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ABSTRACT

Adversarial training has been proven to be a powerful regularization method to im-
prove generalization of models. In this work, a novel masked weight adversarial
training method, DropAttack, is proposed for improving generalization potential
of neural network models. It enhances the coverage and diversity of adversar-
ial attack by intentionally adding worst-case adversarial perturbations to both the
input and hidden layers and randomly masking the attack perturbations on a cer-
tain proportion weight parameters. It then improves the generalization of neural
networks by minimizing the internal adversarial risk generated by exponentially
different attack combinations. Further, the method is a general technique that can
be adopted to a wide variety of neural networks with different architectures. To
validate the effectiveness of the proposed method, five public datasets were used
in the fields of natural language processing (NLP) and computer vision (CV) for
experimental evaluating. This study compared DropAttack with other adversar-
ial training methods and regularization methods. It was found that the proposed
method achieves state-of-the-art performance on all datasets. In addition, the ex-
perimental results of this study show that DropAttack method can achieve similar
performance when it uses only a half training data required in standard training.
Theoretical analysis revealed that DropAttack can perform gradient regularization
at random on some of the input and weight parameters of the model. Further, visu-
alization experiments of this study show that DropAttack can push the minimum
risk of the neural network model to a lower and flatter loss landscapes. 1

1 INTRODUCTION

Deep neural networks (DNNs) (LeCun et al., 2015) have achieved state-of-the-art performance in
several artificial intelligence applications such as natural language processing and computer vision.
However, one of the rebarbative characteristics of deep learning models is the ease to overfitting,
which leads to low generalization potential of the models. Regularization methods, such as L1 (Tib-
shirani, 1996) and L2 (Tikhonov, 1943) as well as early stopping (Morgan & Bourlard, 1989) and
Dropout method (Srivastava et al., 2014), plays an important role for the impressive performance
of deep neural networks by controlling complexity of the models. The methods prevents overfit-
ting and hence improve generalization potential of models. Adversarial training (Goodfellow et al.,
2015) was originally proposed as a method of improving security of machine learning systems and
to train a neural network that is robust to attack samples. Specifically, adversarial training pro-
cess minimizes the maximal risk for label-preserving input perturbations of a model. Goodfellow
et al. (2015) have previously demonstrated that adversarial training can result in even further reg-
ularization than dropout method. Therefore, adversarial training improves not only robustness to
adversarial examples, but also generalization performance of original examples.

Most of the recent adversarial training (Goodfellow et al., 2015; Miyato et al., 2017; Athalye et al.,
2018; Zhang et al., 2019; Zhu et al., 2020) only perturb the input layer, which to a large extent
restricts attack range and weakens attack intensity. Moreover, the existing adversarial training meth-
ods add perturbation to every element in the input tensor during the attack and hence such an attack

1The code of DropAttack has been made public.
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lacks diversity. It should be noted that the input in the NLP field is the embeddings of the text
whereas in the CV field the input is the value of each pixel of the picture. However, in this paper, it
is uniformly called the input for the convenience of expression.

In this work, focus was mainly on improving the generalization performance of models and pre-
venting model from overfitting, rather than enhancing the robustness of models to attack samples.
Therefore, a novel adversarial training method called DropAttack was proposed to enhance the di-
versity and scope of attacks. DropAttack expands the attack target from the input to the weight
parameters of other hidden layers, thereby increasing the scope of attack. To make combinations
of attacks diversification, DropAttack method randomly masks the attack on a certain proportion of
weight parameters instead of attacking all the weight parameters in each attack iteration. Therefore,
exponentially different attack combinations can be obtained while using random mask attack.

First, the impact of DropAttack was evaluated on the generalization performance of the model fol-
lowed by other well-known regularization methods. Visual analysis of the training and verification
accuracy of some models of different architectures were later conducted as the training progresses.
Further, we also study the efficiency of DropAttack under training datasets of different sizes. Fi-
nally, a theoretical analysis was also conducted from another perspective to prove the effectiveness
of DropAttack.

The main contributions of this paper are summarized as follows:

• In this work, a novel random masked weight adversarial training method, DropAttack, is
proposed to improve the generalization of neural networks.

• To the best of our knowledge, DropAttack is the first to use random masking of some
perturbations to increase the diversity of adversarial attack combinations.

• Experimental results on five public datasets show that DropAttack achieves extremely
strong performances. And DropAttack can improve the generalization of neural networks
with different structures.

• We theoretically show that our DropAttack can perform gradient regularization at random
on some of the input and weight parameters of the model and push the minimum risk of the
neural network model to a lower and flatter loss landscapes.

2 RELATED WORK

Adversarial training can be traced back to Goodfellow et al. (2015), in which robustness and gen-
eralization of the model was improved by generating adversarial examples and injecting them into
training data. It is necessary to find the perturbation value that maximizes the adversarial loss be-
cause the effectiveness of adversarial training largely depends on the direction of the attack. Fur-
ther, neural networks are easily attacked by linear perturbation due to their linear characteristics.
Therefore, Goodfellow et al. (2015) proposed Fast Gradient Sign Method (FGSM) to calculate the
perturbation of the input sample. They hence linearized the cost function around the current value
of parameters, obtaining an optimal max-norm constrained pertubation of:

radv = ε · sgn(∇xL(θ,x, y)) (1)
where θ is the model parameter, x is the input of the model, y is the label corresponding to the input,
L is the cost used to train the neural network, sgn is the symbolic function and ε is the perturbation
coefficient. To find a better perturbation, Miyato et al. (2017) proposed the Fast Gradient Method
(FGM), which made a simple modification to the calculation of perturbation in FGSM. In addition,
FGM is the first time that adversarial training has been applied to text classification tasks. The
formula is as follows:

radv = ε · g/‖g‖2 where g = ∇xL(θ,x, y). (2)
A adversarial training method called Projected Gradient Descent (PGD) was proposed by Athalye
et al. (2018). The method obtains the final perturbation value through multiple forward and back-
ward propagation iterations. The perturbation obtained in each iteration is limited to a set range and
if it exceeds this range will be mapped to the “sphere” of the range. To put it simply, “walk in small
steps, take a few more steps.” The formula is as follows:

xt−1 =
∏
x+S

(xt + α · g(xt)/‖g(xt)‖2) where g(xt) = ∇xL(θ,xt, y). (3)
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where S = r ∈ Rd; ‖r‖2 ≤ ε is the constraint space of the perturbation and a represent the step
length of the “small step”.

Although many defenses were broken by Athalye et al. (2018), PGD-based adversarial training is
one of the few methods that can withstand powerful attacks. According to Athalye et al. (2018)
PGD can largely avoid the problem of gradient confusion and will still cause high convolution and
non-linear loss surface. When K is very small, it will be lightly broken under powerful adversaries.
To obtain a more efficient PGD-based adversarial training, it must iteratively calculate the gradi-
ent many times, but this will consume a lot of computing resources. A “free” adversarial training
algorithm that eliminates the overhead cost of calculating adversarial perturbations by recycling
the gradient information computed when updating model parameters was proposed byShafahi et al.
(2019). Furthermore, the total number of full forward and backward propagations is effectively re-
duced in Zhang et al. (2019) through restriction of most forward and back propagation within the
first layer of the network during adversary updates. Virtual adversarial training is proposed by Miy-
ato et al. (2019) as a regularization method for semi-supervised learning in the text field. In addition,
Zhu et al. (2020) propose FreeLB for improving the generalization of language models, which per-
forms multiple PGD iterations to attack the embeddings and simultaneously accumulates the “free”
parameter gradients in each iteration.

In this work, we are the first to propose an adversarial training method that simultaneously attacks
the input of the model and the weight parameters of other layers to improve the generalization of the
model. In addition, to the best our knowledge the proposed method, DropAttack, is the first to use
random masking of some elements to increase the diversity of adversarial attack combinations.

3 THE PROPOSED DROPATTACK ADVERSARIAL TRAINING METHOD

Figure 1: (a) A standard neural network with 3 input and 12 weight parameters. (b) An new neural
network produced by applying standard adversarial Training on the left, which attacks all inputs. (c)
An new neural network produced by applying DropAttack to the network on the left. Assume that
each input vector and weight parameter have a 2/3 and 1/3 probability of being attacked, respectively.

Standard adversarial training is aimed to explore the optimal parameters to minimize the maximum
risk of adversarial attacks. The Min-Max formula is as follows:

min
θ

E(x,y)∼D[ max
radv∈S

L(θ,x+ radv, y)] (4)

whereD is the data distribution, y is the label, and L is loss function. radv represent the perturbation
under maximizing internal risk and S is the perturbation constraint space. In the current study a new
adversarial training method, DropAttack is proposed. It simultaneously attacks the input x of the
model and the weight parameters of other layers and randomly masks some attacks. The overall
procedure is shown in Algorithm A and the Min-Max formula of DropAttack can be expressed as:

min
θ

E(x,y)∼D[max
rx∈S

L(θ,x+Mx · rx, y) + max
rθ∈S

L(θ +Mθ · rθ,x, y)] (5)
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Algorithm 1: DropAttack Adversarial Training
Input: Training samples X , model parameter θ, perturbation coefficients εx and εθ, Attack

probabilities px and pθ , Learning rate τ
for epoch = 1 . . . Nep do

for (x, y) ∈ X do
Compute gradient g of parameter x and θ:

gx ← ∇xL(θ,x, y); gθ ← ∇θL(θ,x, y)
Compute perturbation rx and rθ:

rx ← εx · gx/‖gx‖2; rθ ← εθ · gθ/‖gθ‖2
Random attackMx andMθ mask:

Mxij ∼ Bernoulli(px);Mθij ∼ Bernoulli(pθ)
Compute adversarial gradient gadv:

gadv ← ∇θ[L(θ,x+Mx · rx, y) + L(θ +Mθ · rθ,x, y)]
Update parameter θ:

θ ← θ − τ(g + gadv)
end

end
Output: θ

where rx and rθ are the perturbation of the input x and the parameter θ under maximizing the inter-
nal risk. These values were approximated by linearizing ∇xL(θ,xt, y) and ∇θL(θ,xt, y) around
x and θ respectively. The resulting adversarial perturbation when using the linear approximation in
equation (6) and the L2 norm constraint is:

rx ← εx · ∇xL(θ,x, y)/‖∇xL(θ,x, y)‖2; rθ ← εθ · ∇θL(θ,x, y)/‖∇θL(θ,x, y)‖2 (6)

These perturbations rx and rθ can be easily calculated using backpropagation in a neural network.

The random attack masks of rx and rθ are Mx and Mθ respectively. For any attack mask,
Mij(Mxij ∼ Bernoulli(px);Mθij ∼ Bernoulli(pθ)) is a matrix of independent Bernoulli random
variables with the same dimension as the perturbation value and the probability of each Bernoulli
random variable is 1. Multiplying the perturbation matrix and the attack mask matrix randomly
masks a part of the element values in the perturbation matrix. The attack on the input in the text
model is essentially an attack on the weight parameters of the embedding layer. It is evident that
Figure 1 (a) is a standard neural network with 12 weight parameters. Figure 1 (b) is a new neural
network produced by applying standard adversarial Training on the left, which attacks all inputs.
Further, Figure 1 (c) is a new neural network after DropAttack is applied and some of the weights
are added with the perturbation calculated by the corresponding gradient. It is noted that DropAttack
maximizes internal risk through a wider range of attacks (not limited to the input layer) compared
with standard adversarial training. In addition, it also randomly mask some dimensional perturba-
tion, which will generate a more robust and diversified embedding space.

3.1 DROPATTACK WITH MULTIPLE INTERNAL ASCENT STEPS

Most of the latest adversarial training are PGD-based methods. The PGD-based methods are a se-
ries of adversarial training algorithms (Kurakin et al., 2017) for solving the maximum-minimum
problem of cross-entropy loss. This can be reliably achieved by using multiple projection gradi-
ent ascent steps and then performing an SGD (Stochastic Gradient Descent) (Bottou, 2012) step.
Multiple PGD iterations can get a more optimized perturbation. Generally, DropAttack can also
use multiple forward and backward propagation methods to update the perturbation. In prac-
tice, when DropAttack is used, each ascent step of updating perturbation optimizes for a differ-
ent weight network. This will affect the inability to obtain the optimal perturbation because rt
and rt−1 are an iterative relationship. Therefore, the same mask matrix is used for each step
of perturbation update. The overall procedure is shown in Algorithm B. Specifically, the initial
gradients g(0)x = ∇xL(θ,x, y) and g(0)θ = ∇θL(θ,x, y) of x and θ and initial perturbation
r
(0)
x = εx · g(0)x /‖g(0)x ‖2 and r(0)θ = εθ · g(0)θ /‖g(0)θ ‖2 are first calculated, then random attack

masks Mx and Mθ are generated and used in the forward and backward propagation for each step
of perturbation update. Therefore, the mask matrix is fixed after the first step of perturbation update.
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Algorithm 2: PGD-based DropAttack-K Adversarial Training
Input: Training samples X , model parameter θ, perturbation coefficient εx and εθ, Attack

probability px and pθ, number of forward-backward propagation K, Learning rate τ
for epoch = 1 . . . Nep do

for (x, y) ∈ X do
for t = 1, 2 . . .K do

Compute initial gradient g of parameter x and θ:
g
(0)
x ← ∇xL(θ,x, y); g(0)θ ← ∇θL(θ,x, y)

Compute initial perturbation r(0)x and r(0)θ :
r
(0)
x ← εx · g(0)x /‖g(0)x ‖2; r(0)θ ← εθ · g(0)θ /‖g(0)θ ‖2

if t = 1 then
Generate random attack masksMx andMθ:

Mxij ∼ Bernoulli(px);Mθij ∼ Bernoulli(pθ)
end
Update the perturbation r via gradient ascend :

g
(t)
x ← g

(t−1)
x + 1

K∇xL(θ,x+Mx · r(t−1)
x , y)

g
(t)
θ ← g

(t−1)
θ + 1

K∇θL(θ,x+Mθ · r(t−1)
θ , y)

r
(t)
x ← εx · g(t)x /‖g(t)x ‖2; r(t)θ ← εθ · g(t)θ /‖g(t)θ ‖2

end
Update parameter θ:

θ ← θ − τ(g(K)
x + g

(K)
θ )

end
end
Output: θ

The perturbation values r(t)x = εx · g(t)x /‖g(t)x ‖2 and r(t)θ = εθ · g(t)θ /‖g(t)θ ‖2 are updated through
the gradient ascend in each iteration, where g(t)x = g

(t−1)
x + 1

K∇xL(θ,x +Mx · r(t−1)
x , y) and

g
(t)
θ = g

(t−1)
θ + 1

K∇θL(θ,x +Mθ · r(t−1)
θ , y). Finally, the model parameter θ is updated once

with the accumulated gradient of each adversarial iteration.The DropAttack-K of K iterations can
be expressed as:

min
θ

E(x,y)∼D{
1

K

K−1∑
t=0

[ max
r
(t)
x ∈S

L(θ,x+Mx · r(t)x , y) + max
r
(t)
θ ∈S

L(θ +Mθ · r(t)θ ,x, y)]}. (7)

The training process is equivalent to replacing the original batch with a K-times virtual batch which
consist of samples whose embeddings are x +Mx · r(0)x ,x +Mx · r(1)x , . . . ,x +Mx · r(k−1)

x .
Similarly, multiple virtual neural networks with different weight parameters will be trained and their
weight parameters are θ +Mθ · r(0)θ ,θ +Mθ · r(1)θ , . . . ,θ +Mθ · r(k−1)

θ respectively.

It is worth noting that our perturbation constraint S does not take an additional fixed value and only
uses the L2 norm to constrain the gradient value. This is because the diversity of perturbations is
needed at each step, rather than forcibly constraining it in a fixed spherical space. Furthermore, the
proposed method, DropAttack-K also inherits the “free” ability, using the gradient average calcu-
lated by each backpropagation for external minimization.

Intuitively, DropAttack can generate a richer adversarial sample in the spherical space of the original
sample compared to the previous adversarial training method, which can prevent the model from
overfitting on the adversarial sample to a certain extent. Empirically, there is a gap between the
features of the training dataset and the features of the test dataset in the high-dimensional feature
space. Improving generalization is essentially to narrow the feature distribution gap between the
training dataset and the test dataset. However, more diverse adversarial samples are needed to fill
this gap because it is uncertain. In theory, DropAttack has a more significant improvement in the
generalization of the model.
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4 EXPERIMENT

4.1 DATASETS

The DropAttack algorithm is evaluated using five public datasets, IMDB (Maas et al., 2011),
PHEME (Zubiaga et al., 2016), AGnews (Zhang et al., 2015), MNIST (LeCun, 1998) and GIFAR-10
(Krizhevsky, 2009). The brief description of the datasets are as shown in Table 1. The IMDB is a
standard benchmark movie review dataset for sentiment analysis. The PHEME dataset contains a
collection of Twitter rumours and non-rumours posted during breaking news. The AGnews topic
classification dataset is constructed by Zhang et al. (2015) from the original AG news sources. The
MNIST is a standard and the commonly used toy dataset of handwritten digits. The CIFAR-10
dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. Each
dataset is divided into training set, validation set and test set.

Table 1: Overview of the datasets used in this paper.
Dataset Task Classes Training Validation Test
IMDB Sentiment analysis 2 40,000 5,000 5,000
PHEME Rumor detection 2 5,145 643 637
AGNEWS News classification 4 110,000 10,000 7,600
MNIST Image classification 10 50,000 10,000 10,000
CIFAR-10 Image classification 10 40,000 10,000 10,000

4.2 EXPERIMENTAL SETUP

In the present experiment, the rnn-based and cnn-based models were chosen to handle nlp tasks
and cv tasks, respectively. For nlp tasks, IMDB uses an LSTM (Hochreiter & Schmidhuber, 1997)
(300-300 dim) layer and a fully connected layer (300-2 dim); PHEME uses a BiLSTM (Schuster &
Paliwal, 1997) (300-300 dim) layer and a fully connected layer (600-2 dim) whereas AGnews uses
two BiGRU (Chung et al., 2014) (300-300 dim) layers and a fully connected layer (600-4 dim). In
addition, for cv tasks, MNIST uses the LeNet-5 (LeCun et al., 1998) model, which contains two
layers of CNN (1-6-16 channels, kernel size = 5) and three fully connected layers (400-120-84-10
dim); CIFAR-10 uses the VGGNet-16 (Simonyan & Zisserman, 2014) model, which contains 13
layers of CNN (3-64-64-128-128-256-256 -256-512-512-512-512 channels, kernel size = 3) and
three fully connected layers (512-4096-4096-10 dim). All the models are implemented based on
Pytorch, the Batch sizes value is 128, the optimizer is Adam and the learning rate is 0.001.

4.3 EXPERIMENTAL RESULTS AND DISCUSSION

Table 2 show that the performance of the model after using DropAttack has improved on the five
datasets compared to the original model without DropAttack. The improvements observed on the
three nlp datasets are 2.24%, 3.07% and 1.5% respectively. It is seen that the overall effect of adver-
sarial training is better compared with other regularization methods. Among them, the efficiency of
FGSM is relatively unstable, whereas the performance on IMDB and CIFAR-10 is only 88.04% and
71.86% respectively. Because the naive perturbation value may destroy the distribution of the orig-
inal data. It should be noted that PGD, FreeAT and FreeLB are all PGD-based adversarial training
methods, which require multiple forward and back propagation iterations to calculate the optimal
perturbation value. In this experiment, the number of forward-backward passes k is 3.

Our method achieves state-of-the-art performance on five datasets by calculating the perturbation
value through only one backpropagation. In this study the influence of the number of forward-
backward propagation on DropAttack was evaluated later. It is seen that the performance of
DropAttack-(I-H) is better than DropAttack-(I) on all five datasets, which proves that it is effec-
tive to attack the parameters of the hidden layer of the model. In addition, it is evident that based on
the results in Table 2, the current method has more improvements on the NLP datasets and less on
the CV datasets. This finding is consistent with the experimental results in other previous adversarial
training research studies (Cheng et al., 2019; Zhao et al., 2018; Zhu et al., 2020). It is believed that
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Table 2: Comparing the effects of DropAttack with various well-known regularization and other
state-of-the-art adversarial training methods. The reported results are calculated from 5 runs with
the same hyper-parameters except for the random seeds. The “Baseline” used in the five datasets
are LSTM, BiLSTM, BiGRU, LeNet and VGGNet, which are common neural-based deep learning
models. The best method and the best competitor are highlighted by bold and underline, respec-
tively. Additional experimental details and results are provided in the Appendix A.

Methods NLP Datasets CV Datasets
IMDB PHEME~ AGnews MNIST CIFAR10

Baseline 88.12 84.08/78.99 91.87 98.95 84.67
Baseline + L1 (Tibshirani, 1996) 88.02 85.34/79.55 92.29 99.07 84.74
Baseline + L2 (Tikhonov, 1943) 88.27 85.67/81.29 92.43 99.14 84.63
Baseline + Dropout (Srivastava et al., 2014) 88.64 85.85/81.08 92.22 99.07 85.39
Baseline + FGSM (Goodfellow et al., 2015) 88.04 85.61/80.40 92.54 99.16 71.86
Baseline + FGM Miyato et al. (2017) 89.26 84.97/78.52 92.53 99.15 85.64
Baseline + PGD Athalye et al. (2018) 89.38 85.28/79.30 92.76 99.10 85.57
Baseline + FreeAT Shafahi et al. (2019) 89.17 85.29/79.32 92.45 99.09 85.45
Baseline + FreeLB Zhu et al. (2020) 89.25 85.69/81.18 92.58 99.11 85.47
Baseline + DropAttack-(I)† 89.76 85.75/81.33 93.35 99.16 86.05
Baseline + DropAttack-(I-H)‡ 90.36 87.15/81.31 93.37 99.27 86.09
~ Note that although PHEME is a two-class classification, the labels are not balanced, so we use accuracy

and f1-score (accuracy/f1) as the evaluation criteria. † Only attack the input layer; ‡ Attack the input layer
and hidden layer simultaneously.

Figure 2: Training and validation accuracy of different models (TextRNN, TextCNN and TextR-
CNN) with and without DropAttack on IMDB dataset.

the reason for this phenomenon is that the perturbation is directly added to the original pixel value
for the picture and the text is not directly modified to the word rather, the perturbation value is added
to the embedding vector. Further, the pixel value of the image is fixed and the perturbation may
change the distribution of the original sample. However, the word vector of the text is not unique
and certain, hence it is more likely to learn a better word vector after adding perturbation.

To show the effect of DropAttack in preventing neural network overfitting more clearly, classifi-
cation experiments were carried out with many different models of keeping all hyperparameters,
including ε and p fixed. As shown in Figure 2, the training and validation accuracy obtained for
these models of different architectures (TextRNN, TextCNN and TextRCNN) as training progresses.
The training accuracy under DropAttack training is basically the same as that under standard train-
ing. However, the validation accuracy is higher, which proves that using the DropAttack adversarial
training method can alleviate model overfitting. Furthermore, it can be seen that DropAttack ad-
versarial training may be more difficult to converge in the early stage, because it is more difficult
to optimize the target under attack. Nevertheless, the validation accuracy of the model is relatively
more stable after enough weight updates and learning. Therefore, DropAttack gives an obvious im-
provement across all neural networks of different architectures, without using hyperparameters that
were tuned specifically for each architecture.
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Table 3: The ability of our method DropAttack to prevent overfitting under different sizes of training
data. The hyperparameters are set to k = 3, εx = εθ = 5, px = pθ = 0.7.

Methods Size of the training set
100 500 1,000 2,500 5,000 10,000 20,000 40,000

Standard Training 63.26 74.26 78.30 81.14 82.62 84.92 85.42 88.12
DropAttack-3 Training 65.46 76.34 80.70 83.88 85.22 87.02 88.86 90.42
Improvement ↑ 2.20 2.08 2.40 2.66 2.60 2.10 3.42 2.30

Table 4: Comparing the performance of DropAttack under different number of forward-backward
propagation K. The reported results are calculated from 5 runs with the same hyper-parameters.

Methods IMDB PHEME AGNEWS MNIST CIFAR-10
DropAttack-1 90.36 87.15/82.31 93.37 99.27 86.09
DropAttack-2 90.38 87.27/82.43 93.38 99.24 86.09
DropAttack-3 90.42 87.36/82.78 93.34 99.27 86.07
DropAttack-4 90.43 87.25/82.63 93.41 99.26 86.10
DropAttack-5 90.42 87.26/82.67 93.39 99.25 86.09

In addition, the efficiency of DropAttack under training datasets of different sizes is also studied. The
IMDB training set is divided into different sizes and use the LSTM model with the same structure
as the above and the experimental results are shown in Table 3. Compared with standard training,
the performance of the model using the DropAttack training method on all seven training datasets
of different sizes has been improved by more than 2%. Furthermore, it is found that DropAttack can
achieve and even exceed the accuracy of standard training using only half of the training data. For
example, DropAttack can achieve 83.88% using 2500 training data and the accuracy of using 5000
data based on standard training is 82.62%.

For the PGD-based DropAttack-k the influence of the number of forward-backward propagation on
DropAttack is studied and the experimental results are as shown in Table 4. It is found that multiple
iterative calculations can indeed further improve the generalization of the neural network, because
multiple iterations are more likely to get the optimal disturbance value. However, it is evident that
more forward-backward propagation will greatly increase the training time. Therefore, a reason-
able number of iterations K can be selected based on time and computing resources. Additional
hyperparameter sensitivity analysis are provided in the Appendix B.

5 THEORETICAL ANALYSIS

We provide another theoretical perspectives to explain why the adversarial training method DropAt-
tack can be used as regularization to improve the generalization of the model and prevent overfitting.
According to Section 3, the task of DropAttack can be to minimize the maximum internal adversarial
risk, that is, to approximately optimize the following goals:

min
θ

E(x,y)∼D[max
rx∈S

L(θ,x+Mx · rx, y) + max
rθ∈S

L(θ +Mθ · rθ,x, y)] (8)

For formula 8, we second-order Taylor expand functions f(x) = L(θ,x+Mx · rx, y) and f(θ) =
L(θ +Mθ · rθ,x, y) at points (x+Mx · rx) and (θ +Mθ · rθ) respectively:

min
θ

E(x,y)∼D{max
rx∈S

[L(θ,x, y)+ < ∇xL(θ,x, y),Mx · rx >]

+max
rθ∈S

[L(θ,x, y)+ < ∇θL(θ,x, y),Mθ · rθ >]}
(9)

Then, after substituting the values rx = εx · ∇xL(θ,x, y)/‖∇xL(θ,x, y)‖2, rθ = εθ ·
∇θL(θ,x, y)/‖∇θL(θ,x, y)‖2 of the perturbation that maximize the antagonistic Loss, the fol-
lowing formula 10 is obtained:

min
θ

E(x,y)∼D[L(θ,x, y)+ < ∇xL(θ,x, y),Mx · εx · ∇xL(θ,x, y)/‖∇xL(θ,x, y)‖2 >

+L(θ,x, y)+ < ∇θL(θ,x, y),Mθ · εθ · ∇θL(θ,x, y)/‖∇θL(θ,x, y)‖2 >]
(10)
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Figure 3: 2D and 3D visualization of the minima of the empirical risk generated by standard training
(left) and DropAttack (right) on IMDB dataset.

⇒ min
θ

E(x,y)∼D[L(θ,x, y) + εx ·Mx < ∇xL(θ,x, y),∇xL(θ,x, y)/‖∇xL(θ,x, y)‖2 >

+L(θ,x, y) + εθ ·Mθ < ∇θL(θ,x, y),∇θL(θ,x, y)/‖∇θL(θ,x, y)‖2 >]
(11)

⇒ min
θ

E(x,y)∼D[2L(θ,x, y) + εx · ‖Mx · ∇xL(θ,x, y)‖2 + εθ · ‖Mθ · ∇θL(θ,x, y)‖2] (12)

⇒ min
θ

E(x,y)∼D[2Loss + εx · ‖Mx · gx‖2 + εθ · ‖Mθ · gθ‖2] (13)

We can see the final optimization function formula 13, which actually adds the implicit gradient
regularization εx · ‖Mx ·gx‖2 and εθ · ‖Mθ ·gθ‖2 to a certain proportion of input x and parameters
θ after loss every time the parameter θ is updated. Gradient penalty pushes the gradient of some
parameters and inputs to approach zero, so that the model is likely to be optimized to a flatter
minimum.

In order to further visually analyze the effectiveness of the proposed method, we draw the high-
dimensional non-convex loss function with a visualization method proposed by (Li et al., 2018). We
visualize the loss landscapes around the minima of the empirical risk generated by standard training
or DropAttack, the 2D and 3D visualization are plotted in Figure 3. Additional loss visualization
are provided in the Appendix C. Define two direction vectors, α and β with the same dimensions as
θ, drawn from a Gaussian distribution with zero mean and a scale of the same order of magnitude as
the variance of layer weights. Then we choose a center point θ∗ and add a linear combination of α
and β to obtain a loss that is a function of the contribution of the two random direction vectors. And
we define a grid of points to evaluate the loss on i.e. range of values for δ and η for which L(δ, η) is
evaluated and stored.

L(δ, η) = L(θ∗ + δα+ δβ) (14)

The results show that the test loss L(δ, η)becomes lower and flatter during the training with DropAt-
tack. And DropAttack indeed selects flatter loss landscapes via masked adversarial perturbations.
Many studies have shown that a flatter loss landscape usually means better generalization (Hochre-
iter & Schmidhuber, 1997; Keskar et al., 2019; Ishida et al., 2020).

6 CONCLUSION

In this work, a masked weight adversarial training method, DropAttack is proposed to improve the
generalization ability of neural network models and prevent overfitting. The proposed algorithm
uses the gradient-based method to attack the weight parameters of input layer and hidden layer
according to a certain probability and enhances the generalization of the model by minimizing the
resultant adversarial risk. Experimental results prove that DropAttack can effectively improve the
generalization of models and prevent overfitting, especially in the field of NLP. In addition, it was
theoretically proven that the algorithm of the current work can regularize the gradient of model
weight parameters. Finally, the visual experiments indicate that the model with DropAttack drift
into an area with a flat loss landscape. Therefore, DropAttack can improve the robustness and
generalization of neural network and prevent overfitting. Further, the current adversarial training
still consumes more computing resources and time than the standard stochastic gradient descent.
This is thus a valuable research direction to accelerate the adversarial training while improving
generalization in the future.
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Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pp. 421–
436. Springer, 2012.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with doubly ad-
versarial inputs. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 4324–4333, 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. ICLR, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi Sugiyama. Do we need
zero training loss after achieving zero training error? In International Conference on Machine
Learning, pp. 4604–4614. PMLR, 2020.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima.
In 5th International Conference on Learning Representations, ICLR 2017, 2019.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. ICLR,
2017.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
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A ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

To prove the effectiveness of DropAttack, several experiments we conducted on five datasets: IMDB,
PHEME, AGnews, MNIST and CIFAR-10. The detailed experimental settings and results are shown
in Table 5, Table 6, Table 7, Table 8 and Table 9. The square brackets after DropAttack indicate the
object of perturbation. For example, DropAttack[Embedding, Lstm.ih.w] means adding perturbation
to Embedding and Lstm.ih.w parameters.

For an important discussion and research question: In addition to the perturbation of the input layer,
which layer’s weight parameters are better to perturb? According to our experimental results and
experience, for the perturbation of hidden layer parameters, the effect of being close to the input
layer will be better than that of being close to the output layer. Essentially, the perturbation of
the hidden layer is the perturbation of the higher-dimensional embedding of the input. Due to the
highly linearization of neural networks, small changes in the input vector may result in changes in
the output of multiple layers. Therefore, the deeper weight parameters need to be robust enough to
resist overfitting and prevent fitting to overly sensitive input features.

Table 5: Experimental details on the IMDB dataset.
Method Accuracy (%)
LSTM 88.12
LSTM + DropAttack[Embedding] ( e = 5, p = 0.5 ) 89.76
LSTM + DropAttack[Embedding, Fc.w] ( e = 5, p = 0.5 ) 88.60
LSTM + DropAttack[Lstm.hh.w] ( e = 5, p = 0.5 ) 86.64
LSTM + DropAttack[Lstm.ih.w] ( e = 5, p = 0.5 ) 89.80
LSTM + DropAttack[Embedding, Lstm.hh.w] ( e = 5, p = 0.5 ) 87.90
LSTM + DropAttack[Embedding, Lstm.ih.w] ( e = 5, p = 0.5 ) 90.21
LSTM + DropAttack[Embedding, Lstm.ih.w] ( e = 3, p = 0.7 ) 90.22
LSTM + DropAttack[Embedding, Lstm.ih.w] ( e = 5, p = 0.7 ) 90.34
LSTM + DropAttack[Embedding, Lstm.ih.w] ( e = 7, p = 0.7 ) 90.36
LSTM + DropAttack[Embedding, Lstm.ih.w] ( e = 9, p = 0.7 ) 90.23
LSTM + DropAttack[Embedding, Lstm.ih.w] ( e = 7, p = 0.9 ) 90.12
LSTM + DropAttack[Embedding, Lstm.hh.w, Lstm.ih.w] ( e = 5, p = 0.5 ) 89.56
LSTM + DropAttack[Embedding, Lstm.hh.w, Lstm.ih.w] ( e = 5, p = 0.6 ) 89.57
LSTM + DropAttack[Embedding, Lstm.hh.w, Lstm.ih.w] ( e = 5, p = 07 ) 89.66

Table 6: Experimental details on the PHEME dataset.
Method Accuracy/F1 (%)
BiLSTM 84.08/78.99
BiLSTM + DropAttack[Embedding] ( e = 5, p = 0.5 ) 85.69/79.97
BiLSTM + DropAttack[Lstm.hh.w] ( e = 5, p = 0.5 ) 86.00/80.03
BiLSTM + DropAttack[Lstm.ih.w] ( e = 5, p = 0.5 ) 83.40/78.64
BiLSTM + DropAttack[Fc.w] ( e = 5, p = 0.5 ) 84.60/79.32
BiLSTM + DropAttack[Embedding, Lstm.hh.w] ( e = 5, p = 0.5 ) 87.14/81.02
BiLSTM + DropAttack[Embedding, Lstm.hh.w] ( e = 5, p = 0.6 ) 87.14/81.04
BiLSTM + DropAttack[Embedding, Lstm.ih.w] ( e = 5, p = 0.5 ) 86.74/80.13
BiLSTM + DropAttack[Embedding, Lstm.hh.w] ( e = 5, p = 0.7 ) 87.15/81.31
BiLSTM + DropAttack[Embedding, Lstm.hh.w] ( e = 7, p = 0.5 ) 86.85/80.19
BiLSTM + DropAttack[Embedding, Lstm.hh.w] ( e = 7, p = 0.7 ) 86.95/80.27
BiLSTM + DropAttack[Embedding, Lstm.hh.w] ( e = 5, p = 0.8 ) 87.11/81.24
BiLSTM + DropAttack[Embedding, Lstm.hh.w, Lstm.ih.w] ( e = 5, p = 0.5 ) 85.54/79.57
BiLSTM + DropAttack[Embedding, Lstm.hh.w, Lstm.ih.w] ( e = 5, p = 0.7 ) 85.35/79.36
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Table 7: Experimental details on the AGnews dataset.
Method Accuracy (%)
BiGRU 91.87
BiGRU+ DropAttack[Embedding] ( e = 5, p = 0.5 ) 93.35
BiGRU+ DropAttack[Embedding] ( e = 5, p = 0.7 ) 93.34
BiGRU + DropAttack[Gru.hh.w] ( e = 5, p = 0.5 ) 92.25
BiGRU + DropAttack[Gru.ih.w] ( e = 5, p = 0.5 ) 92.46
BiGRU + DropAttack[Gru.hh.w, Gru.ih.w] ( e = 5, p = 0.5 ) 92.70
BiGRU + DropAttack[Fc.w] ( e = 5, p = 0.5 ) 92.24
BiGRU + DropAttack[Embedding, Gru.ih.w] ( e = 5, p = 0.5 ) 93.12
BiGRU + DropAttack[Embedding, Gru.ih.w] ( e = 5, p = 0.6 ) 93.21
BiGRU + DropAttack[Embedding, Gru.ih.w] ( e = 5, p = 0.7 ) 93.37
BiGRU + DropAttack[Embedding, Gru.hh.w] ( e = 5, p = 0.9 ) 92.70
BiGRU + DropAttack[Embedding, Gru.hh.w, Gru.ih.w] ( e = 5, p = 0.5 ) 93.12
BiGRU + DropAttack[Embedding, Gru.ih.w, Gru.ih.w.reverse] ( e = 5, p = 0.5 ) 92.88
BiGRU + DropAttack[Embedding, Gru.ih.w, Gru.ih.w.reverse] ( e = 5, p = 0.7 ) 92.94

Table 8: Experimental details on the MNIST dataset.
Method Accuracy (%)
LeNet-5 98.95
LeNet-5 + DropAttack[Input] ( e = 5, p = 0.5 ) 99.16
LeNet-5 + DropAttack[Conv.1.w] ( e = 5, p = 0.5 ) 99.08
LeNet-5 + DropAttack[Input, Conv.1.w] ( e = 5, p = 0.5 ) 99.27
LeNet-5 + DropAttack[Input, Conv.1.w] ( e = 5, p = 0.7 ) 99.25
LeNet-5 + DropAttack[Input, Conv.2.w] ( e = 5, p = 0.5 ) 99.12
LeNet-5 + DropAttack[Input, Conv.1.b] ( e = 5, p = 0.5 ) 99.10
LeNet-5 + DropAttack[Conv.2.w] ( e = 5, p = 0.5 ) 99.11
LeNet-5 + DropAttack[Conv.1.b, Conv.2.w] ( e = 5, p = 0.5 ) 99.09
LeNet-5 + DropAttack[Conv.1.w, Conv.2.w] ( e = 5, p = 0.5 ) 98.78
LeNet-5 + DropAttack[Conv.1.w, Fc.1] ( e = 5, p = 0.5 ) 98.93
LeNet-5 + DropAttack[Conv.2.w, Fc.1] ( e = 5, p = 0.5 ) 99.10
LeNet-5 + DropAttack[Conv.2.w, Fc.2] ( e = 5, p = 0.5 ) 99.05
LeNet-5 + DropAttack[Conv1.w, Conv2.w, fc1.w2] ( e = 5, p = 0.5 ) 98.48

Table 9: Experimental details on the CIFAR-10 dataset.
Method Accuracy (%)
VGGNet-16 84.67
VGGNet-16 + DropAttack[Input] ( e = 5, p = 0.5 ) 86.02
VGGNet-16 + DropAttack[Conv.1.w] ( e = 5, p = 0.5 ) 83.61
VGGNet-16 + DropAttack[Input, Conv.1.w] ( e = 1, p = 0.5 ) 86.01
VGGNet-16 + DropAttack[Input, Conv.1.w] ( e = 5, p = 0.5 ) 86.09
VGGNet-16 + DropAttack[Input, Conv.1.w] ( e = 5, p = 0.7 ) 86.02
VGGNet-16 + DropAttack[Input, Conv.3.w] ( e = 5, p = 0.7 ) 85.13
VGGNet-16 + DropAttack[Input, Conv.5.w] ( e = 5, p = 0.7 ) 85.13
VGGNet-16 + DropAttack[BatchNorm.1.w] ( e = 5, p = 0.5 ) 85.51
VGGNet-16 + DropAttack[Conv.2.w] ( e = 5, p = 0.5 ) 83.16
VGGNet-16 + DropAttack[Conv.6.w] ( e = 5, p = 0.5 ) 85.27
VGGNet-16 + DropAttack[BatchNorm.8.w] ( e = 5, p = 0.5 ) 85.32
VGGNet-16 + DropAttack[Conv.1.w, BatchNorm.1.w] ( e = 5, p = 0.5 ) 84.41
VGGNet-16 + DropAttack[Input, Conv.1.w, BatchNorm.1.w] ( e = 5, p = 0.5 ) 85.01
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B HYPERPARAMETER SENSITIVITY ANALYSIS

DropAttack has three tunable hyperparameters; perturbation coefficient ε, attack probability p (the
probability of attacking a weight param in the network) and number of forward-backward propaga-
tion K. The effect of varying these hyperparameters is explored. First, the value of K was fixed at 1
and let ε to take up the values of 0.001, 0.1, 1, 3, 5, 7 and 9 in turn whereas p take the values of 0,
0.1, 0.3, 0.5, 0.7, 0.9, 1 in turn, so that there is a total of 7 x 7 = 49 kinds of hyperparameter com-
binations and the experimental results are as shown in Table 10. The best performance is 90.36%
when = ε = 7 and p = 0.7. When p = 0, it means that the model is the standard training without
any attack and its accuracy is the lowest. Further it was found that the effect is significantly lowest
when p is less than 0.3 or greater than 0.9. When p =1, random masking is not used, although the
performance is improved but not much, because the attack combination is relatively single. From
these experimental results, it is thought that the hyperparameter p is best between 0.5 and 0.7.

Table 10: The influence of hyperparameters perturbation coefficient ε and attack probability p on
model performance. The tested dataset is IMDB, and the model structure is the same as that in Table
2. The top ten performance is emphasized in bold.

Perturbation coefficient †
ε = 0.01 ε = 0.1 ε = 1 ε = 3 ε = 5 ε = 7 ε = 9

Attack
probability‡

P = 0.0 88.12 88.12 88.12 88.12 88.12 88.12 88.12
P = 0.1 89.60 89.78 89.40 88.74 89.30 88.88 89.26
P = 0.3 89.98 90.12 90.02 90.10 90.04 90.28 89.74
P = 0.5 90.13 90.16 90.01 90.25 90.21 90.30 89.94
P = 0.7 90.17 90.32 90.18 90.20 90.18 90.36 90.14
P = 0.9 89.76 90.22 90.16 89.22 90.12 90.04 90.18
P = 1.0 89.86 89.54 89.74 89.40 90.02 89.90 90.10

† Note that εx and εθ are uniformly denoted by ε; ‡ px and pθ are uniformly denoted by p.

As shown in Figure 4, the impact of different attack probabilities is studied on model performance
under different perturbation coefficients. It is observed that the attack probability ranges from 0 to
0.7 and the performance of the model increases with increase in the attack probability, because the
intensity of the model attack is getting stronger. However, it was found that the attack probability
increased from 0.7 to 1, and the performance decreased instead. Therefore, because an excessively
high attack probability will reduce the diversity of attack combinations when p = 0, it is approxi-
mately a standard adversarial attack.

Figure 4: The impact of attack probability and perturbation coefficient on model performance.
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C ADDITIONAL LOSS VISUALIZATION

We visualize the test loss function landscapes of the standard training and DropAttack adversarial
training models separately. The 2D and 3D visualization results are shown in Figure 5 and Figure 6,
respectively. The structure and parameters of the models are derived from Section 4.2.

Figure 5: 2D visualization of the minima of the risk selected by standard training and DropAttack
on IMDB, PHEME, AGnews, MNIST, CIFAR-10 datasets, respectively. ∗ With DropAttack.

Figure 6: 3D visualization of the minima of the risk selected by standard training and DropAttack
on IMDB, PHEME, AGnews, MNIST, CIFAR-10 datasets, respectively. ∗ With DropAttack.
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