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Abstract

Machine learning models often preserve biases present in training data, leading to1

unfair treatment of certain minority groups. Despite an array of existing firm-side2

bias mitigation techniques, they typically incur utility costs and require organi-3

zational buy-in. Recognizing that many models rely on user-contributed data,4

end-users can induce fairness through the framework of Algorithmic Collective5

Action, where a coordinated minority group strategically relabels its own data to6

enhance fairness, without altering the firm’s training process. We propose three7

practical, model-agnostic methods to approximate ideal relabeling and validate8

them on real-world datasets. Our findings show that a subgroup of the minority can9

substantially reduce unfairness with a small impact on the overall prediction error.10

1 Introduction11

As machine learning (ML) tools become increasingly accessible, more firms deploy them for decision-12

making. However, ML models often perpetuate biases present in their data, leading to unfair outcomes13

across demographic groups [1]. Moreover, most fair-learning algorithms incur a non-negligible cost14

in accuracy or computational resources [2, 3, 4, 5], which can discourage practical adoption.15

Since firms control the training pipeline, end-users lack access to these algorithms and cannot directly16

enforce fair treatment. Yet, affected users routinely generate and share data — through clicks, ratings,17

or other contributions — that is used to train the firm’s models. Consequently, if underrepresented18

minority groups collaboratively alter the data they share, they might be able to steer the learned model19

towards fairer behavior, even without access to the firm’s training pipeline. This idea is reminiscent of20

pre-processing fairness techniques [6, 7, 8, 9], which modify the data before model training. Unlike21

these prior approaches, which assume centralized control over the data, we consider the setting22

of algorithmic collective action [10, 11, 12, 13, 14], in which a small group of users strategically23

modifies their own data to influence the correlations learned by the model.24

We adapt the erasure strategy from Hardt et al. [10] to reduce correlation between group membership25

and label by relabeling minority samples. The collective is restricted to the minority, because minority26

members are more motivated to join minority collective action [15, 16], and majority-group users may27

be less inclined to disrupt the status quo. We show that when a classifier is trained on data affected28

by this form of collective action, standard fairness metrics (e.g., demographic parity, equalized29

odds) improve substantially. This improvement is illustrated in Figure 1, where a small collective of30

minority samples significantly reduces unfairness with minimal impact on prediction error.31

The key obstacle in implementing the erasure strategy is that it requires knowledge of each user’s32

label under a counterfactual group membership. Computing such counterfactual labels exactly would33

require access to an underlying causal model, which is typically infeasible in practice. To overcome34

this challenge, we propose three model-agnostic methods to estimate the counterfactual labels.35
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Figure 1: Minority-only collective action can substantially improve fairness. With only 6 label flips,
the fairness violation of logistic regression goes down by over 75% with only a negligible increase in
prediction error. Circles and crosses represent majority and minority points, respectively.

2 Collective Action for Fairness36

We consider a setting in which a firm uses ML to predict a binary label y ∈ {0, 1}. The firm collects37

data from its users, forming a dataset D = {(xi, ai, yi)}ni=1, where xi ∈ Rm denotes user i’s feature38

vector, ai ∈ {0, 1} is a sensitive attribute indicating binary group membership (ai = 0 for the majority39

group, ai = 1 for the minority), and yi ∈ {0, 1} is the true label. We assume the users are drawn40

independently and identically distributed (i.i.d.) from a distribution P0 over Rm × {0, 1} × {0, 1}.41

The firm trains a classifier h : Rm → {0, 1} to minimize the prediction error, defined as42

Error (h) = P [h (x) ̸= y] . (1)

To do so, the firm minimizes the empirical error on D via Empirical Risk Minimization (ERM).43

In the group-fairness paradigm, the sensitive attribute a ∈ {0, 1} partitions the data into subgroups,44

and fairness criteria seek to ensure similar outcomes across these groups. Common metrics include45

statistical parity (SP) [17, 18] and equalized odds (EqOd) [19]. In this work, we focus primarily on46

violations of EqOd, formally defined as47

EqOd (h) =
1

2

∑
z=0,1

|P [h (x) = 1|a = 1, y = z]− P [h (x) = 1|a = 0, y = z]| , (2)

which measures the differences between true positive and false positive rates. Appendix B.1 provides48

formal definitions and further discussion of these metrics.49

While most prior work has focused on firm-side solutions, this work shifts the focus to user-side50

methods that do not require the firm’s participation. Since users generate the training data, they can51

collectively influence the learned model by strategically modifying their own behavior. Appendix A52

suggests real-world scenarios where collective action can contribute to fairness. These collectives53

and their influential abilities in ML are studied as the field of algorithmic collective action [10].54

In social sciences, collective action refers to the coordinated efforts of individuals working together55

to pursue a shared goal [20, 21]. Hardt et al. [10] adapt this notion to machine learning, proposing56

that a group of users, termed a collective, can strategically modify their data to align the behavior57

of a trained classifier h with the collective’s goals. In this formulation, the training distribution is58

a mixture distribution D ∼ Pα = αP∗ + (1 − α)P0, where P∗ and P0 are the collective and base59

distributions, and α ∈ [0, 1] denotes the proportion of the population that belongs to the collective.60

Suppose the collective seeks a classifier that is invariant under a transformation g : Rm → Rm61

applied to the features. The success of the collective can be quantified as62

S (α) = P0 [h (g (x)) = h (x)] , (3)

the probability, under the base distribution, that the classifier’s prediction remains unchanged after63

applying g to the features.64

To achieve signal erasure, Hardt et al. [10] propose the collective relabels itself with the most likely65

label under the transformation g. Formally, the strategy is defined as66

(x, y) →
(
x, arg max

y′∈{0,1}
P0 (y

′|g (x))
)
. (4)
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Figure 2: The lowest EqOd violation a collective can achieve greatly improves as the collective
size increases, up to a certain point. Each point is a mean of 10 runs, with the standard deviation
being smaller than the markers. In all the datasets we experimented on, the lowest EqOd violation
converges around α = 0.3. Additional results are presented in Figure 9 in the appendix.

Intuitively, if g is a feature pattern correlated with group membership (e.g., minority vs. majority),67

then achieving invariance under g promotes fairness by reducing the classifier’s dependence on68

group-identifying information. We define g to be the counterfactual features a minority member69

would have had they belonged to the majority. Appendix B.3 describes in more detail the success of70

signal erasure and Appendix B.4 connects this action to fairness throguh counterfactual fairness.71

3 Approximating the Counterfactual Label72

This section describes how a minority collective can approximate a signal-erasure strategy to promote73

fairness in practice. While the theory of signal erasure has been studied before [10, 14], prior work74

lacks empirical evaluation. In this paper, we present the first practical algorithm for signal erasure75

and provide experimental results in Section 4. As discussed in Appendix B.4, a suitable signal to76

erase is g (x) = xA←0, where each collective member relabels themselves according to Equation (4).77

However, end-users lack access to the true causal model and cannot compute the counterfactual78

labels directly. To address this limitation, we propose to assign each collective member i a score si,79

which serves as a proxy for the likelihood that they would receive the label y = 1 if they belonged80

to the majority. Given a budget of M label flips, the collective selects the M members with the81

highest scores; these individuals flip their labels from y = 0 to y = 1. The budget M controls the82

accuracy–fairness tradeoff, where a higher budget typically leads to better fairness, but higher error83

(Figure 6).84

We introduce three model-agnostic scoring functions, each capturing a different notion of similarity85

to majority users:86

1. Rank by probability (RB-prob): Train a regressor f : Rm → R on exclusively majority87

data (a = 0) to estimate the probability P (Y = 1|X = x) of having the label y = 1. Each88

collective member i receives a score based on the model’s prediction:89

si = f (xi) . (5)

2. Rank by label (RB-label): For each collective member i, identify the set Ki of their k90

nearest majority neighbors using Euclidean distance. The score is the number of neighbors91

with the label y = 1:92

si =
∑
j∈Ki

1 {yj = 1} . (6)

3. Rank by distance (RB-dist): Restrict the neighbors set Ki to only majority users with the93

label Y = 1. The score is the negative mean Euclidean distance to these neighbors:94

si = −1

k

∑
j∈Ki

∥xi − xj∥2. (7)

Intuitively, RB-prob assigns a higher score where a classifier trained solely on majority data predicts95

a higher likelihood of the label y = 1. RB-label scores collective members according to the frequency96

of y = 1 among their majority neighbors, while RB-dist prioritizes those who are closer majority97

users with y = 1. The similarity to prior work is discussed in Appendix D98

3



(a) COMPAS

0 100

Minority label flips

0.1

0.2

E
qO

d

(b) ACS-Income

0 250 500

Minority label flips

0.05

0.10

0.15

(c) Waterbirds-Full

0 500

Minority label flips

0.05

0.10

Base RB-prob RB-label RB-dist Random

Figure 3: Our proposed methods are consistently more efficient than randomly flipping labels,
requiring less label flips to attain the same level of EqOd. Each marker is the mean of 10 random
runs with a specific number of label flips. The standard deviation is presented by the error bars. The
dashed line shows the mean EqOd for a classifier trained on the dataset without collective action.

4 Experimental Results99

We compare our methods against a random baseline that flips y = 0 labels to y = 1 for M100

randomly selected collective members. We experimented on the tabular datasets COMPAS [22],101

Adult [23], HSLS [24], ACS-Income [25], the image dataset Waterbirds [26] and the text dataset102

CivilComments [27]. For Waterbirds, we use features extracted from a pre-trained ResNet-18 (denoted103

Waterbirds-Full) and for CivilComments, we used the extracted features from Hugging Face’s pre-104

trained bert-base-uncased model (denoted CivilComments-Full). In addition to the complete features105

of Waterbirds and CivilComments, we also include experiments on the PCA features, with 85106

components for Waterbirds (denoted Waterbirds-PCA) and 100 components for CivilComments107

(denoted CivilComments-PCA). Details on the datasets are provided in Appendix F.1.108

All reported metrics are computed on a fixed test set, without any collective action, and averaged over109

10 independent runs. In each run, we randomly selected a minority collective, which then applies one110

of the methods described in Section 3. For the KNN-based methods, we tuned the neighborhood size111

k using a 15% validation split from the train set, optimizing for EqOd and SP. Finally, we trained a112

gradient-boosted decision tree on each modified train set. The complete set of results can be found in113

Appendix G.2, including an experiment with limited knowledge of the majoritry (Figure 11).114

Importance of collective size While the number of label flips M is the primary factor for balancing115

between accuracy and fairness, the size of the collective, α, also plays a role. In addition to bounding116

the possible number of flips, increasing α also expands the candidate pool from which the most117

effective labels to flip can be selected. To measure this effect, the experiments included a range of α118

values, each tested with multiple values of M . For each α, we define the best achievable EqOd as the119

minimum EqOd across all tested values of M . As shown in Figure 2, increasing α improves the best120

achievable EqOd until saturating around α = 0.3. We fix this value for all remaining experiments.121

Flipping cost Since each method scores candidates differently, they may also vary in efficiency,122

that is, the number of label flips required to achieve a given level of fairness. To evaluate efficiency,123

Figure 3 plots EqOd as a function of number of label flips M , where lower curves indicate more124

efficient methods. The random baseline consistently yields the worst EqOd across all values of M ,125

highlighting the value of informed relabeling algorithms. However, no single method dominates the126

others in all settings: While RB-prob and RB-label often outperform the other methods, RB-dist can127

surpass them in specific cases (e.g., Figure 3a), or perform comparably to the random baseline in128

others (Figure 3c).129

These results suggest that a well-chosen scoring function enables the collective to achieve a desired130

level of fairness with fewer label flips, reducing the “cost” of collective action and mitigating the131

accuracy loss from excessive relabeling.132

Interestingly, beyond a certain number of flips, EqOd begins to increase, indicating that excessive133

flipping can shift unfairness from the minority to the majority. This upturn reflects the fundamental134

limits of minority collective action for fairness, a point we elaborate on in Appendix C.135
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Figure 4: User-side method cannot achieve perfect fairness, while the firm-side pre-processing
method FARE [28] and the post-processing method calibrated equalized odds [29] attain 0 EqOd
with large error. However, RB-prob’s fairness is better than the base classifier, with a smaller error
than the firm-side methods.

5 Limitations of Minority Collective Action136

Previous work on collective action assumes that the collective is uniformly sampled from the distri-137

bution P0 and that the collective has a perfect oracle for the conditional distribution P0 (Y |X). Yet,138

our method restricts collective participation to minority members and approximates this conditional139

distribution. Those differences introduce limitations to the existing theory, which we analyze and140

theoretically quantify in this section and in Appendix C.141

This restriction expresses scenarios in which majority members lack incentives to support changes142

that would benefit the minority, and instead prefer to preserve the status quo. Naturally, this limitation143

reduces the collective’s impact. In Appendix E.2 we formally prove that there exists a case where a144

minority-only collective is unable to acheive perfect fairness.145

We empirically corroborate this claim on real world datasets by examining the fairness–accuracy146

tradeoff of several fair learning methods. Most of these methods include a hyperparameter that147

controls this trade-off, yielding a set of pairs (Error, EqOd) as it varies. This set forms a Pareto front,148

representing the best attainable trade-offs. A Pareto front is said to dominate another if it lies entirely149

to the left (lower error) and below (lower unfairness) of the other. Figure 4 compares the Pareto fronts150

of RB-prob, one of our minority collective action methods, with established firm-side methods. We151

observe that the lowest fairness violation achievable by RB-prob is greater than that of the firm-side152

approaches. However, the firm-side methods are able to arrive at perfect fairness only at a cost of153

prohibitively high prediction error. But, inspecting the region where the error is small compared to154

the base classifier, the fairness of RB-prob is comparable to that of the firm-side methods.155

Appendix C additionaly discusses the limitations given that the counterfactual labels is onyl approxi-156

mated and not exact and how the success bound is affected, and also how the same estimation error157

can be decreased by using representation learning.158

6 Conclusion159

This work demonstrates that user-side methods, specifically minority collective action, can effectively160

reduce unfairness in machine learning. While much of the existing fairness research focused on161

firm-side methods, paradoxically these often come at a cost that may not be worth to the firm. This162

catch emphasizes the importance of studying user-side approaches for bias mitigation. We also note163

that in general, collective action methods can be exploited by malicious parties seeking self-gain164

or harming other communities, and it is important to be discussing these limitations and possibly165

regulate them.166

We introduce three practical methods that a collective can easily implement to relabel itself, and show167

empirically that collective action can considerably reduce unfairness in a variety of datasets, though168

not completely. Importantly, we also examine the limitations of a minority being composed of only169

minority members, and how the success is affected by approximating the counterfactual labels.170

Overall, this paper shows a practical use case of collective action in the hopes of sparking further171

research into applications of collective action and user-side methods for social good.172
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implications would be.322

• The authors should reflect on the scope of the claims made, e.g., if the approach was323

only tested on a few datasets or with a few runs. In general, empirical results often324

depend on implicit assumptions, which should be articulated.325

• The authors should reflect on the factors that influence the performance of the approach.326

For example, a facial recognition algorithm may perform poorly when image resolution327

is low or images are taken in low lighting. Or a speech-to-text system might not be328

used reliably to provide closed captions for online lectures because it fails to handle329

technical jargon.330

• The authors should discuss the computational efficiency of the proposed algorithms331

and how they scale with dataset size.332

• If applicable, the authors should discuss possible limitations of their approach to333

address problems of privacy and fairness.334

• While the authors might fear that complete honesty about limitations might be used by335

reviewers as grounds for rejection, a worse outcome might be that reviewers discover336

limitations that aren’t acknowledged in the paper. The authors should use their best337

judgment and recognize that individual actions in favor of transparency play an impor-338

tant role in developing norms that preserve the integrity of the community. Reviewers339

will be specifically instructed to not penalize honesty concerning limitations.340

3. Theory assumptions and proofs341

Question: For each theoretical result, does the paper provide the full set of assumptions and342

a complete (and correct) proof?343

Answer: [Yes]344
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Justification: In our theory and proofs we refer to the previous work and assumptions we345

rely on346

Guidelines:347

• The answer NA means that the paper does not include theoretical results.348

• All the theorems, formulas, and proofs in the paper should be numbered and cross-349

referenced.350

• All assumptions should be clearly stated or referenced in the statement of any theorems.351

• The proofs can either appear in the main paper or the supplemental material, but if352

they appear in the supplemental material, the authors are encouraged to provide a short353

proof sketch to provide intuition.354

• Inversely, any informal proof provided in the core of the paper should be complemented355

by formal proofs provided in appendix or supplemental material.356

• Theorems and Lemmas that the proof relies upon should be properly referenced.357

4. Experimental result reproducibility358

Question: Does the paper fully disclose all the information needed to reproduce the main ex-359

perimental results of the paper to the extent that it affects the main claims and/or conclusions360

of the paper (regardless of whether the code and data are provided or not)?361

Answer: [Yes]362

Justification: We describe the technical details of the experiments in the experiments section363

and appendix.364

Guidelines:365

• The answer NA means that the paper does not include experiments.366

• If the paper includes experiments, a No answer to this question will not be perceived367

well by the reviewers: Making the paper reproducible is important, regardless of368

whether the code and data are provided or not.369

• If the contribution is a dataset and/or model, the authors should describe the steps taken370

to make their results reproducible or verifiable.371

• Depending on the contribution, reproducibility can be accomplished in various ways.372

For example, if the contribution is a novel architecture, describing the architecture fully373

might suffice, or if the contribution is a specific model and empirical evaluation, it may374

be necessary to either make it possible for others to replicate the model with the same375

dataset, or provide access to the model. In general. releasing code and data is often376

one good way to accomplish this, but reproducibility can also be provided via detailed377

instructions for how to replicate the results, access to a hosted model (e.g., in the case378

of a large language model), releasing of a model checkpoint, or other means that are379

appropriate to the research performed.380

• While NeurIPS does not require releasing code, the conference does require all submis-381

sions to provide some reasonable avenue for reproducibility, which may depend on the382

nature of the contribution. For example383

(a) If the contribution is primarily a new algorithm, the paper should make it clear how384

to reproduce that algorithm.385

(b) If the contribution is primarily a new model architecture, the paper should describe386

the architecture clearly and fully.387

(c) If the contribution is a new model (e.g., a large language model), then there should388

either be a way to access this model for reproducing the results or a way to reproduce389

the model (e.g., with an open-source dataset or instructions for how to construct390

the dataset).391

(d) We recognize that reproducibility may be tricky in some cases, in which case392

authors are welcome to describe the particular way they provide for reproducibility.393

In the case of closed-source models, it may be that access to the model is limited in394

some way (e.g., to registered users), but it should be possible for other researchers395

to have some path to reproducing or verifying the results.396

5. Open access to data and code397
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Question: Does the paper provide open access to the data and code, with sufficient instruc-398

tions to faithfully reproduce the main experimental results, as described in supplemental399

material?400

Answer: [Yes]401

Justification: The experiments we report are not difficult to recreate, and we provide the402

exact dataset and python packages we use. We are also planning to include the code in the403

supplementary material.404

Guidelines:405

• The answer NA means that paper does not include experiments requiring code.406

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/407

public/guides/CodeSubmissionPolicy) for more details.408

• While we encourage the release of code and data, we understand that this might not be409

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not410

including code, unless this is central to the contribution (e.g., for a new open-source411

benchmark).412

• The instructions should contain the exact command and environment needed to run to413

reproduce the results. See the NeurIPS code and data submission guidelines (https:414

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.415

• The authors should provide instructions on data access and preparation, including how416

to access the raw data, preprocessed data, intermediate data, and generated data, etc.417

• The authors should provide scripts to reproduce all experimental results for the new418

proposed method and baselines. If only a subset of experiments are reproducible, they419

should state which ones are omitted from the script and why.420

• At submission time, to preserve anonymity, the authors should release anonymized421

versions (if applicable).422

• Providing as much information as possible in supplemental material (appended to the423

paper) is recommended, but including URLs to data and code is permitted.424

6. Experimental setting/details425

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-426

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the427

results?428

Answer: [Yes]429

Justification: We describe the technical details of the experiments in the experiments section430

and appendix.431

Guidelines:432

• The answer NA means that the paper does not include experiments.433

• The experimental setting should be presented in the core of the paper to a level of detail434

that is necessary to appreciate the results and make sense of them.435

• The full details can be provided either with the code, in appendix, or as supplemental436

material.437

7. Experiment statistical significance438

Question: Does the paper report error bars suitably and correctly defined or other appropriate439

information about the statistical significance of the experiments?440

Answer: [Yes]441

Justification: Each point in our figures is a mean of 10 random runs. Some of the figures442

report the error bars, but in all cases the averaged points present clear trends that support443

our claims with small standard deviation. For this reason we did not find it necessary to444

include error bars in most figures in the main text since in most cases they are smaller than445

the markers and would have made the figures less readable.446

Guidelines:447

• The answer NA means that the paper does not include experiments.448
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-449

dence intervals, or statistical significance tests, at least for the experiments that support450

the main claims of the paper.451

• The factors of variability that the error bars are capturing should be clearly stated (for452

example, train/test split, initialization, random drawing of some parameter, or overall453

run with given experimental conditions).454

• The method for calculating the error bars should be explained (closed form formula,455

call to a library function, bootstrap, etc.)456

• The assumptions made should be given (e.g., Normally distributed errors).457

• It should be clear whether the error bar is the standard deviation or the standard error458

of the mean.459

• It is OK to report 1-sigma error bars, but one should state it. The authors should460

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis461

of Normality of errors is not verified.462

• For asymmetric distributions, the authors should be careful not to show in tables or463

figures symmetric error bars that would yield results that are out of range (e.g. negative464

error rates).465

• If error bars are reported in tables or plots, The authors should explain in the text how466

they were calculated and reference the corresponding figures or tables in the text.467

8. Experiments compute resources468

Question: For each experiment, does the paper provide sufficient information on the com-469

puter resources (type of compute workers, memory, time of execution) needed to reproduce470

the experiments?471

Answer: [No]472

Justification: Our paper does not focus on algorithmic efficiency, but on classifier behavior.473

For this reason, we do not think incluidng the compute power is relevant.474

Guidelines:475

• The answer NA means that the paper does not include experiments.476

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,477

or cloud provider, including relevant memory and storage.478

• The paper should provide the amount of compute required for each of the individual479

experimental runs as well as estimate the total compute.480

• The paper should disclose whether the full research project required more compute481

than the experiments reported in the paper (e.g., preliminary or failed experiments that482

didn’t make it into the paper).483

9. Code of ethics484

Question: Does the research conducted in the paper conform, in every respect, with the485

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?486

Answer: [Yes]487

Justification: Our experiments used public datasets. The societal impact is discussed in the488

discussion section.489

Guidelines:490

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.491

• If the authors answer No, they should explain the special circumstances that require a492

deviation from the Code of Ethics.493

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-494

eration due to laws or regulations in their jurisdiction).495

10. Broader impacts496

Question: Does the paper discuss both potential positive societal impacts and negative497

societal impacts of the work performed?498

Answer: [Yes]499

Justification: The societal impact is discussed in the discussion section.500
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Guidelines:501

• The answer NA means that there is no societal impact of the work performed.502

• If the authors answer NA or No, they should explain why their work has no societal503

impact or why the paper does not address societal impact.504

• Examples of negative societal impacts include potential malicious or unintended uses505

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations506

(e.g., deployment of technologies that could make decisions that unfairly impact specific507

groups), privacy considerations, and security considerations.508

• The conference expects that many papers will be foundational research and not tied509

to particular applications, let alone deployments. However, if there is a direct path to510

any negative applications, the authors should point it out. For example, it is legitimate511

to point out that an improvement in the quality of generative models could be used to512

generate deepfakes for disinformation. On the other hand, it is not needed to point out513

that a generic algorithm for optimizing neural networks could enable people to train514

models that generate Deepfakes faster.515

• The authors should consider possible harms that could arise when the technology is516

being used as intended and functioning correctly, harms that could arise when the517

technology is being used as intended but gives incorrect results, and harms following518

from (intentional or unintentional) misuse of the technology.519

• If there are negative societal impacts, the authors could also discuss possible mitigation520

strategies (e.g., gated release of models, providing defenses in addition to attacks,521

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from522

feedback over time, improving the efficiency and accessibility of ML).523

11. Safeguards524

Question: Does the paper describe safeguards that have been put in place for responsible525

release of data or models that have a high risk for misuse (e.g., pretrained language models,526

image generators, or scraped datasets)?527

Answer: [NA]528

Justification: This paper offers no new data or models.529

Guidelines:530

• The answer NA means that the paper poses no such risks.531

• Released models that have a high risk for misuse or dual-use should be released with532

necessary safeguards to allow for controlled use of the model, for example by requiring533

that users adhere to usage guidelines or restrictions to access the model or implementing534

safety filters.535

• Datasets that have been scraped from the Internet could pose safety risks. The authors536

should describe how they avoided releasing unsafe images.537

• We recognize that providing effective safeguards is challenging, and many papers do538

not require this, but we encourage authors to take this into account and make a best539

faith effort.540

12. Licenses for existing assets541

Question: Are the creators or original owners of assets (e.g., code, data, models), used in542

the paper, properly credited and are the license and terms of use explicitly mentioned and543

properly respected?544

Answer: [Yes]545

Justification: We use publicly available python packages, mention them by name and provide546

a URL to the functions and objects.547

Guidelines:548

• The answer NA means that the paper does not use existing assets.549

• The authors should cite the original paper that produced the code package or dataset.550

• The authors should state which version of the asset is used and, if possible, include a551

URL.552

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.553
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• For scraped data from a particular source (e.g., website), the copyright and terms of554

service of that source should be provided.555

• If assets are released, the license, copyright information, and terms of use in the556

package should be provided. For popular datasets, paperswithcode.com/datasets557

has curated licenses for some datasets. Their licensing guide can help determine the558

license of a dataset.559

• For existing datasets that are re-packaged, both the original license and the license of560

the derived asset (if it has changed) should be provided.561

• If this information is not available online, the authors are encouraged to reach out to562

the asset’s creators.563

13. New assets564

Question: Are new assets introduced in the paper well documented and is the documentation565

provided alongside the assets?566

Answer: [NA]567

Justification: The paper does not release new assets.568

Guidelines:569

• The answer NA means that the paper does not release new assets.570

• Researchers should communicate the details of the dataset/code/model as part of their571

submissions via structured templates. This includes details about training, license,572

limitations, etc.573

• The paper should discuss whether and how consent was obtained from people whose574

asset is used.575

• At submission time, remember to anonymize your assets (if applicable). You can either576

create an anonymized URL or include an anonymized zip file.577

14. Crowdsourcing and research with human subjects578

Question: For crowdsourcing experiments and research with human subjects, does the paper579

include the full text of instructions given to participants and screenshots, if applicable, as580

well as details about compensation (if any)?581

Answer: [NA]582

Justification: The paper does not involve crowdsourcing nor research with human subjects.583

Guidelines:584

• The answer NA means that the paper does not involve crowdsourcing nor research with585

human subjects.586

• Including this information in the supplemental material is fine, but if the main contribu-587

tion of the paper involves human subjects, then as much detail as possible should be588

included in the main paper.589

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,590

or other labor should be paid at least the minimum wage in the country of the data591

collector.592

15. Institutional review board (IRB) approvals or equivalent for research with human593

subjects594

Question: Does the paper describe potential risks incurred by study participants, whether595

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)596

approvals (or an equivalent approval/review based on the requirements of your country or597

institution) were obtained?598

Answer: [NA]599

Justification: The paper does not involve crowdsourcing nor research with human subjects.600

Guidelines:601

• The answer NA means that the paper does not involve crowdsourcing nor research with602

human subjects.603
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• Depending on the country in which research is conducted, IRB approval (or equivalent)604

may be required for any human subjects research. If you obtained IRB approval, you605

should clearly state this in the paper.606

• We recognize that the procedures for this may vary significantly between institutions607

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the608

guidelines for their institution.609

• For initial submissions, do not include any information that would break anonymity (if610

applicable), such as the institution conducting the review.611

16. Declaration of LLM usage612

Question: Does the paper describe the usage of LLMs if it is an important, original, or613

non-standard component of the core methods in this research? Note that if the LLM is used614

only for writing, editing, or formatting purposes and does not impact the core methodology,615

scientific rigorousness, or originality of the research, declaration is not required.616

Answer: [NA]617

Justification: The core method development in this research does not involve LLMs as any618

important, original, or non-standard components.619

Guidelines:620

• The answer NA means that the core method development in this research does not621

involve LLMs as any important, original, or non-standard components.622

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)623

for what should or should not be described.624
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7 Appendix625

A Motivating examples626

To recognize real-world problems that lend themselves well to collective action for fairness one needs627

to look for the following few characteristics:628

• Firm and goal: A firm trains a predictive model primarily to minimize average error, with629

little incentive to protect minority groups.630

• End-users: People who use the platform and whose behavior generates data for the firm’s631

dataset.632

• Disadvantaged group: A subgroup of end-users who is treated unfairly.633

• Relabeling possibility: How the minority can relabel themselves to make the trained classifier634

fairer.635

Here are a few concrete examples that we will incorporate in the paper:636

1. Content moderation637

• Firm and goal: A global social-media company optimizes a high-recall harmful-content638

detector measured on its largest user pools.639

• End-users: Everyday users of the platform who can flag offensive content.640

• Disadvantaged group: Slurs, insults, or cultural references specific to minority com-641

munities are not flagged often enough, so the model fails to detects harmful content in642

those groups’ languages.643

• Relabeling possibility: The minority flags borderline content from their community644

that the platform’s global guidelines ignore.645

2. Resume screening646

• Firm and goal: A multi-national HR firm trains a classifier to extract skills from647

resumes.648

• End-users: Job applicants submitting resumes.649

• Disadvantaged group: Applicants from a disadvantaged minority may lack formal650

education and degrees compared to the majority, but may have informal training which651

the classifier ignores.652

• Relabeling possibility: Applicants can reframe their work experience, e.g. framing653

working at a store as being a salesperson, or managing shifts as managerial experience.654

3. Medical treatment prediction655

• Firm and goal: A nationwide insurer builds a treatment-recommendation model to656

minimize average costs and adverse events.657

• End-users: Patients who report their treatment outcomes (pain levels, recovery time,658

side effects).659

• Disadvantaged group: Minority groups may experience different side effects or recovery660

rates than the majority, so the model recommends suboptimal treatments for them.661

• Relabeling possibility: Individual patients record more detailed outcomes rather than662

underreporting, e.g., consistently marking “still in pain” instead of “fine”.663

4. Credit scoring664

• Firm and goal: A lender trains a credit-risk model to predict defaults and set loan terms,665

using historical repayment data.666

• End-users: Borrowers whose repayment or default becomes training labels.667

• Disadvantaged group: Disadvantaged groups may not have credit cards or have never668

taken loans, and only deal with cash but still pay their bills. These actions are “credit-669

invisible”.670

• Relabeling possibility: A borrower can report their payed bills, such as rent or utilities,671

as repaid loans. These become additional positive repayment labels.672
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5. Recommender systems673

• Firm and goal: A streaming platform trains recommender system to maximize engage-674

ment, heavily weighted toward mainstream content [12].675

• End-users: Users who like, skip, or re-listen to songs.676

• Disadvantaged group: Niche genres or local musicians get suppressed, as engagement677

data mostly comes from the majority’s preferences.678

• Relabeling possibility: Users can promote underrepresented content by repeatedly679

listening, liking, or playlisting it.680

B Preliminaries681

B.1 Statistical parity and equalized odds682

Among the various ways fairness can be defined in machine learning, group fairness is one of the683

most studied. Group fairness requires that a model’s predictions should not systematically differ684

between protected groups. One standard measure of this is statistical parity (SP), which captures the685

difference in the probability of a positive prediction across groups. Formally, it is defined as686

SP (h) = |P [h (x) = 1|a = 1]− P [h (x) = 1|a = 0]| , (8)

where a smaller SP value indicates fairer treatment across groups. However, SP does not account for687

the ground-truth labels y, and thus optimizing for SP can degrade the overall accuracy. For example,688

a classifier that always predicts ŷ = 1 will have perfect SP but a high prediction error. Alternatively,689

a stricter notion called equalized odds (EqOd) [19] requires that both the true positive rate and false690

positive rate be equal across groups. Here the EqOd difference is defined as691

EqOd (h) =
1

2

∑
z=0,1

|P [h (x) = 1|a = 1, y = z]− P [h (x) = 1|a = 0, y = z]| . (9)

B.2 Suboptimal Bayes classifier692

Definition 1 (ϵ-suboptimal classifier). A classifier f : X → Y is ϵ-suboptimal on a set X ′ ⊆ X693

under the distribution P if there exists a P′ with TV
(
PY |X=x,P′Y |X=x

)
≤ ϵ such that for all x ∈ X ′694

f (x) = argmax
y∈Y

P′ (y|x) .

TV (·, ·) is the total variation distance between two distributions. The definition is discussed more in695

Hardt et al. [10].696

B.3 Algorithmic collective action697

In social sciences, collective action refers to the coordinated efforts of individuals working together698

to pursue a shared goal [20, 21]. Hardt et al. [10] adapt this notion to machine learning, proposing699

that a group of users, termed a collective, can strategically modify their data to align the behavior700

of a trained classifier h with the collective’s goals. In this formulation, the training distribution is701

a mixture distribution D ∼ Pα = αP∗ + (1 − α)P0, where P∗ and P0 are the collective and base702

distributions, and α ∈ [0, 1] denotes the proportion of the population that belongs to the collective.703

Relation to fair representation learning. When users have agency over the training data, one704

possible form of collective action for fairness is to modify their features to increase correlation with705

the label y = 1. An analogous firm-side approach is fair representation learning (FRL), which learns706

a transformation from the input space to a representation space such that ERM leads to a classifier707

that is both accurate and fair [8, 28]. However, a hindrance of FRL in the context of collective action708

is that the transformation must be applied consistently at inference time, requiring active cooperation709

from each minority member to transform their features. In contrast, our setting assumes users have710

control only over the labels and cannot intervene in other parts of the machine learning pipeline.711

17



Erasing a signal. Suppose the collective seeks a classifier that is invariant under a transformation712

g : Rm → Rm applied to the features. The success of the collective can be quantified as713

S (α) = P0 [h (g (x)) = h (x)] , (10)

the probability, under the base distribution, that the classifier’s prediction remains unchanged after714

applying g to the features. In words, the collective’s goal is to erase the signal g: to ensure the715

classifier behaves identically regardless if the g is applied. Intuitively, if g removes a feature pattern716

correlated with group membership (e.g., minority vs. majority), then achieving invariance under g717

promotes fairness by reducing the classifier’s dependence on group-identifying information.718

To achieve signal erasure, Hardt et al. [10] propose the collective relabels itself with the most likely719

label under the transformation g. Formally, the strategy is defined as720

(x, y) →
(
x, arg max

y′∈{0,1}
P0 (y

′|g (x))
)
. (11)

Since this strategy leaves the features unchanged, it is well-suited for settings where the minority is721

limited to modify only their labels, such as ours. For ϵ-optimal Bayes classifiers (Definition 1), Hardt722

et al. [10] prove the following lower bound for its success723

S (α) ≥ 1− 2 (1− α)

α
· τ − ϵ

(1− ϵ)α
, (12)

where τ = E
x∼P0

[
max

y′∈{0,1}
|P0 (y

′|x)− P0 (y
′|g (x))|

]
measures the sensitivity of the true label724

distribution to the transformation g.725

Note that the strategy in Equation (4) may require some majority members to relabel themselves with726

the label y = 0. Such a change might deter them from participating in the collective action, either727

because majority members are unwilling to give up their advantage or prefer to maintain the status728

quo. To avoid this conflict, we restrict the collective to include only minority members. We discuss729

the implications of this restriction in Appendix C.730

B.4 Counterfactual fairness731

The concept of counterfactual fairness (CF) [30, 31, 32] bridges between signal erasure success732

to group fairness. To introduce this idea, assume that a sample x is generated by a causal model,733

in which the group membership A is a causal parent. Then a classifier h is counterfactually fair if734

its predictions are invariant to interventions on the group membership, i.e., h (x) = h (xA←a′) for735

any a′, where xU←u denotes an intervention on a causal parent U of a sample x. In certain causal736

contexts, CF implies or aligns with group fairness criteria such as SP or EqOd [33]. Therefore, if737

collective action induces a counterfactually fair classifier, it may also induce a fair classifier under SP738

or EqOd.739

Since our focus is on fairness for the minority group, we relax the original definition of CF [30].740

Definition 2. A classifier h is minority-focused counterfactually fair if under any context X = x,741

P0 (h (xA←a) = y|X = x,A = 1) = P0 (h (xA←a′) = y|X = x,A = 1) , (13)

for any value a′ attainable by A.742

By this condition, changing the group membership of a minority individual, in a counterfactual sense,743

has no effect on the classifier’s prediction. Collective action can theoretically enforce such fairness744

by applying the erasure strategy from Equation (4) with the counterfactual signal g (x) = xA←0,745

which replaces a minority individual with its majority-group counterfactual. This collective action746

aligns the signal erasure success from Equation (3) with minority-focused counterfactual fairness747

from Definition 2. The following proposition, proved in Appendix E.1, formalizes this alignment.748

Proposition 1. A Bayes classifier trained on Pα is minority-focused counterfactually fair if and only749

if the success of a minority collective is S = 1.750

This result directly connects between collective action theory to fairness. Thus, perfect success of the751

collective is equivalent to achieving minority-focused counterfactual fairness.752
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C Limitations of Minority Collective Action753

Previous work on collective action assumes that the collective is uniformly sampled from the distri-754

bution P0 and that the collective has a perfect oracle for the conditional distribution P0 (Y |X). Yet,755

our method restricts collective participation to minority members and approximates this conditional756

distribution. Those differences introduce limitations to the existing theory, which we analyze and757

theoretically quantify in this section.758

Figure 5: The distribution
P4GMM used in Proposition 2.
The color signifies the label,
and the density shows the
group membership.

Collective restricted to the minority. As mentioned above, we759

focus on collectives composed solely of minority members, unlike760

prior work. This restriction expresses scenarios in which majority761

members lack incentives to support changes that would benefit the762

minority, and instead prefer to preserve the status quo. Naturally,763

this limitation reduces the collective’s impact, as demonstrated in764

the following example.765

Consider a binary classification task on the two-dimensional 4-766

Gaussian mixture model P4GMM where each Gaussian belongs to a767

distinct combination of label and group membership, as illustrated768

in Figure 5. Each label consists of a large majority subgroup and769

a significantly smaller minority subgroup. We can then state the770

following informal result about the EqOd fairness violation of ERM.771

772

Proposition 2 (Informal). Consider a dataset sampled from the773

distribution P4GMM described above, where every minority point774

participates in the collective action by flipping all y = 0 labels775

to y = 1. Then, under sufficiently separable clusters, with high776

probability, the EqOd of the ERM classifier minimizing the logistic777

loss will asymptotically approach 0.5.778

The formal Proposition 5 is provided in Appendix E.2 along with all necessary assumptions, which779

holds for a broader family of distributions and can be extended to any dimensionality Rd using780

techniques similar to those in Chaudhuri et al. [34]. Although Proposition 2 is not a formal lower781

bound, it emphasizes an important limitation: collective action restricted to the minority cannot782

generally achieve perfect fairness, even under very advantageous conditions involving a maximum-783

sized collective, a strong strategy, and a complete disregard for accuracy. This limitation stands784

in contrast to standard firm-side bias mitigation methods, which can, in principle, achieve perfect785

fairness.786

We empirically corroborate the findings of Proposition 2 on real world datasets by examining787

the fairness–accuracy tradeoff of several fair learning methods. Most of these methods include a788

hyperparameter that controls this trade-off, yielding a set of pairs (Error, EqOd) as it varies. This set789

forms a Pareto front, representing the best attainable trade-offs. A Pareto front is said to dominate790

another if it lies entirely to the left (lower error) and below (lower unfairness) of the other.791

Figure 4 compares the Pareto fronts of RB-prob, one of our minority collective action methods, with792

established firm-side methods. We observe that the lowest fairness violation achievable by RB-prob793

is greater than that of the firm-side approaches. However, the firm-side methods are able to arrive at794

perfect fairness only at a cost of prohibitively high prediction error. But, inspecting the region where795

the error is small compared to the base classifier, the fairness of RB-prob is comparable to that of the796

firm-side methods.797

Approximating the class-conditional P0 (Y |X). In Section 3 we proposed methods to estimate798

which individuals would receive a different counterfactual label than their original label. However,799

the success lower bound in Equation (12) assumes perfect knowledge of P0 and its causal model.800

To account for approximation error, we model the collective’s prediction as the output of algorithm801

A (x) ≈ P0 maxy (y|xA←0) that has an error rate802

ρ := P0

(
A (x) ̸= argmax

y′
P0 [y

′|g (x)]
)
. (14)

Given this definition, we derive the following lower bound on success, proved in Appendix E.3.803
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Figure 6: The Pareto fronts for using a fair representation when computing the KNN for RB-dist
dominate the Pareto fronts for KNN computed on untransformed features. The blue stars represent
the KNN without transforming the data, and the yellow triangles represent the KNN when the data is
transformed using FARE [28]. The lines are fitted by a polynomial of degree 2 to guide the eye.

Proposition 3. With algorithm A (x) with label error ρ, the success of the collective is bounded by804

S (α) ≥ 1− 2 (1− α)

(1− 2ρ)α
τ − ϵ

(1− ϵ) (1− 2ρ)α
. (15)

This bound recovers Equation (12) when ρ = 0, but higher values of the error ρ worsen the bound.805

Next, we show how to use FRL to reduce the error ρ, thereby improving the lower bound.806

Impact of feature representations Since the methods RB-label and RB-dist rely on KNN, their807

performance is sensitive to the choice of distance metric and feature representation. In our main808

experiments, we used Euclidean distance in the original feature space, which is convenient but could809

be suboptimal. Here, we explore whether FRL can learn a more suitable representation space for810

KNN. A fair representation maps the data into a space where the group-based bias is removed while811

preserving informative features. Intuitively, such representations may help RB-label and RB-dist to812

better estimate the counterfactual labels.813

To formalize this intuition, we consider predicting the counterfactual label of minority points using a814

1-NN classifier on majority data, i.e., assigning each minority point the label of its nearest neighbor in815

the majority. In settings where the minority is distributed differently than the majority (e.g., P4GMM),816

this task can be challenging. The following informal result compares the error of 1-NN in the original817

features space to its error in a learned fair representation.818

Proposition 4 (Informal). Let data be drawn from P4GMM, and ρplain denote the error of a 1-NN819

classifier that assigns the label of the nearest majority neighbor in the original feature space.820

Then there exists a fair representation in which a 1-NN classifier achieves error ρFRL such that,821

asymptotically with respect to the dataset size, ρFRL ≤ ρplain.822

The formal statement, Theorem 1, with the proof and assumptions can be found in Appendix E.4.823

The result suggests that FRL can reduce the counterfactual label error ρ of RB-label and RB-dist,824

consequently improving the lower bound of the collective’s success according to Proposition 3.825

Empirically, Figure 6 indicates that applying FARE [28] before the KNN step improves the Pareto826

front for RB-dist. On the other hand, methods that rely purely on predictive information, such as827

RB-prob, can perform worse, due to FRL inadvertently removing features predictive of the class828

label. This behavior, and additional results, are provided in Figure 13 in the appendix.829

D Related work830

Optimizing for fairness metrics often comes at the cost of reduced classification accuracy, leading831

to the well-documented accuracy–fairness tradeoff [2, 3, 4, 5]. In response, previous work has832

proposed fairness interventions at different stages of the ML pipeline: pre-processing methods modify833

the training data before learning [6, 7, 8, 28], in-processing methods adjust the learning algorithm834

itself [35, 36, 26, 37], and post-processing methods correct the predictions of a trained (unfair)835
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Figure 7: Assumed causal model for data generation and prediction. The group membership A and
the other latent variables U are the causal parents of the observable features X . The classifier outputs
a predicted label Ŷ that depends on the features X .

classifier [19, 38, 39, 40]. A firm can introduce any of these categories into its pipeline, while users,836

who control only their data can only partially implement pre-processing methods. However, as837

mentioned in Appendix B.3, using feature-changing pre-processing methods such fair representation838

learning [8, 28] demand changing those features during inference time as well.839

Still, a couple of pre-processing methods suggest changing only the labels, similarly to our proposed840

collective action. The method by Luong et al. [7] compares between the minority KNN and majority841

KNN and flip the labels according to the difference of positive labels between the two groups of842

neighbors. This method resembles RB-label, with the difference that RB-label examines only the843

majority KNN in order to approximate the counterfactual. Similarly, the approach of Kamiran and844

Calders [6] trains a regressor to predict y = 1 outcome probabilities, and flip the label of minority845

members with y = 0 labels and high probability according to the regressor to have y = 1, and846

similarly flip majority y = 1 labels to y = 0. Flipping from both groups is done to preserve the847

error of the classifier. Our method RB-prob differs by training the regressor only on the majority to848

better approximate the counterfactuals. Since this approach requires flipping the labels of majority849

members as well, it cannot be completey adopted by the collective. In Appendix G.1 we compare the850

between RB-prob to CND and KDP, and find that our method, based on the counterfactual search, is851

more efficient in terms of the required number of label flips.852

E Theoretical Results and Proofs853

E.1 Counterfactual fairness as success854

Proposition 1. A Bayes classifier trained on Pα is minority-focused counterfactually fair if and only855

if the success of a minority collective is S = 1.856

Proof. For this proof, we assume the data is generated according to the causal model presented in857

Figure 7, where the features X are conditioned on the group membership A and other latent causal858

parent U . The features X are then used by a classifier to compute a predicted label h (x) Ŷ . In our859

case, the predicted label is the output of an optimal Bayes classier that predicts the most probable860

label as h (x) = argmaxy P (y|x).861

The data distribution is a mixture distribution between the majority distribution PA=0 and the minority862

distribution PA=1, which is defined as863

P0 = (1− β)PA=0 + βPA=1, (16)
where β is the proportion of the minority in the data.864

The collective is employing the signal erasure strategy from Equation (4), where the erased signal is865

the counterfactual of x if they were a member of the majority group A = 0, or formally as866

g (x) = xA←0 ∼ P (XA←0) . (17)
The training distribution is a mixture distribution of the data distribution P0 and the collective867

distribution P∗, which is defined as868

Pα = αP∗ + (1− α)P0. (18)
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We now write the success of the collective (Equation (3)) in terms of the Bayes classifier as869

S = P0 [h (x) = h (g (x))]

= P0

[
argmax

y
Pα (y|x) = argmax

y
Pα (y|g (x))

]
.

(19)

To compute this probability, we split it into two cases, conditioning on the group membership A.870

When conditioning the success on the majority group A = 0, then g (x) = x as the intervention on A,871

which converts to the majority, does not change the value of A, which is already the majority. This872

trivially leads to873

SA=0 = P0

[
argmax

y
Pα (y|x,A = 0) = argmax

y
Pα (y|g (x) , A = 0)

]
= P0

[
argmax

y
Pα (y|x,A = 0) = argmax

y
Pα (y|x,A = 0)

]
= 1.

(20)

For conditioning the success on the minority, recall that the data is generated according to the causal874

model in Figure 7 which means that intervention on the group membership A can be passed down to875

the features X as876

P (h (xA←0) = y|X,A = 1) = P (h (x) = y|XA←0, A = 1) = P (h (x) = y|g (X) , A = 1) .
(21)

This can be used to write the success conditioned on the minority as877

SA=1 = P0

[
argmax

y
Pα (y|x,A = 1) = argmax

y
Pα (y|g (x) , A = 1)

]
= P0

[
argmax

y
Pα (h (xA←1) = y|X,A = 1) = argmax

y
Pα (h (xA←0) = y|X,A = 1)

]
.

(22)
The first term is rewritten to use the intervention notation even though the intervened variable is878

unchanged.879

As the proportion of the minority is known to be β, the success can be written by combining880

Equations (20) and (22) using the law of total probability as881

S = 1− β + βP0

[
argmax

y
Pα (h (xA←1) = y|X,A = 1) = argmax

y
Pα (h (xA←0) = y|X,A = 1)

]
= 1− β

(
1− P0

[
argmax

y
Pα (h (xA←1) = y|X,A = 1) = argmax

y
Pα (h (xA←0) = y|X,A = 1)

])
.

(23)
This equality can be examined under two scenarios: when the success is perfect S = 1 and when the882

classifier is minority-focused counterfactually fair.883

When the success is S = 1 If the success of the collective is S = 1, then Equation (23) leads to884

P0

[
argmax

y
Pα (h (xA←1) = y|X,A = 1) = argmax

y
Pα (h (xA←0) = y|X,A = 1)

]
= 1. (24)

This means that it is certain that885

argmax
y

Pα (h (xA←1) = y|X,A = 1) = argmax
y

Pα (h (xA←0) = y|X,A = 1) , (25)

Since the label is binary, then it follows that the same applies to using argmin. Therefore, for all886

y ∈ {0, 1} we have887

Pα (h (xA←1) = y|X,A = 1) = Pα (h (xA←0) = y|X,A = 1) , (26)

which is the definition of a minority-focused counterfactually fair classifier (Definition 2).888
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When the classifier is one-sided counterfactually fair If the classifier is one-sided counterfactually889

fair (Definition 2), then by definition890

P0

[
argmax

y
Pα (h (xA←1) = y|X,A = 1) = argmax

y
Pα (h (xA←0) = y|X,A = 1)

]
= 1 (27)

and plugging that in Equation (23) results in S = 1.891

E.2 Impossibility of fairness under ERM892

The following proposition follows the structure of Theorem 6 in Chaudhuri et al. [34]. For a vector893

x ∈ Rd, let D (x) denote a distribution on Rd with mean x. Let p and m be the number of majority894

and minority sample, respectively with p≫ m.895

Assumption 1 (Concentration Condition, Assumption 2 from Chaudhuri et al. [34]). Let896

x1, . . . , xn
i.i.d.∼ D(0) in Rd. There exist maps Xmax, c, C : Z+ × [0, 1] × Z+ → R such that897

for all n ≥ n0, all δ ∈ (0, 1), and all unit vectors v ∈ Rd, with probability at least 1− δ898

max
i∈{1··· ,n}

{
v⊤xi

}
∈
[
Xmax(n, δ, d)− c(n, δ, d), Xmax(n, δ, d) + C(n, d, δ)

]
and limn→∞ C(n, δ, d) = 0, limn→∞ c(n, δ, d) = 0.899

Data Model Labels y ∈ {−1, 1} and protected attribute a ∈ {−1, 1} define four groups whose900

class-conditional distributions share the same shape D(·) but have different means:901

x | (y, a) ∼ D
(
yµ+ yaψ

)
,

where µ, ψ ∈ R2 and µ ⊥ ψ, with µ̂ = µ/ ∥µ∥ and ψ̂ = ψ/ ∥ψ∥. For concreteness, take µ =902

∥µ∥ (0, 1)⊤ and ψ = ∥ψ∥ (1, 0)⊤. Without loss of generality, let the majority attribute be aM = +1903

(the minority is am = −1). Thus the two majority means lie on the positive diagonal ±(µ+ ψ) and904

the two minority means on the negative diagonal ±(µ− ψ).905

Let B,A be two sets of points that are sampled from D(0). We will always associate B with906

negatively labelled points and A with positive, as will be clear below. Following Chaudhuri et al.907

[34], define the sets908

Aµ = {x+ µ : x ∈ A}, −Bµ = {x+ µ : x ∈ −B}.

We split by attribute and (for the minority) allow arbitrary relabeling before training. Write AMµ ,909

BMµ for the majority parts and Amµ , Bmµ for the minority subsets used with positive/negative labels in910

training after centering. Incorporating the attribute shifts, set911

AMµ,ψ = −ψ +AMµ , BMµ,ψ = +ψ +BMµ , Amµ,ψ = +ψ +Amµ , Bmµ,ψ = −ψ +Bmµ ,

and similarly for the relabeled minority pieces Am,±µ,ψ and Bm,±µ,ψ (these are subsets of Amµ,ψ and Bmµ,ψ ,912

respectively).913

If the minority were absent, the ERM SVM converges to the spurious direction914

wmaj
spu ∝ µ+ ψ.

However, we assume that the minority is performing some relabeling. As a result, we denote the set915

Am,+µ as the samples relabeled with y = 1 and the set Am,−µ as the samples keeping the original label916

y = 0. Similarly we denote the set Bm,+µ as the positive minority keeping their labels and Bm,−µ as917

the positive minority who flip to y = 0.918

Proposition 5. Suppose D(0) satisfies Assumption 1 and919

Xmax(p, δ, 2)−Xmax(m, δ, 2) ≥ 2 ∥ψ∥ + c(p, δ, 2) + C(m, δ, 2) . (28)

Then, for any (possibly adversarial) relabeling of minority training examples, if p → ∞, with920

probability at least 1− 4δ, the SVM ERM solution converges to the same spurious solution w∗spu ∝921

µ+ ψ. Under a centrally symmetric D(0) and when ∥µ∥ = ∥ψ∥, this limit satisfies EqOd
(
w∗spu

)
→922

0.5.923
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Proof. As Chaudhuri et al. [34] shows, the ERM solution can be written as w∗ = α∗µ̂ + σβ∗ψ̂,924

where925

α∗ = arg min
α∈[−1,1],σ∈{−1,1}

sup
x∈{x|y=0}

(
αµ̂+ σβψ̂

)⊺
(x− µ) + sup

x∈{x|y=1}

(
αµ̂+ σβψ̂

)⊺
(x− µ)

and β =
√
1− α2.926

With the shorthand927

f1(α) := sup
x∈AMµ,ψ

(αµ̂+ σβψ̂)⊤x, f2,±(α) := sup
x∈Am,±µ,ψ

(αµ̂+ σβψ̂)⊤x,

f3(α) := sup
x∈−BMµ,ψ

(αµ̂+ σβψ̂)⊤x, f4,±(α) := sup
x∈−Bm,±µ,ψ

(αµ̂+ σβψ̂)⊤x,

the SVM objective is928

F (α) = min
α

{
max

(
f1 (α)− α∥µ∥+ σβ∥ψ∥, f2,− (α)− α∥µ∥ − σβ∥ψ∥, f4,− (α)− α∥µ∥ − σβ∥ψ∥

)
+max

(
f3 (α)− α∥µ∥+ σβ∥ψ∥, f2,+ (α)− α∥µ∥ − σβ∥ψ∥, f4,+ (α)− α∥µ∥ − σβ∥ψ∥

)}
.

By Assumption 1, for the majority group of size p, there exists Xp, cp, Cp such that, with probability929

at least 1− 4δ and for all α,930

f1(α), f3(α) ∈
[
Xp − cp, Xp + Cp

]
. (29)

For any minority relabeling, Am,±µ,ψ ⊆ Amµ,ψ and −Bm,±µ,ψ ⊆ −Bmµ,ψ , so the same assumption gives931

f2,±(α), f4,±(α) ≤ Xm + Cm, (30)

where Xm := Xmax(m, δ, 2) and Cm := C(m, δ, 2). Using Equation (28), we get932

Xp −Xm ≥ 2∥ψ∥+ cp + Cm. (31)

Combining Equations (29) to (31), still uniformly in α, we obtain933

f1(α)−f2,±(α) ≥ 2∥ψ∥, f1(α)−f4,±(α) ≥ 2∥ψ∥, f3(α)−f2,±(α) ≥ 2∥ψ∥, f3(α)−f4,±(α) ≥ 2∥ψ∥.
(32)

Case 1: σ = 1. Consider the first inner maximum inside F (α). Compare the majority entry934

(associated with f1(α)) to the minority entries (f2,−(α), f4,−(α)):935 [
f1(α)−α∥µ∥+β∥ψ∥

]
−
[
f2,−(α)−α∥µ∥−β∥ψ∥

]
=
(
f1(α)−f2,−(α)

)
+2β∥ψ∥ ≥ 2∥ψ∥+2β∥ψ∥ > 0,

and similarly against f4,−. Hence the first maximum equals f1 − α∥µ∥ + β∥ψ∥. For the second936

inner maximum, the same comparison yields the majority term f3 − α∥µ∥+ β∥ψ∥. Summing then937

for σ = 1 we have,938

F+(α) = f1(α) + f3(α)− 2α∥µ∥+ 2β∥ψ∥.

Case 2: σ = −1. For the first inner max in F (α),939 [
f1(α)−α∥µ∥−β∥ψ∥

]
−
[
f2,−(α)−α∥µ∥+β∥ψ∥

]
=
(
f1(α)−f2,−(α)

)
−2β∥ψ∥ ≥ 2∥ψ∥−2β∥ψ∥ ≥ 0,

and likewise against f4,−. Thus the first maximum equals f1 −α∥µ∥− β∥ψ∥. The second inner max940

is analogous and equals f3 − α∥µ∥ − β∥ψ∥. Therefore,941

F−(α) = f1(α) + f3(α)− 2α∥µ∥ − 2β∥ψ∥.

For every α, F+(α) =
(
f1 + f3

)
− 2α∥µ∥+ 2β∥ψ∥ and F−(α) =

(
f1 + f3

)
− 2α∥µ∥ − 2β∥ψ∥,942

so F+(α) ≥ F−(α). Hence the optimal sign is σ = −1 and the objective reduces to943

F (α) =
(
f1(α) + f3(α)

)
− 2α∥µ∥ − 2β∥ψ∥.

Maximizing α∥µ∥+ β∥ψ∥ is equivalent to minimizing F (α) up to the bounded change (due to As-944

sumption 1) of f1(α) + f3(α) . Next, we use the following lemma.945
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Lemma 1 (Approximate Maximization Lemma - I, Lemma 14 from Chaudhuri et al. [34]). Let946

F (α) = f(α) + g(α) where g(α) = αu +
√
1− α2v, u, v > 0, and f(α) ∈ [−L,U ]. Let947

αF ∈ argmaxα F (α), and let αg = u√
u2+v2

∈ argmaxα g(α).948

Then, the angle between (αF ,
√

1− α2
F ) and (αg,

√
1− α2

g) is at most cos−1
(
1− L+U√

u2+v2

)
, and949

maxαF (α) ≥
√
u2 + v2 − L.950

Applying Lemma 1 with u = ∥µ∥ and v = ∥ψ∥ shows that (α, β) approaches951

(αg, βg) =
(

∥µ∥√
∥µ∥2+∥ψ∥2

, ∥ψ∥√
∥µ∥2+∥ψ∥2

)
as p→ ∞. Thus952

w∗ −→ w∗spu = αg µ̂+ βg ψ̂,

independently of how the minority samples were relabeled in training.953

Under a centrally symmetricD(0) and if ∥µ∥ = ∥ψ∥, the majority group (a = +1) separates perfectly954

in the limit, while the minority group (a = −1) has symmetric measure about the threshold, giving955

TPRa=+1 → 1, FPRa=+1 → 0, and TPRa=−1 = FPRa=−1 → 1
2 . Hence EqOd(w∗spu) → 0.5.956

957

This result can also be extended to Rd using techniques similar to those in Chaudhuri et al. [34]. This958

result also encompasses the 4-Gaussian mixture model P4GMM used in Appendix C as a special case,959

leading to the following.960

Proposition 2 (Informal). Consider a dataset sampled from the distribution P4GMM described above,961

where every minority point participates in the collective action by flipping all y = 0 labels to y = 1.962

Then, under sufficiently separable clusters, with high probability, the EqOd of the ERM classifier963

minimizing the logistic loss will asymptotically approach 0.5.964

E.3 Success Bound With Label Error965

The following proof uses Lemma 11 from Hardt et al. [10].966

Lemma 2 (Lemma 11 from Hardt et al. [10]). Suppose that P, P ′ are two distributions such that967

TV(P, P ′) ≤ ϵ. Take any two events E1, E2 measurable under P, P ′. If P (E1) > P (E2) +
ϵ

1−ϵ ,968

then P ′(E1) > P ′(E2).969

Proposition 3. With algorithm A (x) with label error ρ, the success of the collective is bounded by970

S (α) ≥ 1− 2 (1− α)

(1− 2ρ)α
τ − ϵ

(1− ϵ) (1− 2ρ)α
. (15)

Proof. This proof follows closely the proof of Theorem 5 by Hardt et al. [10]. We start under the971

assumption of an optimal Bayes classifier, setting ϵ = 0.972

When the new label y′ is wrong with probability ρ, then we can think of the collective as being union973

of two sub-collectives: one with the correct label and one with the incorrect label. In the binary case974

this can be formulated with correct subcollective P+ as having label y′ = argmaxy P0 (y|g (x)) and975

the incorrect subcollective P− as with label y′ = argminy P0 (y|g (x)). Then we can write the train976

distribution as977

Pα = α
(
ρP− + (1− ρ)P+

)
+ (1− α)P0

= αρP− + (1− ρ)αP+ + (1− α)P0.
(33)

Denote y∗ (x) = argmaxy P0 (y|g (x)), then the probability to get prediction y∗ is978

Pα (y
∗|x) = αρP− (y∗|x) + (1− ρ)αP+ (y∗|x) + (1− α)P0 (y

∗|x)
= (1− ρ)α+ (1− α)P0 (y

∗|x) ,
(34)

and the probability to get the prediction y ̸= y∗ is979

Pα (y|x) = αρP− (y|x) + (1− ρ)αP+ (y|x) + (1− α)P0 (y|x)
= αρ+ (1− α)P0 (y|x) ,

(35)
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where P+ (y∗|x) = 1, P− (y∗|x) = 0, P+ (y∗|x) = 0, P− (y∗|x) = 1 by definition.980

A Bayes classifier h returns the most probable label h (x) = argmaxy P (y|x). Therefore, a Bayes981

classifier will output y∗ if the probability is greater, which can be written as the condition982

Pα (y
∗|x) > Pα (y|x)

(1− ρ)α+ (1− α)P0 (y
∗|x) > αρ+ (1− α)P0 (y|x)

(1− 2ρ)α > (1− α) (P0 (y|x)− P0 (y
∗|x)) .

(36)

Let τ (x) = maxy [P0 (y|x)− P0 (y|g (x))], then983

P0 (y|x)− P0 (y
∗|x) ≤ P0 (y|x)− P0 (y|g (x)) + P0 (y

∗|g (x))− P0 (y
∗|x)

≤ 2τ (x) .
(37)

With that, the condition in Equation (36) can be written as984

(1− 2ρ)α > 2 (1− α) τ (x) . (38)

With that, the success can be bounded as985

S = P0 [f (x) = f (g (x))]

= P0 [f (x) = y∗ (x)]

≥ P0 [(1− 2ρ)α > 2 (1− α) τ (x)]

= P0

[
1− 2 (1− α)

(1− 2ρ)α
τ (x) > 0

]
= Ex∼P0

[
1

{
1− 2 (1− α)

(1− 2ρ)α
τ (x) > 0

}]
≥ Ex∼P0

[
1− 2 (1− α)

(1− 2ρ)α
τ (x)

]
= 1− 2 (1− α)

(1− 2ρ)α
τ

(39)

With sub-optimality ϵ > 0 A result of Lemma 2 is to write the condition in Equation (38) as986

(1− 2ρ)α > 2 (1− α) τ (x) +
ϵ

1− ϵ
, (40)

which by following the same steps as with ϵ = 0 results in the final bound987

S (α) ≥ 1− 2 (1− α)

(1− 2ρ)α
τ − ϵ

(1− ϵ) (1− 2ρ)α
. (41)

988

E.4 Label Error With Better Representation989

For the following we assume a similar setting as in Appendix E.2, visualised as a 2D distribution990

in Figure 5. We are given the majority data, and tasked with labeling the minority data. Assume991

all labels are distributed equally P[Y = 1] = P[Y = −1] = 1
2 . The minority features Xmin are992

distributed as Xmin ∼ N (yµmin,Σmin) with Xmin ∈ Rd. The label ŷ(n)1NN is predicted according to993

a 1NN classifier from n majority samples Dn = (xi, yi)
n
i=0. Majority samples with y = +1 are994

distributed as X+ ∼ N (µ,Σ), and with y = +1 are distributed as X− ∼ N (−µ,Σ).995

Theorem 1. Assume that µ⊤minΣ
−1µ > 0. Further, consider the setting with Σmin = I , and the996

minority (i.e. test) distribution introduced above with P[Y = 1] = P[Y = −1] = 0.5 and Xmin ∼997

N (yµmin,Σmin).998

Then, there exists a projection P ∈ Rd×d such that asymptotically for n→ ∞, errrep
1NN < errraw

1NN.999

Proof. Consider the projection on the hyperplane perpendicular to w, where w = µ−µmin
2 . The1000

projection matrix associated with this transformation is P = I − ww⊤

w⊤w
.1001
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Let us denote the symbols after the projection as µ̄ := Pµ, µ̄min := Pµmin, v̄ := (PΣPT )+µ̄ and1002

Σ̄min := PΣminP
T . Here we denoted using A+ the pseudoinverse of the matrix A. Note that since P1003

is an orthogonal projection matrix, it holds that PP = P and PT = P .1004

We apply Lemma 3 to obtain closed forms for the asymptotic error of 1NN applied to the initial1005

representation and to the features after the projection P . Namely, using the notation v := Σ−1µ we1006

have:1007

err1NN =
1

2
PXmin|y=1[ŷ1NN = −1] +

1

2
PXmin|y=−1[ŷ1NN = 1] (42)

=
1

2

(
1− Φ

(
v⊤µmin√
v⊤Σminv

))
+

1

2
Φ

(
−v⊤µmin√
v⊤Σminv

)
(43)

= 1− Φ

(
v⊤µmin√
v⊤Σminv

)
(44)

= 1− Φ(SNR), (45)

where we used the fact that Φ(−z) = 1− Φ(z) and we denote SNR := v⊤µmin√
v⊤Σminv

.1008

Similarly, let us denote the SNR corresponding to 1NN applied on the projected representation as1009

follows: SNRproj :=
v̄⊤µ̄min√
v̄⊤Σ̄minv̄

.1010

To show that err1NN > errrep
1NN it suffices to prove that SNR < SNRproj.1011

We begin by rewriting the numerator of SNRproj. Since µ ∈ Im(P ) and because on Im(P ) the1012

operators Σ−1 and (PΣP⊤)+ represent the same transformation, it follows that:1013

v̄ = (PΣP⊤)+µ̄ = Σ−1µ̄.

Moving on the the denominator of SNRproj, we have that:1014

v̄⊤Σ̄minv̄ = v̄⊤(PΣminP
⊤)+v̄

= v̄⊤(PP⊤)+v̄

= v̄⊤P+v̄

= v̄⊤P v̄

= v̄⊤v̄

= ∥v̄∥2.
In the second line we used the fact that Σmin = I , in the third line we use the identity P 2 = P due to1015

P being a projection matrix, in the forth line we use P+ = P since P is an orthogonal projection1016

(i.e. P is symmetric) and in the fifth line we use the fact that v̄ ∈ Im(P ), and hence, P v̄ = v̄.1017

Putting everything together, and using the fact that Σ (and thus, Σ−1) is positive definite (i.e.1018

x⊤Σ−1x > 0,∀x ∈ Rd) we get that:1019

SNRproj =
µ̄⊤Σ−1µ̄

∥v̄∥2
> 0 >

µ⊤Σ−1µmin

∥Σ−1µ∥2
= SNR.

1020

Lemma 3. For a unimodal minority distribution Xmin ∼ N (µmin,Σmin) it holds that:

lim
n→∞

PXmin [ŷ
(n)
1NN = −1] = 1− Φ

(
v⊤µmin√
v⊤Σminv

)
,

where v := µ⊤Σ−1 and Φ is the CDF of a standard Gaussian.1021
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Proof. Let us denote ŷ1NN := limn→∞ ŷ
(n)
1NN and let p+ and p− be the densities of two class-1022

conditional distribution. Notice that the two class conditional training distributions are supported on1023

the entire domain of Rd. Therefore, in the asymptotic regime, the label ŷ1NN at a test point x is given1024

according to the class-conditional distribution that has higher density. Namely, we have:1025

ŷ1NN =

{
−1 if p+(x) < p−(x),

1 otherwise.

Given Xmin ∼ N (µmin,Σmin), we can then write the probability of predicting ŷ1NN = −1 as:

PXmin [ŷ1NN = −1] = PXmin [p+(x) < p−(x)] .

Using the closed forms for the pdf of a Gaussian, we write the corresponding log-probabilities as
follows:

log p+(x) = −1

2
(x− µ)⊤Σ−1(x− µ) + const.

log p−(x) = −1

2
(x+ µ)⊤Σ−1(x+ µ) + const.

Using the fact that log is monotonically increasing and Σ (and by extension Σ−1) is a symmetric1026

matrix, we can write after some simple calculations:1027

PXmin [ŷ1NN = −1] = PXmin [µ
⊤Σ−1x < 0].

Let us denote the random variable Z := (µΣ−1)X . Since Z is a linear transformation of Gaussian1028

random variable, it is itself Gaussian and we can write its mean and variance as follows:1029

µZ := v⊤µmin, and σ2
Z := v⊤Σminv, where v := µ⊤Σ−1.

After this change of variable, we can rewrite the probability of predicting ŷ1NN = −1 as:1030

PXmin [ŷ1NN = −1] = PZ [Z < 0]

= Φ

(
0− E[Z]√

Var[Z]

)

= Φ

(
−(µ⊤Σ−1)⊤µmin√

(µ⊤Σ−1)⊤Σmin(µ⊤Σ−1)

)

= 1− Φ

(
(µ⊤Σ−1)⊤µmin√

(µ⊤Σ−1)⊤Σmin(µ⊤Σ−1)

)
.

1031

Note that the error from Theorem 1 is defined the same as ρ (Equation (14). This leads to the1032

following.1033

Proposition 4 (Informal). Let data be drawn from P4GMM, and ρplain denote the error of a 1-NN1034

classifier that assigns the label of the nearest majority neighbor in the original feature space.1035

Then there exists a fair representation in which a 1-NN classifier achieves error ρFRL such that,1036

asymptotically with respect to the dataset size, ρFRL ≤ ρplain.1037
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F Technical Details1038

F.1 Datasets1039

COMPAS The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)1040

dataset contains the data of criminal defendants in Broward county sheriff’s office in Florida with1041

the task of predicting the recidivism risk. The label in this dataset represents whether the person re-1042

offended and the sensitive attribute is the race. We follow the same data cleaning and pre-processing1043

as Alghamdi et al. [38].1044

Adult The Adult dataset [23] contains demographic features of US citizens and is tasked with1045

predicting the income level of an individual. The label represents if the individual has income higher1046

than $50,000 and the sensitive attribute we use is the race. We follow the same data cleaning and1047

pre-processing as Alghamdi et al. [38].1048

HSLS The High School Longitudinal Study of 2009 (HSLS) [24] contains details of high-school1049

students across the US and the task is to predict the academic success of the students. The label1050

represents the exam score and the sensitive attribute is the race. We follow the same data cleaning1051

and pre-processing as Alghamdi et al. [38].1052

ACS-Income Ding et al. [25] offer different classification tasks derived by US census data. In our1053

work we used the pre-defined task of predicting level of income denoted as ACSIncome, where the1054

data is already pre-processed. The label represents if the individual has income higher than $50,0001055

and the sensitive attribute is the race.1056

Waterbirds The waterbirds dataset [26] contains images of landbirds and waterbirds super-imposed1057

on either land or water backgrounds, with the task of classifying the image as of a landbird or a1058

waterbird. The label represents the type of bird, and the sensitive attribute is whether the background1059

is land or water. To obtain the features, we used the output of the penultimate layer of a pre-trained1060

ResNet-18 network from PyTorch 1. We report the results on those features as Waterbirds-Full. We1061

also performed PCA (using scikit-learn) and kept the first 85 principal components which retain1062

about 75% of the variance, and report the results of these components as Waterbirds-PCA.1063

CivilComments The CivilComments dataset [27] is a collection of text comments found on the1064

internet, with the goal of training a classifier to fairly detect toxicity. For this paper, we modified1065

the dataset to keep only the comments that include either christian or muslim (but not both), with1066

a label 0 meaning toxic and 1 meaning safe. To obtain the features, we used the word embeddings1067

given by Hugging Face’s bert-base-uncased model2. We report the results on those features as1068

CivilComments-Full. We also performed PCA (using scikit-learn) and kept the first 100 principal1069

components which retain about 75% of the variance, and report the results of these components as1070

CivilComments-PCA.1071

F.2 Training1072

All classification experiments were trained with scikit-learn’s histogram-based gradient boosting1073

classification tree with the default parameters 3. When there was not a pre-defined test set, we set the1074

train-test split as 80-20 before applying the collective action.1075

The probabilities for RB-prob were inferred by training scikit-learn’s histogram-based gradient boost-1076

ing classification tree on the majority data with the default parameters, and using its predict_proba1077

function. For LFR [8] we used the implementation in Holistic AI’s open source library 4 with the1078

default parameters. For FARE [28] we used the official implementation 5 with hyperparameters1079

1https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
2https://huggingface.co/google-bert/bert-base-uncased
3scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html
4https://github.com/holistic-ai/holisticai
5https://github.com/eth-sri/fare
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Figure 8: Fairness per number of label flips of the Random baseline, our method RB-prob, and the
existing methods KDP [7] and CND [6]. Our method is more efficient than prior work, requiring
less flips to achieve the same level of fairness. Note that in this experiment CND could flip any label,
while all other methods were restricted to the labels of 30% of the minority.

γ = 0.85, k = 200 and n = 100. For all distance computation we used the Euclidean norm ℓ2-norm1080

as d (v, u) = ∥v − u∥2 =
√∑

i (vi − ui)
2.1081

G Additional Results1082

G.1 Comparison with prior work1083

We compare our method RB-prob with the existing methods KDP [7] and CND [6] in Figure 8.1084

Figure 8 shows that our method, motivated by the counterfactual labeling, is more efficient in terms1085

of required number of label flips, than the existing works.1086

G.2 Expanded results1087

The following figures include the results of the experiments reported in the main text using all methods1088

on all dataset, both with EqOd (Equation (2)) and SP (Equation (8)) as a measure of unfairness1089
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Figure 9: The lowest EqOd violation a collective can achieve greatly improves as the collective
size increases, up to a certain point. Each point is a mean of 10 runs, with the standard deviation
being smaller than the markers. In all the datasets we experimented on, the lowest EqOd violation
converges around α = 0.3. Additional results are presented in Figure 9 in the appendix.
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Figure 10: Our proposed methods are consistently more efficient than randomly flipping labels,
requiring less label flips to attain the same level of EqOd. Each marker is the mean of 10 random
runs with a specific number of label flips. The standard deviation is presented by the error bars. The
dashed line shows the mean EqOd for a classifier trained on the dataset without collective action.
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Figure 11: Limiting the knowledge of the collective about the majority does not significantly harm
the Pareto front. Each point is the mean of 10 runs and the curves are fitted to guide the eye.
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Figure 12: The firm-side pre-processing method FARE [28] and the post-processing method calibrated
equalized odds [29] attain 0 EqOd with large error, while RB-prob with α = 0.3 (Section 3) has
much smaller error and less unfairness than the base classifier, but unable to get 0 EqOd.
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Figure 13: The Pareto fronts for using a fair representation when computing the KNN for RB-dist
dominate the Pareto fronts for KNN computed on untransformed features. The blue stars represent
the KNN without transforming the data, and the yellow triangles represent the KNN when the data is
transformed using FARE [28]. The lines are fitted by a polynomial of degree 2 to guide the eye.
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