empirical error on D via Empirical Risk Minimization (ERM).

In the group-fairness paradigm, the sensitive attribute a € {0, 1} partitions the data into subgroups,
and fairness criteria seek to ensure similar outcomes across these groups. Common metrics include
statistical parity (SP) [17,[18] and equalized odds (EqOd) [19]. In this work, we focus primarily on
violations of EqOd, formally defined as

1
EqOd (h) = B Z [Plh(z)=1la=1,y=2]—Plh(z) =1la =0,y = 2]/, 2)
2=0,1

which measures the differences between true positive and false positive rates. Appendix [B.1] provides
formal definitions and further discussion of these metrics.

While most prior work has focused on firm-side solutions, this work shifts the focus to user-side
methods that do not require the firm’s participation. Since users generate the training data, they can
collectively influence the learned model by strategically modifying their own behavior. Appendix [A]
suggests real-world scenarios where collective action can contribute to fairness. These collectives
and their influential abilities in ML are studied as the field of algorithmic collective action [10]].

In social sciences, collective action refers to the coordinated efforts of individuals working together
to pursue a shared goal [20,21]. Hardt et al. [10] adapt this notion to machine learning, proposing
that a group of users, termed a collective, can strategically modify their data to align the behavior
of a trained classifier h with the collective’s goals. In this formulation, the training distribution is
a mixture distribution D ~ P, = oP* + (1 — «)Pg, where P* and Py are the collective and base
distributions, and « € [0, 1] denotes the proportion of the population that belongs to the collective.

Suppose the collective seeks a classifier that is invariant under a transformation g : R™ — R™
applied to the features. The success of the collective can be quantified as

S(a) =Po[h(g(x)) =h(z)], ©)

the probability, under the base distribution, that the classifier’s prediction remains unchanged after
applying g to the features.

To achieve signal erasure, Hardt et al. [[10] propose the collective relabels itself with the most likely
label under the transformation g. Formally, the strategy is defined as

(5:0) = (v o B 0/l (0))) @
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Figure 2: The lowest EqOd violation a collective can achieve greatly improves as the collective
size increases, up to a certain point. Each point is a mean of 10 runs, with the standard deviation
being smaller than the markers. In all the datasets we experimented on, the lowest EqOd violation
converges around o = 0.3. Additional results are presented in Figure@]in the appendix.

Intuitively, if g is a feature pattern correlated with group membership (e.g., minority vs. majority),
then achieving invariance under g promotes fairness by reducing the classifier’s dependence on
group-identifying information. We define g to be the counterfactual features a minority member
would have had they belonged to the majority. Appendix [B.3|describes in more detail the success of
signal erasure and Appendix [B.4]connects this action to fairness throguh counterfactual fairness.

3 Approximating the Counterfactual Label

This section describes how a minority collective can approximate a signal-erasure strategy to promote
fairness in practice. While the theory of signal erasure has been studied before [10} [14], prior work
lacks empirical evaluation. In this paper, we present the first practical algorithm for signal erasure
and provide experimental results in Section[d] As discussed in Appendix [B.4] a suitable signal to
erase is g (z) = a0, Where each collective member relabels themselves according to Equation (4).

However, end-users lack access to the true causal model and cannot compute the counterfactual
labels directly. To address this limitation, we propose to assign each collective member ¢ a score s;,
which serves as a proxy for the likelihood that they would receive the label y = 1 if they belonged
to the majority. Given a budget of M label flips, the collective selects the M members with the
highest scores; these individuals flip their labels from y = 0 to y = 1. The budget M controls the
accuracy—fairness tradeoff, where a higher budget typically leads to better fairness, but higher error
(Figure [6).

We introduce three model-agnostic scoring functions, each capturing a different notion of similarity
to majority users:

1. Rank by probability (RB-prob): Train a regressor f : R”™ — R on exclusively majority
data (a = 0) to estimate the probability P (Y = 1|X = x) of having the label y = 1. Each
collective member ¢ receives a score based on the model’s prediction:

si = [ (x4). 5)

2. Rank by label (RB-label): For each collective member ¢, identify the set K; of their k
nearest majority neighbors using Euclidean distance. The score is the number of neighbors

with the label y = 1:
si= Y 1{y;=1}. (6)
JEK;
3. Rank by distance (RB-dist): Restrict the neighbors set K; to only majority users with the
label Y = 1. The score is the negative mean Euclidean distance to these neighbors:

1

JEK;

Intuitively, RB-prob assigns a higher score where a classifier trained solely on majority data predicts
a higher likelihood of the label y = 1. RB-label scores collective members according to the frequency
of y = 1 among their majority neighbors, while RB-dist prioritizes those who are closer majority
users with y = 1. The similarity to prior work is discussed in Appendix D]
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Figure 3: Our proposed methods are consistently more efficient than randomly flipping labels,
requiring less label flips to attain the same level of EqQOd. Each marker is the mean of 10 random
runs with a specific number of label flips. The standard deviation is presented by the error bars. The
dashed line shows the mean EqOd for a classifier trained on the dataset without collective action.

4 Experimental Results

We compare our methods against a random baseline that flips y = 0 labels to y = 1 for M
randomly selected collective members. We experimented on the tabular datasets COMPAS [22]],
Adult [23]], HSLS [24]], ACS-Income [25]], the image dataset Waterbirds [26] and the text dataset
CivilComments [27]. For Waterbirds, we use features extracted from a pre-trained ResNet-18 (denoted
Waterbirds-Full) and for CivilComments, we used the extracted features from Hugging Face’s pre-
trained bert-base-uncased model (denoted CivilComments-Full). In addition to the complete features
of Waterbirds and CivilComments, we also include experiments on the PCA features, with 85
components for Waterbirds (denoted Waterbirds-PCA) and 100 components for CivilComments
(denoted CivilComments-PCA). Details on the datasets are provided in Appendix [F.1]

All reported metrics are computed on a fixed test set, without any collective action, and averaged over
10 independent runs. In each run, we randomly selected a minority collective, which then applies one
of the methods described in Section |3} For the KNN-based methods, we tuned the neighborhood size
k using a 15% validation split from the train set, optimizing for EqOd and SP. Finally, we trained a
gradient-boosted decision tree on each modified train set. The complete set of results can be found in
Appendix [G.2] including an experiment with limited knowledge of the majoritry (Figure [TT).

Importance of collective size While the number of label flips M is the primary factor for balancing
between accuracy and fairness, the size of the collective, «, also plays a role. In addition to bounding
the possible number of flips, increasing « also expands the candidate pool from which the most
effective labels to flip can be selected. To measure this effect, the experiments included a range of «
values, each tested with multiple values of M. For each o, we define the best achievable EqOd as the
minimum EqOd across all tested values of M. As shown in Figure 2] increasing @ improves the best
achievable EqOd until saturating around o = 0.3. We fix this value for all remaining experiments.

Flipping cost Since each method scores candidates differently, they may also vary in efficiency,
that is, the number of label flips required to achieve a given level of fairness. To evaluate efficiency,
Figure [3| plots EqOd as a function of number of label flips M, where lower curves indicate more
efficient methods. The random baseline consistently yields the worst EqOd across all values of M,
highlighting the value of informed relabeling algorithms. However, no single method dominates the
others in all settings: While RB-prob and RB-label often outperform the other methods, RB-dist can
surpass them in specific cases (e.g., Figure [3a)), or perform comparably to the random baseline in
others (Figure [3c).

These results suggest that a well-chosen scoring function enables the collective to achieve a desired
level of fairness with fewer label flips, reducing the “cost” of collective action and mitigating the
accuracy loss from excessive relabeling.

Interestingly, beyond a certain number of flips, EQOd begins to increase, indicating that excessive
flipping can shift unfairness from the minority to the majority. This upturn reflects the fundamental
limits of minority collective action for fairness, a point we elaborate on in Appendix [C|
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Figure 4: User-side method cannot achieve perfect fairness, while the firm-side pre-processing
method FARE [28] and the post-processing method calibrated equalized odds [29] attain 0 EqOd
with large error. However, RB-prob’s fairness is better than the base classifier, with a smaller error
than the firm-side methods.

5 Limitations of Minority Collective Action

Previous work on collective action assumes that the collective is uniformly sampled from the distri-
bution Py and that the collective has a perfect oracle for the conditional distribution Py (Y| X). Yet,
our method restricts collective participation to minority members and approximates this conditional
distribution. Those differences introduce limitations to the existing theory, which we analyze and
theoretically quantify in this section and in Appendix [C]

This restriction expresses scenarios in which majority members lack incentives to support changes
that would benefit the minority, and instead prefer to preserve the status quo. Naturally, this limitation
reduces the collective’s impact. In Appendix [E.Z] we formally prove that there exists a case where a
minority-only collective is unable to acheive perfect fairness.

We empirically corroborate this claim on real world datasets by examining the fairness—accuracy
tradeoff of several fair learning methods. Most of these methods include a hyperparameter that
controls this trade-off, yielding a set of pairs (Error, EqOd) as it varies. This set forms a Pareto front,
representing the best attainable trade-offs. A Pareto front is said to dominate another if it lies entirely
to the left (lower error) and below (lower unfairness) of the other. Figurecompares the Pareto fronts
of RB-prob, one of our minority collective action methods, with established firm-side methods. We
observe that the lowest fairness violation achievable by RB-prob is greater than that of the firm-side
approaches. However, the firm-side methods are able to arrive at perfect fairness only at a cost of
prohibitively high prediction error. But, inspecting the region where the error is small compared to
the base classifier, the fairness of RB-prob is comparable to that of the firm-side methods.

Appendix [C|additionaly discusses the limitations given that the counterfactual labels is onyl approxi-
mated and not exact and how the success bound is affected, and also how the same estimation error
can be decreased by using representation learning.

6 Conclusion

This work demonstrates that user-side methods, specifically minority collective action, can effectively
reduce unfairness in machine learning. While much of the existing fairness research focused on
firm-side methods, paradoxically these often come at a cost that may not be worth to the firm. This
catch emphasizes the importance of studying user-side approaches for bias mitigation. We also note
that in general, collective action methods can be exploited by malicious parties seeking self-gain
or harming other communities, and it is important to be discussing these limitations and possibly
regulate them.

We introduce three practical methods that a collective can easily implement to relabel itself, and show
empirically that collective action can considerably reduce unfairness in a variety of datasets, though
not completely. Importantly, we also examine the limitations of a minority being composed of only
minority members, and how the success is affected by approximating the counterfactual labels.

Overall, this paper shows a practical use case of collective action in the hopes of sparking further
research into applications of collective action and user-side methods for social good.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]



345 Justification: In our theory and proofs we refer to the previous work and assumptions we
346 rely on

347 Guidelines:

348 * The answer NA means that the paper does not include theoretical results.

349  All the theorems, formulas, and proofs in the paper should be numbered and cross-
350 referenced.

351 * All assumptions should be clearly stated or referenced in the statement of any theorems.
352 * The proofs can either appear in the main paper or the supplemental material, but if
353 they appear in the supplemental material, the authors are encouraged to provide a short
354 proof sketch to provide intuition.

355 * Inversely, any informal proof provided in the core of the paper should be complemented
356 by formal proofs provided in appendix or supplemental material.

357 * Theorems and Lemmas that the proof relies upon should be properly referenced.

358 4. Experimental result reproducibility

359 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
360 perimental results of the paper to the extent that it affects the main claims and/or conclusions
361 of the paper (regardless of whether the code and data are provided or not)?

362 Answer: [Yes]

363 Justification: We describe the technical details of the experiments in the experiments section
364 and appendix.

365 Guidelines:

366 * The answer NA means that the paper does not include experiments.

367 * If the paper includes experiments, a No answer to this question will not be perceived
368 well by the reviewers: Making the paper reproducible is important, regardless of
369 whether the code and data are provided or not.

370 * If the contribution is a dataset and/or model, the authors should describe the steps taken
371 to make their results reproducible or verifiable.

a7z * Depending on the contribution, reproducibility can be accomplished in various ways.
ar3 For example, if the contribution is a novel architecture, describing the architecture fully
374 might suffice, or if the contribution is a specific model and empirical evaluation, it may
375 be necessary to either make it possible for others to replicate the model with the same
376 dataset, or provide access to the model. In general. releasing code and data is often
377 one good way to accomplish this, but reproducibility can also be provided via detailed
a8 instructions for how to replicate the results, access to a hosted model (e.g., in the case
379 of a large language model), releasing of a model checkpoint, or other means that are
380 appropriate to the research performed.

381 * While NeurIPS does not require releasing code, the conference does require all submis-
382 sions to provide some reasonable avenue for reproducibility, which may depend on the
383 nature of the contribution. For example

384 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
385 to reproduce that algorithm.

386 (b) If the contribution is primarily a new model architecture, the paper should describe
387 the architecture clearly and fully.

388 (c) If the contribution is a new model (e.g., a large language model), then there should
389 either be a way to access this model for reproducing the results or a way to reproduce
390 the model (e.g., with an open-source dataset or instructions for how to construct
391 the dataset).

392 (d) We recognize that reproducibility may be tricky in some cases, in which case
393 authors are welcome to describe the particular way they provide for reproducibility.
394 In the case of closed-source models, it may be that access to the model is limited in
395 some way (e.g., to registered users), but it should be possible for other researchers
396 to have some path to reproducing or verifying the results.

397 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experiments we report are not difficult to recreate, and we provide the
exact dataset and python packages we use. We are also planning to include the code in the
supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the technical details of the experiments in the experiments section
and appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each point in our figures is a mean of 10 random runs. Some of the figures
report the error bars, but in all cases the averaged points present clear trends that support
our claims with small standard deviation. For this reason we did not find it necessary to
include error bars in most figures in the main text since in most cases they are smaller than
the markers and would have made the figures less readable.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Our paper does not focus on algorithmic efficiency, but on classifier behavior.
For this reason, we do not think incluidng the compute power is relevant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our experiments used public datasets. The societal impact is discussed in the
discussion section.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impact is discussed in the discussion section.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper offers no new data or models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available python packages, mention them by name and provide
a URL to the functions and objects.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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604 * Depending on the country in which research is conducted, IRB approval (or equivalent)

605 may be required for any human subjects research. If you obtained IRB approval, you
606 should clearly state this in the paper.

607 * We recognize that the procedures for this may vary significantly between institutions
608 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
609 guidelines for their institution.

610 * For initial submissions, do not include any information that would break anonymity (if
611 applicable), such as the institution conducting the review.

612 16. Declaration of LLLM usage

613 Question: Does the paper describe the usage of LLMs if it is an important, original, or
614 non-standard component of the core methods in this research? Note that if the LLM is used
615 only for writing, editing, or formatting purposes and does not impact the core methodology,
616 scientific rigorousness, or originality of the research, declaration is not required.

617 Answer: [NA]

618 Justification: The core method development in this research does not involve LLMs as any
619 important, original, or non-standard components.

620 Guidelines:

621 * The answer NA means that the core method development in this research does not
622 involve LLMs as any important, original, or non-standard components.

623 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
624 for what should or should not be described.
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7 Appendix

A Motivating examples

To recognize real-world problems that lend themselves well to collective action for fairness one needs
to look for the following few characteristics:

Firm and goal: A firm trains a predictive model primarily to minimize average error, with
little incentive to protect minority groups.

End-users: People who use the platform and whose behavior generates data for the firm’s
dataset.

Disadvantaged group: A subgroup of end-users who is treated unfairly.

Relabeling possibility: How the minority can relabel themselves to make the trained classifier
fairer.

Here are a few concrete examples that we will incorporate in the paper:

1. Content moderation

 Firm and goal: A global social-media company optimizes a high-recall harmful-content
detector measured on its largest user pools.

* End-users: Everyday users of the platform who can flag offensive content.

* Disadvantaged group: Slurs, insults, or cultural references specific to minority com-
munities are not flagged often enough, so the model fails to detects harmful content in
those groups’ languages.

* Relabeling possibility: The minority flags borderline content from their community
that the platform’s global guidelines ignore.

2. Resume screening

e Firm and goal: A multi-national HR firm trains a classifier to extract skills from
resumes.

* End-users: Job applicants submitting resumes.

* Disadvantaged group: Applicants from a disadvantaged minority may lack formal
education and degrees compared to the majority, but may have informal training which
the classifier ignores.

* Relabeling possibility: Applicants can reframe their work experience, e.g. framing
working at a store as being a salesperson, or managing shifts as managerial experience.

3. Medical treatment prediction

* Firm and goal: A nationwide insurer builds a treatment-recommendation model to
minimize average costs and adverse events.

* End-users: Patients who report their treatment outcomes (pain levels, recovery time,
side effects).

* Disadvantaged group: Minority groups may experience different side effects or recovery
rates than the majority, so the model recommends suboptimal treatments for them.

* Relabeling possibility: Individual patients record more detailed outcomes rather than
underreporting, e.g., consistently marking “still in pain” instead of “fine”.

4. Credit scoring

* Firm and goal: A lender trains a credit-risk model to predict defaults and set loan terms,
using historical repayment data.

* End-users: Borrowers whose repayment or default becomes training labels.

* Disadvantaged group: Disadvantaged groups may not have credit cards or have never
taken loans, and only deal with cash but still pay their bills. These actions are “credit-
invisible”.

* Relabeling possibility: A borrower can report their payed bills, such as rent or utilities,
as repaid loans. These become additional positive repayment labels.
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5. Recommender systems

* Firm and goal: A streaming platform trains recommender system to maximize engage-
ment, heavily weighted toward mainstream content [[12].

* End-users: Users who like, skip, or re-listen to songs.

 Disadvantaged group: Niche genres or local musicians get suppressed, as engagement
data mostly comes from the majority’s preferences.

* Relabeling possibility: Users can promote underrepresented content by repeatedly
listening, liking, or playlisting it.

B Preliminaries

B.1 Statistical parity and equalized odds

Among the various ways fairness can be defined in machine learning, group fairness is one of the
most studied. Group fairness requires that a model’s predictions should not systematically differ
between protected groups. One standard measure of this is statistical parity (SP), which captures the
difference in the probability of a positive prediction across groups. Formally, it is defined as

SP(h)=|P[h(z)=1a=1]—Plh(z) =1la =0], ®)

where a smaller SP value indicates fairer treatment across groups. However, SP does not account for
the ground-truth labels y, and thus optimizing for SP can degrade the overall accuracy. For example,
a classifier that always predicts § = 1 will have perfect SP but a high prediction error. Alternatively,
a stricter notion called equalized odds (EqOd) [19] requires that both the true positive rate and false
positive rate be equal across groups. Here the EqOd difference is defined as

EqOd (h) = % Z |[Ph(z)=1la=1,y=2]—Plh(z) =1a=0,y =z2]|. )
2=0,1

B.2 Suboptimal Bayes classifier

Definition 1 (e-suboptimal classifier). A classifier f : X — ) is e-suboptimal on a set X' C X
under the distribution P if there exists a P’ with TV (]P)y‘X:z, PIY\X:z) < € such that forall x € X'

f (z) = argmax P’ (y|x) .
yey

TV (-, ) is the total variation distance between two distributions. The definition is discussed more in
Hardt et al. [10]].

B.3 Algorithmic collective action

In social sciences, collective action refers to the coordinated efforts of individuals working together
to pursue a shared goal [20,21]. Hardt et al. [LO] adapt this notion to machine learning, proposing
that a group of users, termed a collective, can strategically modify their data to align the behavior
of a trained classifier h with the collective’s goals. In this formulation, the training distribution is
a mixture distribution D ~ P, = oP* + (1 — )Py, where P* and Py are the collective and base
distributions, and « € [0, 1] denotes the proportion of the population that belongs to the collective.

Relation to fair representation learning. When users have agency over the training data, one
possible form of collective action for fairness is to modify their features to increase correlation with
the label y = 1. An analogous firm-side approach is fair representation learning (FRL), which learns
a transformation from the input space to a representation space such that ERM leads to a classifier
that is both accurate and fair [8} [28]]. However, a hindrance of FRL in the context of collective action
is that the transformation must be applied consistently at inference time, requiring active cooperation
from each minority member to transform their features. In contrast, our setting assumes users have
control only over the labels and cannot intervene in other parts of the machine learning pipeline.
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Erasing a signal. Suppose the collective seeks a classifier that is invariant under a transformation
g : R™ — R™ applied to the features. The success of the collective can be quantified as

S(a)=PFolh(g(z)) =h(z)], (10)

the probability, under the base distribution, that the classifier’s prediction remains unchanged after
applying g to the features. In words, the collective’s goal is to erase the signal g: to ensure the
classifier behaves identically regardless if the g is applied. Intuitively, if g removes a feature pattern
correlated with group membership (e.g., minority vs. majority), then achieving invariance under g
promotes fairness by reducing the classifier’s dependence on group-identifying information.

To achieve signal erasure, Hardt et al. [[10] propose the collective relabels itself with the most likely
label under the transformation g. Formally, the strategy is defined as

(220) = (i e P 3/l (0))) (i
y'€{0,1}
Since this strategy leaves the features unchanged, it is well-suited for settings where the minority is
limited to modify only their labels, such as ours. For e-optimal Bayes classifiers (Definition[T)), Hardt
et al. [10] prove the following lower bound for its success
2(1—a) €

S(a)>1-— - ~T—(1_€)a, (12)

where 7 = EP m{ax} [Po (¢ |z) — Po (v'|g (z))|| measures the sensitivity of the true label
z~Po | y’€{0,1

distribution to the transformation g.

Note that the strategy in Equation (&) may require some majority members to relabel themselves with
the label y = 0. Such a change might deter them from participating in the collective action, either
because majority members are unwilling to give up their advantage or prefer to maintain the status
quo. To avoid this conflict, we restrict the collective to include only minority members. We discuss
the implications of this restriction in Appendix

B.4 Counterfactual fairness

The concept of counterfactual fairness (CF) [30, 31, 132] bridges between signal erasure success
to group fairness. To introduce this idea, assume that a sample x is generated by a causal model,
in which the group membership A is a causal parent. Then a classifier h is counterfactually fair if
its predictions are invariant to interventions on the group membership, i.e., & (z) = h (244 ) for
any a’, where xy ., denotes an intervention on a causal parent U of a sample z. In certain causal
contexts, CF implies or aligns with group fairness criteria such as SP or EqOd [33]]. Therefore, if
collective action induces a counterfactually fair classifier, it may also induce a fair classifier under SP
or EqOd.

Since our focus is on fairness for the minority group, we relax the original definition of CF [30Q].
Definition 2. A classifier h is minority-focused counterfactually fair if under any context X = x,

Py (h(2ace) =yl X =2,A=1) =Py (h(zaca) =yl X =2, A=1), (13)
for any value a’ attainable by A.

By this condition, changing the group membership of a minority individual, in a counterfactual sense,
has no effect on the classifier’s prediction. Collective action can theoretically enforce such fairness
by applying the erasure strategy from Equation (EI) with the counterfactual signal g (x) = T,
which replaces a minority individual with its majority-group counterfactual. This collective action
aligns the signal erasure success from Equation (3) with minority-focused counterfactual fairness
from Definition 2] The following proposition, proved in Appendix [E.T] formalizes this alignment.

Proposition 1. A Bayes classifier trained on P, is minority-focused counterfactually fair if and only
if the success of a minority collective is S = 1.

This result directly connects between collective action theory to fairness. Thus, perfect success of the
collective is equivalent to achieving minority-focused counterfactual fairness.
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C Limitations of Minority Collective Action

Previous work on collective action assumes that the collective is uniformly sampled from the distri-
bution Py and that the collective has a perfect oracle for the conditional distribution Py (Y| X). Yet,
our method restricts collective participation to minority members and approximates this conditional
distribution. Those differences introduce limitations to the existing theory, which we analyze and
theoretically quantify in this section.

Collective restricted to the minority. As mentioned above, we
focus on collectives composed solely of minority members, unlike
prior work. This restriction expresses scenarios in which majority
members lack incentives to support changes that would benefit the
minority, and instead prefer to preserve the status quo. Naturally,
this limitation reduces the collective’s impact, as demonstrated in
the following example.

Consider a binary classification task on the two-dimensional 4-
Gaussian mixture model P4y Where each Gaussian belongs to a ol ¥
distinct combination of label and group membership, as illustrated "Q’
in Figure[5] Each label consists of a large majority subgroup and
a significantly smaller minority subgroup. We can then state the
following informal result about the EqOd fairness violation of ERM.
Figure 5: The distribution
Proposition 2 (Informal). Consider a dataset sampled from the Paigmm used in Proposition [2]
distribution Pycyy described above, where every minority point The color signifies the label,
participates in the collective action by flipping all y = 0 labels and the density shows the
toy = 1. Then, under sufficiently separable clusters, with high group membership.
probability, the EqOd of the ERM classifier minimizing the logistic
loss will asymptotically approach 0.5.

The formal Proposition [3is provided in Appendix [E.2]along with all necessary assumptions, which
holds for a broader family of distributions and can be extended to any dimensionality R? using
techniques similar to those in Chaudhuri et al. [34]. Although Proposition[2]is not a formal lower
bound, it emphasizes an important limitation: collective action restricted to the minority cannot
generally achieve perfect fairness, even under very advantageous conditions involving a maximum-
sized collective, a strong strategy, and a complete disregard for accuracy. This limitation stands
in contrast to standard firm-side bias mitigation methods, which can, in principle, achieve perfect
fairness.

We empirically corroborate the findings of Proposition [2] on real world datasets by examining
the fairness—accuracy tradeoff of several fair learning methods. Most of these methods include a
hyperparameter that controls this trade-off, yielding a set of pairs (Error, EqQOd) as it varies. This set
forms a Pareto front, representing the best attainable trade-offs. A Pareto front is said to dominate
another if it lies entirely to the left (lower error) and below (lower unfairness) of the other.

Figure ] compares the Pareto fronts of RB-prob, one of our minority collective action methods, with
established firm-side methods. We observe that the lowest fairness violation achievable by RB-prob
is greater than that of the firm-side approaches. However, the firm-side methods are able to arrive at
perfect fairness only at a cost of prohibitively high prediction error. But, inspecting the region where
the error is small compared to the base classifier, the fairness of RB-prob is comparable to that of the
firm-side methods.

Approximating the class-conditional P, (Y| X). In Section[3]we proposed methods to estimate
which individuals would receive a different counterfactual label than their original label. However,
the success lower bound in Equation assumes perfect knowledge of Py and its causal model.
To account for approximation error, we model the collective’s prediction as the output of algorithm
A (z) ~ Pymax, (y|zao) that has an error rate

p=Fo (AW £ argmpxFaolylg (0)]). (14)

Given this definition, we derive the following lower bound on success, proved in Appendix
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Figure 6: The Pareto fronts for using a fair representation when computing the KNN for RB-dist
dominate the Pareto fronts for KNN computed on untransformed features. The blue stars represent
the KNN without transforming the data, and the yellow triangles represent the KNN when the data is
transformed using FARE [28]]. The lines are fitted by a polynomial of degree 2 to guide the eye.

Proposition 3. With algorithm A (x) with label error p, the success of the collective is bounded by

_2(1—a)T_ €
S e P T 9

This bound recovers Equation (T12) when p = 0, but higher values of the error p worsen the bound.
Next, we show how to use FRL to reduce the error p, thereby improving the lower bound.

Impact of feature representations Since the methods RB-label and RB-dist rely on KNN, their
performance is sensitive to the choice of distance metric and feature representation. In our main
experiments, we used Euclidean distance in the original feature space, which is convenient but could
be suboptimal. Here, we explore whether FRL can learn a more suitable representation space for
KNN. A fair representation maps the data into a space where the group-based bias is removed while
preserving informative features. Intuitively, such representations may help RB-label and RB-dist to
better estimate the counterfactual labels.

To formalize this intuition, we consider predicting the counterfactual label of minority points using a
1-NN classifier on majority data, i.e., assigning each minority point the label of its nearest neighbor in
the majority. In settings where the minority is distributed differently than the majority (e.g., Pagymm),
this task can be challenging. The following informal result compares the error of 1-NN in the original
features space to its error in a learned fair representation.

Proposition 4 (Informal). Let data be drawn from Psgum, and ppiain denote the error of a 1-NN
classifier that assigns the label of the nearest majority neighbor in the original feature space.
Then there exists a fair representation in which a 1-NN classifier achieves error pggy such that,
asymptotically with respect to the dataset size, prrr. < Pplain-

The formal statement, Theorem [T} with the proof and assumptions can be found in Appendix [E.4]
The result suggests that FRL can reduce the counterfactual label error p of RB-label and RB-dist,
consequently improving the lower bound of the collective’s success according to Proposition
Empirically, Figure[6]indicates that applying FARE [28] before the KNN step improves the Pareto
front for RB-dist. On the other hand, methods that rely purely on predictive information, such as
RB-prob, can perform worse, due to FRL inadvertently removing features predictive of the class
label. This behavior, and additional results, are provided in Figure[13]in the appendix.

D Related work

Optimizing for fairness metrics often comes at the cost of reduced classification accuracy, leading
to the well-documented accuracy—fairness tradeoff [2l 3, 4} [5]. In response, previous work has
proposed fairness interventions at different stages of the ML pipeline: pre-processing methods modify
the training data before learning [6} [7} I8} 28], in-processing methods adjust the learning algorithm
itself [35) 136, 126l 37], and post-processing methods correct the predictions of a trained (unfair)
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Figure 7: Assumed causal model for data generation and prediction. The group membership A and
the other latent variables U are the causal parents of the observable features X . The classifier outputs

a predicted label Y that depends on the features X .

classifier [[19, 13839, 40]]. A firm can introduce any of these categories into its pipeline, while users,
who control only their data can only partially implement pre-processing methods. However, as
mentioned in Appendix using feature-changing pre-processing methods such fair representation
learning [8| 28] demand changing those features during inference time as well.

Still, a couple of pre-processing methods suggest changing only the labels, similarly to our proposed
collective action. The method by Luong et al. [7]] compares between the minority KNN and majority
KNN and flip the labels according to the difference of positive labels between the two groups of
neighbors. This method resembles RB-label, with the difference that RB-label examines only the
majority KNN in order to approximate the counterfactual. Similarly, the approach of Kamiran and
Calders [6] trains a regressor to predict y = 1 outcome probabilities, and flip the label of minority
members with y = 0 labels and high probability according to the regressor to have y = 1, and
similarly flip majority y = 1 labels to y = 0. Flipping from both groups is done to preserve the
error of the classifier. Our method RB-prob differs by training the regressor only on the majority to
better approximate the counterfactuals. Since this approach requires flipping the labels of majority
members as well, it cannot be completey adopted by the collective. In Appendix [G.I| we compare the
between RB-prob to CND and KDP, and find that our method, based on the counterfactual search, is
more efficient in terms of the required number of label flips.

E Theoretical Results and Proofs

E.1 Counterfactual fairness as success

Proposition 1. A Bayes classifier trained on P, is minority-focused counterfactually fair if and only
if the success of a minority collective is S = 1.

Proof. For this proof, we assume the data is generated according to the causal model presented in
Figure[7] where the features X are conditioned on the group membership A and other latent causal

parent U. The features X are then used by a classifier to compute a predicted label i (z) Y. In our
case, the predicted label is the output of an optimal Bayes classier that predicts the most probable
label as h (x) = arg max, P (y|z).

The data distribution is a mixture distribution between the majority distribution P 4 and the minority
distribution P 4, which is defined as

Py = (1 = B)Pa=o + fPa=1, (16)
where (3 is the proportion of the minority in the data.

The collective is employing the signal erasure strategy from Equation (@), where the erased signal is
the counterfactual of z if they were a member of the majority group A = 0, or formally as

g(r)=xa,0~P(Xaco). (17)
The training distribution is a mixture distribution of the data distribution Py and the collective
distribution IP*, which is defined as

Py = aP* + (1 — a)P,. (18)
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ss9 We now write the success of the collective (Equation (3)) in terms of the Bayes classifier as
S =Py [h(2) =h(g(2))]

=Py {arg max P, (y|z) = argmaxP,, (y|g (z))} . (19
y y

g70  To compute this probability, we split it into two cases, conditioning on the group membership A.

87t When conditioning the success on the majority group A = 0, then g (x) = x as the intervention on A,
g7z which converts to the majority, does not change the value of A, which is already the majority. This
873  trivially leads to

Sa—o =Py {argmaXPa (ylx, A =0) = argmax P, (y|g (x),A = 0)]
Yy Yy

=P {argmax]?a (ylz, A =0) = argmax P, (y|z, A = O)} 20)
y y

=1.

874 For conditioning the success on the minority, recall that the data is generated according to the causal
s75  model in Figure[7] which means that intervention on the group membership A can be passed down to
g76 the features X as

P(h(2aco) =yl X, A=1) =P (h(2) = y|Xaco, A= 1) =P (h(2) = ylg (X), A = 1).
2
g7z This can be used to write the success conditioned on the minority as

Sa=1 =Py {argmax]?a (y|lz, A =1) = argmax P, (y|lg (x),A=1)
y y

=Py {argmax]?a (h(zac1) =y|X,A=1) =argmaxP, (h(zac0) =y|X,A=1)]|.
y y

(22)
g7e  The first term is rewritten to use the intervention notation even though the intervened variable is
879 unchanged.

880 As the proportion of the minority is known to be /3, the success can be written by combining
sst  Equations (20) and (22) using the law of total probability as

S=1-p+pP {argmax]?a (h(zac1) =y|X,A=1) =argmaxP, (h(xac0) =y|X,A= 1)}
y y

=1-p <1 — Py {argmaxﬂ”a (h(zac1) =y|X,A=1) =argmaxP, (h(zaco) =y|X,A=1)]| |.
y y
(23)

gs2 This equality can be examined under two scenarios: when the success is perfect S = 1 and when the
83 classifier is minority-focused counterfactually fair.

sss  When the success is S = 1  If the success of the collective is S = 1, then Equation (23] leads to
Py {argmax]?a (h(zac1) =y|X,A=1) =argmaxP, (h(xa0) =y|X,A= 1)} =1. (24)
Yy Y

gss This means that it is certain that

argmax P, (h(zac1) =y|X,A=1) =argmaxP, (h(zaco) =y|X,A=1), (25)
y y

gss Since the label is binary, then it follows that the same applies to using arg min. Therefore, for all
87y € {0,1} we have

Pa (h (erl) = y|X7A = 1) = Pa (h (xA%O) = y|X7A = 1) P (26)

gss  which is the definition of a minority-focused counterfactually fair classifier (Definition 2).
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When the classifier is one-sided counterfactually fair If the classifier is one-sided counterfactually
fair (Definition 2)), then by definition

Py |argmax P, (h (xa1) = y|X,A=1) = argmax P, (h (zac0) =y|X, A=1)| =1 (27)
y y
and plugging that in Equation (23)) results in S = 1. O

E.2 Impossibility of fairness under ERM

The following proposition follows the structure of Theorem 6 in Chaudhuri et al. [34]]. For a vector
x € RY, let D (z) denote a distribution on R¢ with mean x. Let p and m be the number of majority
and minority sample, respectively with p > m.

Assumption 1 (Concentration Condition, Assumption 2 from Chaudhuri et al. [34]). Let

21, R D(0) in R There exist maps Xmax, ¢, C : Zy x [0,1] x Zy — R such that

for all n 2 no, all § € (0, 1), and all unit vectors v € RY, with probability at least 1 — §

glax {v xl} € [Xmax(n,5, d) — c(n,d,d), Xmax(n,d,d) + C(n,d, 5)]
i€

and lim,,_,o, C(n,0,d) = 0, lim,,_,, ¢(n,d,d) = 0.

Data Model Labels y € {—1,1} and protected attribute a € {—1, 1} define four groups whose
class-conditional distributions share the same shape D(-) but have different means:

z | (y,a) ~ D(yp+ yav),

where 11,19 € R2 and p1 L ¢, with i = g/ ||p|| and ¢ = 1/ ||| For concreteness, take i =
lll (0,1)T and ¢ = ||¢]| (1,0) T. Without loss of generality, let the majority attribute be ap; = +1
(the minority is a,,, = —1). Thus the two majority means lie on the positive diagonal +( + 1)) and
the two minority means on the negative diagonal &(u — ).

Let B, A be two sets of points that are sampled from D(0). We will always associate B with
negatively labelled points and A with positive, as will be clear below. Following Chaudhuri et al.
[34], define the sets

Ay={x+p:z€A}, -B,={r+p:ze-B}

We split by attribute and (for the minority) allow arbitrary relabeling before training. Write A,

B ﬂ/[ for the majority parts and AJ}", B};* for the minority subsets used with positive/negative labels in
training after centering. Incorporating the attribute shifts, set

M m
Al¢¢__w+Au’ B,u,’(b_+¢+BM? U¢_+¢+A Bﬂl/)_

—) + B

and similarly for the relabeled minority pieces A" " wi and Bm o+ (these are subsets of Amw and B .
respectively).

If the minority were absent, the ERM SVM converges to the spurious direction
w;gfj o< b+ 1.

However, we assume that the minority is performing some relabeling. As a result, we denote the set
AZ“* as the samples relabeled with y = 1 and the set A}~ as the samples keeping the original label

y = 0. Similarly we denote the set BL”’* as the positive minority keeping their labels and B~ as
the positive minority who flip to y = 0.
Proposition 5. Suppose D(0) satisfies Assumption|l|and

Xinax(p, 6,2) = Xinax(m, 6,2) = 2||[¥]| + ¢(p,6,2) + C(m,6,2). (28)
Then, for any (possibly adversarial) relabeling of minority training examples, if p — oo, with
probability at least 1 — 46, the SVM ERM solution converges to the same spurious solution w,,

spu
p + 1. Under a centrally symmetric D(0) and when ||p|| = ||v||, this limit satisfies EqOd (w,,) —
0.5.

spu)
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924 Proof. As Chaudhuri et al. [34] shows, the ERM solution can be written as w* = o*f + aﬂ*qﬁ,
925 where

AT AT
o = arg min sup (a,& + 051/1) (x—p)+ sup (aﬂ + oﬁij)) (x — )
ae[_171]706{_171}a:€{$|y:0} ze{z|y=1}
926 and B =1 — 2.
927 With the shorthand
fila):= sup (ap+0Bd) 'z,  fox(a):= sup (afi+opBy)
zeAM TEATE
fala):= sup (oi+op) ',  fir(a):= sup (ofi+opy) 'z,
z€-B, ze—BIE

928 the SVM objective is
Fla) = mgn{max (f1 (@) = allull + oBlIWll, fo- (@) — allull = oBlIPl, fa— (@) = allpl = aBlv])
+max (fs (@) —ollpl + oB¥l, fou (@) —allull = oBlYl, fas (@) — oyl *Uﬂ\lwll)}-

929 By Assumptionm for the majority group of size p, there exists X,,, c,, C}, such that, with probability
930 atleast 1 — 44 and for all ¢,

fi(a), fs(@) € [Xp — ¢, X, + Cy). (29)

931 For any minority relabeling, Azlf C AZ‘w and —B:ff € —B,,» so the same assumption gives

f27i(a)a f4,i(a) S Xm + Cm7 (30)
w2 where X, 1= Xpax(m, d,2) and C,,, := C(m, d,2). Using Equation (28}, we get
Xp — X 22|1Y0]| + ¢p + Cha. 31

933 Combining Equations (29) to (3T)), still uniformly in ¢, we obtain

fil@)=fax(a) =209l fila)=fax(@) 2 2[10l,  fa(a)=fax(a) = 2[¥], fa(a)—fzx,é(zO)z) > 2[|9|-

93« Case 1: 0 = 1. Consider the first inner maximum inside F'(«). Compare the majority entry
935 (associated with f1(«)) to the minority entries (f2, (), f1,—(c)):

[fr(@)=allpll+Blw ] = [f2.- () —allul=BlI¢l] = (fi(e)=f2.~(a) +2B10]| > 2llbll+28]¥] > 0,

936 and similarly against f4 _. Hence the first maximum equals f1 — a|u|| + 5||9||. For the second
937 inner maximum, the same comparison yields the majority term f3 — «||g|| + S3||¢||. Summing then

938 for o = 1 we have,
Fi(a) = fi(a) + f3(a) = 2a]|pll + 2 8[| ].
939 Case 2: o = —1. For the first inner max in F'(«),

[f1r(e)=allull=BlI¢l] = [f2.- (@) —allull+BI¢I] = (fi(e)=f2.- (@) =28]¢]l = 2[l¥[-28]¢] >0,

940 and likewise against f4 _. Thus the first maximum equals fi — «||g|| — B]|%||. The second inner max
941 is analogous and equals f5 — «||u|| — B||¥||. Therefore,

F_(a) = fi(e) + fs(a) = 2al[ull = 28[|4].

oz Forevery o, Fi(a) = (f1 + f3) — 2ol + 28][¢| and F_(a) = (f1 + f3) — 2alull - 28]¢],
943 0 F («) > F_(«). Hence the optimal sign is o = —1 and the objective reduces to

F(a) = (fi(e) + fs(a)) = 2aull — 28 ]-

944 Maximizing a|u|| + 8|l is equivalent to minimizing F'(«) up to the bounded change (due to As-
945 sumptionof fi(a) + f3(a) . Next, we use the following lemma.
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Lemma 1 (Approximate Maximization Lemma - I, Lemma 14 from Chaudhuri et al. [34]). Let
F(a) = f(a) + g(a) where g(a) = au + V1 —a?v, u,v > 0, and f(a) € [-L,U]. Let
ap € argmax, F(a), and let oy = \/ﬁ € argmax,, g().

Then, the angle between (ap, \/1 — a},) and (g, /1 — o2) is at most cos™* (1 — \/%), and
mazoF (o) > Vu? +v? — L.

Applying Lemmal[T|with v = ||u|| and v = ||¢)|| shows that (cv, 3) approaches

_ llell 1l
(g, Bg) = (\/H#HéJerH?’ MIMII”W“"‘)

as p — oo. Thus
w' — w:pu = agﬂ""ﬁgd)v
independently of how the minority samples were relabeled in training.
Under a centrally symmetric D(0) and if | || = ||#]|, the majority group (a = +1) separates perfectly

in the limit, while the minority group (a = —1) has symmetric measure about the threshold, giving
TPRo—11 = 1, FPRs—11 — 0,and TPR—_; = FPRo—_; — %. Hence EqOd(w,,) — 0.5.

O

This result can also be extended to R? using techniques similar to those in Chaudhuri et al. [34]]. This
result also encompasses the 4-Gaussian mixture model Psgnmy used in Appendix |C|as a special case,
leading to the following.

Proposition 2 (Informal). Consider a dataset sampled from the distribution P gy described above,
where every minority point participates in the collective action by flipping all y = 0 labels to y = 1.
Then, under sufficiently separable clusters, with high probability, the EqOd of the ERM classifier
minimizing the logistic loss will asymptotically approach 0.5.

E.3 Success Bound With Label Error

The following proof uses Lemma 11 from Hardt et al. [[10].

Lemma 2 (Lemma 11 from Hardt et al. [10]). Suppose that P, P’ are two distributions such that
TV(P, P’) < e. Take any two events Ey, E> measurable under P, P'. If P(Ey) > P(E>) + 1=,
then P'(E,) > P'(Es).

Proposition 3. With algorithm A (x) with label error p, the success of the collective is bounded by

_2(1—a)T_ €
SO 2 e g -2)a =

Proof. This proof follows closely the proof of Theorem 5 by Hardt et al. [10]. We start under the
assumption of an optimal Bayes classifier, setting € = 0.

When the new label ¢ is wrong with probability p, then we can think of the collective as being union
of two sub-collectives: one with the correct label and one with the incorrect label. In the binary case
this can be formulated with correct subcollective P as having label y' = arg max, P, (y|g (z)) and
the incorrect subcollective P~ as with label y/ = arg min,, Py (y|g («)). Then we can write the train

distribution as
Po=a(pP"+(1-p)PY)+(1-a) PRy

(33)
=apP” + (1 —p)aPt + (1 - a) P.
Denote y* (z) = argmax, P (y|g (z)), then the probability to get prediction y* is
Po (y*|2) = apP™ (y"|z) + (1 — p) aP™ (y7|2) + (1 — a) Py (y"|2) (34)
=1 =plat(l-a)F(y’le),
and the probability to get the prediction y # y* is
Po (ylz) = apP~ (ylz) + (1 = p) P (ylz) + (1 — o) Py (y|z) (35)

=ap+(1-a)R(ylr),
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where PT (y*|x) =1, P~ (y*|z) = 0, PT (y*|z) = 0, P~ (y*|z) = 1 by definition.

A Bayes classifier h returns the most probable label h (z) = arg max,, P (y|z). Therefore, a Bayes
classifier will output y* if the probability is greater, which can be written as the condition

Po (y*|x) > Po (y|o)
(I=pla+1—a)P(ylz) >ap+(1-a)P(ylz) (36)
(1-2p)a>(1—a) (P (ylz) — Po(y*lz)).
Let 7 (z) = max, [Py (y|z) — Po (y|g (z))], then
Po (ylz) — Po (y*|z) < Po (yle) — Po (ylg () + Po (y7]g (z)) — Po (y*|2)
<27 (x).
With that, the condition in Equation can be written as
1-2p)a>2(1—-a)7(x). (38)

(37

With that, the success can be bounded as
S§="[f(z)=f(9(2))]
=P [f(z) =y" ()]
>P[1-2p)a>2(1-a)7(z)]

2(1—a)T .
120 (>>ﬂ

> B, [1- 20 o)

2(1—-a) .
(1-2p)a

With sub-optimality ¢ > 0 A result of Lemma2]is to write the condition in Equation as

€

(1—2p)a>2(1—a)7(m)+1_6, (40)
which by following the same steps as with € = 0 results in the final bound
2(1-a) €
S >1- — . 41
@21 e " T=a -2 @
O

E.4 Label Error With Better Representation

For the following we assume a similar setting as in Appendix [E.2] visualised as a 2D distribution
in Figure 5] We are given the majority data, and tasked with labeling the minority data. Assume
all labels are distributed equally P[Y’ = 1] = P[Y = —1] = 1. The minority features X, are

distributed as Xpyin ~ N (Yptmin, Bmin) With Xinin € R<. The label QE;%\] is predicted according to
a INN classifier from n majority samples D,, = (x;,y;);_,. Majority samples with y = +1 are
distributed as X ~ N (p, X), and with y = +1 are distributed as X_ ~ N(—p, ).

Theorem 1. Assume that /A;,[inE_l w > 0. Further, consider the setting with ¥,,;, = I, and the
minority (i.e. test) distribution introduced above with P[Y = 1] = P[Y = —1] = 0.5 and X,pin ~
N(yumina Emin)-

Then, there exists a projection P € R such that asymptotically for n — oo, err|y < errimn.

Proof. Consider the projection on the hyperplane perpendicular to w, where w = #=f== The

wa

wlw:’

projection matrix associated with this transformationis P = I —
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Let us denote the symbols after the projection as [i := P, fimin := Pmin, U 1= (PEPT)Jr i and
Siin = PYin PT. Here we denoted using AT the pseudoinverse of the matrix A. Note that since P
is an orthogonal projection matrix, it holds that PP = P and PT = P.

We apply Lemma [3| to obtain closed forms for the asymptotic error of INN applied to the initial
representation and to the features after the projection P. Namely, using the notation v := X! ;1 we
have:

1

N 1 R
EITINN = §]P)Xmm|y:1[y1NN =—1]+ ipXmin\yzfl[leN =1] 42)

1 T min 1 —v’ min
Sl i) ) 4 s | L fmin (43)
2 VT Sninv 2 VT Sninv
T, .
=1-0  —ptmn_ (44)
V UTEminU

=1-P(SNR), (45)
T
) =1-— v i
where we used the fact that ®(—z) = 1 — ®(z) and we denote SN R : st

Similarly, let us denote the SNR corresponding to 1NN applied on the projected representation as

i
follows: SN Ry i= —p=buin_
prol V 7jszin'D

To show that errjny > err| iy it suffices to prove that SN R < SN Ryyo;.

We begin by rewriting the numerator of SN R,;. Since € I'm(P) and because on Im(P) the
operators ¥~ and (PXP")* represent the same transformation, it follows that:

7= (PP *p=%"4

Moving on the the denominator of SN Ry, we have that:

7 Cin0 =0 (PEminP )"0
o (PP")"%
=0 Pto
=9 Po
=70
= |lo*.
In the second line we used the fact that X, = I, in the third line we use the identity P2 =Pdueto

P being a projection matrix, in the forth line we use P* = P since P is an orthogonal projection
(i.e. P is symmetric) and in the fifth line we use the fact that & € Im(P), and hence, Pt = ©.

Putting everything together, and using the fact that ¥ (and thus, ¥ 71) is positive definite (i.e.
xSz > 0,Vz € RY) we get that:

p'TZ_llu >0 > N’TZ_l,umin

o]l 137l

SN Rypoj = — SNR.

Lemma 3. For a unimodal minority distribution X i, ~ N (tmin, Zmin) it holds that:

T
. ~(n v min
SN

VT Z,imv

where v := pu' X1 and ® is the CDF of a standard Gaussian.

27



1022
1023
1024
1025

1026
1027

1028
1029

1030

1031

1032
1033

1034
1035
1036
1037

Proof. Let us denote §inn = limy, oo ;91(;%1 and let p; and p_ be the densities of two class-
conditional distribution. Notice that the two class conditional training distributions are supported on
the entire domain of R?. Therefore, in the asymptotic regime, the label ¢,y at a test point  is given
according to the class-conditional distribution that has higher density. Namely, we have:

Q — -1 if})4,(ﬂ7) <p- (Z),
INN 1 otherwise.

Given Xpin ~ N (fmin, Zmin ), We can then write the probability of predicting §jny = —1 as:
Px,, [Jmn = —1] = Px,, [p+(z) < p—(2)].

Using the closed forms for the pdf of a Gaussian, we write the corresponding log-probabilities as
follows:

1
logp(x) = —5(33 — 1) "X 1(2 — p) + const.

1
logp_(z) = —5(:5 + 1) "7 1(z + p) + const.

Using the fact that log is monotonically increasing and ¥ (and by extension ¥ ~!) is a symmetric
matrix, we can write after some simple calculations:

P X, [finn = —1] = Px,, [u' £ 72 < 0],

Let us denote the random variable Z := (uX~1)X. Since Z is a linear transformation of Gaussian
random variable, it is itself Gaussian and we can write its mean and variance as follows:

-1

Uz = vTumin, and U% = UTEminv, where v := MTE

After this change of variable, we can rewrite the probability of predicting 7jjny = —1 as:

Px,[Jinn = —1] =Pz [Z < 0]
_s ((MM)
Var|Z]
—® ( —("E) T i )
VTS )T S (0TS 1)

=1—9 (/‘Tzil)—rﬂmin
\/(uTzil)TEmin(MTzil) '

O

Note that the error from Theorem [I] is defined the same as p (Equation (I4). This leads to the
following.

Proposition 4 (Informal). Let data be drawn from Psgum, and ppiain denote the error of a 1-NN
classifier that assigns the label of the nearest majority neighbor in the original feature space.
Then there exists a fair representation in which a 1-NN classifier achieves error ppgp such that,
asymptotically with respect to the dataset size, prrr. < Pplain-
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F Technical Details

F.1 Datasets

COMPAS The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
dataset contains the data of criminal defendants in Broward county sheriff’s office in Florida with
the task of predicting the recidivism risk. The label in this dataset represents whether the person re-
offended and the sensitive attribute is the race. We follow the same data cleaning and pre-processing
as Alghamdi et al. [38]].

Adult The Adult dataset [23] contains demographic features of US citizens and is tasked with
predicting the income level of an individual. The label represents if the individual has income higher
than $50,000 and the sensitive attribute we use is the race. We follow the same data cleaning and
pre-processing as Alghamdi et al. [38]].

HSLS The High School Longitudinal Study of 2009 (HSLS) [24]] contains details of high-school
students across the US and the task is to predict the academic success of the students. The label
represents the exam score and the sensitive attribute is the race. We follow the same data cleaning
and pre-processing as Alghamdi et al. [38]].

ACS-Income Ding et al. [23]] offer different classification tasks derived by US census data. In our
work we used the pre-defined task of predicting level of income denoted as ACSIncome, where the
data is already pre-processed. The label represents if the individual has income higher than $50,000
and the sensitive attribute is the race.

Waterbirds The waterbirds dataset [26] contains images of landbirds and waterbirds super-imposed
on either land or water backgrounds, with the task of classifying the image as of a landbird or a
waterbird. The label represents the type of bird, and the sensitive attribute is whether the background
is land or water. To obtain the features, we used the output of the penultimate layer of a pre-trained
ResNet-18 network from PyTorch [ﬂ We report the results on those features as Waterbirds-Full. We
also performed PCA (using scikit-learn) and kept the first 85 principal components which retain
about 75% of the variance, and report the results of these components as Waterbirds-PCA.

CivilComments The CivilComments dataset [27] is a collection of text comments found on the
internet, with the goal of training a classifier to fairly detect toxicity. For this paper, we modified
the dataset to keep only the comments that include either christian or muslim (but not both), with
a label 0 meaning toxic and 1 meaning safe. To obtain the features, we used the word embeddings
given by Hugging Face’s bert-base-uncased modeﬂ We report the results on those features as
CivilComments-Full. We also performed PCA (using scikit-learn) and kept the first 100 principal
components which retain about 75% of the variance, and report the results of these components as
CivilComments-PCA.

F.2 Training

All classification experiments were trained with scikit-learn’s histogram-based gradient boosting
classification tree with the default parameters ﬂ When there was not a pre-defined test set, we set the
train-test split as 80-20 before applying the collective action.

The probabilities for RB-prob were inferred by training scikit-learn’s histogram-based gradient boost-
ing classification tree on the majority data with the default parameters, and using its predict_proba
function. For LFR [8]] we used the implementation in Holistic AI’s open source library E] with the
default parameters. For FARE [28] we used the official implementation E] with hyperparameters

"https://pytorch.org/vision/main/models/generated/torchvision.models.resnet 18 html
Zhttps://huggingface.co/google-bert/bert-base-uncased
3scikit-learn.org/stable/modules/generated/sklearn.ensemble. HistGradientBoostingClassifier.htm]
*https://github.com/holistic-ai/holisticai

>https://github.com/eth-sri/fare
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Figure 8: Fairness per number of label flips of the Random baseline, our method RB-prob, and the
existing methods KDP [[7] and CND [6]. Our method is more efficient than prior work, requiring
less flips to achieve the same level of fairness. Note that in this experiment CND could flip any label,
while all other methods were restricted to the labels of 30% of the minority.

v = 0.85, k = 200 and n = 100. For all distance computation we used the Euclidean norm ¢2-norm
as d (v,u) = [[o —ully = /32, (v — w;)*.

G Additional Results

G.1 Comparison with prior work
We compare our method RB-prob with the existing methods KDP [7] and CND [6] in Figure [8]

Figure 8| shows that our method, motivated by the counterfactual labeling, is more efficient in terms
of required number of label flips, than the existing works.

G.2 Expanded results

The following figures include the results of the experiments reported in the main text using all methods
on all dataset, both with EqOd (Equation (Z)) and SP (Equation (8)) as a measure of unfairness

30



(a) EqOd

COMPAS

0.20

RB-prob
RB-label
RB-dist

0.15

Best EqOd

0.10

0.0 0.1 0.2 0.3 0.4
Minority collective size
HSLS

Best EqOd

0.0 0.1 0.2 0.3 0.4
Minority collective size
‘Waterbirds-PCA

0.15
<
S
g 0.10
z
;@
0.05
0.0 0.1 02 03 0.4
Minority collective size
CivilComments-PCA
L S S ———
0.05
3 0.04
%
53]
2 0.03
Z
-}
0.02
0.01 &
0.0 0.1 0.2 0.3 0.4

Minority collective size

0.04

0.02

0.0 0.1 0.2 0.3 0.4
Minority collective size
ACS-Income

0.05

0.0 0.1 0.2 0.3 0.4
Minority collective size
‘Waterbirds-Full

0.06
0.04

0.02

0.0 0.1
Minority collective size

0.2 0.3 0.4

CivilComments-Full
s K: 777777777777777777777
0.05
0.04
0.03
0.02
0.01

0.0 0.1 0.2 0.3 0.4
Minority collective size

Best SP

Best SP

Best SP

Best SP

0.25

0.04

0.02

(b) SP

COMPAS

---- Base
—+— RB-prob
RB-label
RB-dist

0.0 0.1 0.2 0.3 0.4
Minority collective size
HSLS

o

0.0 0.1 0.2 0.3 0.4
Minority collective size
Waterbir

PCA

0.0 0.1 0.2 0.3
Minority collective size
CivilComments-PCA

0.0 0.1 0.2 0.3 0.4
Minority collective size

Adult
0125 ===mmmmmm e
0.100
0.075
0.050

0.025

0.0 0.1 0.2 0.3 0.4
Minority collective size
ACS-Income

0.15

0.10

0.05

0.0 0.1 0.2 0.3 0.4
Minority collective size
Waterbirds-Full

0.15

0.10

0.05

0.00

0.0 0.1 0.2 0.3 0.4
Minority collective size
CivilComments-Full
0.06
0.04

0.02

0.0 0.1 0.2 0.3 04
Minority collective size

Figure 9: The lowest EqOd violation a collective can achieve greatly improves as the collective
size increases, up to a certain point. Each point is a mean of 10 runs, with the standard deviation
being smaller than the markers. In all the datasets we experimented on, the lowest EqOd violation
converges around o = 0.3. Additional results are presented in Figurein the appendix.
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Figure 10: Our proposed methods are consistently more efficient than randomly flipping labels,
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dashed line shows the mean EqOd for a classifier trained on the dataset without collective action.
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Figure 11: Limiting the knowledge of the collective about the majority does not significantly harm
the Pareto front. Each point is the mean of 10 runs and the curves are fitted to guide the eye.
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Figure 12: The firm-side pre-processing method FARE [28]] and the post-processing method calibrated
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Figure 13: The Pareto fronts for using a fair representation when computing the KNN for RB-dist
dominate the Pareto fronts for KNN computed on untransformed features. The blue stars represent
the KNN without transforming the data, and the yellow triangles represent the KNN when the data is
transformed using FARE [28]]. The lines are fitted by a polynomial of degree 2 to guide the eye.
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