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Abstract
Large audio-language models (LALMs), built
upon powerful Large Language Models (LLMs),
have exhibited remarkable audio comprehension
and reasoning capabilities. However, the train-
ing of LALMs demands a large corpus of audio-
language pairs, which requires substantial costs in
both data collection and training resources. In this
paper, we propose MATS, an audio-language mul-
timodal LLM designed to handle Multiple Audio
task using solely Text-only Supervision. By
leveraging pre-trained audio-language alignment
models such as CLAP, we develop a text-only
training strategy that projects the shared audio-
language latent space into LLM latent space, en-
dowing the LLM with audio comprehension ca-
pabilities without relying on audio data during
training. To further bridge the modality gap be-
tween audio and language embeddings within
CLAP, we propose the Strongly-related noisy text
with audio (Santa) mechanism. Santa maps au-
dio embeddings into CLAP language embedding
space while preserving essential information from
the audio input. Extensive experiments demon-
strate that MATS, despite being trained exclu-
sively on text data, achieves competitive perfor-
mance compared to recent LALMs trained on
large-scale audio-language pairs. The code is
publicly available in https://github.com/wangwen-
banban/MATS.

1. Introduction
Recent advancements in multimodal models for audio pro-
cessing have progressed rapidly, driven by the recognition
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Figure 1. Performance of MATS compared to the previous SOTA
(Chu et al., 2023; Kong et al., 2024; Deshmukh et al., 2023) under
zero-shot setting for close-ended audio tasks.

of audio as a crucial role in understanding the physical
world. Audio, encompassing sound, music, and other au-
ditory elements, plays a crucial role in enabling intelligent
agents to assist humans and navigate the complexities of
the real world. Consequently, developing models capable
of effectively interpreting these audio modalities is vital
for advancing human-machine interaction and fostering a
deeper understanding of our surroundings.

In the field of audio-language multimodal learning, con-
trastive learning models, such as Contrastive Language-
Audio Pretraining (CLAP) (Elizalde et al., 2023), have
demonstrated remarkable zero-shot abilities across various
audio tasks. However, these models primarily specialize
in audio discriminative tasks, lacking a decoder to support
open-ended audio question-answering (QA) capabilities.
To overcome this limitation, recent studies have integrated
LLMs as the text generator within a multimodal framework,
capitalizing on LLMs’ inherent instruction following and
generating capabilities. A pioneering effort, Pengi (Desh-
mukh et al., 2023), integrates CLAP audio encoder and
GPT2 (Radford et al., 2019), employing a transformer pro-
jection module to align audio embedding with LLMs’ text
embedding space. Building on this foundation, recent mod-
els (Gong et al., 2024; Tang et al., 2024; Kong et al., 2024;
Ghosh et al., 2024) utilize advanced audio encoder and more
powerful LLMs, constructing advanced LALMs to address
increasingly complex audio relevant tasks.
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However, training a large audio-language model that ef-
fectively bridges the entirely decoupled audio embedding
space and LLM text embedding space is challenging. Pre-
vious models (Gong et al., 2024; Tang et al., 2024; Kong
et al., 2024; Ghosh et al., 2024) rely heavily on extensive
audio-language QA pairs for training. This requires anno-
tators to carefully listen to each audio and then construct
corresponding questions and answers, a labor-intensive and
time-consuming process. As a result, the cost of data col-
lection becomes prohibitively high, leading to significant
resource demands for training a LALM.

To reduce resource demands, researchers have proposed
text-only audio captioning frameworks (Deshmukh et al.,
2024; Kouzelis & Katsouros, 2023; Zhang et al., 2024;
Li et al., 2024) which generate audio captions without re-
lying on costly audio-language pairs for training. These
frameworks leverage CLAP, which have established a well-
aligned audio-language embedding space, enabling LLMs
to interpret audio embedding by linking CLAP language em-
bedding space with LLM semantic space. However, these
methods have certain limitations. First, they are narrowly
tailored to specific audio type (sound) and constrained to
single audio captioning task, limiting their applicability to
boarder audio open-ended question-answering scenarios.
Second, to bridge the audio-language modality gap within
CLAP, these methods either rely solely on noise injection
during training or exclusively utilize a memory bank during
inference. However, using only noise injection is highly
random and sensitive, while relying solely on a memory
bank during inference not only sacrifices audio embedding
information but also increases inference time, ultimately
compromising overall effectiveness.

In this paper, we propose MATS, an audio-language mul-
timodal LLM designed to address Multiple Audio tasks,
encompassing both close-ended and open-ended scenarios,
using solely Text-only Supervision. MATS builds upon re-
cent advancements in LALMs (Deshmukh et al., 2023; Tang
et al., 2024), incorporating two key enhancements. First,
recognizing that the joint audio-language embedding space
of a pre-trained CLAP is shared across both modalities, the
language embeddings extracted by CLAP language encoder
can serve as effective representations of audio semantics.
During training, MATS integrates CLAP language encoder,
a Mapper and a LLM, where the CLAP language encoder
extracts cross-modality embeddings of audio descriptions
within the shared language-audio embedding space. During
inference, the LLM can generate responses based on audio
embedding derived from input audios, processed through
CLAP audio encoder and the Mapper. Second, we derive
the generalization error bound for text-only supervised mul-
timodal models, revealing that the inherent modality gap
in contrastive audio-language representation learning can
amplify the generalization error bound. To this end, we

propose a modal-transfer method that integrates noise in-
jection during training and employs Strongly-related noisy
text with audio (Santa) during inference. And the Santa
mechanism employs a k-means-based memory alongside a
balancing strategy. This design effectively balances audio
embeddings and semantically strongly related augmented
language embeddings, effectively mitigating the modality
gap and enhancing MATS’s generalization ability.

We conduct a comprehensive evaluation of our model on
both close-ended and open-ended tasks. Remarkably, de-
spite being trained on text-only data, MATS demonstrates
performance comparable to, and oven surpassing, some
LALMs trained on extensive audio-language pairs. For
close-ended tasks, MATS demonstrates significant zero-shot
performance improvements over previous state-of-the-arts
(SOTAs) (Deshmukh et al., 2023; Tang et al., 2024; Doh
et al., 2023), achieving gains of 12%, 7%, and 9.9% on
DCASE (Mesaros et al., 2017), VGG (Chen et al., 2020),
and MusicCaps (Agostinelli et al., 2023) benchmarks, re-
spectively, as shown Figure 1. For open-ended tasks, MATS
(7B) achieves the second-best performance on MMAU
benchmark (Sakshi et al., 2024), surpassing SALMONN
(13B) (Tang et al., 2024) by 11.7% with a significantly
smaller model size.

2. Related work
Audio Language Models. In the field of audio-language
models, CLAP models (Wu et al., 2023; Elizalde et al.,
2023) have demonstrated remarkable capabilities in audio
discriminative tasks. However, the lack of a decoder limits
their applicability in open-ended QA scenarios. Recently,
with the rapid advancements in LLMs, researchers have
started integrating audio understanding into LLMs. For ex-
ample, Pengi (Deshmukh et al., 2023) combines the CLAP
audio encoder with GPT2 (Radford et al., 2019), and em-
ploys a transformer-based mapper for multimodal fusion,
achieving strong performance on close-ended tasks. Sim-
ilarly, LTU (Gong et al., 2024) incorporates a more ad-
vanced LLM, LLaMA (Touvron et al., 2023), and demon-
strates emerging audio comprehension and reasoning abil-
ities. SALMONN (Tang et al., 2024) utilizes a dual audio
encoder consisting of a Whisper speech encoder model (Rad-
ford et al., 2023) and a BEATs (Chen et al., 2023) audio
encoder to handle speech and non-speech audio tasks effec-
tively. Other studies have expanded instruction fine-tuning
data and explored more advanced audio encoder architec-
ture, such as GAMA (Ghosh et al., 2024), Qwen2-Audio
(Chu et al., 2024), yielding commendable performance.

However, these LALMs heavily rely on large-scale audio-
language pairs for training, which pose significant chal-
lenges in term of data collection and training costs. Differ-
ently, we adopt a highly cost-efficient approach for training
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LALMs using text-only data, which substantially reduces
the data collection and training overhead while maintaining
comparable performance.

Text-only Supervised Multimodal LLMs. To alleviate
resource demands, researchers have proposed zero-shot cap-
tioning frameworks, aimed at generating image/audio cap-
tions through text-only training. In the visual domain, large-
scale pre-trained contrastive models like CLIP (Radford
et al., 2021) align images and language into a shared vision-
language embedding space. Building on CLIP, CapDec
(Nukrai et al., 2022) trains a decoder to reconstruct text from
its corresponding CLIP language embedding, which is then
used to decode CLIP image embeddings at inference. To
mitigate the vision-language modality gap, CapDec injects
noise into language embedding during training. Differently,
DeCap (Li et al., 2023) leverages a memory to store CLIP
language embeddings, which is subsequently used to project
visual embedding into CLIP language embedding space at
inference. In the audio domain, models such as NoAudio-
Captioning (Deshmukh et al., 2024), WSAC (Kouzelis &
Katsouros, 2023), PromptAAC (Zhang et al., 2024), and
DRCap (Li et al., 2024) adopt similar strategies, replacing
CLIP with CLAP to develop zero-shot audio captioning
frameworks. However, these works focus on audio caption-
ing, lacking the flexibility to handle a diverse range of audio
tasks simultaneously, and they are limited to processing only
a single type of audio (sound).

3. Methodology
In this section, we introduce MATS, an audio-language
multimodal LLM designed to tackle multiple audio tasks
using text-only supervision. We begin by presenting the
formulation of MATS in Section 3.1, followed by an outline
of its overall framework in Section 3.2. Section 3.3 provides
the theoretical foundation, demonstrating that reducing the
feature distribution gap between the CLAP’s audio and lan-
guage modalities can effectively reduce the generalization
error of MATS. Section 3.4 presents the proposed Santa
mechanism to bridge the audio-language modality gap. Fi-
nally, the training pipeline is detailed in Section 3.5.

3.1. Formulations

As shown in Figure 2, MATS consists of a language en-
coder ET and an audio encoder EA from CLAP (Elizalde
et al., 2023). During training, the language encoder ET pro-
cesses text data T , while during inference, the audio encoder
EA processes audio data A. To bridge the audio-language
modality gap, the noise injection is used during training and
the Santa mechanism fSanta is employed at inference. Then,
a transformer-based mapper fmap serves as the connection
module, integrating its output sequence with the text instruc-
tion prompt, which is then fed into the LLM to generate the
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Figure 2. The architecture of proposed MATS.

text response.

Train Phase. During training, only text data is utilized.
Formally, the input text T , which provides the descriptions
of audio contents, is encoded by CLAP language encoder
ET . To mitigate the audio-language modality gap, a zero-
mean Gaussian noise is added to the extracted language
embedding ET (T ). The augmented language embedding
is subsequently projected through the mapper fmap to gen-
erate embeddings within the LLM latent space. These em-
beddings are concatenated with the instruction embeddings
EInstr extracted by LLM’s word embedding layer, forming
the prefix strain, which serves as the input to the LLM for
autoregressive learning. The process is formulated as:

strain = concat [fmap (ET (T ) + ϵ) , EInstr] , (1)

where noise ϵ ∼ N (0, σ) with variance σ. Given the prefix
strain and corresponding text response R, the LLM pre-
dicts the probability distribution of potential next token at
each step, with the Cross-Entropy loss function used for
optimization:

L =
∑
i

CE
(
fLLM

(
strain, R

<i
)
, Ri

)
, (2)

where CE denotes the cross-entropy function.

Inference Phase. At inference, the input data includes
both audio files and textual instructions. The key struc-
ture difference is that the augmented language embedding
ET (T )+ ϵ is replaced by audio embedding EA(A), encoded
by the audio encoder of CLAP. Notably, the Santa mecha-
nism is then applied to the audio embedding to mitigate the
audio-language modality gap. Finally, the LLM predicts the
responses Rpred in an autoregressive manner, as:

stest = concat [fmap (fSanta (EA (A))) , EInstr] ,

Rpred = fLLM (stest) .
(3)

3.2. Model Architecture

The architecture of the MATS model is depicted in Figure 2.
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CLAP Encoder. To obtain an aligned audio-language
embedding space, we adpot CLAP (Elizalde et al., 2023),
which integrates the HTSAT (Chen et al., 2022) audio en-
coder EA and the GPT2 (Radford et al., 2019) language
encoder ET . CLAP is trained to connect language and audio
by corresponding encoder and bring them into a joint multi-
modal space using contrastive learning. Both encoders are
kept frozen throughout the entire process. Notably, during
training, the language encoder ET is utilized, whereas the
audio encoder EA is employed during inference.

Modality Transfer. To mitigate the audio-language modal-
ity gap within CLAP and enhance the model’s generaliza-
tion, we add zero-mean Guassian noise to the language em-
bedding during training as ET (T ) + ϵ, where ϵ ∼ N (0, σ).
The variance σ is determined by calculating the infinity
norm between audio and language embeddings over a set of
30 randomly selected samples following (Deshmukh et al.,
2024). During inference, the augmented language embed-
ding ET (T )+ ϵ is replaced by the audio embedding EA (A),
and the Santa mechanism is applied to the audio embedding
to further reduce the audio-language modality gap within
CLAP, formulating as fSanta (EA (A)). The Santa mecha-
nism is detailed in Section 3.4.

Mapper Module. The mapper module consists of a 8-
layer Transformer (Vaswani, 2017) followed by a linear
layer. Specifically, we introduce a fixed set of learnable
query embeddings, which are concatenated with the em-
beddings produced by the CLAP encoder and then fed into
the Transformer. Through the self-attention mechanism in
transformer, these queries interact with the frozen CLAP
embeddings, enabling effective integration of their informa-
tion. Finally, the output query embeddings are projected via
a linear layer to align with the dimensionality of the LLM’s
text embeddings.

Large Language Model. To generate textual responses, we
utilize a pretrained autoregressive causal language model.
In this study, we evaluate two large language models:
the smaller version employs GPT2 with 125M parameter,
while the larger version leverages the LLaMA-7B model
fine-tuned with Vicuna instruction-following capabilities.
These two LLMs are selected to balance computational effi-
ciency with performance, enabling a comparative analysis of
lightweight and advanced language generation capabilities.

3.3. Theoretical Analysis on Generalization

In this subsection, we study the generalization error bound
of the text-only supervised audio models. Formally, let A
and T be input audio and corresponding textual descrip-
tions space respectively, and Y be output one-hot class
space, where the one-hot vector y ∈ RV is used to rep-
resent the label and V denotes the LLM’s vocabulary size.
Similarly, Zt stands for the embedding space induced from

T by the CLAP language encoder, and Za stands for the
embedding space induced from A by the CLAP audio en-
coder. Additionally, let h denote the prediction function
mapping from the CLAP embedding space to output space,
i.e., h : Zt/Za → Y .

To simplify the analysis, we focus on a specific audio event
classification task and disregard the influence of instructions.
In this case, we are given a training set consisting of text-
label paired examples, Dtr = {zti , yi}

N
i=1 where (zti , yi) ∼

pT (zt, y). Our goal is to learn a target model h : Za → Y
by fitting on Dtr, with the smallest generalization risk on
the test distribution pA (za, y) where (za, y) denotes audio-
label pairs. Formally, the empirical error on training set and
the generalization risk on test set are computed as:

R̂tr (h) =
1

N

N∑
i=1

∣∣h (zti)− yi
∣∣ ,

Rte (h) = E(za,y)∼pA(za,y) |h (za)− y| ,

(4)

where |·| is L1 norm. With these definitions, we can derive
the generalization risk bound of the text-only supervised
audio model, leading to following theorem.

Theorem 3.1. Let H be a hypothesis space of Natarajan-
dimension d. For classification with V classes, let Dtr be
text-only training set drawn from distribution pT (zt, y). As
for test set with audio files draw from distribution pA (za, y),
assuming that the class distribution of training and test data
is consistent, for any target classifier h ∈ H, δ ∈ (0, 1),
with probability at least 1− δ:

Rte (h) ≤ R̂tr (h)

+ max
v

(
discL1

(
pA (za|y) , pT

(
zt|y

)))
+

√
8

N

(
2d log

√
2NV + log

2

δ

)
.

(5)

Here, discL1
denotes the Discrepancy Distance (Definition

4 in (Mansour et al., 2009)).

The proof is provided in Appendix A. Theorem 3.1 reveals
that the generalization risk can be bounded by the sum of
three components: (1) Empirical Risk: R̂tr (h), represent-
ing the empirical risk on training set Dtr, which can be
reduced during training. (2) Modality Discrepancy: The
second term denotes the discrepancy between CLAP au-
dio embeddings and language embeddings. (3) Complexity
Term: The last term is only relevant with the choice of the
hypothesis space H and magnitude of N . In general, this
term vanishes when the training data is sufficiently large.
These observations highlight a crucial factor in reducing the
generalization error bound: minimizing the audio-language
modality gap within CLAP.
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a) Only CLAP b) Noise-based method d) Santac) Memory-based method

Figure 3. t-SNE visualizations for various methods on 350 ran-
domly selected language embeddings (blue) and paired audio em-
beddings (red) from training dataset of MATS-Audio in Table S9.
a) CLAP b) CLAP with Gaussian Noise (Deshmukh et al., 2024)
c) CLAP with memory bank (Li et al., 2024) d) CLAP with Santa.

3.4. Santa Mechanism

According to theoretical analysis above, reducing Modality
Discrepancy is critical for improving MATS’s generaliza-
tion. However, CLAP suffers from an inherent modality gap:
As shown in Figure 3 a), CLAP’s audio and language em-
beddings occupy entirely separate regions. To address this
issue, (Deshmukh et al., 2024) injects noise into CLAP’s lan-
guage embeddings during training. However, relying solely
on noise injection is highly stochastic and sensitive, limit-
ing its robustness. Another work (Li et al., 2024) utilizes a
memory bank that integrates similar language embeddings
to represent audio embeddings during inference. However,
this approach completely discard original audio embeddings,
resulting in a significant loss of audio information. In this
work, we propose modality transfer, which combines noise
injection during training with the Santa mechanism during
inference. The Santa mechanism utilizes a k-means-based
memory alongside a balancing strategy. This design inte-
grates audio embeddings with semantically relevant aug-
mented language embeddings, more effectively bridging the
modality gap, as shown in Figure 3 d).

To obtain the CLAP language embedding space augmented
with noise injection, we randomly select M texts from the
text-only training set, denoted as {Ti}Mi=1, and construct
a memory M = {mi}Mi=1, where mi = ET (Ti) + ϵ. At
inference, the goal is to generate an answer for a given audio
A and associated instruction. Specifically, given the audio
embedding za = EA (A), we obtain its representation in
language embedding space by combing za with a weighted
sum of semantically relevant embeddings in memory M.
A straightforward strategy to obtain the weights of these
language embeddings is to compute their similarity with
the audio embedding. However, due to the limited repre-
sentational power of individual language embedding, this
strategy is prone to retrieving the texts with insufficient
semantic relevance, thereby affecting the effectiveness of
audio-language modality alignment.

To this end, we apply k-means clustering to M and obtain
a clustered memory S = {Sk}Kk=1, where Sk stores the
augmented language embeddings assigned to this cluster.
By aggregating semantically similar augmented language
embeddings, each cluster exhibits enhanced semantic rep-

resentational capabilities. Denote the cluster centers as
{ck}Kk=1, we identify the most relevant cluster Sclosest by
calculating the distance between the audio embedding za

and the cluster centers:

closest = argmin
k

∥za − ck∥22 . (6)

Next, we select L augmented language embeddings from the
cluster Sclosest, denoting as

{
mclosest

1 , . . . ,mclosest
L

}
, with

the top L closest distances to the audio embedding. Finally,
we compute a weighted sum of these L augmented language
embeddings and balance its contribution with the audio
embedding. The weights of these language embeddings are
derived by calculating the dot-product similarity between
za and each mclosest

i , normalized via a softmax function.
This overall Santa process is formalized as:

fSanta (z
a) = (1− λ) za + λ

L∑
i=1

wi ∗mclosest
i ,

where, wi =
exp

((
(za)

T
mclosest

i

)
/τ

)
∑L

j=1 exp
((

(za)
T
mclosest

j

)
/τ

) , (7)

where τ is a temperature hyperparameter and λ is a balanc-
ing hyperparameter.

3.5. Training Pipeline

AudioTIA-5M Dataset. MATS is designed to handle a
wide range of audio tasks relying solely on text supervi-
sion, which makes existing audio datasets unsuitable for
direct use in its training. In this work, we construct a
new dataset AudioTIA-5M, where each training sample
is formatted as (text, instruction, answer) tuple.
AudioTIA-5M encompasses both close-ended and open-
ended tasks, employing four audio-task templates in Ta-
ble S11 of Appendix. For the classification task (CLS), we
leverage ChatGPT (Achiam et al., 2023) to generate a sub-
stantial amount of textual data. Specifically, by utilizing
ChatGPT’s instruction-following and text generation capa-
bilities, we create a diverse set of audio descriptions (used
as text) based on given event labels (used as answer).
Further details are provided in Appendix B.4. For the
audio captioning task (CAP), we directly use audio cap-
tion annotations from public datasets, including Clotho-v2
(Drossos et al., 2020), AudioCaps (Kim et al., 2019), Music-
Caps (Agostinelli et al., 2023), WavCaps (Mei et al., 2024)
and Macs (Martı́n-Morató & Mesaros, 2021), as text and
answer. To further enhance model’s understanding and
reasoning capabilities for audio, we incorporate two open-
ended datasets: OpenAQA (Gong et al., 2024) and MusicQA
(Liu et al., 2024a). In OpenAQA, we replace raw audio files
with their audio captions as model inputs. For MusicQA,
where music captions are unavailable, we generate corre-
sponding captions using LP-MusicCaps (Doh et al., 2023).
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Overall, AudioTIA-5M comprises two subsets: a 1.5 M
close-ended question subset, and a 3.8 M open-ended ques-
tion subset. The detailed statistics of AudioTIA-5M are
presented in Table S8 of Appendix.

Training. To maintain alignment between language and
audio embeddings within the CLAP model while leveraging
the extensive knowledge and generative capacities of LLM,
we freeze both CLAP and LLM model, training only the
mapper module and LLM’s LoRA adapters (Hu et al., 2022).
Our model is trained on AudioTIA-5M dataset, which
integrates both close-ended and open-ended tasks. The
close-ended tasks equip the model with foundational audio
perception capabilities, while the open-ended tasks enhance
its advanced reasoning abilities. Training is conducted in an
autoregressive manner using Equation 2.

4. Experiment
In this section, we conduct extensive experiments on both
close-ended and open-ended tasks. The details about train-
ing and test benchmarks are provided in Appendix B. Addi-
tional extensive hyperparameter analysis and visualizations
are provided in Appendix C.

4.1. Experimental Setup

MATS-GPT2. In the smaller version, we employ GPT2
with 125M parameters as the LLM. We use CLAP’s audio
encoder and language encoder. The audio is sampled at 44.1
kHz and converted into a log Mel spectrograms with 64 Mel
bins, a hop size of 320 ms, and a window size of 1024 ms.
All audio files are randomly truncated to 7 seconds in length
with CLAP audio encoder. The mapping module uses a
8-layer transformer with a prefix length of 40. Training
is conducted using the AdamW optimizer with a learning
rate of 5× 10−5, a linear learning rate scheduler with 2000
warmup steps. The batch size is set to 128. For the LoRA
configuration, we set the rank to 8, the scaling factor to 4,
and the dropout rate to 0.1. MATS-GPT2 underwent about
25 hours of training over 90,000 iterations on 2 A100 GPUs.
The hyperparameters are configured as follows: σ = 0.015,
K = 100, L = 32, τ = 0.1 and λ = 0.3 (Equation 7).

MATS-LLaMA. In the larger version, we employ the
LLaMA-7B model as the LLM. We use AdamW optimizer
with a learning rate of 3×10−5, a cosine annealing learning
rate scheduler with 3000 warmup steps. The batch size is set
to 96. MATS-LLaMA underwent about 35 hours of training
over 360,000 iterations. All other settings remain consistent
with those of MATS-GPT2.

MATS-Audio. We explore an audio version of MATS,
supervised by audio. MATS-Audio consists of the CLAP
audio encoder, the mapper module and LLaMA-7B. It em-
ploys the same training configurations as MATS-LLaMA,

with a different training set as outlined in Appendix B.2.

4.2. Main Results

We evaluate the close-ended and open-ended capabilities of
MATS using 16 downstream tasks. Table S10 in Appendix
summarizes all test benchmarks and corresponding evalua-
tion metrics. Notably, for classification task, we adopt the
text-matching setup following (Gong et al., 2024), where the
CLIP language encoder is used to encode both the answer
set and model’s predictions. The answer with the highest
similarity to the prediction is selected as the final result.

4.2.1. CLOSE-ENDED RESULTS

Zero-shot Audio Classification. Since MATS performs
audio classification solely based on GPT-generated descrip-
tions, its performance is evaluated under zero-shot setting.
Table 1 summarizes the comparative results across both
sound and music types. As shown in Table 1, MATS
achieves SOTA performance in the zero-shot setting on
FSD50K, DCASE, TUT, VGG and BJO benchmarks, with
improvements of 1%, 10%, 14%, 6% and 3%. Remarkably,
MATS performs comparably with SALMONN (Tang et al.,
2024) and Qwen-Audio Chat (Bai et al., 2023), both of
which are trained on a significant amount of audio-language
pairs. These results validate the efficacy of our approach
for audio classification, highlighting the excellent audio
perception capabilities of MATS in a zero-shot scenario.

Audio Captioning. Table 2 summarizes the comparative
results for audio captioning tasks on AudioCaps, Clotho,
and MusicCaps benchmarks. We can observe that: (1)
Compared to text-only supervised audio captioning mod-
els, which are specifically tailored for audio captioning and
restricted to the Sound type, our model demonstrates en-
hanced versatility by effectively addressing a broader spec-
trum of audio-relevant tasks across both Sound and Music
type. Despite its broader applicability, our model achieves
superior CIDEr and SPIDEr scores on AudioCaps and a
higher SPICE score on Clotho. The performance gains
can be largely attributed to the proposed Santa mechanism,
which effectively mitigates the audio-language modality gap
within CLAP. (2) Compared to audio-supervised models,
MATS-LLaMA exhibits comparable performance despite
being training only on text data. Also, MATS-GPT2 sur-
passes the music captioning model LP-MusicCaps (Doh
et al., 2023) by 9.9% on the ROUGH-L metric. These re-
sults underscore the effective audio captioning capabilities
of MATS under text-only supervision.

Simple AQA. The ClothoAQA benchmark primarily con-
sists of responses limited to yes or no answers (evaluated
using the B-ACC metric), framing the task largely as a classi-
fication problem. As shown in Table 1, MATS-LLaMA out-
performs the recent model Qwen-Audio (Chu et al., 2023)
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Table 1. Comparision results on audio classification benchmarks and ClothoAQA benchmark. ZS- and † indicate weakly zero-shot and
supervised settings, respectively. Results without any annotation represent zero-shot setting. Note: the results of SALMONN and
Qwen-Audio-Chat are from GAMA (Ghosh et al., 2024).

Audio Type Sound Music

Model ESC-50
(ACC)

FSD50K
(mAP)

DCASE
(ACC)

TUT
(ACC)

VGG
(ACC)

US8K
(ACC)

ClothoAQA
(ACC|B-ACC)

GTZAN
(ACC)

BJO
(ACC)

CLAP (Elizalde et al., 2023) 0.83 0.30 0.30 0.30 - 0.73 - - 0.25 0.30
Pengi (Deshmukh et al., 2023) 0.92 0.47 0.33 0.35 - 0.72 - 0.65† 0.35 0.62
LTU (Gong et al., 2024) 0.83ZS- 0.46† 0.46ZS- 0.33 0.50† - - - - 0.70
LTU-AS (Gong et al., 2024) 0.81ZS- - - - - - - - 0.50 -
GAMA (Ghosh et al., 2024) 0.83ZS- 0.48† 0.38ZS- 0.22 0.52† - - 0.72† 0.14 0.70
Qwen-Audio (Chu et al., 2023) - - - 0.65† - - 0.58† 0.75† - -
Audio Flamingo (Kong et al., 2024) - 0.70† - - - 0.75 - 0.87† 0.68 -
SALMONN (Tang et al., 2024) 0.16 0.22 0.18 0.08 0.23 - - - 0.10 0.25
Qwen-Audio Chat (Bai et al., 2023) 0.72 0.40 0.32 0.17 0.18 - - - 0.42 0.51

MATS-GPT2 (Ours) 0.86 0.48 0.43 0.49 0.29 0.67 0.56 0.66 0.58 0.70
MATS-LLaMA (Ours) 0.88 0.45 0.43 0.47 0.29 0.67 0.66 0.76 0.63 0.73

MATS-Audio 0.70 0.43† 0.55† 0.61† 0.42† 0.39 0.67† 0.76† 0.29 0.46

Table 2. Comparision results for audio captioning tasks on AudioCaps, Clotho and MusicCaps benchmarks.

Method AudioCaps Clotho MusicCaps
CIDEr SPICE SPIDEr CIDEr SPICE SPIDEr ROUGH-L BLUE4

Audio
Supervision

(AS)

Pengi (Deshmukh et al., 2023) 0.752 0.182 0.467 0.416 0.126 0.271 - -
LTU (Gong et al., 2024) - 0.170 - - 0.119 - - -
GAMA (Ghosh et al., 2024) - 0.185 - - 0.135 - - -
LTU-AS (Gong et al., 2024) - 0.150 - - - - - -
SALMONN (Tang et al., 2024) - - 0.485 - - - 21.5 6.1
Audio Flamingo (Kong et al., 2024) - - 0.502 0.465 - - - -
LP-MusicCaps (Doh et al., 2023) - - - - - - 13.0 0.7

Text
Supervision

(TS)

NoAudioCaptioning (Deshmukh et al., 2024) 0.697 0.178 0.437 0.379 0.132 0.256 - -
PromptAAC (Zhang et al., 2024) 0.644 0.156 0.400 0.403 0.119 0.261 - -
DRCap (Li et al., 2024) 0.718 0.186 0.452 0.438 0.133 0.285 - -
MATS-GPT2 (Ours) 0.676 0.164 0.420 0.413 0.124 0.269 22.9 4.5
MATS-LLaMA (Ours) 0.735 0.171 0.453 0.431 0.134 0.282 18.7 3.2

AS MATS-Audio 0.704 0.171 0.438 0.448 0.137 0.293 21.7 5.4

on ClothoAQA, achieving 8% higher ACC score. This result
highlights the enhanced audio comprehensive capabilities
of MATS-LLaMA after scaling up. However, MATS shows
slightly lower performance on the B-ACC metric compared
to Audio Flamingo (Kong et al., 2024). Notably, Audio
Flamingo leverages audio supervision during training and
employs a sliding window to extract audio features. While
this enhances its performance, it also introduces signifi-
cant computational overhead. In contrast, MATS-LLaMA
operates under text-only supervision, offering a more com-
putationally efficient alternative. This trade-off between
efficiency and performance underscores the practical consid-
erations in model design for real-world applications, where
computational cost is often a critical factor.

4.2.2. OPEN-ENDED RESULTS

To further evaluate our model’s understanding and reason-
ing capabilities in complex audio QA tasks, we conducted
experiments on AIR-Bench Chat (Yang et al., 2024) and
MMAU (Sakshi et al., 2024) benchmarks. The results

are presented in Table 4 and Table 3. (1) On AIR-Bench,
under text-only supervision, MATS-LLaMA achieves
performance comparable to Qwen-Audio (Chu et al., 2023),
ranking third-highest on Sound type and fourth-highest
on Music type. We argue that CLAP struggles to extract
fine-grained audio information, such as the exact number
of occurrences. This limitation makes MATS-LLaMA
more prone to errors when responding to fine-grained
questions on AIR-Bench. (2) For the MMAU, the QA
format requires LALMs to select from a set of provided
options. We use the following prompt: {question}
+ Select one option: {options} Respond
with exactly one of the options above.
Compared to AIR-Bench, this option-based format offers
additional contextual cues, partially mitigating CLAP’s
limitations in extracting detailed information. Consequently,
our model outperforms Qwen-Audio-Chat (Bai et al.,
2023) by about 3% in the sound type and ranks second
only to the Qwen2-Audio-Instruction (Chu et al., 2024)
in other audio types. Notably, our model even surpasses
larger-scale models like Qwen-Audio-Chat and SALMONN.
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Table 3. The results of our model on the MMAU datasets across the sound and music categories.

Method Size Sound Music Avg
Test-mini Test Test-mini Test Test-mini Test

AS

Qwen2-Audio-Instruction (Chu et al., 2024) 8.4B 55.0 45.9 51.0 53.3 49.2 52.5
Qwen-Audio-Chat (Bai et al., 2023) 8.4B 55.3 56.7 44.0 40.9 43.1 41.9
SALMONN (Tang et al., 2024) 13B 41.0 40.3 34.8 33.8 33.7 32.8
GAMA (Ghosh et al., 2024) 7B 41.4 45.4 32.3 30.8 30.9 31.8
MuLLaMa (Liu et al., 2024b) 7B 40.8 44.8 32.6 30.6 31.9 30.7
GAMA-IT (Ghosh et al., 2024) 7B 43.2 43.2 28.4 28.0 30.2 29.0
LTU-AS (Gong et al., 2024) 7B 23.4 25.0 9.1 10.5 17.7 18.9
LTU (Gong et al., 2024) 7B 22.5 25.9 9.7 12.8 16.9 18.5
Pengi (Deshmukh et al., 2023) 323M 6.1 8.0 2.9 3.1 3.4 4.2

TS MATS-GPT2 (Ours) 370M 7.8 7.2 14.1 11.7 10.5 9.8
MATS-LLaMA (Ours) 7B 52.3 59.8 44.9 42.9 43.3 44.5

AS MATS-Audio 7B 51.7 57.4 43.7 41.5 42.2 43.8

Furthermore, compared to MATS-Audio, MATS-LLaMA
achieves comparable results on open-ended tasks, further
validating the effectiveness of the text-supervised strategy
for training LALMs.

Table 4. The results of our model on the AIR-Bench Chat Bench-
mark across the sound and music categories.

Method Sound Music

AS

Qwen2-Audio (Chu et al., 2024) 6.99 6.79
Qwen-Audio-Turbo (Bai et al., 2023) 6.59 5.98
SALMONN (Tang et al., 2024) 6.28 5.95
Qwen-Audio (Chu et al., 2023) 6.95 5.52
Gemini-1.5-pro (Team et al., 2024) 5.49 5.06
BLSP (Wang et al., 2023) 5.55 5.08
Pandagpt (Su et al., 2023) 5.46 5.06
Next-gpt (Wu et al., 2024) 4.76 4.18
SpeechGPT (Zhang et al., 2023) 0.95 0.95
Macaw-LLM (Lyu et al., 2023) 1.01 0.91

TS MATS-GPT2 (Ours) 4.33 3.31
MATS-LLaMA (Ours) 6.43 5.76

AS MATS-Audio 6.25 5.77

4.3. Ablation

In this subsection, we conduct ablation studies to validate
the effectiveness of our method. Further analysis of the hy-
perparameters in Equation (7), including K, L, M , τ , λ, and
the number of mapper layers, is provided in Appendix C.2

MATS-GPT2 vs MATS-LLaMA. As shown in Table 1 and
Table 2 , MATS-GPT2 achieves performance comparable to
MATS-LLaMA on close-ended tasks. However, as shown
in Table 4 and Table 3, MATS-GPT2 exhibits significantly
weak performance on open-ended tasks. These results indi-
cate that a smaller LLM like GPT2 is sufficient for handling
basic audio perception tasks, but it struggles with complex
open-ended tasks that require advanced audio understanding
and reasoning. In contrast, larger LLMs are better equipped
to capture the depth and complexity necessary for audio
reasoning and comprehension, making them indispensable

for open-ended tasks.

MATS-LLaMA vs MATS-Audio. As shown in Ta-
ble 1, MATS-LLaMA achieves performance comparable to
MATS-Audio in the supervised setting. However, under the
zero-shot setting, MATS-LLaMA significantly outperforms
MATS-Audio, highlighting the heavy reliance of audio-
supervised models on audio-language pairs for achieving
superior performance. Moreover, as shown in Table 4 and
Table 3, MATS-LLaMA achieves performance on par with
MATS-Audio in open-ended scenarios, further highlighting
the cost-effectiveness and efficiency of our approach.

Santa. Table 6 presents the ablation study of our pro-
posed Santa mechanism. The study evaluates the impact
of excluding various components, including k-means (w/o
K-means), memory bank (w/o MB), audio embedding (w/o
AE) and Gaussian noise (w/o GN). As shown in Table 6,
removing any component of Santa results in a performance
drop, highlighting their collective effectiveness. Notably,
the absence of Gaussian noise (w/o GN) during training
and the exclusion of audio embeddings (w/o AE) during
inference lead to significant performance decline. These
results emphasize the critical role of incorporating Gaussian
noise during training and retaining audio embeddings during
inference to achieve robust performance.

Santa vs other modal-transfer mechanism. To demon-
strate the superior effectiveness of the Santa mechanism,
we compare Santa with other modal-transfer methods, in-
cluding the memory-based mechanism in DRCap (Li et al.,
2024), the noise-based mechanism in NoAudioCaptioning
(Deshmukh et al., 2024) and PromptAAC (Zhang et al.,
2024). As shown in Table 5, Santa consistently outperforms
the competing methods, validating its strength in bridging
the audio-language modality gap. In DRCap, the original au-
dio embeddings are completely discarded during inference,
making its performance highly dependent on the alignment
between the memory bank and the test benchmark. However,
in a multi-task setting, the memory bank must accommo-
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Table 5. Performance Comparison between Santa and Other Modality Transfer Methods on Close-Ended and Open-Ended Benchmarks

Benchmark ESC-50 AudioCaps AIRBench-Sound AIRBench-Music
Metric ACC CIDEr GPT4 GPT4

MATS-NoAudioCaptioning 0.88 0.698 6.15 5.71
MATS-PromptAAC 0.77 0.593 6.07 5.28
MATS-DRCap 0.84 0.619 5.83 5.29

MATS-LLaMA 0.88 0.735 6.43 5.76

date a diverse range of benchmarks rather than a single one,
which introduces noise into the retrieval process and projects
the audio embeddings into less relevant textual spaces, lead-
ing to performance drop. NoAudioCaptioning, on the other
hand, employs a pure noise-injection strategy. While simple,
this approach fails to effectively reduce the modality gap
within CLAP, as analyzed in detail in Appendix C.1, result-
ing in limited performance gains. PromptAAC adopts an
augmentation-based approach that involves injecting noise
and substituting similar language inputs. It retrieves audio
events by matching audio embeddings with language embed-
dings derived from 527 predefined audio labels in AudioSet.
However, the limited variety of audio events restricts the
diversity of the retrieved information, resulting in inferior
performance compared to Santa.

The impact of Gaussian noise variance σ. Table 7 inves-
tigates the impact of the variance σ of injected noise during
training. MATS achieves the best performance at σ = 0.015.
We argue that a small variance fails to effectively mitigate
the audio-language modality gap within CLAP, while an
excessively large variance impairs the model’s ability to
capture useful input information.

Table 6. Ablation Study of Santa on AudioCaps benchmark.

Method CIDEr SPICE SPIDEr

MATS-LLaMA 0.735 0.171 0.453
- w/o K-means 0.703 0.171 0.437
- w/o MB 0.698 0.170 0.434
- w/o AE 0.343 0.114 0.229
- w/o GN 0.384 0.121 0.253
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Table 7. The impact of σ on AudioCaps benchmark.

5. Conclusion
In this paper, we propose MATS, an audio-language mul-
timodal LLM tuned solely on text data. Leveraging an
efficient text-only training strategy, MATS establishes the
semantic connection between the LLM and audio-language
contrastive mode, substantially reducing data and train-
ing costs while improving zero-shot performance. To ad-
dress the modality gap issue, we further introduce a modal-
transfer strategy, Santa, which effectively balances audio
embeddings and augmented language embeddings. Compre-
hensive experiments show that MATS achieves performance
comparable to, and in some cases surpassing, LALMs
trained on large-scale audio-language paired datasets.
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A. Proof of Theorem 3.1
In this section, we provide a proof for Theorem 3.1.

Proof. Let Rtr(h) = E(zt,y)∼pT (zt,y) |h(zt)− y| denote the generalization error on the train set. According to triangle
inequality, we can drive that:

Rte(h) = Rte(h)−Rtr(h) +Rtr(h)− R̂tr(h) + R̂tr(h)

≤
∣∣Rte(h)−Rtr(h)

∣∣+ ∣∣Rtr(h)− R̂tr(h)
∣∣+ R̂tr(h)

(8)

∣∣Rte(h)−Rtr(h)
∣∣ =

∣∣E(za,y)∼pA(za,y)|h(za)− y| − E(zt,y)∼pT (zt,y)|h(zt)− y|
∣∣

=
∣∣∑V

v pA(y) · E(za)∼pA(za|y)|h(za)− y| −
∑V

v pT (y) · E(zt)∼pT (zt|y)|h(zt)− y|
∣∣ (9)

Assuming that the class distributions for training and testing are consistent, we can obtain pA(y) = pT (y), then we can
achieve that:∣∣Rte(h)−Rtr(h)

∣∣ =
∣∣∑V

v pA(y) · (E(za)∼pA(za|y)|h(za)− y| − E(zt)∼pT (zt|y)|h(zt)− y|)
∣∣

≤ max
V

∣∣E(za)∼pA(za|y)|h(za)− y| − E(zt)∼pT (zt|y)|h(zt)− y|
∣∣

≤ max
V

discL1(pA(z
a|y), pT (zt|y))

(10)

∣∣Rtr(h)− R̂tr(h)
∣∣ follows by a standard application Vapnik-Chervonenkis (Vapnik, 1998) theory to bound the true Rtr(h)

by its empirical estimate R̂tr(h). Namely, if the Dtr is a N -size .i.i.d. samples, then with probability exceeding 1− δ,

∣∣Rtr(h)− R̂tr(h)
∣∣ ≤ √

8

N

(
2d log

√
2NV + log

2

δ

)
(11)

At the last, we can achieve that:

Rte (h) ≤ R̂tr (h) + max
v

(
discL1

(
pA (za|y) , pT

(
zt|y

)))
+

√
8

N

(
2d log

√
2NV + log

2

δ

)
. (12)

B. Dataset
B.1. The train dataset of MATS-GPT2 and MATS-LLaMA

Table S8 provides a detailed overview of the training dataset, AudioTIA. In this dataset, the inputs are primarily composed
of descriptions of audio contents and textual instrucrions. AudioTIA is divided into close-ended and open-ended tasks,
focusing on two audio types: Sound and Music. Specifically, the close-ended dataset, consisting of about 1.5M samples,
primarily includes classification tasks (58.7%), captioning tasks (40%), and the remaining portion comprises simple audio
question-answering tasks. In contrast, the open-ended dataset, comprising about 3.8M samples, focuses on complex audio
question-answering tasks. The close-ended dataset is designed to establish the model’s foundational audio perception
capabilities, and the open-ended dataset focuses on enhancing the model’s capacity for advanced audio understanding and
reasoning.
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Table S8. The statics of the AudioTIA dataset.

Close-Ended Audio Text Instruction Answering Data (∼1.5M)
Audio Type Task Datasets #Samples Percentage

Sound

CLS

AudioSet (Gemmeke et al., 2017), FSD50k (Fonseca et al., 2021),

∼385K ∼25.6%

VGGSound (VGG) (Chen et al., 2020), DCASE (Mesaros et al., 2017),
ECS-50 (Piczak, 2015), UrbanSound8K(US8K) (Salamon et al., 2014)

TUT Acoustic Scenes 2017(TUT) (Mesaros et al., 2016),
Sound Events for Surveillance Applications(SESA) (Spadini, 2019)

VS (Gong et al., 2022), CREMA-D (Cao et al., 2014)
RAVDESS (Livingstone & Russo, 2018)

CAP WavCaps (Mei et al., 2024), Macs (Martı́n-Morató & Mesaros, 2021), ∼518K ∼34.5%AudioCaps (Kim et al., 2019), Clotho-v2 (Drossos et al., 2020)
AQA Clotho-AQA (Lipping et al., 2022) ∼20K ∼1.3%

Music
CLS GTZAN (Sturm, 2014), Beijing Opera (BJO) (Tian et al., 2014), ∼497K ∼ 33.1%OpenAQA (Ghosh et al., 2024)

CAP OpenAQA(Ghosh et al., 2024), MusicCaps (Agostinelli et al., 2023), ∼30K ∼5.5%Song Describer dataset (SDD) (Manco et al., 2023)

Open-Ended Audio Text Instruction Answering Data (∼3.8M)
Sound AQA OpenAQA (Gong et al., 2024) ∼2547K ∼66.8%

Music AQA MusicQA (Liu et al., 2024a) ∼1207K ∼33.2%

B.2. The train dataset of MATS-Audio

Table S9 presents the training dataset of MATS-Audio, referred to as AudioAIA. The data format for AudioAIA is
(audio, instruction, answer), which differs from the input format of AudioTIA with (text, instruction,
answer). The AudioAIA dataset is derived from AudioTIA, excluding any subsets used exclusively as test data. Overall,
the AudioAIA dataset comprises approximately 1.5M samples for close-ended tasks and 2.6M samples for open-ended
tasks.

Table S9. The statics of the AudioAIA dataset.

Close-Ended Audio Instruction Answering Data (∼1.5M)
Audio Type Task Datasets #Samples Percentage

Sound

CLS

AudioSet (Gemmeke et al., 2017), FSD50k (Fonseca et al., 2021),

∼331K ∼21.9%VGGSound (VGG) (Chen et al., 2020), DCASE (Mesaros et al., 2017),
TUT Acoustic Scenes 2017(TUT) (Mesaros et al., 2016),

Sound Events for Surveillance Applications(SESA) (Spadini, 2019)

CAP WavCaps (Mei et al., 2024), Macs (Martı́n-Morató & Mesaros, 2021), ∼517K ∼34.2%AudioCaps (Kim et al., 2019), Clotho-v2 (Drossos et al., 2020)
AQA Clotho-AQA (Lipping et al., 2022) ∼6.1K ∼0.4%

Music CLS OpenAQA (Ghosh et al., 2024) ∼630K ∼41.7%
CAP OpenAQA(Ghosh et al., 2024), MusicCaps (Agostinelli et al., 2023), ∼28.3K ∼1.9%

Open-Ended Audio Instruction Answering Data (∼2.6M)
Sound AQA OpenAQA (Gong et al., 2024) ∼2467K ∼95.4%

Music AQA MusicQA (Liu et al., 2024a) ∼118K ∼4.6%

B.3. The test benchmark of MATS

Table S10 provides a detailed overview of the test benchmark and corresponding evaluation metrics. The benchmark covers
a range of audio event classification tasks, such as ESC-50 (Piczak, 2015) (single-label classification), FSD50K (Fonseca
et al., 2021) (multi-label classification), DCASE (Mesaros et al., 2017), TUT (Mesaros et al., 2016), VGG (Chen et al.,
2020), US8K (Salamon et al., 2014), GTZAN (Sturm, 2014) and BJO (Tian et al., 2014), as well as audio captionning
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tasks like AudioCaps (Kim et al., 2019) and Clotho-v2 (Drossos et al., 2020). It also encompasses music captioning tasks
including MusicCaps (Agostinelli et al., 2023), simple QA tasks on ClothoAQA, and complex QA tasks such as AIR-Bench
Chat (Yang et al., 2024) and MMAU (Sakshi et al., 2024) benchmarks.

Table S10. The test benchmarks and evaluation metrics are presented. B-ACC represents binary accuracy. Note: All evaluation metrics
are designed such that higher values indicate better performance.

Close-Ended Audio Instruction Answering Test Data
Audio Type Task Benchmark Metric ↑

Sound

CLS ECS-50 (Piczak, 2015) ACC
CLS FSD50K (Fonseca et al., 2021) mAP
CLS DCASE (Mesaros et al., 2017) ACC
CLS TUT (Mesaros et al., 2016) ACC
CLS VGG (Chen et al., 2020) ACC
CLS US8K (Salamon et al., 2014) ACC
CAP AudioCaps (Kim et al., 2019) CIDEr|SPICE|SPIDEr
CAP Clotho-v2 (Drossos et al., 2020) CIDEr|SPICE|SPIDEr
AQA Clotho-AQA (Lipping et al., 2022) ACC|B-ACC

Music
CLS GTZAN (Sturm, 2014) ACC
CLS BJO (Tian et al., 2014) ACC
CAP MusicCaps (Agostinelli et al., 2023) BLUE4|ROUGH-L

Open-Ended Audio Instruction Answering Test Data

Sound AQA AIR-Bench Chat (Yang et al., 2024) GPT4
AQA MMAU (Sakshi et al., 2024) ACC

Music AQA AIR-Bench Chat (Yang et al., 2024) GPT4
AQA MMAU (Sakshi et al., 2024) ACC

B.4. The design for generating audio descriptions in close-ended tasks.

In this part, we describe the pipeline and prompt used with ChatGPT (Achiam et al., 2023) to generate audio descriptions
for various classification task datasets, including ESC-50 (Piczak, 2015), FSD50K (Fonseca et al., 2021), VGG (Chen
et al., 2020), ECS-50 (Piczak, 2015), US8K (Salamon et al., 2014), TUT (Mesaros et al., 2016), SESA (Spadini, 2019), VS
(Gong et al., 2022), CREMA-D (Cao et al., 2014), and RAVDESS (Livingstone & Russo, 2018) for sound classification,
and GTZAN (Sturm, 2014) and BJO (Tian et al., 2014) for music classification. Figure S4 provides an overview of the
pipeline. The pipeline involves supplying GPT-4o-mini with a set of example audio descriptions corresponding to a few
labels, followed by a prompt to guide the generation process. GPT-4o-mini then produces descriptions for all provided
labels. The final set of generated descriptions, paired with their corresponding labels, serves as input for MATS.

B.5. The instruction templates for training MATS

Recent studies (Deshmukh et al., 2023; Tang et al., 2024) have demonstrated that instruction fine-tuning enhances the
instruction-following abilities and comprehension capabilities of audio-language multimodal models. Building on this
insight, we adopt instruction fine-tuning when training MATS. Table S11 presents the instruction templates designed for all
tasks in our study.

C. More Experimental Results
C.1. Visualization Analysis on Audio-Language Modality Gap

Figure 3 presents a visualization analysis of the audio-language modality gap. As shown in Figure 3 a), a noticeable gap
(Liang et al., 2022) remains between audio embeddings and language embeddings of CLAP. In Figure 3 b), introducing
Gaussian noise reduces the embedding gap to some extent; however, the language and audio embeddings remain distributed
near opposite ends. Similarly, in Figure 3 c), the memory-based method shows a comparable effect to b). As previously
noted, this method completely replaces audio embeddings with language embeddings, resulting in the processed audio

15



MATS: An Audio Language Model under Text-only Supervision

gpt-4o-minimale, vocal

1. A solo male vocal performance, deep and resonant, carries 
the emotional weight of the song.

2. A powerful male voice delivers poignant lyrics with a robust 
vocal range.

3. An intense male vocalist commands the track with dynamic 
tone and strength.

4. ...

You are an AI assistant tasked with describing the sound of a given music instrument. 
I will give you a music instrument. Write 50 diverse and concise sentences that describe the sound of this instrument. 
Requirements for the generated captions:
1. The caption should be less than 20 words.
2. Make sure the caption mainly contains the given sound event.
3. Make sure you are using grammatical subject-verb-object sentences. 
4. Directly describe the sound and avoid using the word "heard". 

USER: Clapper-drum
ASSISTANT:[1. The clapper-drum produces a sharp, crisp beat., 
2. The clapper-drum emits a bright, percussive crack., 
3. The drum emits a rapid, rhythmic snap., 
...]
…

prompt

Figure S4. Pipeline And Prompt of generating audio descriptions.

Table S11. The instruction template of every task. CLS: Audio Event Classification; CAP: Audio Captioning; AQA: Audio Question
Answer.

Task Input text Input instruction format Output answer format

CLS GPT generated description ”Classify events in the audio clip.” label a, ...

Sound CAP caption ”Generate audio caption.” caption

Music CAP caption ”Generate music caption.” caption

AQA generated caption Question answer

features losing audio-specific information and becoming overly concentrated, thereby reducing the model’s generalization
ability. In contrast, Figure 3 d) illustrates that our Santa further integrates the two modalities into a more unified and
cohesive distribution.

C.2. Hyperparameter Analysis

The impact of the different temperature τ . In Table S12, we analyze the impact of different τ values on the model’s
performance. Our model achieves the best performance when τ = 0.1. When τ is too small, our algorithm tends to select
only the most similar embedding, which limits the representational power of language embeddings and leads to a decrease
in model performance. Conversely, when τ is too large, the model may capture irrelevant augmented language embeddings
with low relevance.

Table S12. The performance of different τ on AudioCaps.

τ 1/150 1/80 1/40 1/20 1/10 1

CIDEr 0.731 0.734 0.732 0.734 0.735 0.731

Table S13. The performance of different L on AudioCaps.

L 4 8 16 32 64

CIDEr 0.728 0.730 0.729 0.735 0.734

The impact of different top L. Table S13 presents the performance of our method with different values of L. When
L is too large, the model may capture irrelevant augmented language embeddings with low relevance. Conversely, as L
approaches 1, the model loses the benefits of multiple language representations. We set L = 32 to strike a balance.
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The impact of the different balancing parameter λ. In this part, we conducted experiments with different values of λ, as
shown in Figure S5. The results clearly demonstrate that the best performance is achieved when both language and audio
are integrated simultaneously, and the performance is relatively insensitive to the variations in λ. However, when audio is
entirely removed, the model’s performance drops significantly, further validating the effectiveness of the balancing strategy
within the Santa mechanism.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

CI
DE

r

Effect of  on MATS's Performance on the AudioCaps Dataset

CIDEr Score

Figure S5. The effect of different λ on AudioCaps.

Hyper-Variations in LoRA. Table S14 and Table S15 present the performance variations of MATS on the AudioCaps
test benchmark under different LoRA ranks and scaling factors. When the rank or scaling factor is too small, the model
undergoes insufficient updates, leading to underfitting. Conversely, excessively large ranks or scaling factors result in overly
aggressive updates, increasing model complexity and causing overfitting.

Table S14. The performance of MATS with different ranks of LoRA
on AudioCaps.

Rank 4 8 16

CIDEr 0.706 0.735 0.702

Table S15. The performance of MATS with different scaling factors
of LoRA on AudioCaps.

α
Rank

2 4 8

CIDEr 0.674 0.735 0.682

The impact of the different number of M. Table S16 shows that the performance of our model initially increases and
then decreases as the size of the memory bank M grows. The initial improvement is attributed to the increasing richness of
the provided language embedding information. However, as the memory bank continues to expand, the fixed value of L
limits the model’s ability to effectively utilize diverse language embeddings.

Table S16. The performance of MATS with the different number of memory bank M on AudioCaps.

M 1000 2000 3000 3500 4000 4500 5000 5172 5500 6000 7000

CIDEr 0.710 0.700 0.714 0.716 0.719 0.705 0.708 0.735 0.705 0.700 0.700

The impact of k-means cluster size K. Table S17 investigates the impact of the k-means cluster size K in the Santa
mechanism. As shown, regardless of the cluster size, the model consistently outperforms noise-based and memory-based
methods, indicating that our Santa mechanism is robust to the choice of the k-means cluster number. We set K = 100 in
this work.

The number of Mapper’layers. We further evaluated the impact of varying the number of Transformer layers on the
model’s performance on AudioCaps test set. As shown in Table S18, the model achieves optimal performance with 8 layers.
When the number of layers is fewer than 8, the model’s capacity is insufficient for effective learning, leading to underfitting.
Conversely, increasing the number of layers beyond 8 results in overfitting, thereby reducing generalization ability. Based
on these findings, we adopt an 8-layer Transformer in this work.
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Table S17. Ablation study of MATS-LLaMA on the cluster number
K in the Santa mechanism, evaluated on AudioCaps benchmark.

K CIDEr SPICE SPIDEr

10 0.731 0.170 0.450
30 0.733 0.170 0.452
60 0.734 0.171 0.452
100 0.735 0.171 0.453
150 0.731 0.170 0.450

Table S18. Ablation Study of the number of Transformer layers on
the AudioCaps benchmark.

number CIDEr SPICE SPIDEr

4 0.696 0.166 0.431
8 0.735 0.171 0.453
16 0.653 0.174 0.414

C.3. Some Instances of MATS-LLaMA

In Figure S6, Figure S7, Figure S8, Figure S9, and Figure S10, we present examples of MATS-LLaMA and Qwen2-Audio-
Instruct (Chu et al., 2024) applied to tasks including complex QA, audio classification, general audio captioning, simple
QA, and music captioning. In the AIR-Bench Chat and MusicCaps benchmark examples, Qwen2-Audio-Instruct exhibits
significant hallucination issues, whereas MATS-LLaMA, while only partially covering the answers, does not generate
incorrect or nonsensical responses. For audio event classification tasks (FSD50K, BJO, and US8K), Qwen2-Audio-Instruct
struggles to generate specific responses, often providing only broad and general answers. For audio captioning examples
(AudioCaps and Clotho), both Qwen2-Audio-Instruct and MATS-LLaMA can correctly generate appropriate captions.
Additionally, in the ClothoAQA example, the correct answer is ‘BIRD’. While Qwen2-Audio-Instruct’s response (‘owl’)
refers to a bird, the sound does not correspond to that of an owl. These cases highlight MATS-LLaMA’s strong audio
understanding and reasoning capabilities.

What is the primary sound in the 
audio?

The primary sound in the audio 
is a man speaking.

USER

MATS

A man is speaking on a radio as music 
plays in the background.

The primary sound is of a truck 
horn honking continuously.

Qwen2-Audio-
Instruct

Identify the sounds in the audio clip, only display 
audio tags.

Electric guitar; guitar; plucked string instrument; 
bass; music

USER

MATS

These Electric guitar; Guitar; Plucked string 
instrument; Musical instrument; Music are being 

played.

[{'sound': 'music'}, {'sound': 'singing', 'type': 
'vocal'}, {'sound': 'respiratory sounds', 'type': 
'breathing'}]

Qwen2-Audio-
Instruct

a) b)

Answer

Man speaking

Answer

Electric guitar; Guitar; Plucked string instrument; 
Musical instrument; Music

Figure S6. The example of different tasks. a) Complex audio QA tasks on AIR-Bench Chat Benchmark. b) Audio Classification tasks on
FSD50K.
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Describe the following audio in a caption.

The sound in the background is thunder.

USER

MATS

A thunder storm is quietly rolling in the background.

It's the sound of thunder rolling and rain falling.

Qwen2-Audio-
Instruct

a)

Identify the sounds in the audio clip, 
only display audio tags.

Clapper-drum

USER

MATS

A sound of Clapper-drum

[{'sound': 'music'}, {'sound': 
'respiratory sounds, breathing'}]

Qwen2-Audio-
Instruct

b)

Answer

A thunder storm.
Answer

Clapper-drum

Figure S7. The example of different tasks. a) Complex audio QA tasks on AIR-Bench Chat Benchmark. b) Audio Classification tasks on
BJO.

Describe the following audio in a caption.

Birds are chirping and a child is yelling in the 
background.

USER

MATS

Children are talking to each other and birds are chirping.

A variety of birds chirping with people talking 
in the background.

Qwen2-Audio-
Instruct

a)

Identify the sounds in the audio clip, 
only display audio tags.

Gun shot

USER

MATS

A sound of gun shot

[{'sound': 'explosion', 'start_time': 0.05, 
'end_time': 0.68}, {'sound': 'fireworks', 

'start_time': 0.05, 'end_time': 0.68}]
Qwen2-Audio-

Instruct

b)

Answer

Children are talking to each other and birds are 
chirping.

Answer

gun_shot

Figure S8. The example of different tasks. a) Audio Captioning tasks on Clotho. b) Audio Classification tasks on UrbanSound8K.
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Describe the following audio in a caption.

A baby crying followed by a woman talking.

USER

MATS

A baby cries and a woman speaks followed by some light 
rustling and someone speaking faintly over a television.

A baby cries briefly and then an adult female
speaks and laughs.

Qwen2-Audio-
Instruct

a)

What type of animal is making the light 
sound in the background?

Bird

USER

MATS

A flock of birds screaming.

An owl.

Qwen2-Audio-
Instruct

b)

Answer

A baby cries and a woman speaks followed by 
some light rustling and someone speaking 

faintly over a television. Answer

BIRD

Figure S9. The example of different tasks. a) Audio Captioning tasks on AudioCaps. b) Simple audio QA tasks on ClothoAQA.

Listen to this music clip and describe the music.

The low quality recording features a cover of a rock song and it 
consists of an electric guitar solo melody. the recording is noisy

and in mono, as it was probably recorded with a phone.

USER

MATS

The low quality recording features a cover of a rock song that 
consists of an electric guitar solo melody played over playback 
instrumental. The instrumental features a punchy kick and snare 
hits, soft cymbals and smooth bass. It sounds passionate, even 
though the recording is muffled and noisy, as it was probably 

recorded with a phone.

This music is an amateur recording of a cover of a rock song. There 
is a distorted e-guitar solo melody being played over playback 

instrumental music which consists of acoustic drums, an e-bass and 
a piano melody. The piece has a groovy feel to it. This song may be 

playing practicing at home with headphones. Qwen2-Audio-
Instruct

What is the most noticeable sound event in the audio? Select one 
option: \n'Continuous wind', 'Eruption', 'Man speaking', 'Ticking 

noise'.\nRespond with exactly one of the options above.

Continuous wind

USER

MATS

There are wind sound

Eruption

Qwen2-Audio-
Instruct

a) b)

Answer

The low quality recording features a cover of a rock song that 
consists of an electric guitar solo melody played over playback 
instrumental. The instrumental features a punchy kick and snare 
hits, soft cymbals and smooth bass. It sounds passionate, even 
though the recording is muffled and noisy, as it was probably 

recorded with a phone.

Answer

Continuous wind

Figure S10. The example of different tasks. a) Music Captioning tasks on MusicCaps. b) Complex audio QA tasks on MMAU Benchmark.
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