Under review as a conference paper at ICLR 2026

Q-LEARNING WITH FINE-GRAINED GAP-DEPENDENT
REGRET

Anonymous authors
Paper under double-blind review

ABSTRACT

We study fine-grained gap-dependent regret bounds for model-free reinforcement
learning in episodic tabular Markov Decision Processes. Existing model-free al-
gorithms achieve minimax worst-case regret, but their gap-dependent bounds re-
main coarse and fail to fully capture the structure of suboptimality gaps. We ad-
dress this limitation by establishing fine-grained gap-dependent regret bounds for
both UCB-based and non-UCB-based algorithms. In the UCB-based setting, we
develop a novel analytical framework that explicitly separates the analysis of op-
timal and suboptimal state-action pairs, yielding the first fine-grained regret upper
bound for UCB-Hoeffding (Jin et al., 2018). To highlight the generality of this
framework, we introduce ULCB-Hoeffding, a new UCB-based algorithm inspired
by AMB (Xu et al., 2021) but with a simplified structure, which enjoys fine-
grained regret guarantees and empirically outperforms AMB. In the non-UCB-
based setting, we revisit the only known algorithm AMB, and identify two key
issues in its algorithm design and analysis: improper truncation in the QQ-updates
and violation of the martingale difference condition in its concentration argument.
We propose a refined version of AMB that addresses these issues, establishing
the first rigorous fine-grained gap-dependent regret for a non-UCB-based method,
with experiments demonstrating improved performance over AMB.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) is a sequential decision-making framework
where an agent maximizes cumulative rewards through repeated interactions with the environment.
RL algorithms are typically categorized as model-based or model-free methods. Model-free ap-
proaches directly learn value functions to optimize policies and are widely used in practice due to
their simple implementation (Jin et al., 2018) and low memory requirements, which scale linearly
with the number of states. In contrast, model-based methods require quadratic memory costs.

In this paper, we focus on model-free RL for episodic tabular Markov Decision Processes (MDPs)
with inhomogeneous transition kernels. Specifically, we consider an episodic tabular MDP with .S
states, A actions, and H steps per episode. For such MDPs, the minimax regret lower bound over

K episodes is Q(v H2SAT), where T = K H is the total number of steps (Jin et al., 2018).

Many model-free algorithms achieve v/T-type regret bounds (Jin et al., 2018; Zhang et al., 2020;
Li et al., 2021; Xu et al., 2021; Zhang et al., 2025b), with two (Zhang et al., 2020; Li et al., 2021)
matching the minimax bound up to logarithmic factors. Except for AMB (Xu et al., 2021), which
uses a novel multi-step bootstrapping technique, all these methods rely on the Upper Confidence
Bound (UCB) approach to drive exploration via optimistic value estimates.

In practice, RL algorithms often outperform their worst-case guarantees when there is a positive
suboptimality gap, meaning the best action at each state is better than the others by some margin. In
the model-free setting, for UCB-based algorithms, Yang et al. (2021) proved the first gap-dependent
regret bound for UCB-Hoeffding (Jin et al., 2018), of order O(H®SA/A i), where O hides loga-
rithmic factors and Ay, is the smallest positive suboptimality gap Ay (s, a) over all state-action-step
triples (s, a, h). Later, Zheng et al. (2025b) improved the dependence on H for UCB-Advantage
(Zhang et al., 2020) and Q-EarlySettled-Advantage (Li et al., 2021). However, these results rely on
a coarse-grained term S A/ Ay, instead of the fine-grained Ay, (s, a), limiting their tightness.
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The only model-free, non-UCB-based algorithm, AMB, attempted to achieve a fine-grained regret
upper bound by incorporating two key components: Upper and Lower Confidence Bounds (ULCB)
and multi-step bootstrapping. In particular, ULCB leverages both UCB and Lower Confidence
Bound (LCB) techniques to select actions by maximizing the width of the confidence interval, and
multi-step bootstrapping updates Q-estimates with rewards of multiple steps from settled optimal
actions. However, as detailed in Section 4, the multi-step bootstrapping procedure encounters two
issues in its algorithm design and analysis. Algorithmically, the improper truncation in the multi-
step bootstrapping update (see lines 13-14 in Algorithm 1 of Xu et al. (2021)) breaks the key link
between the )-estimates and historical V-estimates (see their Equation (A.5)) that is essential for
the analysis. Theoretically, the concentration inequalities are incorrectly applied by centering the
estimators induced by multi-step bootstrapping on their expectations rather than on their conditional
expectations (see their Equation (4.2) and Lemma 4.1), violating the required martingale difference
conditions. These issues cast doubt on whether a fine-grained gap-dependent regret bound can be
established for non-UCB-based AMB algorithms.

In contrast, recent model-based works (Simchowitz & Jamieson, 2019; Dann et al., 2021; Chen
et al., 2025) have achieved fine-grained gap-dependent regret bounds of the following form:

H
~ 1 | Zopt]
O P SA ly(H

Z Z An(s,a) + Amin + poly(H) | ,
h=1 Ap(s,a)>0

where |Z,| denotes the number of optimal (s, a, k) triples. These results incorporate individual
suboptimality gaps Ap(s,a) and significantly reduce reliance on the global factor 1/A . This
progress naturally leads to the following open question:

Can we establish fine-grained gap-dependent regret upper bounds for model-free RL with
individual suboptimality gaps Ay (s, a) and improved dependence on 1/ Ay, ?

Answering this question is challenging. For UCB-based algorithms, establishing fine-grained
gap-dependent regret requires novel analytical techniques, particularly in bounding the cumulative
weighted estimation error of (Q-estimates. Existing works (Yang et al., 2021; Zheng et al., 2025b)
treat all state-action pairs uniformly in this analysis. However, it is insufficient for deriving fine-
grained results, as optimal and suboptimal pairs exhibit significantly different visitation patterns:
suboptimal pairs are typically visited only O(log T) times (Zhang et al., 2025a), where O captures
only the dependence on T'. Ignoring this imbalance leads to loose bounds and an overly conserva-
tive dependence on 1/A,;,. Regarding the non-UCB-based algorithm AMB, it remains unclear
whether the two estimators induced by multi-step bootstrapping jointly form an unbiased estimate
of the optimal ()-value function due to the randomness of the bootstrapping step. This property is
crucial for the concentration analysis used to prove the optimism of model-free RL algorithms, yet
it is not established in Xu et al. (2021).

In this paper, we give an affirmative answer to the open question above by establishing the first
fine-grained gap-dependent regret upper bounds for model-free RL, covering both UCB-based
and non-UCB-based algorithms. Our main contributions are summarized below:

A Novel Fine-Grained Analytical Framework for UCB-Based Algorithms. We develop a novel
framework that explicitly distinguishes the visitation frequencies of optimal and suboptimal state-
action pairs. Using this framework, we establish the first fine-grained, gap-dependent regret bound
for a popular UCB-based algorithm, namely UCB-Hoeffding (Jin et al., 2018). As shown in Sec-
tion 5, UCB-Hoeffding demonstrates improved empirical performance compared to AMB.

Two Refinements of the AMB Algorithm with Rigorous Fine-Grained Analysis. In Section 4,
we revisit the AMB algorithm and identify both algorithmic and analytical issues that undermine its
theoretical guarantees. We then propose two refinements of the AMB algorithm.

* UCB-Based Refinement. ULCB-Hoeftding (introduced in Section 3.2) simplifies the original
AMB design (Xu et al., 2021) by removing its problematic multi-step bootstrapping and retaining
only the ULCB mechanism. Using our UCB-based framework, we show that ULCB-Hoeffding
achieves a fine-grained regret bound, demonstrating that algorithms relying solely on the ULCB
principle can also achieve fine-grained guarantees. This further underscores the generality of our
UCB-based fine-grained analytical framework.
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* Non-UCB-Based Refinement. We also propose Refined AMB, a non-UCB-based refinement that
incorporates both ULCB and multi-step bootstrapping techniques. It has the following improve-
ment: (i) removes improper truncations in the Q-updates, (ii) rigorously proves that the estimators
induced by multi-step bootstrapping form an unbiased estimate of the optimal Q)-function, (iii)
ensures the martingale difference condition holds, which justifies applying concentration inequal-
ities to these estimators, and (iv) establishes tighter confidence bounds. These refinements allow
us to rigorously prove the first fine-grained regret upper bound for a non-UCB-based algorithm
and yield enhanced empirical performance, as shown in Section 5.

Technical Novelty. Our work introduces the following key technical innovations: (a) We analyze
each state-action pair separately at every step, enabling a fine-grained upper bound on the cumulative
weighted estimation error of the ()-estimates (Lemmas 3.2 and 3.3). (b) We establish a recursive re-
lationship for cumulative weighted visitation counts across steps, supporting an inductive argument
to obtain a fine-grained upper bound (Lemma 3.4), from which the expected regret upper bound
follows (Lemma 3.1). (c) We perform a state-specific decomposition of conditional expectations
in the concentration analysis of Refined AMB, enabling a recursive argument and induction over
steps to show that the sum of two multi-step bootstrapping estimators is unbiased (Theorem 4.1 and
Appendix F.3). The first two innovations, (a) and (b), form the core of our fine-grained analytical
framework, extending its applicability to a wider range of model-free RL algorithms, while (c) offers
a general technique for analyzing algorithms with multi-step bootstrapping.

2 PRELIMINARIES

In this paper, for any C' € N, we denote by [C] the set 1,2,...,C. We write [[z] for the indicator
function, which takes the value one if the event x is true, and zero otherwise. We also set ¢+ =
log(2S AT /p) with failure probability p € (0, 1) throughout this paper.

Tabular Episodic Markov Decision Process (MDP). A tabular episodic MDP is denoted as M :=
(S, A, H,P,r), where S is the set of states with |S| = S, A is the set of actions with |A| = A, H
is the number of steps in each episode, P := {P,}L, is the transition kernel so that P, (- | s,a)
characterizes the distribution over the next state given the state-action pair (s, a) at step h, and
r:= {rp}}L, are the deterministic reward functions with 5, (s, a) € [0, 1].

In each episode, an initial state s; is selected arbitrarily by an adversary. Then, at each step h € [H],
an agent observes a state s, € S, picks an action a;, € A, receives the reward r, = 71, (sp, ap) and
then transits to the next state s;1. The episode ends when an absorbing state sy is reached.

Policies and Value Functions. A policy 7 is a collection of H functions {wh :S— AA}}ILI,

where A% is the set of probability distributions over A. A policy is deterministic if for any
s € S, mp(s) concentrates all the probability mass on an action a € A. In this case, we denote
mh(s) = a. Let V7 : & — R denote the state value function at step i under policy 7. Formally,

Vh”(s) = Zg:h E(sh/,a,L/)N(P,w) [rh/(sh/, ah/) |8h = S] . We also use QZ : S x A — Rtode-
note the state-action value function at step h under policy 7, defined as Q7 (s,a) = r4(s,a) +
Zg:hﬂ E(s,ap )~ @) [Th (8h1yan) | sn = s,an = a] . Azar et al. (2017) proved that there al-
ways exists an optimal policy 7* that achieves the optimal value V;*(s) = sup, V7 (s) = V/™ (s)
and Q% (s,a) = sup, Q7 (s,a) = QT (s,a) forall (s, h) € S x [H]. For any (s, a, h), the following
Bellman Equation and the Bellman Optimality Equation hold, with V7, ,(s) = 0=V} ,(s) = 0:

V}Z‘—(S) = Ea/Nﬂh(S)[QZ(S, a’)] and V;:(S) = mMaXg e A QZ(Sa a,) (1)
Qp(s,a) = rn(s,a) + PsanVily, @h(s,a) = (s, a) + PsanViyy.

For any algorithm over K episodes, let 7% be the policy used in the k-th episode, and s¥ be the

corresponding initial state. The regret over T = H K steps is Regret(T') := 25:1 (V- Vfrk) (s%).

Suboptimality Gap. For any given MDP, we can provide the following formal definition.

Definition 2.1. For any (s, a, h), the suboptimality gap is defined as Ay (s, a) := V7 (s) — Q7 (s, a).

Equation (1) ensures that Ay (s, a) > 0 for any (s, a,h) € S x A x [H]. Accordingly, we define the
minimum gap at each step h as follows.
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Definition 2.2. Define Ay p, := inf{An(s,a) : Ap(s,a) > 0,Y(s,a) € S x A} as the minimum
gap at step h. If the set {Ap,(s,a) : Ap(s,a) > 0,Y(s,a) € S x A} is empty, we set Ay j, = 00

Most gap-dependent works (Simchowitz & Jamieson, 2019; Xu et al., 2020; Dann et al., 2021; Yang
et al., 2021; Zhang et al., 2025a) define a minimum gap as Ay, := inf{A(s,a) : Ax(s,a) >
0, ¥(s,a,h) € S x A x [H]}. By definition, it is obvious that Apyin j, > Amin for all h € [H].

3 FINE-GRAINED REGRET UPPER BOUND FOR UCB-BASED ALGORITHMS

In this section, we present the first fine-grained, gap-dependent regret analysis for a UCB-based
algorithm—UCB-Hoeffding (Jin et al., 2018), using our novel framework introduced in Section 3.3.
To demonstrate the generality of our approach, we introduce a new UCB-based algorithm, ULCB-
Hoeffding, in Section 3.2 and establish a fine-grained regret bound for it with the same framework.

3.1 THEORETICAL GUARANTEES FOR UCB-HOEFFDING

We first review UCB-Hoeffding in Algorithm 1. At the start of any episode k, it keeps an upper

bound Q¥ on Q} for each (s, a, h), and selects actions greedily. The update of Q¥ uses the standard

Bellman update with step size 7, = Z+L and a Hoeffding bonus b;. For convenience, for any

H+t
N € N, and 1 < i < N, we additionally define nJ = 1, )Y = 0 and n¥ = »; Hl,_zﬂ(l —nir).

Algorithm 1 UCB-Hoeffding
1: Initialize Q},(s,a) + H and N} (s,a) < 0 forall (s, a, h).

2: for episode k = 1,. .., K, after receiving s¥ and setting VII}—&-l =0,do

3: forsteph=1,...,H do

4: Take action a} = argmax,, QJ (s}, a’), and observe s} _ ;.

5 t;]l\fkﬂ(s;f,a’;)<—N;f(s§fl,aﬁ)+1; by < 2/ H3./t.

6 h+ (8h7 aﬁ) (1- nt)Q§(327ai) + e [rh(Sﬁ, alli) + Vierl(SﬁJrl) + bt]'
7: Vit (sk) = min { H, max,re 4 QI (sk, a)}.

8 h(5,0) = Qh(s,0), Vi (s) = ViE(s), ¥(s,a) # (s, af).

9 end for

10: end for

Next, we present the fine-grained gap-dependent regret upper bound for UCB-Hoeffding.
Theorem 3.1. For UCB-Hoeffding (Algorithm 1), the expected regret E[Regret(T')] is bounded by

2
H? log(SAT) " H? (Zf:thl V ‘Zopt,t|> log(SAT) S Al )
Z Z Ah(’S? a) * Z Amin,h + ' ( )

h=1 A} (s,a)>0 h=1

Here for any h € [H), Zoyp, = {(s,a) € S x A|Ap(s,a) =0} with S < |Zoy | < SA.

In the ideal case where the MDP contains only a single suboptimal state-action-step triple (s, a, h)
with h = H, our result exhibits a significantly improved dependence on the minimum gap, namely
O(H?®/ Apin), compared to the O(H%SA/Apmin) dependence in Yang et al. (2021). Even in the
worst scenario where all suboptimality gaps satisfy Ay, (s, a) = Amin, our result degrades gracefully
to match the result in Yang et al. (2021). These findings demonstrate that our result outperforms that
of Yang et al. (2021) in all cases for the UCB-Hoeffding algorithm.

By applying the Cauchy—Schwarz inequality and noting that Apyin j, > Ay for all b € [H], we can
derive the following weaker but simpler upper bound on the expected regret from Equation (2):

Z > H®log(SAT) | H’|Zoy|log(SAT)

AH?
Ah (57 a) Amin + S ’

h=1 A} (s,a)>0

where Zoy = {(s,a,h) € S x Ax [H]|Ap(s,a) = 0} is the set of optimal state-action-step triples.
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Remark: The lower bound established in Simchowitz & Jamieson (2019) shows that any UCB-
based algorithm, such as UCB-Hoeffding, must incur a gap-dependent expected regret of at least

u 1 S
O R T

Z Z Ah(sv a) * Amin

h=1 A} (s,a)>0
Our result matches this lower bound up to polynomial factors in H in the ideal scenario where | Zop|
is independent of A, such as in MDPs with a constant number of optimal actions per state.
Xu et al. (2021) also provides a lower bound Q(|Zmu1| /Anmin) for all types of algorithms when H.S <
| Za| < H52. Here, for any h € [H],

Zou ={(s,a,h) € S x Ax [H] | Ap(s,a) =0, | Zopt,n(s)| > 1},

where Zopn(s) = {a € A | Ap(s,a) = 0}. When HS < |Zya| < Z52, it holds that | Zoy| <
2|Zmul|, and therefore the lower bound can be expressed as Q(|Zopl| /Amin). This demonstrates the
tightness of the dependence on | Zyp|/ Amin in the second term of our result.

3.2 THEORETICAL GUARANTEES FOR ULCB-HOEFFDING

In this subsection, we introduce ULCB-Hoeffding, a UCB-based refinement of AMB (Xu et al.,
2021), which also achieves a fine-grained regret upper bound and demonstrates improved empirical
performance over AMB. Importantly, our fine-grained analytical framework presented in Section 3.3
naturally extends to this variant, demonstrating the framework’s flexibility and generality.

The ULCB-Hoeffding algorithm is presented in Algorithm 2. At the start of each episode k, ULCB-
Hoeffding maintains upper and lower bounds, @i(& a) and Q:(s, a), of the optimal value func-

tion Q} (s, a) for any (s,a,h). It then constructs a candidate action set A% (s) by eliminating ac-
tions that are considered suboptimal (see line 14 in Algorithm 2). Specifically, if action a satisfies

@Z—H(s, a) < KZH(S), then by line 9 in Algorithm 2, there exists another action a’ such that
Q5 (s,a) < @:H(s, a) < Vitl(s) < Q:H(s, a’) < Q7 (s,a’), which confirms that the action a
is suboptimal. At the end of episode k, the new policy WZH (s) is chosen to maximize the width of

. —k+1 . S .
the confidence interval (Q; ~ — Q:H)(s, a), which measures the uncertainty in the ()-estimates.

Algorithm 2 ULCB-Hoeftding

1: Initialize: Set the failure probability p € (0, 1), @2(5, a) = V}l(s) — H, Q}L(s, a) =V} (s) =
N}(s,a) < 0and A4} (s) = Aforany (s,a,h) € S x A x [H].

2: for episode k = 1,..., K, after receiving s¥ and setting VZH = K’;H_l(s) =0,do
3: forsteph=1,...,H do

—k .
A afgmaxaeA;g(s)(Qh —Qﬁ)(sﬁaa% lf|A’fL(3]fi)| >1

* Choose ai the only element in A% (s5), if |[AF(sF)] =1 and get sf. -
5: Sett = NF ™ (sk,af) « N[(sk,af) + 1 and the bonus b, = 2/H?3:/t, and update:
6 Q) (shak) = (1 —n0)@n(shab) + e [ralshiab) + Vi (shy) +be)

T QT (shah) = (L= mn)Qp (s ab) e [ru(sh af) + Vh L (sh ) = br)

8 VZH(SQ) = min {H, maX,e Ak (sk) @:Jrl(slﬁv a)} .

9 VET(sF) = max {O, MaXge Ak (sk) Q};H(Sﬁ, a)} .

10: end for

11:  for (s,a,h) € S x Ax [H]\ {(s¥,af)}L do

12: @ (s.a) = Qnls,0), Q" (s,0) = Q¥ (s5,0), VT (5) = Vo (s). VT (s) = Vi (s).
13: end for

14 Y(s,h) € S x [H], update A" (s) = {a € Ak(s): Q) (s,a) > VFT1(s)}.

15: end for
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The main difference between ULCB-Hoeffding and AMB lies in the Q-updates. ULCB-Hoeffding
uses the standard Bellman update (lines 67 of Algorithm 2), similar to UCB-Hoeffding (line 6 of
Algorithm 1), which is essential to prove a fine-grained regret upper bound. In contrast, AMB uses
a multi-step bootstrapping update, which will be detailed in Section 4 and Appendix F.1. We now
present both worst-case and gap-dependent regret upper bounds for ULCB-Hoeffding.

Theorem 3.2. For any p € (0,1), let © = log(2SAT/p). Then with probability at least 1 — p,

ULCB-Hoeffding (Algorithm 2) satisfies Regret(T) < O(vV H*SATL).

This result demonstrates that ULCB-Hoeffding achieves a worst-case regret upper bound of order
\/T, matching the performance of UCB-Hoeffding (Jin et al., 2018).

Theorem 3.3. For ULCB-Hoeffding (Algorithm 2), the expected regret is upper bounded by (2).

ULCB-Hoeftding thus achieves the same fine-grained gap-dependent regret upper bound as UCB-
Hoeffding. As noted in Section 3.1, the guarantee in Equation (2) matches the lower bound estab-
lished by Simchowitz & Jamieson (2019) for UCB-based algorithms, with a tight dependence on
| Zopt| / Amin that also aligns with the lower bound in Xu et al. (2021), up to polynomial factors in H.

3.3 A NOVEL FINE-GRAINED ANALYTICAL FRAMEWORK

In this subsection, we introduce the novel analytical framework used to derive fine-grained, gap-
dependent regret upper bounds. Full proofs are deferred to Appendices D and E. We focus on
UCB-Hoeffding, as the analysis for ULCB-Hoeffding proceeds in a similar manner. The key ideas
of our fine-grained analytical framework are summarized below:

(1) We first establish Lemma 3.1, which upper-bounds the regret by the expectation of the cumula-
tive weighted visitation counts Y1 3" Ay (s,a) N1 (s, a) and further relates this term to the
cumulative weighted estimation errors Y1 wk(QF — Q7)(s%, ab).

(2) We then bound the cumulative weighted estimation errors by establishing a recursive relationship
between consecutive steps (Lemma 3.2) and propagating it to the final step [/ (Lemma 3.3).

(3) Using Lemmas 3.2 and 3.3, we derive a recursive relation for the cumulative weighted visita-
tion counts Zle Y osa Anls, a) N[ (s, a) across steps, which enables an inductive argument to
derive a fine-grained upper bound and subsequently bound the expected regret via Lemma 3.1.

3.3.1 BOUNDING EXPECTED REGRET WITH CUMULATIVE WEIGHTED ESTIMATION ERROR

We begin with Lemma 3.1 that connects expected regret to suboptimality gaps:
Lemma 3.1. For the UCB-Hoeffding algorithm with K episodes and total T' = H K steps, we have:

H
E [Regret(T)] = E (Z Z Ap(s,a) NiET (s, a)) .

h=1 s,a

Lemma 3.1 holds universally for any learning algorithm, as shown in Lemma D.2. Therefore, bound-
ing the expected regret reduces to controlling Ethl Y saDn(s,a)N, K+1(s,a), which can further

be bounded by the cumulative estimation error S5, S"% | (QF — Q}) (sf, af). In particular, for
any step h and episode &, with high probability, we have

(@5 — Q1) (siyak) = Vi) — Qi(shy a) = Vii(s) — Qi(sh, a) = An(sh, ai). (3)

Here, the first inequality follows from line 7 of Algorithm 1, and the second holds due to the opti-
mism property V¥ > V* and QF > Q3 of UCB-Hoeffding (see Lemma D.1). With Equation (3),
prior works (Yang et al., 2021; Zheng et al., 2025b) focused on bounding the cumulative weighted
estimation error 31, wk (QF — Q%)(sk, ak) and established the following type of upper bound:

K H H
> wh(QF — Q) (s, af) <O (Z \/H3SAHw(h)||oo,hf||w<h)|\1,hw +> C(h’)) , @

k=1 h=h' h=h’
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where {wF}X | is any given non-negative weight sequence, and {w¥, }X_, is the recursively defined
weight sequence at step A’ given in Equation (5). We also denote [|w(h)||oe,ns = maxge(x) wf (h)
and [|w(h) |1 = Zle wk, (h), and use C'(h') to collect the remaining terms at step A’

Equation (4) is obtained by applying the Cauchy—Schwarz inequality to the cumulative weighted
bonus ), wfbb Nj over all state-action pairs at any step h. However, as shown in Lemma 4.1 of
Zhang et al. (2025a), in the gap-dependent setting, suboptimal state-action pairs (s, a) at any step

h with Q% (s,a) < V;*(s) are visited at most O(log T') times, whereas optimal pairs can be visited
infinitely often. Thus, uniform analysis of all state-action pairs leads to loose bounds.

3.3.2 SEPARATE ANALYSIS FOR EACH STATE-ACTION PAIR

To address the looseness of uniform analysis, we analyze the cumulative weighted estimation error
for each state-action pair at every step, enabling tighter control.

For any given step h and non-negative weight sequence {w, HE_ |, we define the following weights
forany k € [K], h < h' < H:
o N
wi () = wi; w1 (R) Z th, Th [ki(sf;;,aﬁ;7lz') =k|. (5)
k=1 i=1
with the norm

lo(B) oo, = max wis (B), [lw(R)[l1nr =Y wis (h)
ke[K]
Here, k(s, a, h) denotes the episode index of the i-th visit to (s, a, k), and the shorthand N, ,’f,/ =
N, (sk,, ak,) denotes the number of visits to (s}, a¥,, h') before episode &’.
For each state-action pair (s, a), we define the state-action specific weight at any step h < h/ < H

aswf, (h,s,a) == wf, (k) - 1[(s},, af,) = (s,a)] with the corresponding norms given by

X K
JeoCh, 5, )lloe e = s o (b, 5, ), o) e = 37

- wﬁ,(h, S, a).

Additionally, to account for contributions propagated to the next step h+ 1, for any (s, a), we define:

N}:l(s U‘hl)
St = Yook 3 L[l o =k, 6 ) = ()]
k'=1 =1

We are now ready to present Lemma 3.2, which bounds the cumulative weighted estimation error for
each state-action-step triple. It is derived by recursively using the Q-update (line 6 of Algorithm 1).
The detailed statement is given in Lemma D.3, followed by its proof.

Lemma 3.2. For UCB-Hoeffding algorithm, with probability at least 1 — p, for any non-negative
weight sequence {wk}p, , it holds simultaneouslyfor any (s,a,h) € S x A x [H] that:

K
ZWZ (Q’fi - QZ) (s, ap)Il(sh.ap) = Z Wh+1 (h,s,a) Q]}CL+1 - QZ+1)(5;€L+17GZ+1)

k=1 k'=1

[ (R) oo, H -+ 164/ H3wo(h)

(hvsva)Hl,hL- (6)

Summing Equation (6) over all state-action pairs (s, a), we establish a recursive relationship between
the cumulative weighted estimation error at step h and step h + 1. Iteratively applying this recursion
over steps h’ = h, ..., H, and using the recursively defined weights w}’j, (h), we obtain Lemma 3.3:

Lemma 3.3. For UCB-Hoeffding algorithm, with probability at least 1 — p, for any non-negative
weight sequence {wr}, 1, it holds simultaneously for any (s, a,h) € S x A x [H] that:

K H
S wk @~ @50k < 30 (1) loe e SAH +16 3 /() el 5, ) 1ot
k=1 h'=h s,a
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The formal statement is presented in Lemma D.4, followed by its proof. Unlike the upper bound
derived from the uniform analysis in Equation (4), Lemma 3.3 retains the individual contributions
VH3[w(h)]oo,n ||w(h 8,a)l|1,n7¢. This allows a tighter upper bound under the uneven visitations
across dlfferent triples in the gap-dependent analysis.

3.3.3 INDUCTIVE ANALYSIS FOR CUMULATIVE WEIGHTED VISITATION COUNTS

We partition the state-action pairs (s, a) at each step i’ into two subsets: Z ;/ containing optimal
state-action pair, where A/ (s,a) = 0, and Zgp 1y = {(s,a)|Ap (s, a) > 0} containing suboptimal
stat-action pairs. Then for any given step h, when Equation (3) holds, we set the weight as:

wi =1[(QF — Q) (sk,af) = An(sy,ap), (sh.ary) € Zavn| =1[(s),af) € Zauvn] < 1.

The second equality follows directly from Equation (3). Using this choice, applying Lemma 3.2, the
bound [|w(h)||co,n < 1, and the fact that |lw(h, s,a)|1.n < NS (s,a), we obtain the following
inequalities for any state-action pair (s, a) € Zgp i

Ap(s,a) Ny F(s,a) < Z r(Qh — Qi) (sh, ap)(sh, ai) = (s,a)]

< Zk’:l (‘Dh-i-l(hv 57a)(Qh+1 — Q1) (Shyrsahy) + H+ 164/ H3N (s, a)e. (7)

Solving this inequality for Ay (s,a) NS (s, a) with (s,a) € Zp,p and Ay (s, a) > 0, we reach:

256 H®. Sy : . S
An(s,a) NS (s,0) < Anls.a) +2H +2 Z Ship1(hys,0)( Q1 = Qhgd) (Shi1s Thir)-
’ k=1

Define ), as the summation over all suboptimal state-action pairs (s,a) € Zgp,n. Summing the
inequality above over all (s,a) € Zgp. 5, and noting that Ay, (s, a) = 0 for (s,a) ¢ Zsw.n,

Z ‘DZJrl(h? s,a) < Z ‘Dlli+1(h7 s,a) = WZJrl(h)’

sub s,a
together with the optimism property QF 41 > @}, by Lemma D.1, we obtain:
256 H®, o
Z An(s,a) NS (s,0) < Z +25AH+2 Z Wit (W)(Qhiy = Qi) (5415 Al )-

Ap(s,a)
s,a sub k'=1

For each k € [K] and the given initial weight w} , | := wy’ , (h) at step h+1, the recursive definition
in Equation (5) generates a new sequence {w;f, (1)}, 1 These new sequences together satisfy
HLU(h + 1)||<X>7h' = ||w(h)H<X>7h’7 ”w(h +1,s, a)”l,h' = ||W(h, S, a)”l:h"

Applying Lemma 3.3 to the sum of weighted errors

K K
Z Wh+1 Qh+1 Qhr1)(Shi1>ahi1),

k'=1

and defining C’'(h) = O(H?SA+ Y, H®./Ay(s,a)) to collect the remaining terms, we have

H
ZAh(s,a)N}fﬂ'l(s,a) <C'(h)+32 Z Z \/H3|\w(h)||oo7h/||w(h, s,a)lli,pe. (8)

s,a h'=h+1 s,a

To bound the last term in Equation (8), we apply the Cauchy—Schwarz inequality by distinguishing
between optimal and suboptimal state-action pairs. Specifically, we apply the inequality separately
to the optimal state-action pairs in Zyp 5 for each step 2/, and collectively to all suboptimal state-
action pairs across steps h < h’ < H. This separation enables a sharper bound of:

\/H3 Z Ah/ S CL Z Ah/ 8 aNK+1 Z \/H3\Z0pth/|||w )

. 9)

sub,h . sub, h’ h'=h+1
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Here the shorthand 3~ ,, denotes the summation over all (s, a) € Zsu,ns for h < h' < H. This
result also relies on the following three properties proved in Equations (23) to (25) of Lemma D.5:

lo(B)lloor < 3, [lw(hy 5,10 < O (Njr T (s,0)) 5 Y llw(hy s, a)|lnr < Jlw(B)1n-

)

Plugging the bound from Equation (9) into Equation (8) yields a recursive relation between
Do An(s, a)N}fﬂ'l(s, a) at step h and future steps. Applying induction from H down to 1, we

obtain a fine-grained upper bound on the cumulative weighted visitation >, , Ay (s, a) NE (s, a).

Lemma 3.4. For UCB-Hoeffding algorithm and a sufficiently large constant ¢; > 0, with probabil-
ity at least 1 — p, it holds simultaneously for any h € [H| that:

2
Z Ah(s,a)N}f(H(s,a) < SAH? + EH: Z HA, H3 (Zih+1 \ /|Zopt,t|) L

c Ap(s,a A
s,a 1 h'=h A, (s,a)>0 h/( 5 ) min,h

. H? (ZtH:h'-«-l V |Z0pl,t|>2L
+ ) .

h/=h+1

Amin,h’

The full proof is provided in Lemma D.5. By combining this result with Lemma 3.1, we complete
the proof of Theorem 3.1, establishing the desired fine-grained, gap-dependent regret upper bound.

4 FINE-GRAINED GAP-DEPENDENT REGRET UPPER BOUND FOR AMB

The AMB algorithm (Xu et al., 2021) was proposed to establish a fine-grained, gap-dependent regret
bound. However, we identify issues in both its algorithmic design and theoretical analysis that
prevent it from achieving valid fine-grained guarantees. We first summarize these issues below.

Improper Truncation of ()-Estimates in Algorithm Design. AMB maintains upper and lower
estimates on the optimal @-value functions, denoted by () and @), respectively. However, during
multi-step bootstrapping updates of these estimates, it applies truncations at H and 0 (see lines
13-14 in Algorithm 3). This design breaks the recursive structure linking ()-estimates to historical
V-estimates. In particular, it invalidates their Equation (A.5), which is essential for establishing the
theoretical guarantee on the optimism and pessimism of Q-estimates () and @), respectively.

Violation of Martingale Difference Conditions in Concentration Analysis. AMB uses multi-step
bootstrapping and constructs (Q-estimates by decomposing the ()-function into two parts: rewards
accumulated along states with determined optimal actions, and those collected from the first state
with undetermined optimal actions. When proving optimism and pessimism of the ()-estimates
(see their Lemma 4.2), Xu et al. (2021) attempt to bound the deviation between the ()-estimates
and Q* using Azuma—Hoeffding inequalities. However, when analyzing the two estimators arising
from the Q-function decomposition (see their Equation (4.2) and Lemma 4.1), each term is centered
around its expectation rather than its conditional expectation, violating the martingale difference
condition required for Azuma—Hoeffding.

These issues compromise the claimed optimism and pessimism guarantees for the ()-estimates and
invalidate the stated fine-grained gap-dependent regret upper bound in Xu et al. (2021). A detailed
analysis is provided in Appendix F.1.

To address these issues, we introduce the Refined AMB algorithm with the following refinements:

(a) Revising Update Rules. We remove the truncations in the updates of (J-estimates and instead
apply them to the corresponding V -estimates. This preserves the crucial recursive structure linking
(Q-estimates to historical V-estimates used in the theoretical analysis.

(b) Establishing Unbiasedness of Multi-Step Bootstrapping. We rigorously prove that the esti-
mators from multi-step bootstrapping form an unbiased estimate of the optimal value function Q*.

(c) Ensuring Martingale Difference Condition. We ensure the validity of Azuma—Hoeffding in-
equalities by centering the multi-step bootstrapping estimators around their conditional expectations.
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(d) Tightening Confidence Bounds. By jointly analyzing the concentration of both estimators, we
tighten the confidence interval and halve the bonus, leading to improved empirical performance.

These modifications not only ensure theoretical validity but also yield improved empirical perfor-
mance. The refined algorithm is presented in Algorithms 4 and 5 of Appendix F.2. We further
establish the following optimism and pessimism properties for its ()-estimates.

Theorem 4.1 (Informal). For the Refined AMB algorithm, with high probability, @:(s,a) >
Qi (s,a) > Qi(s, a) holds simultaneously for all (s,a,h,k) € S x A x [H] x [K].

The formal statement is given in Theorem F.1, with its proof in Appendix F.3. Based on this result,
we can follow the remaining analysis of Xu et al. (2021) to prove the following regret upper bound:

H 5 5
0(2 S H?log(SAT)  H |Zmuulog(SAT>). (10)

h=1Ap(s,a)>0 Ah(s’ a) Amin

This result contains a dependence on O(SAH®) as shown in Appendix F.4.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments' conducted in synthetic environments, evaluat-
ing four algorithms: AMB, Refined AMB, UCB-Hoeffding, and ULCB-Hoeffding. We consider
four experiment scales with (H, S, A, K) = (2,3, 3,10°), (5,5,5,6 x 10°),(7,8,6,5 x 10°), and
(10,15,10,2 x 107). For each (s, a, h), rewards r,(s, a) are sampled independently from the uni-
form distribution over [0, 1], and transition kernels P (- | s, a) are drawn uniformly from the S-
dimensional probability simplex. The initial state of each episode is selected uniformly at random
from the state space.

We also set ¢ = 1 and the bonus coefficient ¢ = 1 for UCB-Hoeffding, ULCB-Hoeffding, and Re-
fined AMB, and ¢ = 2 for AMB. This is because AMB applies concentration inequalities separately
to the two estimators induced by multi-step bootstrapping. In contrast, all other algorithms, includ-
ing the Refined AMB that combines the concentration analysis for multi-step bootstrapping, apply
the concentration inequality only once, resulting in a bonus term with half the constant.

To report uncertainty, we collect 10 sample trajectories per algorithm under the same MDP instance.
In Figure 1 of Appendix B, we plot Regret(7")/ log(K + 1) versus the number of episodes K. Solid
lines indicate the median regret, and shaded regions represent the 10th-90th percentile intervals.

The results show that ULCB-Hoeffding and Refined AMB achieve comparable performance, both
outperforming the original AMB, while UCB-Hoeffding performs the best overall. In all settings,
the regret curves for all algorithms except AMB flatten as K increases, indicating logarithmic growth
in regret, which is consistent with the fine-grained theoretical guarantees.

6 CONCLUSION

This work establishes the first fine-grained, gap-dependent regret bounds for model-free RL in
episodic tabular MDPs. In the UCB-based setting, we develop a new analytical framework that
enables the first fine-grained regret analysis of UCB-Hoeffding and extends naturally to ULCB-
Hoeffding, a simplified variant of AMB. In the non-UCB-based setting, we refine AMB to address
its algorithmic and analytical issues, deriving the first rigorous fine-grained regret bound within this
regime and demonstrating improved empirical performance.

ETHICS STATEMENT

This work is purely theoretical and does not involve human subjects, personal data, or any exper-
iments requiring ethical approval. We have followed all guidelines outlined in the ICLR Code of

'All experiments were conducted on a desktop equipped with an Intel Core i7-14700F processor and com-
pleted within 12 hours. The code is included in the supplementary materials.
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Ethics, ensuring transparency, integrity, and fairness throughout the research process. There are no
foreseeable ethical concerns or potential harms related to this study.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed theoretical analyses, including a clearly defined tab-
ular MDP framework and assumptions in Section 2, as well as proof sketch outlines in Sections 3
and 4. Full proofs are included in the appendix. For the empirical results included in Section 6, all
experiments were conducted on a desktop equipped with an Intel Core 17-14700F processor over a
12-hour period. The complete source code is provided in the supplementary materials to support
independent verification.
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In the appendix, Appendix A reviews related work. Appendix B provides the experimental results.
Appendix C presents several lemmas that facilitate our proof. Appendix D establishes the fine-
grained gap-dependent regret upper bound for the UCB-Hoeffding algorithm, representing the first
such result for a UCB-based method. Appendix E applies the same fine-grained analytical frame-
work from Appendix D to derive the gap-dependent regret upper bound for the ULCB-Hoeffding
algorithm. Finally, Appendix F provides a detailed analysis of both algorithmic and technical issues
in the original AMB algorithm and presents a proof of the fine-grained regret upper bound for our
refined version of the AMB algorithm.

A RELATED WORK

Online RL for Tabular Episodic MDPs with Worst-Case Regret. There are mainly two types of
algorithms for reinforcement learning: model-based and model-free algorithms. Model-based algo-
rithms learn a model from past experience and make decisions based on this model, while model-free
algorithms only maintain a group of value functions and take the induced optimal actions. Due to
these differences, model-free algorithms are usually more space-efficient and time-efficient com-
pared to model-based algorithms. However, model-based algorithms may achieve better learning
performance by leveraging the learned model.

Next, we discuss the literature on model-based and model-free algorithms for finite-horizon tabular
MDPs with worst-case regret. Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade
et al. (2018), Agarwal et al. (2020), Dann et al. (2019), Zanette & Brunskill (2019),Zhang et al.
(2021), Zhou et al. (2023) and Zhang et al. (2024) worked on model-based algorithms. Notably,
Zhang et al. (2024) provided an algorithm that achieves a regret of O(min{v SAH?2T,T}), which
matches the information lower bound. Jin et al. (2018), Zhang et al. (2025b), Zhang et al. (2020),
Li et al. (2021) and Ménard et al. (2021) work on model-free algorithms. The latter three have
introduced algorithms that achieve minimax regret of O(v SAH?2T). There are also several works
focusing on online federated RL settings, such as Zheng et al. (2024), Labbi et al. (2024), Zheng
et al. (2025a), and Zhang et al. (2025b). Notably, the last three works all achieve minimax regret
bounds up to logarithmic factors.

Suboptimality Gap. When there exists a strictly positive suboptimality gap, logarithmic regret be-
comes achievable. Early studies established asymptotic logarithmic regret bounds (Auer & Ortner,
2007; Tewari & Bartlett, 2008). More recently, non-asymptotic bounds have been developed (Jaksch
et al., 2010; Ok et al., 2018; Simchowitz & Jamieson, 2019; He et al., 2021). Specifically, Jaksch
et al. (2010) designed a model-based algorithm whose regret bound depends on the policy gap in-
stead of the action gap studied in this paper. Ok et al. (2018) derived problem-specific logarithmic-
type lower bounds for both structured and unstructured MDPs. Simchowitz & Jamieson (2019)
extended the model-based algorithm proposed by Zanette & Brunskill (2019) and obtained logarith-
mic regret bounds. More recently, Chen et al. (2025) further improved model-based gap-dependent
results. Logarithmic regret bounds have also been established in the linear function approximation
setting (He et al., 2021), and Nguyen-Tang et al. (2023) provided gap-dependent guarantees for
offline RL with linear function approximation.

Specifically, for model-free algorithms, Yang et al. (2021) demonstrated that the UCB-Hoeffding al-
gorithm proposed in Jin et al. (2018) achieves a gap-dependent regret bound of O(H 6SAT/ Apin )
This result was later improved by Xu et al. (2021), who introduced the Adaptive Multi-step Boot-
strap (AMB) algorithm to achieve tighter bounds. Furthermore, Zheng et al. (2025b) provided gap-
dependent analyses for algorithms with reference-advantage decomposition (Zhang et al., 2022; Li
et al., 2021; Zheng et al., 2025a). More recently, Zhang et al. (2025a) and Zhang et al. (2025b)
extended gap-dependent analysis to federated (-learning settings.

There are also some other works focusing on gap-dependent sample complexity bounds (Jonsson
et al., 2020; Al Marjani & Proutiere, 2020; Al Marjani et al., 2021; Tirinzoni et al., 2022; Wagen-
maker et al., 2022b; Wagenmaker & Jamieson, 2022; Wang et al., 2022; Tirinzoni et al., 2023).

Other Problem-Dependent Performance. In practice, RL algorithms often outperform what their
worst-case performance guarantees would suggest. This motivates a recent line of works that in-
vestigate optimal performance in various problem-dependent settings (Fruit et al., 2018; Jin et al.,
2020; Talebi & Maillard, 2018; Wagenmaker et al., 2022a; Zhao et al., 2023; Zhou et al., 2023).
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B EXPERIMENTAL RESULTS

This section provides the four numerical plots for four experiment scales with (H, S, A, K)

(2,3,3,10%),(5,5,5,6 x 10°),(7,8,6,5 x 10°), and (10,15,10,2 x 107) in Section 5. The al-
gorithms evaluated are AMB, represented by the blue curve; ULCB-Hoeffding, shown in purple;
Refined AMB, depicted in green; and UCB-Hoeffding, indicated by the red curve.
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(d) Regret for (H, S, A) = (10,15, 10)

Figure 1: Regret Comparison of Different Algorithms.

Each plot displays the comparative performance of four distinct algorithms. In each plot, we col-
lect 10 sample trajectories per algorithm under the same MDP instance and plot the results of
Regret(T")/ log(K + 1) versus the number of episodes K. Solid lines represent the median regret,
while shaded regions show the range between the 10th and 90th percentiles.
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C GENERAL LEMMAS

Lemma C.1. (Azuma-Hoeffding Inequality). Suppose {Xy},—, is a martingale and | X} —
Xp—1| < ¢k, Yk € Ny, almost surely. Then for any positive integers N and any positive real
number e, it holds that:

2

€
B(Xn — Xol 2 ) < 203 (N) |
2> =1 Ci

For n; = flﬁ, denote 770 =1,n,=0fort>1,and ! =, Hl,_zﬂ(l —ni),¥V1<i<t Based

on the definition of 7, it can be easily verified that

i Ny 1, ifN >0,
2 =0, N =0.

?

We also have the following properties proved in Lemma 1 of Li et al. (2021).
Lemma C.2. For any integer N > 0, the following properties hold:

(a) For any n € Ny,
(b) Forany N € N,

(c) Foranyt € Ny and o € (0,1),

The following lemma summarizes some basic but useful properties of the defined weights:

Lemma C.3. For any given non-negative weight sequence {w,’i} ke[K)] at step h, the following rela-
tionships hold:

(a) Zs,a (Dlﬁﬂ(h,s,a) = W}fi-i-l(h)-

(b) |lw(h, s,a)lloc,n < Jw(R)|oon-

() llw(hys,a)l1nr < w(B)lloo,w Nips (s, a)
(d) Jlw(P)llnr =324 o llw(hy s, a) |1,

(e) Forany h < h' < H, we have

1
o (h) oo 11 < (1 + H) o mloonrs oot wsr < ()]l

Proof. (a) is because

ZJJ}?H(’%S a Z Z wh ZTIL : [kl ‘5h »ah »h) =k, (‘5h, GZ,) = (s,a)

s,a k'=1 =1
Nh
N TR (s 0l By = k] = b (B
- wh ; Sh7a’h7 )_ _w}1,+1( )
k'=1 =1

16
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Here, we use the shorthand N} := N} (s}, al’). When (s, a, h) is clear from context, we also
write k' := k*(s, a, h) for simplicity.

(b) is because for any k € [K]
wh(hy5,a) = wiyy (h) -1 (s}, apy) = (5,0)] < why(h) < Jw()loo -

(c) is because
[w(hs s, a)ll1,n < llew(h)loo,n ZH shryaby) = (s,0)] = [w(h)l|oon Njs T (s, a).

(d) is because

K
Do lwh s @)l =Y whi(h) - L[(shaf) = th/ = [lw )1, p-

s,a k=1

For (e), note that

K Ny
v NF,
llw(P) 1 = th'ﬂ hy=Y wi) | D " th/—\lw Mn
k'=1 i=1 k=1
For any k&’ € [K], we also have
NE, v K NF
Whrya (h th/ S0 [ = K] < o) 33 VL [k = 1]
=1 k=11i=1

According to the definition of k%, I [k?(s},, ak,, h') = k'] = 1if and only if (sf,, af,) = (s}, af,),
K <k—1landi= N;f,url(sﬁi, a¥’). Then by (a) of Lemma C.2, we have:

K Nh/

}:}:N;'ffﬂ Z k K’ k Z <1 1
n; 77 k/+1 Sh"ah’) (Sh ’ah 77Nk'+1 <1+ ﬁ

k=1i=1 bl t=N+

Therefore, it holds that
1
o) rss < (14 7 ) Tl
O

Lemma C.4. For any non-negative weight sequence {w’,j}h  State-action pair (s,a) € S x A,
and o € (0, 1), it holds that:

K
WRT[(sk,ak) = (s,a)] 1 o
> NiGEae < T Ml sl
k=1,N}>0 h>=h
and
S wili 1 o 11—«
Y Wik S 1o a S ) h)
k=1,NF>0  hATR TR
Proof. We first note that
K NK(s,a) k' (s,a,h
3o ebllha) = () TR an
% NE sy, ap)® — i
k=1,Nk>0 i=1

17



Under review as a conference paper at ICLR 2026

Then we have
N;{(S,(l)

k*(s,a,h
3 wf G < w(h, s, a) |-
=1

Given the term Zszl “;—i; in Equation (11), when the weights w,’j concentrate on former terms, we

can obtain the largest value. Let

||w(h7 S5, a)”l h-‘
Cs,a,h = ———————| and ds,a,h = ||W(h, S, a)”l,h - (Cs,a,h - 1)||w(h)||oo,h
{ l[w(P)lloo,n
Then we have:
K
3 wil[(sy, ak) = (s,a)]

N (shs ai)®

k=1,NF>0

“s,a,h =1
<Y el daa

i=1 i c?,a,h
Cs,a,hfl 1— . 11—
i — (’L B 1) ds a,h
< — 12
< Jlw(®)|lson Z — . (12)
=1 s,a,h
_ ”w(h)”m,h(c&a,h — 1)170‘ 4 ds.a,h
-« cg,a,h
— ||w(h)||a [(Cs,a,h - 1)||w(h)Hoo,h]1ia + ds,a,h
e 1-a (Cosanllw(R)[loo,n)
[(cs.an = Dllw(®)lsen] " ds,a,h
< [lw(h) IS = : + ek (13)
ot -« ||w(h’ S7a)||1,h

Here the last inequality is because ¢, o ||w(h)||co,n > |w(h, s, a)||1,1- Equation (12) is because for
any 0 <y < z and a € (0, 1), we have:

r—y 1 l—a 11—«
< —
G oz(m y )
Then, let z = 7 and y = ¢ — 1, it holds that:
1 1
—< (@17 — (i — 1)),

1 T 1 -«
Also let x = ||w(h, s,a)||1,n and y = (5.4, — 1)||w(h)] co,n» We have:

— 11—«
don, [Comn = D)l ™ _ Nl 5,0l
Hw(h,s,a)”ih 1—« - 1—« )
Applying this inequality to Equation (13), we have:
K ETl(ck ok

wil[(sy, ap,) = (s, a)] 1 o -«

) N ate < Toale Ml s ol
k=1,N}>0

Therefore, we have proved the first conclusion. By summing this conclusion for all state-action pairs
(s,a), we reach:
K
r 1

wy 1-a
> < lw(P) IS nllw(h, s, a)|
gk ghya = 1 _ oo, 2 @llLn
k=1,N}F>0 Ny (s ap) “

1—«
The last inequality is by Holder’s inequality, as
D llwlhy s, a) |7 < (SA) [la (R}

s,a

(SAfw(B)lloo,n)* e (P11 7
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D PROOF OF THEOREM 3.1

D.1 PROOF OF LEMMAS IN SECTION 3.3

Before proceeding to the proof, we will provide several key lemmas. By Lemma 4.3 of Jin et al.
(2018), we have the following conclusion.
Lemma D.1. Using (s, a, h, k) as the simplified notation forV(s,a,h,k) € S x A x [H] x [K].

H3,

Then with probability at least 1 — p, for 3; = 84/ ==, the following event holds:

£=130<(Qf—Qp)(s,a) <my YEH + 277 Vh+1 Vi) () + Bnx, V(s a,h, k)
i=1

We now proceed to prove the lemmas used in Section 3.3. We begin with the proof of Lemma 3.1.
In fact, this result holds for any learning algorithm.

Lemma D.2 (Formal statement of Lemma 3.1). For any learning algorithm with K episodes and
T = HK steps, the expected regret is bounded as

H
E [Regret(T)] < E (Z > An(s,a) N (s, a)> .

e
Proof.
(v = Vi) () = Vi (sh) = Qilsh ) + (@1 - QT ) (st ah)
= Au(sh,ab) + B (V3 = V") (s5) | 85 ~ P | o, ab)]
— B [Au(sf, af) + As(sh,ab) | 55 ~ Pi(-| st ab)]
E[(Q:-Q5") (s5.a8) | 55 ~ Pu(- | sf,ab)]

Z Ah Sh’ ah)

h=1

Here, the second equation is from the Bellman Equation and the Bellman Optimality Equation in
Equation (1). Therefore, we can get another expression of expected regret:

Sh+1NPh( |8h,ah) hE[ 1]]

K

E (Regret(T)) = E Z ( -V ) ZZA’L (sk,ak 1 .
k=1 k=1h=1
Note that
H K
E(Regret(T)) = E (Z Z Ay (sF, aﬁ))
h=1k=1
H K
=B (Z D>~ Auls a)ll(sh, af) = (s a)1>
h=1k=1 s,a
H
=E <Z Z Ap(s, CL)Z\G{QA(S7 a)) .
h=1 s,a
We finish the proof of the lemma. O

We then prove Lemma 3.2 by bounding the cumulative weighted estimation error
K
> wh (@Qh — Q7) (shah)
k=1
for each state-action pair (s, a).
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Lemma D.3 (Formal statement of Lemma 3.2). For UCB-Hoeffding, under event £ in Lemma D.1,
for any non-negative weight sequence {w¥}1, i, it holds simultaneously for any (s,a,h) € S x A x
[H] that:

K

K
> wp (QF — Q) (sk,ab)Tl(sE, af) =(s,0)] < Y @F 1 (h, 5,0)(QF 41 — Qhsr) (541, 0k 1)

k=1 k'=1

F llw®)lloonH + 16\/H3Hw(h)||oo,hllw(h, 8, @)|[1,nt.

Proof. Under the event £ in Lemma D.1, we have the following relationship

K
wa Qh Qh (Shvah)]lh(s a)
k=1

Nh
NE
E whﬁohH‘f'E WhE 771 Vh+1 Vh+1)(8h+1 +§ Whﬂzvk I} (s, a). (14)
=1 k=1 =1 k=1

Here we define I} (s,a) = I [(s},af) = (s,a)] .

For the first term in Equation (14), we have

K K
Nk
> whng " HIj(s,a) < |lw(h, 5,0)|eonH Y T[(sf,a5) = (s,a), Nf(s,a) = 0]
k=1 —
< w(h)loo,n H. (15)

The last inequality is because ||w(h, 3, a)]|co,n < ||w(R)|lco,r by (b) of Lemma C.3.
For the second term in Equation (14), we have

Ny

NE i " i
Z‘%Zﬂ " (Vi = Viee) (sh )T (s, @)

I
Mx

K
(s,a ZU Vh+1 Via)( 3h+1 (Z >

k=1
K K Nf A
= Z (Viﬁrl Vir)( 3h+1 Z Zwkﬂk N;L’H[ki = k']
k=1 k=1i=1
K K Np
SZ@M<%m%mm SN I [K = K (s} af) = (5.0)]
k=1 k=1 i=1
K
= Z (’Dili:&-l(h7 S, a)(QZ:&-l - QZ—&—l)(Sﬁ,—kl?afL,—i—l)' (16)

’

x

1

: v Ko (KK kK (k! [ ¥ K’
The inequality is because Q| (57,1, a5, 1) > Vi1 (85 11), Qf 1 (Sh 15 a5 11) S Vi (shiq)

For the last term of Equation (14), by Lemma C.4, it holds that

K K
k k k
wiPyr K8VHS3LY wiy | =1} (s,a)
; ' ; Ny (sh-af)
< 164/ H3|w(h) (h, 5,0) |1 nt. (17)

Combining the results of Equation (15), Equation (16) and Equation (17), we finish the proof. [

Lemma 3.3 then follows immediately from a recursive application of the results established above.
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Lemma D.4 (Formal statement of Lemma 3.3). For UCB-Hoeffding, under event £ in Lemma D.1,

for any non-negative weight sequence {w¥}1, i, it holds simultaneously for any (s,a,h) € S x A x
[H] that:

K
Zwli (QF — @) (sk,af)

< Z () ||oo.n SAH + 16 Z Z\/H3\|w Mool (R, 8, @) |1 (18)

h'=h h'=h s,a

Proof. By summing the result in Lemma D.3 over all state-action pairs, and noting that
~k k
Z wh+1(h7 s,a) = Wh+1(h)7 w(h, s, a) ||<>0,h < flw(h) Hoo,h
s,a

by parts (a) and (b) of Lemma C.3, we can derive the following relationship:

K K
th Qh Qh shvah th+1 Qh+1 Qh41)(Sht1s Ahy1)

k=1 k'=1

+ [|lw(B)lloo,n SAH + 16 \/H3||w(h)Hoo,h”w(hv 5, a)|[1ne-

s,a

By recursionon b, h + 1, ..., H, since Qr41(s,a) = Q3 (s,a) = 0 forany (s,a,k) € S x A x
[K], we finish the proof of Equation (18). O

Building on the previous lemma, we now establish a novel upper bound on cumulative weighted

visitation counts
Z Ap(s,a)NET (s, a),

which then enables the final bound on expected regret through Lemma D.2.

Lemma D.5 (Formal statement of Lemma 3.4). For UCB-Hoeffding algorithm and c; = 20736,
under the event £ in Lemma D.1, it holds simultaneously for any h € [H| that:

2
Ap(s,a)NET (s, a) H*, H? (Zi}thrl % |Z<>pt,t|) L
3 h < SAH? + Z > &

c s,a A
s,a 1 h'=h Ay (s,a)>0 w(s:a) min,h

2

H
+ ZH: H (Zt:h'+1V|Z°P"t|> ‘
Amin,h’ '

h'=h+1

Proof. We use mathematical induction to prove this conclusion. For step h, let

wﬁ =1 [QZ(‘S?L?QZ) - QZ(S;CNQIICL) > Ah(sécw U’Z)’ (szv aﬁ) € ZSUbJL}
]I I:(S}Nah) E Zsub h] < 1

The second equation is because for any given (h, k) € [H] x [k], if (s¥,al) € Zp,n, we have

QZ(S;CL#Z) - QZ(SQ,CLZ) > th(SlfL) - QZ(Sﬁvalfl) Vi (s ) Qh(shaah) Ap (Shvah) > 0.

The first inequality holds because Q¥ (sk,aF) > V¥ (sF), as guaranteed by the update rule in line
8 of Algorithm 1. The second inequality follows directly from the £ in Lemma D.1, which ensures
that Q% (s¥,a) > Qj (s¥,a) for all (a, h, k) € A x [H] x [K] and thus

ViF(sF) = min {H, max Qﬁ(sﬁ,a)} > min {H, max Q;‘L(sﬁ,a)} = max Q;(sF,a) = Vi (s5).

21



Under review as a conference paper at ICLR 2026

Based on the definition of w}j, for any (s,a) € Zgp,n, we have

[w(h, s,a)||1,n —ZH [(sh,ap) = (s,0)] = Ny (s,a)
k=1

and |lw(h, s,a)|l1,, = 0for (s,a) € Zop,». By Lemma D.3, for any (s, a) € Zgp,p, it holds that,

K
D wh (QF = Q) (si, ap)Il(sh, af) = (s,a)]

k=1
K
< H + 164/ H?’N;{(Jrl(Saa)L + Z @Z+1(ha 5 a)(Q§+1 - QZ+1)(32+17a2+1)- (19)
k'=1

Also note that for any (s, a) € Zgp,,, We have

K K
Zwﬁ (QF — Q1) (sk,ap)I[(sk, af) = (s,a)] > Ap(s,a Zwﬁﬁ (s, ap) = (s,a)]
k=1 k=1
= Ap(s,a) N (s, a). (20)

Combining the results of Equation (19) and Equation (20), it holds for any (s, a) € Zgp,p that,
Ap(s,a)NFT (s, a)

K
< H 416\ H3N (s,a)+ Y @fy (hos,a) (@ g — Qi) (ha1. 0k ).

k'=1

Solving this inequality, we can derive the following conclusion for any (s, a) € Zp '

256H3.

K
m +2H +2 Z ‘Z’Ifiﬂ(hv Sva)(QlfL-H - QZ—i—l)(Sﬁ—&-la a§+1)~

k'=1

Ap(s,a)NET(s,a) <

)

Since Ap(s,a) = 0for (s,a) & Zub,n and Q1 (s,a) > Q1 (s, a) forany (s,a,h, k) € S x Ax
[H] x [K], by summing the inequality above over all state-action pairs (s, a) € Zgp,p, We reach:

Z Ap(s, a)]\f,fﬂ'l(s7 a)

256H L ’ % ’ ’
< Z m +25AH +2 Z Wh+1 )(Qlﬁﬂ - Qh+1)(sﬁ+17 aﬁ+1)~ 2D
Ap(s,a)>0 ’ k'=1

Here we use

Z aji]iJrl(hv S5 a) < w§+1(h)
(Sva)ezsub,h

by (a) of Lemma C.3.

Let h = H, since Q% ,,(s,a) = Q3. (s,a) = 0forany (s,a,k) € S x A x [K], we prove the
lemma for h = H with Equation (21). Assuming the conclusion holds for steps h + 1, ..., H, we
now prove it for step h.

For given weight wﬁlﬂ (h) at step h+ 1, due to the recursive definition starting from wf (k) we know
Jw(h + 1)||00’h’ = ||W(h)Hoo,h’7 Jw(h+1,s, a)lli,n = [w(hs s, a)lll,h"
This is because the recursive weight sequence generated by w’}f;l (h) atstep h + 1is

K Nh

Wiy (Rt 1) = wf g (h); whr g (b4 1) =Y th, (h+1 ]I[k K],
k/'=11=1
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where for any k € [K], w} ,, (h) is defined by the following sequence at step 2+ 1, given any initial
weight sequence {wF}5_| atstep h:

K NI

wh(h) = wis  whriq(h Z th’ Tk = k]

k=1 i=1
Since the initial weights satisfy wy , (h+1) = wy_, (h) and the two sequences {wy, (h+1)}5_, 4
and {wF, (h)}_, 1 follow the same recursive relation, it follows by induction that
wh(h+1)=wk(h), h+1<h <H,
for these two sequences and thereby
(Pt Dlloo,nr = lw(h)lloonr,  Nlw(h+1,5,a)[1nr = [lw(hy s, a)|[1p
Then, by Lemma D.4, we have

* k' k'
Z Wh+1 Qh+1 Q1) (Sh41: y1)

k'=1
H H
<3 e SAH+16 S S\ H ) e ot s )l @2)
h'’=h+1 h'’=h+1 s,a
with
1 h'—h
ot < (14 ) Ttlloon <3 @3
and
o) < o) ln = Y| S N ey
s,a Ah(s,a)>0

by part (e) of Lemma C.3. In this case, by Equation (23) and part (c) of Lemma C.3, we further
obtain the following bound:
(R, 5, @) l1pr < Nl (R)lloo,n Nigs T (s,0) < 3N (s, ). (25)

Furthermore, by Equation (23), for the first term in Equation (22), we have:

H

> llw(h)lloon SAH < 3SAH?.

h'=h+1

For the second term in Equation (22), we divide the state-action pairs (s,a) at each step k' into
two categories: Zopn/, Where Ay/(s,a) = 0, and Zgyp,pr, Where Ay (s,a) > 0. We apply the
Cauchy—-Schwarz inequality to all non-optimal state-action pairs jointly across all steps, and to
optimal state-action pairs individually at each step 7’.

H
163 S0\ H ) oo b, 5,a) 1w

h'’=h+1 s,a

H

H
cwsm Y Y | (XY Avsaluthsal

h'=h+1 A,/ (s,a)>0 h'=h+1 A,/ (s,a)>0

H
+16vV3 Y [EZowle D llw(h s @)l

h/=h+1 (s,a)€Z

opt,h/

H

H
cas|m| XY o[ XY AN sa

(S, a
h'=h+1 A,/ (s,a)>0 w(s,a) h'=h+1A,,(s,a)>0

H
+16\/§< > H3|Zopt,h/|L>\/ > NEY(s,a). (26)
h/=h+1

Ap(s,a)>0
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The last inequality is because [|w(h, s,a)||1.n» < 3N (s, a) by Equation (25) and

Yo llwlhs,a)llw < lwlw < Y NiEt(s,a),

(Saa)ezopt,h,’ Ah(S,a)>0
where the first inequality follows from part (d) of Lemma C.3, and the second from Equation (24).

For the first term in Equation (26), by AM-GM inequality, we have:

H H
sl Y Y X Y AvsaNS(sa)

Ah/(s, a)
h'=h+1 A}/ (s,a)>0 h'=h+1 A,/ (s,a)>0

L (S, a ]f'Hsa
<24fz > AH( )+24\FZ > A (s, ANy " (s,a) (27)

HCl
h=h+1 A,/ (s,a)>0 h'=h+1 A (s,a)>0
By the induction hypothesis, the lemma holds for all steps i + 1 < h’ < H. Therefore, we obtain:

> Al )Ny " (5,0) _ g yppe EH: > e

s,a ! i=h' A;(s,a)>0 Ai(sv CL)
2 2
H H
H (St VZedl) ¢ dL H2 (S0 Vo)
Amin,h’ * Z Amin,i ’

i=h'+1
By summing this inequality for h +1 < b’ < H, it holds that:

H
Y oy Abele0c S sy 3oy

S,a
h'=h+1 A,/ (s,a)>0 h'=h+1 h'=h+1i=h' A;(s,a)>0 i(s,a)

H  H? (Zf[:h/+1 V |ZUPt7t|) (Zf i+1V ‘Zom,t|)2 2
* Z Amin h’ Z Z Amin7i

h'/=h+1 ’ =h+1i=h'+1

2
H4, H [? (Zf:h’+1’/|Z°plvt) L
2
< SAH? + Z > A o) +2 ) > .

h'=h+1 A,/ (s,a)>0 h'’=h+1
Applying the above inequality to Equation (27) and substituting it into Equation (26), we obtain:

H
16 3 S JH) oo [, 5. ) 1.0

h'’=h+1 s,a

H g2 H 7 2
< 24./cy SAH? + 92 Z Z AH 19 Z (Zt_h+1\/m> L

w(s,a)
=1 A (5,a)>0 —ht1

Amin,h’

H
+16¢§< > H3|Zop[,hllb> > Nitis.a) (28)
/= Ay (s,a)>0

By applying this inequality to Equation (22) and substituting the result into Equation (21), and using
the bound ||w(h)||co,nr < 3 from Equation (23), we conclude that the following inequality holds:

Z Ap(s,a)NET (s, a)

s,a

g (S SZeal)
cosva |samr S Y AT P (Zt_h; h/' wil) ¢

S, a
h'=h A,/ (s,a)>0 w(s,a) —h+1

H
+32¢§< > H3|Zopt,h/|L>\/ > Nsa). (29)
h’/’=h+1

Ap(s,a)>0
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Note that if | Zgp, 5| > 0, which means Ay, p, > 0, we have

S Aus,a)NE T (s,0) = Y Au(s,a)NE (s,0) > Ay Y NS (sa).

S,a Ah(s,a)>0 A}L(S,a)>0
Define
H
b= Aminh, ¢ =32V3 ( > H3|Zopt,h,|L> cx= | Y NEsa)
h'/=h+1 Ap(s,a)>0

and let the first term on the right-hand side of Equation (29) be denoted by d. Then Equation (29)
can be rewritten as:

bx? —cx —d < 0.

When b > 0, solving the inequality yields:

. < c+ 2+ 4bd
- 2b '

Applying this upper bound to Equation (29), by AM-GM inequality, we obtain

Z Ap(s,a)NET (s, a)
2+ eV + 4bd 3¢ 3d

< < < — —
<cr+d< % +d_2b+2

2
H
H4, . zH: H? <zt:h,+1,/|Zopt,t|) L
h' (S a) Amin,h’

=h+1

< 144y/c1 SAH2+Z > &

h'=h A/ (s,a)>0

2
H
(S v Zomdl)

Amin,h

+ 4608

If | Zswo,n| = 0, then Ay j, = 0o and ZM Ap(s, a)NfH(s, a) = 0. In this case, the conclusion
holds trivially. Therefore, the result is established for step h, completing the proof. [

D.2 BOUNDING THE EXPECTED REGRET

Now we bound the gap-dependent expected regret. Let p = %, then & holds with probability at least
1 — % and ¢ < O(log(SAT)). Therefore, by Lemma D.2, we have

H
E(Regret(T)) = E (Z Z Ap(s,a)NET (s, a))
. h=1 s,a ;
=B <Z > An(s,a)N; T (s,a) 5) P(£) +E (Z 3" An(s,a) N+ (s,a)
h=1 s,a

h=1 s,a
3 H 2
H (Zt:h+1 \/m) log(SAT)
Amin,h

5c> P(£°)

+ SAH3>

Hlog(SAT) &
<oy ¥ My

h=1 A (s,a)>0 h=1

IN

+ SAH?

Hb5log(SAT H5|Zy|log(SAT
0 Z Z og( )+ | pl| og( )

h=1Ap(s,a)>0 Ah(s,a) Amin
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The first inequality is because under the event £, by Lemma D.5, we have

H

Z Z Ap(s,a)NET (s, a)

h=1 s,a

2
HL A (Zt h+1v| Optt) L
SAH? +
2:: hz:m/z:h A,/(g;z) A z:: Aain,
H  H  H? (Zfl:h’ﬂ A% ‘Z0pt,t|)2 2
g Z Amin,h/

h'=h+

2
il n \/m) log(SAT)
Amin,h

+ SAH?

il Holog(SAT) <L H?
<0 Z Z g( )+hX:1 (

h=1 A (s,a)>0 An(s,a)

by Lemma D.5 and under the event £¢,

H
Z ZAh(s, a)NE+(s,a) < HT.

h=1 s,a

The last inequality uses Cauchy-Schwarz inequality and Apyin 5, > Apin for any h € [H].
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E PROOF OF REGRET UPPER BOUNDS FOR ULCB-HOEFFDING

E.1 AUXILIARY LEMMAS

We first validate the upper bounds @) and lower bounds @ introduced in Algorithm 2. For simplicity,

we denote P o nf = By, b, (s,0) (f(Sny1)|sn = s,ap = a)and 1,f = f(s) for any (s,a,h) €
S X A x [H] and function f : S — R. We first prove some probability events to facilitate our proof.

Lemma E.1. For ULCB-Hoeffding algorithm (Algorithm 2), we have the following conclusions:
(a) With probability at least 1 — p, the following event holds:

. H3,
g1 = 277 (1 ki Ps,a,h) Vh+1 <2 W, V(s,a,h,k)

‘Sh+

(b) With probability at least 1 — p, the following event holds:
H K 1\ 1 i
S (10 ) (Paosa 1) (- i) <ovem).
h=1k=1

Proof. (a) The sequence

{Zm (]l KT Sa7h) Vh*ﬂ}

is a martingale sequence with

NeN+

N
<n

(]1 o P, a,h> Vi, H.

Then according to Azuma-Hoeffding inequality and (b) of Lemma C.2, for any 6 € (0, 1), with
probability at least 1 — <&, it holds for given Nf(s,a) = N € Ny that:

[ H3,
an (]l kll_ sah)V}H-l <2 N

For any all (s,a, h, k) € S x A x [H] x [K], we have N} (s, a) € [%]. Considering all the possible
combinations (s, a, h, N) € Sx Ax[H]x %], with probability at least 1—p, it holds simultaneously
forall (s,a,h, k) € S x A x [H] x [K] that:

Ny 3
N,’f( o ) v | < H3.
Z_ K ]lslﬁll Poan) Vice| <2 NE(s,a)’

(b) For Gs, the sequence

1 h—1 .
{ (1 + H) (]P)S;C”a;i)h - ]]'Sﬁ+1) <V};k+1 - Vhﬂ+1)}
k,h

can be reordered to a martingale sequence based on the “episode first, step second” rule. The ab-
solute values of the sequence are bounded by 27H. According to Azuma-Hoeffding inequality, for
any p € (0,1), with probability at least 1 — ¢, it holds that:

H K 1 h—1 &
S5 (14 5) " (o 1) (- Vi) <272

Sh+
h=1k=1
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Lemma E.2. Forall (s,a,h, k) € S x A x [H] x [K], when event G, in Lemma E.1 happens, the
upper and lower confidence bounds in Algorithm 2 are valid:

Vi(s) > Vii(s) = Vi(s) and Qy(s,a) > Q;(s,a) > Q"(s,a).

Proof. We use mathematical induction on k to prove this lemma. For £ = 1, the lemma holds based
on the initialization in line 2 of Algorithm 2. Assuming the conclusion holds for all 1,2, ...,k — 1,
we will prove the conclusion for k£ + 1 at episode k.

If (s,a,h) € S x A x [H]\ {(s¥,a¥)}HL | then we have

Vi (s) = Vils) 2 Vir(s) = Vii(s) = VI (s).

and
Q0 (s,0) = Qpls,a) = Qjs,a) = Q(s,a) = Q' (s,a),

For (sF,ak, h), based on the update rule in line 12 and line 13 in Algorithm 2, we have

ls+1

k+1
—k+1 NEF
(sh,ak) =no" o+ Z Tl ( ra(sy, ah) + Vh+1(5h+1) + b)

Qn

k+1
Nk+1 k+1 HBL
> o P H 4 Z ; Ny, ( Th Sh,ah) +Vh+1(5h+1)> + 2 W (30)
h

Nk+1
Nk+1 i i
Q shak) = Do m (ralshiah) + VAL (s ) = b)) -
i=1
Nk+1
k+1 H3,
Z 771 (rh sk oaky + Vh+1(3§+1> =2\ =5t 31)
N
These two inequalities are because
Nk:+l ’k:+1
NEF1 v Nk+1 H3, H3,
N b =2 " — > 2 —
SMANEED S
by (c) of Lemma C.2. Furthermore by the Bellman Optimality Equation, it holds that:
Qi (sh,an) = (s, ap) + Pk ak nVig-
Combining with Equation (30) and Equation (31), we can derive the following conclusion:
k+1 .
(Qh - Qh) (Sfmaﬁ)
N’k+1 3
v NE+L [t i H3,
> n; " (Vh+1(5§+1) Pgr qn th+1> +2 1
i=1 Nh
N’k+1 N}Ic-f—l 5
~  NET ok £ (K —~ Nt x H
= 0" (Vi = V1) (ha) + M (]15;311 — Pyt ) Vigr +2 NF >0
i=1 i=1

The last inequality is because Vﬁ;l (si'1) > Vi (sf'yy) for k% < k and the event G;. Similarly,

(@' - @) (shoah)

N’k+1
Y

v 3
NjFt i N H3,
< n; Kh+1(5h+1) Pk ok nVip1) — 2 NFF
i=1 h
k41 k+1
p NF+1 . X gl NFH1 H3,
— h h .
= Z M (Zh-u - Vh+1)(5h+1) + UA (]15;31 ]P)s;; ah,h)VhH 2 NEH <0.
i=1 i=1 h
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The last inequality is because 1211(31211) < Vi (shh ) for ki < k and the event G;. Now we
have proved that @IZH(S, a) > Qj(s,a) > Q:—H(S, a). Therefore, by noting that

—k+1 . —k+1
v s :mm{H, max s,a}z max Q7 (s,a) =V, (s
no () e Qn (5,0 vl Qp(s,a) = Vi (s)
and
VEFL(s) = max {0, glfg(( )Qi“(&a)} <maxQj(s,a) = V;(s),
a n(s a
we prove the conclusion for k& 4 1 and thus complete the proof. O

Lemma E.3. When event Gy in Lemma E.1 happens, for any (h, k) € [H| x [K], we have that:
—k R
Vi(sh) = Vii(s) < Qu(sh. ap) — Qj (s, ap)-

Proof. If |A¥(sK)| = 1, based on the definition of A¥(sF), we have

—k —k —k
Vhsh) < max  Qh(shia) = O sk ab).
a€A; " (sh)
and ki k k( ok k(k k
VEGD > max Ql(sha) = QE(shab).
Therefore, we prove the conclusion. If |AF (s¥)| > 1, define:

. —k -
a= argmax Q,(s¥,a), a= argmax QZ(S’Z,&)
aEAZ_l(s’fL) aEAfL'_l(s’fL

Then we have

Vi(sh) — VE(sk) < Qh(sh.a) — Q% (s}, a)

The last inequality is because

—k
af = argmax @ (sf, a) — Q¥ (st a)
acAk(s)
when |Af (s})| > 1and Q7 (sf,a) < QP (sf,a) based on the definition of d. O

Lemma E.4. When event Gy in Lemma E.1 happens, for any (h, k) € [H] x [K], we have that:

—k ) Ah(sk7 ak)
Qb (ohob) — Qe > 2eloheh)
Proof. If |A¥(sk)| = 1, based on the definition of A¥(sF), we have

* . =k —k —k
Vi(sh) < Vil(sh) £ max  Qy(sh,a) = Q(sh, ap).
aEA];l 1(3’2)

Combining the result with Q¥ (sf, af) < Qj (sf, af) by Lemma E.2, it holds that:

=k * *
Qn(shy ar) — Qy (sh, a) = Vi (si) — Qi (sh, ak) = An(sy, apy).

Therefore, we prove the conclusion. If |AF (s¥)| > 1, define:

. —k
a= argmax Q,(s¥, a).
aEAZ'_l(sfz)
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Then the conclusion follows from the following analysis:
An(st, ay)
= Vi (si) — Qh(sh ap)
< Vh(sh) — Q (k. af) (32)
= Qh(sh» a) — Q’;(sﬁ,a’,ﬁ)
= (@h(s ;@) — QZ(Sh’ )) (Qk( a) — @Z(Sﬁa aﬁ)) (Qh(siw ay) — Qk(sm ah)) (33)
<2 (Qh(shvah) Qk(sh,aﬁ))

Here, Equation (32) is because of Vh(sfl) > Vp*(sk) and Q (sk,a¥) < Qr(sk,ak) by event G; of
Lemma E.2. Equation (33) is because

—k
ay = argmax Q, (sy,a) — Qi(s’ﬁ, a)
acA¥ (s)

when |Af (s¥)| > 1 and Q:(sﬁ, a) <VE(sk) < @Z(sﬁ,aﬁ) since af € AF(s¥). O
E.2 PROOF OF THEOREM 3.2

In this section, we bound the worst-case regret under the event G; N G5 in Lemma E.1.
For h € [H + 1], denote:

ok = (Vh— Vi) (sh), ch= (Vi —vir") (sh).

Here, 6%, = (};, = 0. Because V;*(s) = sup, V;7(s), we have 8} < ¢} forany h € [H +1]. In

addition, as V:(s) >V (s) forall (s,h, k) € S x [H] x [K] by Lemma E.2, we have:
K K
Regret(T) = S (Vi(sh) = v (sh)) < - (Vitsh) = v (sh)) = Z k.
k=1 k=1
Thus, we only need to bound Zszl ¢F. Noting that
K K
ZC’}«f < Z(Q — Q7 )(sh,af)
k=1 k=1

MNEMN

(@ — Q) (skral) + 3(@Qp — QF ) (s, af)

NEMN

(@ — Qi) (sh )+ 2 B w (Vi = Vi) - (34)

ET‘
,_.

In the last inequality, we use the Bellman Equation (Equat10n D):
k
Qh(s,a) = rn(s, ) + Py a-,th+1v Qh (s,a) =rp(s,a) + Psq thﬂ+1~

Next, we will bound $°% o 1( )(s’,j, a¥). Using Bellman Optimality Equatlon we know

Nf ¢ Ng
(Q — Q)(sk,af) <my " H + Zm (Vh+1(s},“cz+1) P ah,thJrl) + Zm bi

Sh»
i=1 i=1
NE : NE (K g H3.
<" H + Zﬁi (Vi (sE ) — Pk n Vi1 ) +4 NF
i=1 h
Ny )
NE Nk [ —k? " i H3,
=1 h
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The first inequality uses:

N}L N}L H
thb 722 Nu/ <4,/—.

by Lemma C.2. The last inequality is by the event G; in Lemma E.1. By summing Equation (35)
over k € [K], we reach

K
7k *
> (@, — Qh)(sh.ap)
k=1
K ) K 3,
<> 0t H+ Z Zn Vi —Vi) i)+ 3 6 ~r (60
k=1 k=1,N}>0 i=1 k=1,N}>0 h
For the first term of Equation (36), we have:
ZnéVhH HZZ]I 0,(sf,af) = (s,a)) < HSA. (37)
s,a k=1
For the second term of Equation (36), by Lemma C.4, it holds that:
K H3,
> 6y < 12VHZSATL (38)

k=1,NF>0 h

For the last term of Equation (36), similar to proof of Equation (4.7) in Jin et al. (2018), it holds that:

K K
i 1
Z Zm Vh+1 Vi) (shi) < (1 + H) Z5il§+1~ (39)
k=1,N}>0 i=1 k=1

Taking the above results Equation (37), Equation (38) and Equation (39) together with Equation (36),
back to Equation (34) to reach

K K K
1 Z
k=1

Sh41

<( )Zghﬂmx/mMssz(pM 1y ) (Ve i),

By recursion on h, since ¥ +1 = 0, we can get the following conclusion:
K
Regret(T') < ng

H K h—1
<0 (\/H4SATL +H25A+ YYD (1 + ;) (P ot~ Lg,, ) (Vi - V,;fjl)>

h=1k=1

<0 (\/H4SATL n stA) .

The last inequality is because of the event G5 in Lemma E.1. We note that when T' > vV H4S AT,
we have VH4SAT: > H2SA, and when T < vVH4SAT\:, we have Zszl F<HK =T <
V H4S AT . Therefore, we can remove the H2S A term in the regret upper bound.

To summarize, with probability at least 1 — 2p, we have Regret(T) < O(vV H*SAT'). Rescaling p
to p/2 finishes the proof.
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E.3 PROOF OF THEOREM 3.3

In this section, we derive the fine-grained gap-dependent regret bound for ULCB-Hoeffding follow-
ing a similar line of reasoning as in UCB-Hoeffding. Let p = % then the event G; holds with

probability at least 1 — = and ¢ < O(log(SAT)). Therefore, by Lemma D.2, we have
E(Regret(7T))

H
=E (Z ZAh(&a)N}{{-i_l(S,a))

h=1 s,a
= (ZZAhsaNK+1sa ) (G1) +E<ZZAhsaNK+1(s a) g1>]P>(g<f)
h=1 s,a h=1 s,a
2
H5 log(SAT) u (Zt ht1 V |Z0pt,t|) log(SAT) 3
e —— AH® |.
O<Z Z Ah(s CL Z Aminh +S
h=1 A} (s,a) h=1 s
The last inequality is because under the event G, by Lemma E.7, we have
H
Z Z Ah(sa a)N}{(Jrl(sa a)
h=1 s,a
2
3 H
H5log(SAT) " H (Zt:h+1 % ‘Zopt,t|) log(SAT)
< - o AH?®
X Z Z Ah(sa a‘) * Z Amin,h 5

h=1 A (s,a)>0 h=1

and under the event GY,

H
> > An(s,a)NST (s, a) < HT.
h=1 s,a
Now we only need to prove Lemma E.7. Using the same fine-grained analytical framework, we first
bound the cumulative weighted estimation error for each state-action pair (s, a) at step h.

Lemma E.5. For ULCB-Hoeffding algorithm (Algorithm 2), under the event Gy in Lemma E.1, for
any non-negative weight sequence {w¥}, i, it holds for any (s,a,h) € S x A x [H| that:

22%0% QF) (sk, ab)I(sh, af) =(s < S b s @ - @, )(sh s ak)

k'=1

+ lw®)lloonH + 16\/H3|\W(h)||oo,hllw(h, 8, a)|[1,ne-

Proof. Under the event G; in Lemma E.1, by Equation (30) and Equation (31), we have

NE .
—k NF NF ki i
Qaﬁﬂﬁzmﬁﬂ+§:mhQuﬁwm+vmﬂﬁﬂww0
=1

NF .
Nk NF — Kt i H3,
<ng"H+ Y mpt (rh(s’;, af) + Vh+1(s’,§+1)) +4y ~E (40)
h

i=1

and
Qk shvah ZW (Th shvah) +Vh+1(52+1) bz’)~

H3,
2 Zm (Th s, an) + Vh+1(5h+1) —4 Ni}]f 41)
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These two inequalities are because

NE, NE / 3, /H3
Zn hb; = 227]’ ; Nk

by (c) of Lemma C.2. Therefore, by taking the difference between Equation (40) and Equation (41),
we reach

th ( ) (Sﬁvah)lh(s a)

Nh

. K
—k* i
th"?(J)VhH + th 277 (Vh+1 Vh+1> (She1) + Zwi}fﬁN;; I (s,a).  (42)

Same as Equation (15) and Equation (17), we have

K

Nk
> whitg " HI; (s, a) < Jlw(h) | so,n H.
k=1

and

K
S kg < 164/ H3[w(h) e plleo (s 5, ) |1t

k=1

For the second term in Equation (42), similar to Equation (16), we have

thZm (Vh+1 Vﬁ;l) (32;1)]12(3,@)

K Ny, . i ) » K

=S ettt on (Vi - v ) () (Z 1k k’])
k=1 i=1 k=1
K , K N§

=) (V:-H —Kﬁlﬂ) shin) | Do D whIh(s, N}LHW = K]
k'=1 k=11=1
K K Nh

<30 (@ - @) bl | S0 whn K = ¥ (shah) = (5,0)]
k'=1 k=11=1
K

= > b (5,0) (Qhir — Q) (b alin):

X
Il

1

The inequality follows from Lemma E.3. Combining the upper bounds for each term in Equa-
tion (42), we finish the proof. O

Building on the lemma above, we can establish the following result. The proof follows the same
argument as in Lemma D .4.

Lemma E.6. For ULCB-Hoeffding algorithm (Algorithm 2), under the event Gy in Lemma E.1, for
any non-negative weight sequence {w¥}, r, it holds for any (s,a,h) € S x A x [H| that:

K
>k (@ - @) (shoab)

< Z e (h) | oo SAH + 16 Z Z\/HBHW Moo lw(h, 8, @) |1

h'=h s,a
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The following lemma bounds the summation > , Ap(s, a)N K+1(s, a), which directly contributes
to bounding the expected regret via Lemma D.2. The proof largely mirrors that of Lemma D.5, with
only minor differences; we therefore focus on the distinctions and omit the unchanged parts.

Lemma E.7. For ULCB-Hoeffding algorithm (Algorithm 2), under the event Gy in Lemma D.1, it
holds for any h € [H| and co = 82944 that:

3 H 2
H (Zt:thl\/ |Z<>pt,t|) L

Ap(s,a)NET (s, a) H*
3 h < SAH?+ Z > &

+
s, €2 hi=h Ay (s.0)>0 ~ 1 (s,0) Anmin,h
2
H
H [H? (Zt:h'-H \ /|Z0pl7t|> L

>

Ri—ht1 Amin,h’

Proof. We use mathematical induction to prove this conclusion. For step h, let

Ah(slfivalfi)

o =1 [Qh<s’;,aéz> - Qb (skaf) = =1

=1 [(827(]’2) S Zsub,h] S 1.

,(sk,ap) € Zsub,h:|

The second equation is by Lemma E.4. Based on the definition of w,’j, for any (s,a) € Zsub hs

K
lw(hy s, @)l =Y L[(shrap) = (s,@)] = Ni (s, a)
k=1

and ||w(h, s,a)||1,, = 0for (s,a) € Zop . By Lemma E.5, for any (s, a) € Zg,p, it holds that,

th (@ - Q) (sh abTi(sh, af) = (s,0)

K
L —K' ’ ’ ’
<H+ 164/ HBN}{(JFI(Saa)L + Z W§+1(ha $,@)(Qpq1 — Q2+1)(32+17GZ+1>- (43)

k=1

Also note that for any (s, a) € Zgp,p, With Ay (s,a) > 0, we have

>k (@ - ;) (shabll(sh ab) = (5.0

k=1
K

> 20D S kof, af) = (s, a)
k=1

_ Ap(s,a)NET (s, a)

44
5 (44)
Combining the results of Equation (43) and Equation (44), it holds for any (s, a) € Zg , that,

Ap(s,a)NiET (s, a)

2
K
< H + 164/ H3N (s,a) + Z wh+1 (h,s a)(Qh+1 Qh+1)(8h+1,aﬁ+1)
k'=1
Solving this inequality, we can derive the following conclusion for any (s, a) € Zpb '
1024H3, us
Ah(s,a)N,f(“(s,a) < An(s,a) +4H +4]§:1wh+1 (h,s a)(Qh+1 Qh+1)(3h+1aalfz+1)
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Since Ap(s,a) = 0for (s,a) ¢ Zp,» and Qh+1(5 a) > Qh+1(s, a) for any (s,a,h, k) € S x Ax
[H] x [K], by summing the inequality above over all state-action pairs (s, a) € Zgp,p, We reach:

Z Ap(s,a)NET (s, a)

1024H3, - y /
< > et ASAH +4 " wf oy (0)(@piy — QF (K41, ab40). @49)
Ap(s,a)>0 hi® k'=1
Here we also use (a) of Lemma C.3:
Z (:)ili-&-l (ha S, a) S wl}i-&-l(h)'
(s5,a) € Zgb,n

Let h = H. Since Q% (s,a) = Qj;,,(s,a) = 0forall (s,a,k) € S x A x [K], the base case
h = H follows immediately from Equation (45).

Now, assume the lemma holds for steps h + 1,..., H. Using the same inductive argument as in
Lemma D. 5 we prove the case for step h. From Lemma E.6, we have:

k' K K’
Z wh+1 Qh+1 Qh+1)(3h+1aah+1)

k=1
H H
< Y lw®)loewSAH +16 Z\/Hgllw(h)lloo,hfl\W(h,S»G)Ilum- (46)
h'=h+1 h'=h+1 s,a

Similar to the proof of Equation (28), we can derive that

H
16 Y 3 /H el [l s, @)t

W=h+1 sa
Y 1 12 (S V17 t|>2L
< 245 | SAH? 42 +2 o Vo
Ve Z Z Ah/(s a) Z Apin 1 (8, @)

=h+1 Ah/ (5 a) =h+1

H
+16\/§< Z H3|Zopt,hflb> Z NE+1(s,q).
=h+1 Ap(s,a)>0

By applying this inequality to Equation (46) and substituting the result into Equation (45), and using
the bound [|w(h)||co,nr < 3 from Equation (23), we conclude that the following inequality holds:

Z Ap(s,a)NET (s, a)

s,a

H 2 H 7 2
<192 /c; SAH? + Z z AH4L " Z (Zt:h +1 \/m) L

Than o A (B9 50 Aninp (5, )
H
+64\/§< > H3|Zopt,h,|L> > NEtY(s,a).
h'=h+1 Ap(s,a)>0

By applying the same method used to solve Equation (29), we can prove that

2
H
" (S Vol
Amin,h
2
2 H
H4L H H (Zt:h’+l \/‘Zopt,t|) L
2
+288/cy | SAH? + Z Z e a)+ Z Ko

=h A,/ (s,a)> h'=h+1

> An(s,a)Ni (s, a) < 18432

s,a

This establishes the result for step h, thereby completing the proof. O
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F PROOF OF FINE-GRAINED GAP-DEPENDENT REGRET BOUND FOR AMB

F.1 REVIEW OF AMB ALGORITHM

We first review the AMB algorithm (Xu et al., 2021) in Algorithm 3.

Algorithm 3 Adaptive Multi-step Bootstrap (AMB)
1: Input: p € (0, 1) (failure probability), H, A, S, K > 1
2: Initialization: For any V(s,a,h) € S x A x [H], initialize @i(s,a) +~ H, Q}l(&a) «— 0,
Gl =0, Al( )« Aand V. (s) = V1 (s) = 0.

3: fork=1,2 , K do
4: Step 1 Collect data:
5. Rollout from a random initial state s} ~ y using policy m, = {7F}ZL |, defined as:

ik) .
7h(s) & MEMAXae at () Qn(s,0) —Q(s,a), if|Af(s)] > 1
the element in A% (s), if [AF(s)| =1

6: and obtain an episode { (s}, af,rf = r,(sf, af) }h .-

7: Step 2: Update Q-functlon

8: forh=H, H — ,1do

9: if sf ¢ G’c then

10: Letn = NF (s, a) be the number of visits to (s, a) at step & in the first k episodes.

11: Let i’ = h/(k, h) be the first index after step h in episode k such that s¥, ¢ G¥,. (If
such a state does not exist, set B’ = H + 1 and V};ﬂ_l = Z’Z{_H(s) =0.)

12: Compute bonus: b/, = 4,/H3log(2SAT /p)/n.

— k1 : =k, g Ak —k

13 Q1 (s, af) = min L, (1-n)Qh (5%, )+ (O (5, af) 4V (s ) 487)

14: k+1(5haah) maX{O, (1—nn)Qk(Sﬁaa'ﬁ)Hln(QZ’d(Si,aﬁ)*'li/(si/)—b%)}-
—k+1 —k+1

15: (Sh) MaXqr e Ak (sk) Qp (5h7 a’).

16: Vk“(sfl) MaX,s e Ak (sk) QZH(SZ,CL’).

17: end if

18: end for
19: for (s,a,h) € S x Ax [H ]\{(sh,ah)|1<h<H5h§éG}fldo

—k+1 —k
20: Q" (s,0) = Qp(s,0), Q' (s,0) = Qb (5,0). V3, (5) = Vp(s), VA (5) = V(o).
21: end for

22: Step 3: Eliminate the sub-optimal actions:

23: Vs € S,h € [H], set AFTl(s) = {a € Ak(s) :Qi(s,a) > Kﬁ(s)}

24: SetGFtt = {seS:|AF(s)| =1}
25: end for

AMB maintains upper and lower bounds @:(s, a) and Q:(Sv a) for each state-action-step triple
(s,a,h) at the beginning of episode k. The policy 7" is selected by maximizing the confidence
interval length Q — Q. Based on these bounds, for each state s and step h, AMB constructs a set
of candidate optimal actions, denoted by Aﬁ(s), by eliminating any action a whose upper bound is

lower than the lower bound of some other action. If | A (s)| = 1, the optimal action is identified,
denoted by W;(s), and s is referred to as a decided state; otherwise, s is called an undecided state.
Let Gf = {s | |AF(s)| = 1} denote the set of all decided states at step h in episode k.

Let Fj, 1, denote the filtration generated by the trajectory up to and including step h in episode k. In
particular, F, ;. contains the policy 7* and the realized state-action pair (s by h) AMB constructs
upper and lower bounds of the @-function by decomposing the Q-function into two parts: the re-
wards accumulated within the decided states and those from the undecided states. Formally, starting
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from state sﬁ at step h and following the policy 7%, we observe the trajectory {(sﬁ,, aﬁ,, TZ,)} hh

Let W' = h/(k,h) > h denote the first index such that s, ¢ G¥,. Then, the optimal Q-value
function Q7 (s, a) can be decomposed as:

h'—1

WA, a) 2B | (s () | Faks (sh.af) = (s,a)

I=h

and
k,ud A k E _k
Qhu (S’a) =E [‘/I:"(Sh’) | ‘Fh,kv (Shvah) = (Sva)] ’
where QZ’d and Qﬁ’"d represent the contributions from the decided and undecided parts, respec-
tively. To estimate Qﬁ’d(sh, ap), AMB uses the sum of empirical rewards in episode k:

h'—1

~k,d

Qp(s,a) = > mi(s],ap).
I=h

,ud(

To estimate Q’; Sh, an ), AMB performs bootstrapping using the existing upper-bound V' -estimate

Vh (s¥,). The resulting update rules of the Q-estimates are:

Qn" (ks ak) = min {H, (1= 0@ (55, af) + 7 (@1 (shoab) + Vi (sh) + 0, ) . @)

Qn

Q! (sk, ay) = max {0, (1= 1) Q} (1 k) + 7 (Ql’z,d(si’ )+ Ve (si) - bib)} -

The learning rate 7, = II_{I—tl , where n = N, k+1(sh, ah) represents the number of visits to state-
k

action pair (s¥,a¥) at step h within the first k episodes. By unrolling the recursion in &, we obtain:

Qi(sh7ah)<mm{HnohH+Zn (kd(sﬁ,az>+vz<szf>+bz)}, 49)

i=1

Qn(skaf) > max{o 0 hH+Zn ( Kol (sh,ab) VI (sh) bé) } (50)
i=1

To ensure the optimism of the Q-estimates @ and the pessimism of ), Xu et al. (2021) adopt the
equality forms of Equation (49) and Equation (50) in their Equation (A.5). However, these equal-
ities do not hold under the actual update rules in Equation (47) and Equation (48), due to the
presence of truncations at /1 and 0. In fact, only the inequalities in Equation (49) and Equation (50)
can be rigorously derived from the updates. This creates a fundamental inconsistency: to establish
optimism and pessimism of (-estimates, we require an upper bound on () and a lower bound on
@, which are the reverse of the inequalities implied by the truncated updates. Therefore, the trun-
cations at H and 0 in the update rules Equation (47) and Equation (48) in the AMB algorithm are
theoretically improper and should be removed to ensure analytical correctness.

Moreover, the bonus term ¥/, is derived by bounding the deviation between @:(s, a) and Q5 (s, a).
This analysis relies on applying the Azuma—Hoeffding inequality to two martingale difference terms:

Zn (@ shab) — QU (shaf))  ana zn b (Vin(sh) - Qb sk )
based on the following assumed decomposition:

Qpi(skal) + QP (sh,al) = Qy(sk, af). (51)

This decomposition implies that the sum of the estimators Qﬁ’d(s, a) and V}}, (sﬁi) in multi-step
bootstrapping forms an unbiased estimate of Q}, (s, a).

However, Xu et al. (2021) incorrectly apply the Azuma—Hoeffding inequality by centering the es-
. A —k i . . . .
timators Q'Z’d(s, a) and V,(sF,) around their expectations (see their Equation (4.2) and Lemma
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4.1), rather than around their corresponding conditional expectations Qﬁ’d(s, a) and QZ’“d(s, a).

Moreover, the unbiasedness of multi-step bootstrapping implied by Equation (51) requires formal
justification. These issues compromise the claimed optimism and pessimism properties of the Q-
estimators, thereby invalidating the corresponding fine-grained regret guarantees.

To address these issues, we introduce the following key modifications:

(a) Revising update rules. We move the truncations at H and 0 in Equation (47) and Equation (48)
to the corresponding V -estimates (lines 15-16 in Algorithm 4), retaining only the multi-step boot-
strapping updates. This allows us to recover the equalities in Equation (49) and Equation (50).

(b) Proving unbiasedness of multi-step bootstrapping. We rigorously prove Equation (51), show-

ing that Q% (s, a) and V;, (s§,) form an unbiased estimate of the optimal value function Q*.

(c) Ensuring Martingale Difference Condition. We ensure the validity of Azuma—Hoeffding in-
equality by centering the two estimators Q’Z’d(s, a) and VZ, (sf,) in multi-step bootstrapping around

their conditional expectations, Q’;’d(& a) and Q];’”d(

s,a).
(c) Tightening confidence bounds. By jointly analyzing the concentration of the estimators

) Z’d(s, a) and VZ/ (s%,), we reduce the bonus b/, by half, leading to better empirical performance.

We detail our Refined AMB algorithm in the following subsection.

F.2 REFINED AMB ALGORITHM

We present the Refined AMB algorithm in Algorithm 4 and Algorithm 5, which preserves the overall
structure of Xu et al. (2021).

To recover valid upper and lower confidence bounds for the ()-estimators, we slightly modify the
update rules by shifting the truncation from the -estimates to the corresponding V -estimates:

Qnlsa) = (1=1)Q (s,0) + 0 (Q1*(5.0) + Vi (sh) +bu )

Qi(s,0) = (1 = m) @ (5,0) + 0 (@ (s5,0) + Vi () — D)

VZ+1(5) = min {H, max @Z+l(s, a’)} ,

@’ €Ak (s)

VEl(s) =max <0, max QF(s,a’)}.

Vi () Q7 (s.a)
Here, the refined bonus is defined as b,, = b}, /2, exactly half of the bonus used in the original AMB
algorithm. These modifications enable us to establish the following theorem:
Theorem F.1 (Formal statement of Theorem 4.1.). With high probability (under the event H in
Lemma F.1), the following conclusions hold simultaneously for all (s,a,h, k) € S x Ax [H] x [K]:

=k * —k *
Vi(s) > Vii(s) > Vi(s) and Q(s,a)> Qi(s,a) > Q:(s,a). (52)
Moreover, the following decomposition holds:
P(s,a) + Q" (s, a) = Qi (s, a). (53)

The proof is provided in Appendix F.3, where the optimism and pessimism properties of the Q-
estimators are formally established. By adapting the remaining arguments from Xu et al. (2021)
along with the simplifications in Appendix F.4, we show that the Refined AMB algorithm achieves
the following fine-grained gap-dependent expected regret upper bound:

H 5 5
o Z Z H®log(SAT) N H?|Zyu|log(SAT)
Ah(57a) Amin

h=1 A} (s,a)>0
Here, for any h € [H], we have | Zop, 1 (5)| = {a € A|Ax(s,a) = 0} and
| Zoul| = {(s,a,h) € S x A x [H]||Ap(s,a) = 0,|Zop,n(s)] > 1}.
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Algorithm 4 Refined Adaptive Multi-step Bootstrap (Refined AMB)

1:
2:

3:
4:
5:

15:
16:
17:

18:

19:
20:

Input: p € (0,1) (failure probability), H, A, S, K > 1
Initialization: For any V(s,a,h) € S x A x [H], initialize @}l(s,a) +~ H, Q}L(s,a) «— 0,
Gl =0, Al(s) « Aand V,,(s) = V}(s) = 0.
fork=1,2,...,Kdo
Step 1: Collect data:
Rollout from a random initial state s§ ~ 1 using policy 7 = {7} }F_,, defined as:

—k , ,
(s) 2 arg max,c 4% (s) Qp(s,a) — QZ(S, a), if |[AF(s)| >1
h the element in A% (s), if |[AF(s)| =1

and obtain an episode { (s, af, 7 = rp (s, a’;))}hH_l..
Step 2: Update Q-function: B
forh=H,H—-1,...,1do

if s} ¢ G then

UPDATE(s}, af, k, h).

end if
end for
for (s,a,h) € S x Ax [H]\ {(sk,af)|1 <h < H,sk ¢ G} do

@, (s,0) = Qu(s,0). @ (s,0) = Q" (s.0).

(5) = Vi(s), VA (5) = Vi(s).
end for
Step 3: Eliminate the sub-optimal actions:

Vs € S,h € [H], set AFT1(s) = {a € Ak(s) :Q:(s,a) > Kﬁ(s)}

Vs € S,set Gyt = {s € S AT (s)| = 1}.
end for

Algorithm 5 UPDATE(s, a, k, h)

bd

10: V.

—k
1: Set Vi, =V i(s)=0.
2: Vn,setn, =
3:

4: Let ' = h/(h, k) be the first index after step h in episode k such that s¥, ¢ G¥,. (If such a state

H+1
H+n"

Letn = Nf11 (s, a) be the number of visits to (s, a) at step h in the first k episodes.

does not exist, set b’ = H + 1.)
Compute bonus: b,, = 2,/H3log(2SAT /p)/n.
Compute partial return: Q% (s, a) = D h<ich TE-

@ (5,0) = (L= 1) @n(s, @)+ (Q (5, 0) + Vi (s5) + b )

Q:+1(57 a)=(1- nn)Qz(s,a) + 1, (QZ*d(& a) + V5 (sF) - bn).
—k+1 . —k+1

V. (s) = min {H, MaXyre Ak (s) @p (s, a’)}-

VZH(S) = max {0, MaX e Ak (s) Q:H(s’ a’)}-

F.3 PROOF OF THEOREM F.1

We first prove some probability events to facilitate our proof.

Lemma F.1. Ler . = log(2S AT /p) for any failure probability p € (0, 1). Then with probability at
least 1 — p, the following event H holds:

k

h i ‘ i i H3
Sont (@1 = Q) (s + Vi (sh) = @1 (.)) | <2y | s Vs k).
i=1

NE(s,a)
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Proof. The sequence

N i i i i
{Z i (@5 = Q) (s,a) + Vin(sh) = Q1 (s, ) }
i=1
is a martingale sequence with
M(@F - Qi) (s.a) + Vir(sh) — @ s, 0) | < AL

Then according to Azuma-Hoeffding inequality and (b) of Lemma C.2, for any p € (0, 1), with
probability at least 1 — it holds for given Nf(s,a) = N € Ny that:

NeN+

p
SAT”>
H3,

<2 .
‘N

Y(Q =@ ) (s )+ Vin(sh) - @F (s, )

For any all (s,a, h, k) € S x A x [H] x [K], we have Nj(s,a) € [%]. Considering all the possible
combinations (s, a, h, N) € Sx Ax[H]x %], with probability at least 1—p, it holds simultaneously
forall (s,a,h, k) € S x A x [H] x [K] that:

H3,

3 (06~ i) e+ Vi) - 0 )| <2 [

Now we use mathematical induction on k to prove Theorem F.1 under the event H.

Proof. Part 1: Proof for k& = 1.
For k = 1, the Equation (52) holds based on the initialization in line 2 of Algorithm 4.
Now we prove Equation (53) for k£ = 1 by inductionon h = H, ..., 1

For h = H, we have h/(1,H) = H + 1. Equation (53) holds in this case since Q%;(s,a) =
rg(s,a) = Q}f(s, a) and Q}{’"d(s, a) = 0. Now assume that Equation (53) holds for H, ..., h + 1.
We will also show it holds for step h.

First, we expand Q}L’d(s, a) as follows:

h'—1
Qy(s,a) =E | Y (s, m (1) | Fuas (sh,ap) = (s,0a)
I=h
h'—1
= Z Z E Z rl(sll77rzk(3l1)) | ]:h,la (S}Na’}b) = (870’)58}L+1 =5
s ¢Gh+1 s EGh+1 l=h
X P(Sthl = '|(sh,a5) = (s,a)) 54)
= Z T’l(57 &)]P (Sh—i-l =S ‘(S}m a’}L) = (57 a’))
S QGh-H
> () + QUL T (1)) P (ks = 9/l (shyah) = (s5,a) (55)
s EGh+1
=r(s,a)+ > Qi mha ()P (shyy = 8'l(shah) = (s,a)) (56)
s'€Gy 4

The Equation (54) is obtained by applying the law of total expectation with respect to s, 41, and
leveraging the Markov property of the process. Equation (55) is because:
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If s}, ¢ Gy . then W’ = h/(k,h) = h+1and

h'—1

E Z 71(8l177rl*(8l1)) | fh,lv (sllmailL) = (sva)vsllwrl = S/ = Th(saa);
I=h

. . —1 —1
If s; , € G}y, then h' = W (k,h) = h/(k,h + 1). In this case, since @, > Q1 = Qi1
aj 1 = m}(s}) is the unique optimal action 7, (s}, , ;). Therefore we have

h'—1
E Z T(Sl177rl*(sll)) | ‘Fh,h (S}HG’}L) = (870’)’ S}L-I—l =5
l=h
h'—1
=ru(s,0) + B | D> r(st,m () | Frsras (Shynahyr) = (8 7541(5)
l=h+1

- Th(57 a) + Q}llﬁl(sla 77;:—&-1(5/))'
Similarly, we also have
(s, a) = E (Vi (sh) | o, (shoah) = (s,0)]

= Z [Vh’(sh/) | Fhi, (sh>an) = (5, 0), 5h+1 = 5/] P (S}LH = &'|(sp, ap,) = (s, a))
S/gG;lH-l

+ Z Vh’ Sh/ | ]:h 1 (Sh7ah) (S7a)35}7,+1 = Sl] P (S}L—‘rl = Sl‘(s}ma}z,) = (S7a))

s GGh+1

Y Vi (P (s = 8l(sh ap) = (s,a))

S/¢Gilz+1

+ Y Qi T (P (shyy = §|(shap) = (s,0)) . (57)

s €Gh+1
Here Equation (57) is because if s; | ¢ G}, then h' = h/(k,h) = h + 1 and
E [Vii(s3) | Fi1s (shoap) = (5,0), 8301 = 8] = Vi (s);
If s; € Gh oy then b/ = h/(k,h) = b'(k,h + 1) and
* ,ud *
E [Vh’ (S}L/) | ‘Fh,la (S}u a’}L) = (Sv CL), S}H—l = S/] = Q}ll+1 (S/a 7Th+1(5/))'
Combining the results of Equation (56) and Equation (57), we reach:

Q% (s,a) +Qi“d( a)

- Th S, (1 Z Vh+1 Sh-‘,—l = S/|(S}ua}lz) = (Saa))
S gGh-H
+ 3 QU T () + QRS Tia (5)) P (shia = 'l (shoah) = (5,0))
s EGh+1
- rh S, CL Z Vh+1 Sh+1 = 3/|(S%ua}1z) = (Saa))
S gGh-H
+ > Vi (8P (shyy = 5'l(shap) = (s,a)) (58)
s EG)l7,+1
= T‘h(S,G/ + Z V;—i—l(sl)P (S%H-l = S/|(3}117a}11) = (S,Cl))
= Q}(s,a) (59)
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Equation (58) is because by induction, we have

7d * d * * *
Q;L+1(Slvﬂh+1(3/)) + Q}lfl(s 7Th+1( ) = Qh+1(5l7 7Th+1(5/)) = Vh+1(3/)'
Equation (59) uses Bellman Optimality Equation in Equation (1).
Part 2.1: Proof of Equation (52) for & + 1.

Assuming that the conclusions Equation (52) and Equation (53) hold for all 1, 2, ..., k, we will prove
the conclusions for k£ + 1.

If (s,a,h) € S x Ax [H]\ {(sF,af)|1 <h < H,sk ¢ GF}H_| | then we have

Vi (s) = Vinls) = Vir(s) = Vi(s) = VI (s).
and
Qi (s,0) = Qpls,a) = Qis,a) > QF(s,a) = Q1 (s,a).

For (s, ak, h) with s¥ ¢ G, based on the update rule in line 6 and line 7 in Algorithm 5, we have

Nk+1

—k+1 NE+1 NjTt id —k i
Qn (si,an®)=mny" H+ Z 7; < h (sva)+Vh’(k'i,h)(slf€u(ki,h)) +bi>

k+1
NFHL Akt d — K i H3,
> H+ Z n; N (Qh (s,a) + Vh’(ki,h)(si/(ki,h))> +2“W’ (60)
h

and

k41
Ny

N’H—l Akt d i i
Q:H(ShaaZ) = ; (Qh “(s,a) Jrzﬁ’(k",h)(sz’(ki,h)) - b,;) :
i=1
NI.+1 3
u Nk+1 Akt d i i H L
S 1; (Qh ’ (s,a) +Kﬁl(ki,h) (Si’(ki,h))) -2 W (61)
i=1 h
These two inequalities are because
Nk+l Nk+1 3 3
NEFL NEt [ H3y H3,
2 et Z w2
by (c) of Lemma C.2. Furthermore, by Equation (53) for k¢ < k, it holds that:
* ¢ k%, ud
Qi (k. af) = QF "(5,0) + Q5 "5, 0).
Combining with Equation (60) and Equation (61), we can derive the following conclusion:
E+1
(Qh - Qh) (Sh»ah)
Nk+1
Nk+1 Akiod — Kk i « HBL
> i (Qh “(s,a) + Vh/(k'i,h)(sﬁ/(ki,h)) - Qh(SZ, a;ﬁ)) +2 W
i=1
Nk+1
h Nk+1 7
= m; (Vh/ Vh’> (Sh')
i=1
Al N, k',d k'.d k' ud H3,
3 om (@5 s.0) = @ ss0) + Vi (k) — @ (s )) +2y |y 20
i=1 h
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i

The last inequality holds because V:H(s’g 1) =V +1(5§i+1) for all £ < k and the event H in
Lemma F.1. Similarly, we can prove the pessimism of QZ”:

(@' - @) (sh.ah)

NFtt
Nk+1 “ki,d L i H3L
< ; <Qh (5,@) + Vi iy (St ) — QZ(%#%)) 2 T
=1 h
NE+L
t Nk+1
= i (Kh/ Vh/) (Sh/)
=1
v
NE Aki,d k,‘i,d % i ki, d H3L
2o (s ) — @ s.0) + Vi (68 — Q1)) 2y |y <0
=1 h

The last inequality holds because V5, | (si') < Vi (sk', ) forall k¥ < k and the event . With
this, we have shown that @:H (s,a) > Qi (s,a) > Q’ZH(S, a). Therefore, by noting that

—k+1

Vi (s) = mm{H max Qh 1(s,a)}2 max Q7 (s,a) = Vy(s)

acAk(s) ac Ak (s)

and

Vi) = mae {0, max Q1 (5.0)} < max 0 s.0) = V().

we complete the proof of the Equation (52) for k + 1.
Part 2.2: Proof of Equation (53) for & + 1.
Next we prove Equation (53) for £ 4 1 by inductionon h = H, ..., 1

For h = H, we have h/(k,H) = H + 1. Equation (53) holds in this case since Q% (s,a) =

ra(s,a) = }q (s,a) and Q1 “d( a) = 0. Assume that the conclusion holds for H, ..., h + 1. For
step h, similar to Equation (56) and Equation (57) for £ = 1, we obtain:

k+1,d k+1,d E k k
Qy, (s,a) = 11(s,a) Z Qh+1 (s, Z+1(5/))P (Shﬂ =S |(3h+1 ah+1) (S’G))
s GGﬁill
and
k+1, d E k k
ho Z Vh+1 Sh:ﬁ =S |(5h+1 h+1) = (Saa))
s'€Gh 1L
k+1,ud k k k
+ Z Qui"( (s's 1 (8P (s hi% s'|(spapth) = (s,a)) .
s EGk+1

h41

By combining these two equations, as in Equation (59), we establish Equation (53) at step h for
k + 1, which completes the inductive process and thus proves Lemma E.2.

This lemma successfully establishes the optimism and pessimism properties of the (J-estimators.
Leveraging the remaining arguments in Xu et al. (2021), we can recover the same gap-dependent
expected regret upper bound presented in Equation (10).

F.4 RESULT SIMPLIFICATION

By adapting the remaining arguments from Xu et al. (2021), we can recover the following bound for
Refined AMB algorithm:

i 3 H?10g(SAT) | H?| Zyu|log(SAT)

2
Ah,(Sa a) AInin + SAH (62)

h=1 A} (s,a)>0
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Define Zgp = {(s,a,h) : Ap(s,a) > 0} and recall that Zo, = {(s,a,h) : Ap(s,a) = 0} and
Zou = {(s,a,h) : Ap(s,a) =0, |Zop,n(s)| > 1}, where Zop n(s) = {a : Ap(s,a) = 0}. Then
we have

SAH
‘Zsub| + |Zmul| = |Zsub‘ + |Z0pt| - (|Z0pt| - ‘Zmull) Z S(A - 1)H Z Ta
because | Zgp| + | Zopi| = HSA and
| Zopt| = | Zmut| = [Zopt/Zmu| = [{(s,a,h) : Ap(s,a) =0, |Zopn(s)| =1} < HS

since for each (s, a, h) € Zopi/Zmu, We have | Zoy, 1 (s)| = 1, which implies that the optimal action
a is unique for each state—step pair (s, h). Therefore,

u H?1og(SAT)  H?|Zyu|log(SAT)
Z Ap(s,a) + A
h=1 Ay (5,a)>0 h\o, min
H
>3 > H'Mog(SAT) + H*|Zmu|log(SAT)
h=1 A} (s,a)>0
= H*(| Zawb| + | Zuma| ) log(SAT)
SAHS
> b
- 4
where we used 0 < Ay (s,a), Apin < H in the first inequality and log(SAT) > 1/2 for S,T > 1
and A > 2 in the last inequality.

Thus, the Refined AMB result in Equation (62) can be equivalently written as

H 5 5
o Z Z H log(SAT)JrH | Z | log (SAT)

h=1 A (s,a)>0 An(s,a) Amin

44



	Introduction
	Preliminaries
	Fine-Grained Regret Upper Bound for UCB-Based Algorithms
	Theoretical Guarantees for UCB-Hoeffding
	Theoretical Guarantees for ULCB-Hoeffding
	A Novel Fine-Grained Analytical Framework
	Bounding Expected Regret with Cumulative Weighted Estimation Error
	Separate Analysis for Each State-Action Pair
	Inductive Analysis for Cumulative Weighted Visitation Counts


	Fine-Grained Gap-Dependent Regret Upper Bound for AMB
	Numerical Experiments
	Conclusion
	Related work
	Experimental Results
	General Lemmas
	Proof of Theorem 3.1
	Proof of Lemmas in Section 3.3
	Bounding the Expected Regret

	Proof of Regret Upper Bounds for ULCB-Hoeffding
	Auxiliary Lemmas
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Proof of Fine-Grained Gap-Dependent Regret Bound for AMB
	Review of AMB Algorithm
	Refined AMB algorithm
	Proof of Theorem 4.1 (Theorem E.1)
	Result Simplification


