

000 001 002 003 004 005 Q-LEARNING WITH FINE-GRAINED GAP-DEPENDENT 006 REGRET 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029 We study fine-grained gap-dependent regret bounds for model-free reinforcement
030 learning in episodic tabular Markov Decision Processes. Existing model-free al-
031 gorithms achieve minimax worst-case regret, but their gap-dependent bounds re-
032 main coarse and fail to fully capture the structure of suboptimality gaps. We ad-
033 dress this limitation by establishing fine-grained gap-dependent regret bounds for
034 both UCB-based and non-UCB-based algorithms. In the UCB-based setting, we
035 develop a novel analytical framework that explicitly separates the analysis of op-
036 timal and suboptimal state-action pairs, yielding the first fine-grained regret upper
037 bound for UCB-Hoeffding (Jin et al., 2018). To highlight the generality of this
038 framework, we introduce ULCB-Hoeffding, a new UCB-based algorithm inspired
039 by AMB (Xu et al., 2021) but with a simplified structure, which enjoys fine-
040 grained regret guarantees and empirically outperforms AMB. In the non-UCB-
041 based setting, we revisit the only known algorithm AMB, and identify two key
042 issues in its algorithm design and analysis: improper truncation in the Q -updates
043 and violation of the martingale difference condition in its concentration argument.
044 We propose a refined version of AMB that addresses these issues, establishing
045 the first rigorous fine-grained gap-dependent regret for a non-UCB-based method,
046 with experiments demonstrating improved performance over AMB.
047

1 INTRODUCTION

048 Reinforcement Learning (RL) (Sutton & Barto, 2018) is a sequential decision-making framework
049 where an agent maximizes cumulative rewards through repeated interactions with the environment.
050 RL algorithms are typically categorized as model-based or model-free methods. Model-free ap-
051 proaches directly learn value functions to optimize policies and are widely used in practice due to
052 their simple implementation (Jin et al., 2018) and low memory requirements, which scale linearly
053 with the number of states. In contrast, model-based methods require quadratic memory costs.

054 In this paper, we focus on model-free RL for episodic tabular Markov Decision Processes (MDPs)
055 with inhomogeneous transition kernels. Specifically, we consider an episodic tabular MDP with S
056 states, A actions, and H steps per episode. For such MDPs, the minimax regret lower bound over
057 K episodes is $\Omega(\sqrt{H^2 SAT})$, where $T = KH$ is the total number of steps (Jin et al., 2018).

058 Many model-free algorithms achieve \sqrt{T} -type regret bounds (Jin et al., 2018; Zhang et al., 2020;
059 Li et al., 2021; Xu et al., 2021; Zhang et al., 2025b), with two (Zhang et al., 2020; Li et al., 2021)
060 matching the minimax bound up to logarithmic factors. Except for AMB (Xu et al., 2021), which
061 uses a novel multi-step bootstrapping technique, all these methods rely on the Upper Confidence
062 Bound (UCB) approach to drive exploration via optimistic value estimates.

063 In practice, RL algorithms often outperform their worst-case guarantees when there is a positive
064 suboptimality gap, meaning the best action at each state is better than the others by some margin. In
065 the model-free setting, for UCB-based algorithms, Yang et al. (2021) proved the first gap-dependent
066 regret bound for UCB-Hoeffding (Jin et al., 2018), of order $\tilde{O}(H^6 SA / \Delta_{\min})$, where \tilde{O} hides loga-
067 rithmic factors and Δ_{\min} is the smallest positive suboptimality gap $\Delta_h(s, a)$ over all state-action-step
068 triples (s, a, h) . Later, Zheng et al. (2025b) improved the dependence on H for UCB-Advantage
069 (Zhang et al., 2020) and Q-EarlySettled-Advantage (Li et al., 2021). However, these results rely on
070 a coarse-grained term SA / Δ_{\min} instead of the fine-grained $\Delta_h(s, a)$, limiting their tightness.

The only model-free, non-UCB-based algorithm, AMB, attempted to achieve a fine-grained regret upper bound by incorporating two key components: Upper and Lower Confidence Bounds (ULCB) and multi-step bootstrapping. In particular, ULCB leverages both UCB and Lower Confidence Bound (LCB) techniques to select actions by maximizing the width of the confidence interval, and multi-step bootstrapping updates Q -estimates with rewards of multiple steps from settled optimal actions. However, as detailed in Section 4, the multi-step bootstrapping procedure encounters two issues in its algorithm design and analysis. Algorithmically, the improper truncation in the multi-step bootstrapping update (see lines 13-14 in Algorithm 1 of Xu et al. (2021)) breaks the key link between the Q -estimates and historical V -estimates (see their Equation (A.5)) that is essential for the analysis. Theoretically, the concentration inequalities are incorrectly applied by centering the estimators induced by multi-step bootstrapping on their expectations rather than on their conditional expectations (see their Equation (4.2) and Lemma 4.1), violating the required martingale difference conditions. These issues cast doubt on whether a fine-grained gap-dependent regret bound can be established for non-UCB-based AMB algorithms.

In contrast, recent model-based works (Simchowitz & Jamieson, 2019; Dann et al., 2021; Chen et al., 2025) have achieved fine-grained gap-dependent regret bounds of the following form:

$$\tilde{O} \left(\left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{1}{\Delta_h(s,a)} + \frac{|Z_{\text{opt}}|}{\Delta_{\min}} + SA \right) \text{poly}(H) \right),$$

where $|Z_{\text{opt}}|$ denotes the number of optimal (s, a, h) triples. These results incorporate individual suboptimality gaps $\Delta_h(s, a)$ and significantly reduce reliance on the global factor $1/\Delta_{\min}$. This progress naturally leads to the following open question:

Can we establish fine-grained gap-dependent regret upper bounds for model-free RL with individual suboptimality gaps $\Delta_h(s, a)$ and improved dependence on $1/\Delta_{\min}$?

Answering this question is challenging. **For UCB-based algorithms**, establishing fine-grained gap-dependent regret requires novel analytical techniques, particularly in bounding the cumulative weighted estimation error of Q -estimates. Existing works (Yang et al., 2021; Zheng et al., 2025b) treat all state-action pairs uniformly in this analysis. However, it is insufficient for deriving fine-grained results, as optimal and suboptimal pairs exhibit significantly different visitation patterns: suboptimal pairs are typically visited only $\hat{O}(\log T)$ times (Zhang et al., 2025a), where \hat{O} captures only the dependence on T . Ignoring this imbalance leads to loose bounds and an overly conservative dependence on $1/\Delta_{\min}$. **Regarding the non-UCB-based algorithm AMB**, it remains unclear whether the two estimators induced by multi-step bootstrapping jointly form an unbiased estimate of the optimal Q -value function due to the randomness of the bootstrapping step. This property is crucial for the concentration analysis used to prove the optimism of model-free RL algorithms, yet it is not established in Xu et al. (2021).

In this paper, we give an affirmative answer to the open question above by establishing **the first fine-grained gap-dependent regret upper bounds for model-free RL**, covering both UCB-based and non-UCB-based algorithms. Our main contributions are summarized below:

A Novel Fine-Grained Analytical Framework for UCB-Based Algorithms. We develop a novel framework that explicitly distinguishes the visitation frequencies of optimal and suboptimal state-action pairs. Using this framework, we establish the first fine-grained, gap-dependent regret bound for a popular UCB-based algorithm, namely UCB-Hoeffding (Jin et al., 2018). As shown in Section 5, UCB-Hoeffding demonstrates improved empirical performance compared to AMB.

Two Refinements of the AMB Algorithm with Rigorous Fine-Grained Analysis. In Section 4, we revisit the AMB algorithm and identify both algorithmic and analytical issues that undermine its theoretical guarantees. We then propose two refinements of the AMB algorithm.

- **UCB-Based Refinement.** ULCB-Hoeffding (introduced in Section 3.2) simplifies the original AMB design (Xu et al., 2021) by removing its problematic multi-step bootstrapping and retaining only the ULCB mechanism. Using our UCB-based framework, we show that ULCB-Hoeffding achieves a fine-grained regret bound, demonstrating that algorithms relying solely on the ULCB principle can also achieve fine-grained guarantees. This further underscores the generality of our UCB-based fine-grained analytical framework.

108 • **Non-UCB-Based Refinement.** We also propose Refined AMB, a non-UCB-based refinement that
 109 incorporates both ULCB and multi-step bootstrapping techniques. It has the following improvement:
 110 (i) removes improper truncations in the Q -updates, (ii) rigorously proves that the estimators
 111 induced by multi-step bootstrapping form an unbiased estimate of the optimal Q -function, (iii)
 112 ensures the martingale difference condition holds, which justifies applying concentration inequalities
 113 to these estimators, and (iv) establishes tighter confidence bounds. These refinements allow
 114 us to rigorously prove the first fine-grained regret upper bound for a non-UCB-based algorithm
 115 and yield enhanced empirical performance, as shown in Section 5.

116 **Technical Novelty.** Our work introduces the following key technical innovations: (a) We analyze
 117 each state-action pair separately at every step, enabling a fine-grained upper bound on the cumulative
 118 weighted estimation error of the Q -estimates (Lemmas 3.2 and 3.3). (b) We establish a recursive re-
 119 lationship for cumulative weighted visitation counts across steps, supporting an inductive argument
 120 to obtain a fine-grained upper bound (Lemma 3.4), from which the expected regret upper bound
 121 follows (Lemma 3.1). (c) We perform a state-specific decomposition of conditional expectations
 122 in the concentration analysis of Refined AMB, enabling a recursive argument and induction over
 123 steps to show that the sum of two multi-step bootstrapping estimators is unbiased (Theorem 4.1 and
 124 Appendix F.3). The first two innovations, (a) and (b), form the core of our fine-grained analytical
 125 framework, extending its applicability to a wider range of model-free RL algorithms, while (c) offers
 126 a general technique for analyzing algorithms with multi-step bootstrapping.

2 PRELIMINARIES

130 In this paper, for any $C \in \mathbb{N}_+$, we denote by $[C]$ the set $1, 2, \dots, C$. We write $\mathbb{I}[x]$ for the indicator
 131 function, which takes the value one if the event x is true, and zero otherwise. We also set $\iota =$
 132 $\log(2SAT/p)$ with failure probability $p \in (0, 1)$ throughout this paper.

133 **Tabular Episodic Markov Decision Process (MDP).** A tabular episodic MDP is denoted as $\mathcal{M} :=$
 134 $(\mathcal{S}, \mathcal{A}, H, \mathbb{P}, r)$, where \mathcal{S} is the set of states with $|\mathcal{S}| = S$, \mathcal{A} is the set of actions with $|\mathcal{A}| = A$, H
 135 is the number of steps in each episode, $\mathbb{P} := \{\mathbb{P}_h\}_{h=1}^H$ is the transition kernel so that $\mathbb{P}_h(\cdot \mid s, a)$
 136 characterizes the distribution over the next state given the state-action pair (s, a) at step h , and
 137 $r := \{r_h\}_{h=1}^H$ are the deterministic reward functions with $r_h(s, a) \in [0, 1]$.

138 In each episode, an initial state s_1 is selected arbitrarily by an adversary. Then, at each step $h \in [H]$,
 139 an agent observes a state $s_h \in \mathcal{S}$, picks an action $a_h \in \mathcal{A}$, receives the reward $r_h = r_h(s_h, a_h)$ and
 140 then transits to the next state s_{h+1} . The episode ends when an absorbing state s_{H+1} is reached.

141 **Policies and Value Functions.** A policy π is a collection of H functions $\{\pi_h : \mathcal{S} \rightarrow \Delta^{\mathcal{A}}\}_{h=1}^H$,
 142 where $\Delta^{\mathcal{A}}$ is the set of probability distributions over \mathcal{A} . A policy is deterministic if for any
 143 $s \in \mathcal{S}$, $\pi_h(s)$ concentrates all the probability mass on an action $a \in \mathcal{A}$. In this case, we denote
 144 $\pi_h(s) = a$. Let $V_h^{\pi} : \mathcal{S} \rightarrow \mathbb{R}$ denote the state value function at step h under policy π . Formally,
 145 $V_h^{\pi}(s) := \sum_{h'=h}^H \mathbb{E}_{(s_{h'}, a_{h'}) \sim (\mathbb{P}, \pi)} [r_{h'}(s_{h'}, a_{h'}) \mid s_h = s]$. We also use $Q_h^{\pi} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ to de-
 146 note the state-action value function at step h under policy π , defined as $Q_h^{\pi}(s, a) := r_h(s, a) +$
 147 $\sum_{h'=h+1}^H \mathbb{E}_{(s_{h'}, a_{h'}) \sim (\mathbb{P}, \pi)} [r_{h'}(s_{h'}, a_{h'}) \mid s_h = s, a_h = a]$. Azar et al. (2017) proved that there al-
 148 ways exists an optimal policy π^* that achieves the optimal value $V_h^*(s) = \sup_{\pi} V_h^{\pi}(s) = V_h^{\pi^*}(s)$
 149 and $Q_h^*(s, a) = \sup_{\pi} Q_h^{\pi}(s, a) = Q_h^{\pi^*}(s, a)$ for all $(s, h) \in \mathcal{S} \times [H]$. For any (s, a, h) , the following
 150 Bellman Equation and the Bellman Optimality Equation hold, with $V_{H+1}^{\pi}(s) = 0 = V_{H+1}^*(s) = 0$:
 151

$$\begin{cases} V_h^{\pi}(s) = \mathbb{E}_{a' \sim \pi_h(s)} [Q_h^{\pi}(s, a')] \\ Q_h^{\pi}(s, a) = r_h(s, a) + \mathbb{P}_{s, a, h} V_{h+1}^{\pi} \end{cases} \quad \text{and} \quad \begin{cases} V_h^*(s) = \max_{a' \in \mathcal{A}} Q_h^*(s, a') \\ Q_h^*(s, a) = r_h(s, a) + \mathbb{P}_{s, a, h} V_{h+1}^*. \end{cases} \quad (1)$$

152 For any algorithm over K episodes, let π^k be the policy used in the k -th episode, and s_1^k be the
 153 corresponding initial state. The regret over $T = HK$ steps is $\text{Regret}(T) := \sum_{k=1}^K (V_1^* - V_1^{\pi^k})(s_1^k)$.

154 **Suboptimality Gap.** For any given MDP, we can provide the following formal definition.

155 **Definition 2.1.** For any (s, a, h) , the suboptimality gap is defined as $\Delta_h(s, a) := V_h^*(s) - Q_h^*(s, a)$.

156 Equation (1) ensures that $\Delta_h(s, a) \geq 0$ for any $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$. Accordingly, we define the
 157 minimum gap at each step h as follows.

162 **Definition 2.2.** Define $\Delta_{\min,h} := \inf\{\Delta_h(s, a) : \Delta_h(s, a) > 0, \forall (s, a) \in \mathcal{S} \times \mathcal{A}\}$ as the **minimum**
 163 **gap at step h .** If the set $\{\Delta_h(s, a) : \Delta_h(s, a) > 0, \forall (s, a) \in \mathcal{S} \times \mathcal{A}\}$ is empty, we set $\Delta_{\min,h} = \infty$.
 164

165 Most gap-dependent works (Simchowitz & Jamieson, 2019; Xu et al., 2020; Dann et al., 2021; Yang
 166 et al., 2021; Zhang et al., 2025a) define a **minimum gap** as $\Delta_{\min} := \inf\{\Delta_h(s, a) : \Delta_h(s, a) >
 167 0, \forall (s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]\}$. By definition, it is obvious that $\Delta_{\min,h} \geq \Delta_{\min}$ for all $h \in [H]$.
 168

169 3 FINE-GRAINED REGRET UPPER BOUND FOR UCB-BASED ALGORITHMS 170

171 In this section, we present the first fine-grained, gap-dependent regret analysis for a UCB-based
 172 algorithm—UCB-Hoeffding (Jin et al., 2018), using our novel framework introduced in Section 3.3.
 173 To demonstrate the generality of our approach, we introduce a new UCB-based algorithm, ULCB-
 174 Hoeffding, in Section 3.2 and establish a fine-grained regret bound for it with the same framework.
 175

176 3.1 THEORETICAL GUARANTEES FOR UCB-HOEFFDING

177 We first review UCB-Hoeffding in Algorithm 1. At the start of any episode k , it keeps an upper
 178 bound Q_h^k on Q_h^* for each (s, a, h) , and selects actions greedily. The update of Q_h^k uses the standard
 179 Bellman update with step size $\eta_t = \frac{H+1}{H+t}$ and a Hoeffding bonus b_t . For convenience, for any
 180 $N \in \mathbb{N}_+$ and $1 \leq i \leq N$, we additionally define $\eta_0^0 = 1$, $\eta_0^N = 0$ and $\eta_i^N = \eta_i \prod_{i'=i+1}^N (1 - \eta_{i'})$.
 181

183 Algorithm 1 UCB-Hoeffding

184 1: Initialize $Q_h^1(s, a) \leftarrow H$ and $N_h^1(s, a) \leftarrow 0$ for all (s, a, h) .
 185 2: **for** episode $k = 1, \dots, K$, after receiving s_1^k and setting $V_{H+1}^k = 0$, **do**
 186 3: **for** step $h = 1, \dots, H$ **do**
 187 4: Take action $a_h^k = \arg \max_{a'} Q_h^k(s_h^k, a')$, and observe s_{h+1}^k .
 188 5: $t = N_h^{k+1}(s_h^k, a_h^k) \leftarrow N_h^k(s_h^k, a_h^k) + 1$; $b_t \leftarrow 2\sqrt{H^3 \iota / t}$.
 189 6: $Q_h^{k+1}(s_h^k, a_h^k) = (1 - \eta_t)Q_h^k(s_h^k, a_h^k) + \eta_t [r_h(s_h^k, a_h^k) + V_{h+1}^k(s_{h+1}^k) + b_t]$.
 190 7: $V_h^{k+1}(s_h^k) = \min \{H, \max_{a' \in \mathcal{A}} Q_h^{k+1}(s_h^k, a')\}$.
 191 8: $Q_h^{k+1}(s, a) = Q_h^k(s, a)$, $V_h^{k+1}(s) = V_h^k(s)$, $\forall (s, a) \neq (s_h^k, a_h^k)$.
 192 9: **end for**
 193 10: **end for**
 194

195 Next, we present the fine-grained gap-dependent regret upper bound for UCB-Hoeffding.
 196

197 **Theorem 3.1.** For UCB-Hoeffding (Algorithm 1), the expected regret $\mathbb{E}[\text{Regret}(T)]$ is bounded by

$$198 O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s, a)} + \sum_{h=1}^H \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \log(SAT)}{\Delta_{\min,h}} + SAH^3 \right). \quad (2)$$

202 Here for any $h \in [H]$, $Z_{\text{opt},h} = \{(s, a) \in \mathcal{S} \times \mathcal{A} | \Delta_h(s, a) = 0\}$ with $S \leq |Z_{\text{opt},h}| \leq SA$.
 203

204 In the ideal case where the MDP contains only a single suboptimal state-action-step triple (s, a, h)
 205 with $h = H$, our result exhibits a significantly improved dependence on the minimum gap, namely
 206 $\tilde{O}(H^5 / \Delta_{\min})$, compared to the $\tilde{O}(H^6 SA / \Delta_{\min})$ dependence in Yang et al. (2021). Even in the
 207 worst scenario where all suboptimality gaps satisfy $\Delta_h(s, a) = \Delta_{\min}$, our result degrades gracefully
 208 to match the result in Yang et al. (2021). These findings demonstrate that our result outperforms that
 209 of Yang et al. (2021) in all cases for the UCB-Hoeffding algorithm.
 210

211 By applying the Cauchy–Schwarz inequality and noting that $\Delta_{\min,h} \geq \Delta_{\min}$ for all $h \in [H]$, we can
 212 derive the following weaker but simpler upper bound on the expected regret from Equation (2):
 213

$$214 O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s, a)} + \frac{H^5 |Z_{\text{opt}}| \log(SAT)}{\Delta_{\min}} + SAH^3 \right),$$

215 where $Z_{\text{opt}} = \{(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] | \Delta_h(s, a) = 0\}$ is the set of optimal state-action-step triples.
 216

216 **Remark:** The lower bound established in Simchowitz & Jamieson (2019) shows that any UCB-
 217 based algorithm, such as UCB-Hoeffding, must incur a gap-dependent expected regret of at least
 218

$$219 \tilde{\Omega} \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{1}{\Delta_h(s,a)} + \frac{S}{\Delta_{\min}} \right).$$

222 Our result matches this lower bound up to polynomial factors in H in the ideal scenario where $|Z_{\text{opt}}|$
 223 is independent of A , such as in MDPs with a constant number of optimal actions per state.

224 Xu et al. (2021) also provides a lower bound $\tilde{\Omega}(|Z_{\text{mul}}|/\Delta_{\min})$ for all types of algorithms when $HS \leq$
 225 $|Z_{\text{mul}}| \leq \frac{HSA}{2}$. Here, for any $h \in [H]$,

$$227 Z_{\text{mul}} = \{(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] \mid \Delta_h(s, a) = 0, |Z_{\text{opt},h}(s)| > 1\},$$

228 where $Z_{\text{opt},h}(s) = \{a \in \mathcal{A} \mid \Delta_h(s, a) = 0\}$. When $HS \leq |Z_{\text{mul}}| \leq \frac{HSA}{2}$, it holds that $|Z_{\text{opt}}| \leq$
 229 $2|Z_{\text{mul}}|$, and therefore the lower bound can be expressed as $\tilde{\Omega}(|Z_{\text{opt}}|/\Delta_{\min})$. This demonstrates the
 230 tightness of the dependence on $|Z_{\text{opt}}|/\Delta_{\min}$ in the second term of our result.

232 3.2 THEORETICAL GUARANTEES FOR ULCB-HOEFFDING

234 In this subsection, we introduce ULCB-Hoeffding, a UCB-based refinement of AMB (Xu et al.,
 235 2021), which also achieves a fine-grained regret upper bound and demonstrates improved empirical
 236 performance over AMB. Importantly, our fine-grained analytical framework presented in Section 3.3
 237 naturally extends to this variant, demonstrating the framework’s flexibility and generality.

238 The ULCB-Hoeffding algorithm is presented in Algorithm 2. At the start of each episode k , ULCB-
 239 Hoeffding maintains upper and lower bounds, $\bar{Q}_h^k(s, a)$ and $\underline{Q}_h^k(s, a)$, of the optimal value function
 240 $Q_h^*(s, a)$ for any (s, a, h) . It then constructs a candidate action set $A_h^k(s)$ by eliminating actions
 241 that are considered suboptimal (see line 14 in Algorithm 2). Specifically, if action a satisfies
 242 $\bar{Q}_h^{k+1}(s, a) < \underline{V}_h^{k+1}(s)$, then by line 9 in Algorithm 2, there exists another action a' such that
 243 $Q_h^*(s, a) \leq \bar{Q}_h^{k+1}(s, a) < \underline{V}_h^{k+1}(s) \leq \underline{Q}_h^{k+1}(s, a') \leq Q_h^*(s, a')$, which confirms that the action a
 244 is suboptimal. At the end of episode k , the new policy $\pi_h^{k+1}(s)$ is chosen to maximize the width of
 245 the confidence interval $(\bar{Q}_h^{k+1} - \underline{Q}_h^{k+1})(s, a)$, which measures the uncertainty in the Q -estimates.

248 Algorithm 2 ULCB-Hoeffding

250 1: **Initialize:** Set the failure probability $p \in (0, 1)$, $\bar{Q}_h^1(s, a) = \bar{V}_h^1(s) \leftarrow H$, $\underline{Q}_h^1(s, a) = \underline{V}_h^1(s) =$
 251 $N_h^1(s, a) \leftarrow 0$ and $A_h^1(s) = \mathcal{A}$ for any $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$.
 252 2: **for** episode $k = 1, \dots, K$, after receiving s_1^k and setting $\bar{V}_{H+1}^k = \underline{V}_{H+1}^k = 0$, **do**
 253 3: **for** step $h = 1, \dots, H$ **do**
 254 4: Choose $a_h^k \triangleq \begin{cases} \arg \max_{a \in A_h^k(s)} (\bar{Q}_h^k - \underline{Q}_h^k)(s_h^k, a), & \text{if } |A_h^k(s_h^k)| > 1 \\ \text{the only element in } A_h^k(s_h^k), & \text{if } |A_h^k(s_h^k)| = 1 \end{cases}$ and get s_{h+1}^k .
 255 5: Set $t = N_h^{k+1}(s_h^k, a_h^k) \leftarrow N_h^k(s_h^k, a_h^k) + 1$ and the bonus $b_t = 2\sqrt{H^3\iota/t}$, and update:
 256 6: $\bar{Q}_h^{k+1}(s_h^k, a_h^k) = (1 - \eta_t)\bar{Q}_h^k(s_h^k, a_h^k) + \eta_t [r_h(s_h^k, a_h^k) + \bar{V}_{h+1}^k(s_{h+1}^k) + b_t]$.
 257 7: $\underline{Q}_h^{k+1}(s_h^k, a_h^k) = (1 - \eta_t)\underline{Q}_h^k(s_h^k, a_h^k) + \eta_t [r_h(s_h^k, a_h^k) + \underline{V}_{h+1}^k(s_{h+1}^k) - b_t]$.
 258 8: $\bar{V}_h^{k+1}(s_h^k) = \min \left\{ H, \max_{a \in A_h^k(s_h^k)} \bar{Q}_h^{k+1}(s_h^k, a) \right\}$.
 259 9: $\underline{V}_h^{k+1}(s_h^k) = \max \left\{ 0, \max_{a \in A_h^k(s_h^k)} \underline{Q}_h^{k+1}(s_h^k, a) \right\}$.
 260 10: **end for**
 261 11: **for** $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] \setminus \{(s_h^k, a_h^k)\}_{h=1}^H$ **do**
 262 12: $\bar{Q}_h^{k+1}(s, a) = \bar{Q}_h^k(s, a)$, $\underline{Q}_h^{k+1}(s, a) = \underline{Q}_h^k(s, a)$, $\bar{V}_h^{k+1}(s) = \bar{V}_h^k(s)$, $\underline{V}_h^{k+1}(s) = \underline{V}_h^k(s)$.
 263 13: **end for**
 264 14: $\forall (s, h) \in \mathcal{S} \times [H]$, update $A_h^{k+1}(s) = \{a \in A_h^k(s) : \bar{Q}_h^{k+1}(s, a) \geq \underline{V}_h^{k+1}(s)\}$.
 265 15: **end for**

The main difference between ULCB-Hoeffding and AMB lies in the Q -updates. ULCB-Hoeffding uses the standard Bellman update (lines 6–7 of Algorithm 2), similar to UCB-Hoeffding (line 6 of Algorithm 1), which is essential to prove a fine-grained regret upper bound. In contrast, AMB uses a multi-step bootstrapping update, which will be detailed in Section 4 and Appendix F.1. We now present both worst-case and gap-dependent regret upper bounds for ULCB-Hoeffding.

Theorem 3.2. *For any $p \in (0, 1)$, let $\iota = \log(2SAT/p)$. Then with probability at least $1 - p$, ULCB-Hoeffding (Algorithm 2) satisfies $\text{Regret}(T) \leq O(\sqrt{H^4SAT\iota})$.*

This result demonstrates that ULCB-Hoeffding achieves a worst-case regret upper bound of order \sqrt{T} , matching the performance of UCB-Hoeffding (Jin et al., 2018).

Theorem 3.3. *For ULCB-Hoeffding (Algorithm 2), the expected regret is upper bounded by (2).*

ULCB-Hoeffding thus achieves the same fine-grained gap-dependent regret upper bound as UCB-Hoeffding. As noted in Section 3.1, the guarantee in Equation (2) matches the lower bound established by Simchowitz & Jamieson (2019) for UCB-based algorithms, with a tight dependence on $|Z_{\text{opt}}|/\Delta_{\min}$ that also aligns with the lower bound in Xu et al. (2021), up to polynomial factors in H .

3.3 A NOVEL FINE-GRAINED ANALYTICAL FRAMEWORK

In this subsection, we introduce the novel analytical framework used to derive fine-grained, gap-dependent regret upper bounds. Full proofs are deferred to Appendices D and E. We focus on UCB-Hoeffding, as the analysis for ULCB-Hoeffding proceeds in a similar manner. **The key ideas of our fine-grained analytical framework are summarized below:**

- (1) We first establish Lemma 3.1, which upper-bounds the regret by the expectation of the cumulative weighted visitation counts $\sum_{h=1}^H \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a)$ and further relates this term to the cumulative weighted estimation errors $\sum_{k=1}^K \omega_h^k (Q_h^k - Q_h^*) (s_h^k, a_h^k)$.
- (2) We then bound the cumulative weighted estimation errors by establishing a recursive relationship between consecutive steps (Lemma 3.2) and propagating it to the final step H (Lemma 3.3).
- (3) Using Lemmas 3.2 and 3.3, we derive a recursive relation for the cumulative weighted visitation counts $\sum_{h=1}^H \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a)$ across steps, which enables an inductive argument to derive a fine-grained upper bound and subsequently bound the expected regret via Lemma 3.1.

3.3.1 BOUNDING EXPECTED REGRET WITH CUMULATIVE WEIGHTED ESTIMATION ERROR

We begin with Lemma 3.1 that connects expected regret to suboptimality gaps:

Lemma 3.1. *For the UCB-Hoeffding algorithm with K episodes and total $T = HK$ steps, we have:*

$$\mathbb{E} [\text{Regret}(T)] = \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \right).$$

Lemma 3.1 holds universally for any learning algorithm, as shown in Lemma D.2. Therefore, bounding the expected regret reduces to controlling $\sum_{h=1}^H \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a)$, which can further be bounded by the cumulative estimation error $\sum_{h=1}^H \sum_{k=1}^K (Q_h^k - Q_h^*) (s_h^k, a_h^k)$. In particular, for any step h and episode k , with high probability, we have

$$(Q_h^k - Q_h^*) (s_h^k, a_h^k) \geq V_h^k(s_h^k) - Q_h^*(s_h^k, a_h^k) \geq V_h^*(s_h^k) - Q_h^*(s_h^k, a_h^k) = \Delta_h(s_h^k, a_h^k). \quad (3)$$

Here, the first inequality follows from line 7 of Algorithm 1, and the second holds due to the optimism property $V_h^k \geq V_h^*$ and $Q_h^k \geq Q_h^*$ of UCB-Hoeffding (see Lemma D.1). With Equation (3), prior works (Yang et al., 2021; Zheng et al., 2025b) focused on bounding the cumulative weighted estimation error $\sum_{k=1}^K \omega_h^k (Q_h^k - Q_h^*) (s_h^k, a_h^k)$ and established the following type of upper bound:

$$\sum_{k=1}^K \omega_h^k (Q_h^k - Q_h^*) (s_h^k, a_h^k) \leq O \left(\sum_{h=h'}^H \sqrt{H^3 SA \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h')\|_1 \iota} + \sum_{h=h'}^H C(h') \right), \quad (4)$$

324 where $\{\omega_h^k\}_{k=1}^K$ is a non-negative weight sequence and $C(h')$ collects the remaining terms at step
 325 h' . The norms $\|\omega_h(\cdot, h')\|_\infty$ and $\|\omega_h(\cdot, h')\|_1$ at step h' are defined in Equation (6) later.
 326

327 Equation (4) is obtained by applying the Cauchy–Schwarz inequality to the cumulative weighted
 328 bonus $\sum_k \omega_h^k b_{N_h^k}$ over all state-action pairs at any step h . However, as shown in Lemma 4.1 of
 329 Zhang et al. (2025a), in the gap-dependent setting, suboptimal state-action pairs (s, a) at any step
 330 h with $Q_h^*(s, a) < V_h^*(s)$ are visited at most $\tilde{O}(\log T)$ times, whereas optimal pairs can be visited
 331 infinitely often. Thus, uniform analysis of all state-action pairs leads to loose bounds.

332 3.3.2 SEPARATE ANALYSIS FOR EACH STATE-ACTION PAIR

334 To address the looseness of uniform analysis, we analyze the cumulative weighted estimation error
 335 for **each state-action pair at every step**, enabling tighter control.

336 For any given step h and non-negative weight sequence $\{\omega_h^k\}_{k=1}^K$, we define the following weights
 337 for any $k' \in [K]$, $h \leq h' < H$:

$$\omega_h(k', h) := \omega_h^{k'}; \omega_h(k', h' + 1) := \sum_{i=N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^{N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})-1} \omega_h(k^{i+1}(s_{h'}^{k'}, a_{h'}^{k'}, h'), h') \eta_{N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^i \quad (5)$$

343 with the norms

$$\|\omega_h(\cdot, h')\|_\infty := \max_{k' \in [K]} \omega_h(k', h'), \quad \|\omega_h(\cdot, h')\|_1 := \sum_{k'=1}^K \omega_h(k', h'). \quad (6)$$

344 Here, $k^i(s, a, h)$ denotes the episode index of the i -th visit to (s, a, h) and $N_h^k(s, a)$ denotes the
 345 number of visits to (s, a, h) before episode k . The weight $\omega_h(k', h' + 1)$ captures the contribution
 346 of the term $(Q_{h'+1}^{k'} - Q_{h'+1}^*)(s_{h'+1}^{k'}, a_{h'+1}^{k'})$ when recursively bounding the cumulative weighted
 347 estimation error from step h' to $h' + 1$ as shown in the second conclusion of Lemma 3.2 later.

348 For each state-action pair (s, a) , we define the state-action specific weight at any step $h \leq h' \leq H$
 349 as $\omega_h(k', h', s, a) := \omega_h(k', h') \cdot \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s, a)]$ with the corresponding norms given by

$$\|\omega_h(\cdot, h', s, a)\|_\infty := \max_{k' \in [K]} \omega_h(k', h', s, a), \quad \|\omega_h(\cdot, h', s, a)\|_1 := \sum_{k'=1}^K \omega_h(k', h', s, a).$$

350 Additionally, for any state-action pair (s, a) , we also define

$$\tilde{\omega}_h(k', h' + 1, s, a) = \omega_h(k', h' + 1) \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s, a)].$$

351 The weight $\tilde{\omega}_h(k', h' + 1, s, a)$ characterizes the weight of the term $(Q_{h'+1}^{k'} - Q_{h'+1}^*)(s_{h'+1}^{k'}, a_{h'+1}^{k'})$
 352 when bounding the cumulative weighted estimation error for each state-action pair (s, a) at step h'
 353 as shown in the first conclusion of Lemma 3.2 later.

354 We are now ready to present Lemma 3.2, which bounds the cumulative weighted estimation error
 355 for each state-action pair (s, a) at any subsequent steps $h' \in [h, H]$. It is derived by recursively
 356 using the Q -update (line 6 of Algorithm 1). The detailed statement is given in Lemma D.3, followed
 357 by its proof. Here, we use the shorthand $(s, a)_h^k = (s_h^k, a_h^k)$.

358 **Lemma 3.2.** *For UCB-Hoeffding, with probability at least $1 - p$, for any non-negative weight
 359 sequence $\{\omega_h^k\}_k$ at step h , it holds simultaneously for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and subsequent step
 360 $h' \in [h, H]$ that:*

$$\sum_{k=1}^K \omega_h(k, h', s, a) (Q_{h'}^k - Q_{h'}^*) (s_{h'}^k, a_{h'}^k) \leq \sum_{k'=1}^K \tilde{\omega}_h(k', h' + 1, s, a) (Q_{h'+1}^{k'} - Q_{h'+1}^*) (s, a)_{h'+1}^{k'} + \|\omega_h(\cdot, h')\|_\infty H + 16 \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}.$$

$$\sum_{k=1}^K \omega_h(k, h') (Q_{h'}^k - Q_{h'}^*) (s_{h'}^k, a_{h'}^k) \leq \sum_{k'=1}^K \omega_h(k', h' + 1) (Q_{h'+1}^{k'} - Q_{h'+1}^*) (s_{h'+1}^{k'}, a_{h'+1}^{k'}) + \|\omega_h(\cdot, h')\|_\infty SAH + 16 \sum_{s, a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}.$$

378 Iteratively applying recursions over steps $h' = h, \dots, H$ in the second conclusion of Lemma 3.2,
 379 and using the recursively defined weights $\omega_h(k, h')$, we obtain Lemma 3.3:

380 **Lemma 3.3.** *For UCB-Hoeffding, with probability at least $1 - p$, for any non-negative weight
 381 sequence $\{\omega_h^k\}_k$ at step h , it holds simultaneously for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and subsequent step
 382 $h' \in [h, H]$ that:*

$$\begin{aligned} 384 \quad & \sum_{k=1}^K \omega_h(k, h') (Q_{h'}^k - Q_{h'}^*) (s_{h'}^k, a_{h'}^k) \\ 385 \quad & \leq \sum_{h_1=h'}^H \|\omega_h(\cdot, h_1)\|_\infty SAH + 16 \sum_{h_1=h'}^H \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h_1)\|_\infty \|\omega_h(\cdot, h_1, s, a)\|_1 \iota}. \\ 386 \quad & \end{aligned}$$

390 The formal statement is presented in Lemma D.4, followed by its proof. Unlike the upper bound
 391 derived from the uniform analysis in Equation (4), Lemma 3.3 retains the individual contributions
 392 $\sqrt{H^3 \|\omega_h(\cdot, h_1)\|_\infty \|\omega_h(\cdot, h_1, s, a)\|_1 \iota}$. This allows a tighter upper bound under the uneven visita-
 393 tions across different triples in the gap-dependent analysis.

395 3.3.3 INDUCTIVE ANALYSIS FOR CUMULATIVE WEIGHTED VISITATION COUNTS

397 We partition the state-action pairs (s, a) at each step h' into two subsets: $Z_{\text{opt},h'}$ containing optimal
 398 state-action pair, where $\Delta_{h'}(s, a) = 0$, and $Z_{\text{sub},h'} = \{(s, a) | \Delta_{h'}(s, a) > 0\}$ containing suboptimal
 399 state-action pairs. Then for any given step h , when Equation (3) holds, we set the weight as:

$$400 \quad \omega_h^k := \mathbb{I}[(Q_h^k - Q_h^*)(s_h^k, a_h^k) \geq \Delta_h(s_h^k, a_h^k), (s_h^k, a_h^k) \in Z_{\text{sub},h}] = \mathbb{I}[(s_h^k, a_h^k) \in Z_{\text{sub},h}] \leq 1.$$

402 The second equality follows directly from Equation (3). Using this choice, applying the first conclu-
 403 sion in Lemma 3.2 with $h' = h$, the bound $\|\omega_h(\cdot, h)\|_\infty \leq 1$, and the fact that $\|\omega_h(\cdot, h, s, a)\|_1 \leq$
 404 $N_h^{K+1}(s, a)$, we obtain the following inequalities for any state-action pair $(s, a) \in Z_{\text{sub},h}$:

$$\begin{aligned} 405 \quad & \Delta_h(s, a) N_h^{K+1}(s, a) \leq \sum_{k=1}^K \omega_h^k (Q_h^k - Q_h^*)(s_h^k, a_h^k) \mathbb{I}[(s_h^k, a_h^k) = (s, a)] \\ 406 \quad & \leq \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) (Q_{h+1}^{k'} - Q_{h+1}^*) (s_{h+1}^{k'}, a_{h+1}^{k'}) + H + 16 \sqrt{H^3 N_h^{K+1}(s, a) \iota}. \quad (7) \\ 407 \quad & \end{aligned}$$

408 Solving this inequality for $\Delta_h(s, a) N_h^{K+1}(s, a)$ with $(s, a) \in Z_{\text{sub},h}$ and $\Delta_h(s, a) > 0$, we reach:

$$412 \quad \Delta_h(s, a) N_h^{K+1}(s, a) \leq \frac{256 H^3 \iota}{\Delta_h(s, a)} + 2H + 2 \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) (Q_{h+1}^{k'} - Q_{h+1}^*) (s_{h+1}^{k'}, a_{h+1}^{k'}).$$

415 Define \sum_{sub} as the summation over all suboptimal state-action pairs $(s, a) \in Z_{\text{sub},h}$. Summing the
 416 inequality above over all $(s, a) \in Z_{\text{sub},h}$, and noting that $\Delta_h(s, a) = 0$ for $(s, a) \notin Z_{\text{sub},h}$,

$$417 \quad \sum_{\text{sub}} \tilde{\omega}_h(k', h+1, s, a) \leq \sum_{s,a} \tilde{\omega}_h(k', h+1, s, a) = \omega_h(k', h+1),$$

420 together with the optimism property $Q_{h+1}^k \geq Q_{h+1}^*$ by Lemma D.1, we obtain:

$$422 \quad \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \leq \sum_{\text{sub}} \frac{256 H^3 \iota}{\Delta_h(s, a)} + 2SAH + 2 \sum_{k'=1}^K \omega_h(k', h+1) (Q_{h+1}^{k'} - Q_{h+1}^*) (s, a)_{h+1}^{k'}.$$

425 Applying Lemma 3.3 with $h' = h+1$ to the last term in the equation above and defining $C'(h) =$
 426 $O(H^2 SA + \sum_{\text{sub}} H^3 \iota / \Delta_h(s, a))$ to collect the remaining terms, we have

$$428 \quad \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \leq C'(h) + 32 \sum_{h'=h+1}^H \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}. \quad (8)$$

431 To bound the last term in Equation (8), we apply the Cauchy–Schwarz inequality by distinguishing
 432 between optimal and suboptimal state-action pairs. Specifically, we apply the inequality **separately**

432 to the optimal state-action pairs in $Z_{\text{opt},h'}$ for each step h' , and **collectively** to all suboptimal state-
 433 action pairs across steps $h < h' \leq H$. This separation enables a sharper bound of
 434

$$435 O\left(\sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt},h'}| \|\omega_h(\cdot, h)\|_1 \iota} + \sqrt{H^3 \iota \sum_{\text{sub},h'} \frac{1}{\Delta_{h'}(s, a)} \sum_{\text{sub},h'} \Delta_{h'}(s, a) N_{h'}^{K+1}(s, a)}\right) \quad (9)$$

438 where the shorthand $\sum_{\text{sub},h'}$ denotes the summation over all $(s, a) \in Z_{\text{sub},h'}$ for $h < h' \leq H$. This
 439 result also relies on the following three properties proved in Equations (25) to (27) of Lemma D.5:
 440

$$441 \|\omega_h(\cdot, h')\|_\infty \leq 3, \sum_{s,a} \|\omega_h(\cdot, h', s, a)\|_1 \leq \|\omega_h(\cdot, h)\|_1, \|\omega_h(\cdot, h', s, a)\|_1 \leq O(N_{h'}^{K+1}(s, a)).$$

442 Plugging the bound from Equation (9) into Equation (8) yields a recursive relation between
 443 $\sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a)$ at step h and future steps. Applying induction from H down to 1, we
 444 obtain a fine-grained upper bound on the cumulative weighted visitation $\sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a)$.
 445

446 **Lemma 3.4.** *For UCB-Hoeffding algorithm and a sufficiently large constant $c_1 > 0$, with probability
 447 at least $1 - p$, it holds simultaneously for any $h \in [H]$ that:*

$$448 \sum_{s,a} \frac{\Delta_h(s, a) N_h^{K+1}(s, a)}{c_1} \leq SAH^2 + \sum_{h'=h}^H \sum_{\Delta_{h'}(s, a) > 0} \frac{H^4 \iota}{\Delta_{h'}(s, a)} + \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h}} \\ 450 + \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}}.$$

455 The full proof is provided in Lemma D.5. By combining this result with Lemma 3.1, we complete
 456 the proof of Theorem 3.1, establishing the desired fine-grained, gap-dependent regret upper bound.
 457

4 FINE-GRAINED GAP-DEPENDENT REGRET UPPER BOUND FOR AMB

461 The AMB algorithm (Xu et al., 2021) was proposed to establish a fine-grained, gap-dependent regret
 462 bound. However, we identify issues in both its algorithmic design and theoretical analysis that
 463 prevent it from achieving valid fine-grained guarantees. We first summarize these issues below.
 464

465 **Improper Truncation of Q -Estimates in Algorithm Design.** AMB maintains upper and lower
 466 estimates on the optimal Q -value functions, denoted by \bar{Q} and \underline{Q} , respectively. However, during
 467 multi-step bootstrapping updates of these estimates, it applies truncations at H and 0 (see lines
 468 13-14 in Algorithm 3). This design breaks the recursive structure linking Q -estimates to historical
 469 V -estimates. In particular, it invalidates their Equation (A.5), which is essential for establishing the
 470 theoretical guarantee on the optimism and pessimism of Q -estimates \bar{Q} and \underline{Q} , respectively.

471 **Violation of Martingale Difference Conditions in Concentration Analysis.** AMB uses multi-step
 472 bootstrapping and constructs Q -estimates by decomposing the Q -function into two parts: rewards
 473 accumulated along states with determined optimal actions, and those collected from the first state
 474 with undetermined optimal actions. When proving optimism and pessimism of the Q -estimates
 475 (see their Lemma 4.2), Xu et al. (2021) attempt to bound the deviation between the Q -estimates
 476 and Q^* using Azuma–Hoeffding inequalities. However, when analyzing the two estimators arising
 477 from the Q -function decomposition (see their Equation (4.2) and Lemma 4.1), **each term is improperly**
 478 **centered because the randomness of the bootstrapping step is ignored**, thereby violating the
 479 martingale-difference condition required for applying the Azuma–Hoeffding inequality.

480 These issues compromise the claimed optimism and pessimism guarantees for the Q -estimates and
 481 invalidate the stated fine-grained gap-dependent regret upper bound in Xu et al. (2021). A detailed
 482 analysis is provided in Appendix F.1.

483 To address these issues, we introduce the Refined AMB algorithm with the following refinements:

484 **(a) Revising Update Rules.** We remove the truncations in the updates of Q -estimates and instead
 485 apply them to the corresponding V -estimates. This preserves the crucial recursive structure linking
 486 Q -estimates to historical V -estimates used in the theoretical analysis.

(b) **Establishing Unbiasedness of Multi-Step Bootstrapping.** We rigorously prove that the estimators from multi-step bootstrapping form an unbiased estimate of the optimal value function Q^* .

(c) **Ensuring Martingale Difference Condition.** We ensure the validity of Azuma–Hoeffding inequalities by centering the multi-step bootstrapping estimators around true conditional expectations.

(d) **Tightening Confidence Bounds.** By jointly analyzing the concentration of both estimators, we tighten the confidence interval and halve the bonus, leading to improved empirical performance.

These modifications not only ensure theoretical validity but also yield improved empirical performance. The refined algorithm is presented in Algorithms 4 and 5 of Appendix F.2. We further establish the following optimism and pessimism properties for its Q -estimates.

Theorem 4.1 (Informal). *For the Refined AMB algorithm, with high probability, $\overline{Q}_h^k(s, a) \geq Q_h^*(s, a) \geq \underline{Q}_h^k(s, a)$ holds simultaneously for all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$.*

The formal statement is given in Theorem F.1, with its proof in Appendix F.3. Based on this result, we can follow the remaining analysis of Xu et al. (2021) to prove the following regret upper bound:

$$O\left(\sum_{h=1}^H \sum_{\Delta_h(s,a)>0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \frac{H^5 |Z_{\text{mul}}| \log(SAT)}{\Delta_{\min}}\right). \quad (10)$$

This result contains a dependence on $O(SAH^5)$ as shown in Appendix F.4.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments¹ conducted in synthetic environments, evaluating four algorithms: AMB, Refined AMB, UCB-Hoeffding, and ULCB-Hoeffding. We consider four **experiment scales** with $(H, S, A, K) = (2, 3, 3, 10^5), (5, 5, 5, 6 \times 10^5), (7, 8, 6, 5 \times 10^6)$, and $(10, 15, 10, 2 \times 10^7)$. For each (s, a, h) , rewards $r_h(s, a)$ are sampled independently from the uniform distribution over $[0, 1]$, and transition kernels $\mathbb{P}_h(\cdot \mid s, a)$ are drawn uniformly from the S -dimensional probability simplex. The initial state of each episode is selected uniformly at random from the state space.

We also set $\iota = 1$ and the bonus coefficient $c = 1$ for UCB-Hoeffding, ULCB-Hoeffding, and Refined AMB, and $c = 2$ for AMB. This is because AMB applies concentration inequalities separately to the two estimators induced by multi-step bootstrapping. In contrast, all other algorithms, including the Refined AMB that combines the concentration analysis for multi-step bootstrapping, apply the concentration inequality only once, resulting in a bonus term with half the constant.

To report uncertainty, we collect 10 sample trajectories per algorithm under the same MDP instance. In Figure 1 of Appendix B, we plot $\text{Regret}(T) / \log(K + 1)$ versus the number of episodes K . Solid lines indicate the median regret, and shaded regions represent the 10th-90th percentile intervals.

The results show that ULCB-Hoeffding and Refined AMB achieve comparable performance, both outperforming the original AMB, while UCB-Hoeffding performs the best overall. In all settings, the regret curves for all algorithms except AMB flatten as K increases, indicating logarithmic growth in regret, which is consistent with the fine-grained theoretical guarantees.

6 CONCLUSION

This work establishes the first fine-grained, gap-dependent regret bounds for model-free RL in episodic tabular MDPs. In the UCB-based setting, we develop a new analytical framework that enables the first fine-grained regret analysis of UCB-Hoeffding and extends naturally to ULCB-Hoeffding, a simplified variant of AMB. In the non-UCB-based setting, we refine AMB to address its algorithmic and analytical issues, deriving the first rigorous fine-grained regret bound within this regime and demonstrating improved empirical performance.

¹All experiments were conducted on a desktop equipped with an Intel Core i7-14700F processor and completed within 12 hours. The code is included in the supplementary materials.

540
541
ETHICS STATEMENT542
543
544
545
This work is purely theoretical and does not involve human subjects, personal data, or any experiments requiring ethical approval. We have followed all guidelines outlined in the ICLR Code of Ethics, ensuring transparency, integrity, and fairness throughout the research process. There are no foreseeable ethical concerns or potential harms related to this study.546
547
REPRODUCIBILITY STATEMENT
548549
550
551
552
553
554
To ensure reproducibility, we provide detailed theoretical analyses, including a clearly defined tabular MDP framework and assumptions in Section 2, as well as proof sketch outlines in Sections 3 and 4. Full proofs are included in the appendix. For the empirical results included in Section 6, all experiments were conducted on a desktop equipped with an Intel Core i7-14700F processor over a 12-hour period. The complete source code is provided in the supplementary materials to support independent verification.555
556
USE OF LARGE LANGUAGE MODELS
557558
559
560
In this work, the use of large language models was strictly limited to text polishing and language refinement. All core scientific ideas, problem formulation, methodology design, and experimental planning were independently developed by the authors.561
562
REFERENCES
563564
565
Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative model is minimax optimal. In *Conference on Learning Theory*, pp. 67–83. PMLR, 2020.
566
567
Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret bounds. *Advances in Neural Information Processing Systems*, 30, 2017.
568
569
Aymen Al Marjani and Alexandre Proutiere. Best policy identification in discounted mdps: Problem-specific sample complexity. *arXiv preprint arXiv:2009.13405*, 2020.
570
571
Aymen Al Marjani, Aurélien Garivier, and Alexandre Proutiere. Navigating to the best policy in markov decision processes. In *Advances in Neural Information Processing Systems*, pp. 25852–25864, 2021.
572
573
574
Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted reinforcement learning. In *Advances in Neural Information Processing Systems*, pp. 49–56. MIT Press, 2007.
575
576
Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. *Advances in Neural Information Processing Systems*, 21, 2008.
577
578
579
Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In *International Conference on Machine Learning*, pp. 263–272. PMLR, 2017.
580
581
Shulun Chen, Runlong Zhou, Zihan Zhang, Maryam Fazel, and Simon S Du. Sharp gap-dependent variance-aware regret bounds for tabular mdps. *arXiv preprint arXiv:2506.06521*, 2025.
582
583
584
Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable reinforcement learning. In *International Conference on Machine Learning*, pp. 1507–1516. PMLR, 2019.
585
586
587
Christoph Dann, Teodor Vanislavov Marinov, Mehryar Mohri, and Julian Zimmert. Beyond value-function gaps: Improved instance-dependent regret bounds for episodic reinforcement learning. In *Advances in Neural Information Processing Systems*, pp. 1–12, 2021.
588
589
590
591
Ronan Fruin, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained exploration-exploitation in reinforcement learning. In *International Conference on Machine Learning*, pp. 1578–1586. PMLR, 2018.

594 Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
 595 linear function approximation. In *International Conference on Machine Learning*, pp. 4171–4180.
 596 PMLR, 2021.

597 Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
 598 learning. *Journal of Machine Learning Research*, 11:1563–1600, 2010.

600 Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
 601 cient? *Advances in Neural Information Processing Systems*, 31, 2018.

602 Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
 603 for reinforcement learning. In *International Conference on Machine Learning*, pp. 4870–4879.
 604 PMLR, 2020.

606 Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard Leurent,
 607 and Michal Valko. Planning in markov decision processes with gap-dependent sample complexity.
 608 In *Advances in Neural Information Processing Systems*, pp. 1253–1263, 2020.

609 Sham Kakade, Mengdi Wang, and Lin F Yang. Variance reduction methods for sublinear reinforce-
 610 ment learning. *arXiv preprint arXiv:1802.09184*, 2018.

612 Safwan Labbi, Daniil Tiapkin, Lorenzo Mancini, Paul Mangold, and Eric Moulines. Federated
 613 ucbvi: Communication-efficient federated regret minimization with heterogeneous agents. *arXiv*
 614 *preprint arXiv:2410.22908*, 2024.

615 Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier
 616 to regret-optimal model-free reinforcement learning. *Advances in Neural Information Processing*
 617 *Systems*, 34:17762–17776, 2021.

619 Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. Ucb momen-
 620 tum q-learning: Correcting the bias without forgetting. In *International Conference on Machine*
 621 *Learning*, pp. 7609–7618. PMLR, 2021.

622 Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, and Raman Arora. On instance-
 623 dependent bounds for offline reinforcement learning with linear function approximation. In *Pro-
 624 ceedings of the AAAI Conference on Artificial Intelligence*, pp. 9310–9318, 2023.

626 Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured reinforcement
 627 learning. *Advances in Neural Information Processing Systems*, 31, 2018.

628 Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular
 629 mdps. In *Advances in Neural Information Processing Systems*, 2019.

631 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press,
 632 2018.

633 Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. Variance-aware regret bounds for undis-
 634 counted reinforcement learning in mdps. In *Algorithmic Learning Theory*, pp. 770–805. PMLR,
 635 2018.

636 Ambuj Tewari and Peter Bartlett. Optimistic linear programming gives logarithmic regret for irre-
 637 ducible mdps. In *Advances in Neural Information Processing Systems*, pp. 1505–1512, 2008.

639 Andrea Tirinzoni, Aymen Al Marjani, and Emilie Kaufmann. Near instance-optimal pac reinfor-
 640 cement learning for deterministic mdps. In *Advances in Neural Information Processing Systems*,
 641 pp. 8785–8798, 2022.

642 Andrea Tirinzoni, Aymen Al-Marjani, and Emilie Kaufmann. Optimistic pac reinforcement learn-
 643 ing: the instance-dependent view. In *International Conference on Algorithmic Learning Theory*,
 644 pp. 1460–1480. PMLR, 2023.

646 Andrew Wagenmaker and Kevin G Jamieson. Instance-dependent near-optimal policy identification
 647 in linear mdps via online experiment design. *Advances in Neural Information Processing Systems*,
 35:5968–5981, 2022.

648 Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson. First-
 649 order regret in reinforcement learning with linear function approximation: A robust estimation
 650 approach. In *International Conference on Machine Learning*, pp. 22384–22429. PMLR, 2022a.
 651

652 Andrew J Wagenmaker, Max Simchowitz, and Kevin Jamieson. Beyond no regret: Instance-
 653 dependent pac reinforcement learning. In *Conference on Learning Theory*, pp. 358–418. PMLR,
 654 2022b.

655 Xinqi Wang, Qiwen Cui, and Simon S Du. On gap-dependent bounds for offline reinforcement
 656 learning. *Advances in Neural Information Processing Systems*, 35:14865–14877, 2022.

657

658 Haike Xu, Tengyu Ma, and Simon Du. Fine-grained gap-dependent bounds for tabular mdps via
 659 adaptive multi-step bootstrap. In *Conference on Learning Theory*, pp. 4438–4472. PMLR, 2021.

660 Tengyu Xu, Zhe Wang, Yi Zhou, and Yingbin Liang. Reanalysis of variance reduced temporal
 661 difference learning. In *International Conference on Learning Representations*, 2020.

662

663 Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In *International Con-
 664 ference on Artificial Intelligence and Statistics*, pp. 1576–1584. PMLR, 2021.

665 Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
 666 learning without domain knowledge using value function bounds. In *International Conference on
 667 Machine Learning*, pp. 7304–7312. PMLR, 2019.

668

669 Haochen Zhang, Zhong Zheng, and Lingzhou Xue. Gap-dependent bounds for federated q -
 670 learning. In *Forty-second International Conference on Machine Learning*, 2025a.

671

672 Haochen Zhang, Zhong Zheng, and Lingzhou Xue. Regret-optimal q -learning with low cost for
 673 single-agent and federated reinforcement learning. *arXiv preprint arXiv:2506.04626*, 2025b.

674

675 Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning
 676 via reference-advantage decomposition. *Advances in Neural Information Processing Systems*, 33:
 15198–15207, 2020.

677

678 Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits?
 679 a near-optimal algorithm escaping the curse of horizon. In *Conference on Learning Theory*, pp.
 4528–4531. PMLR, 2021.

680

681 Zihan Zhang, Yuhang Jiang, Yuan Zhou, and Xiangyang Ji. Near-optimal regret bounds for multi-
 682 batch reinforcement learning. *Advances in Neural Information Processing Systems*, 35:24586–
 683 24596, 2022.

684

685 Zihan Zhang, Yuxin Chen, Jason D Lee, and Simon S Du. Settling the sample complexity of online
 686 reinforcement learning. In *Conference on Learning Theory*, pp. 5213–5219. PMLR, 2024.

687

688 Heyang Zhao, Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Variance-dependent regret
 689 bounds for linear bandits and reinforcement learning: Adaptivity and computational efficiency. In
 690 *The Thirty Sixth Annual Conference on Learning Theory*, pp. 4977–5020. PMLR, 2023.

691

692 Zhong Zheng, Fengyu Gao, Lingzhou Xue, and Jing Yang. Federated q -learning: Linear regret
 693 speedup with low communication cost. In *The Twelfth International Conference on Learning
 694 Representations*, 2024.

695

696 Zhong Zheng, Haochen Zhang, and Lingzhou Xue. Federated q -learning with reference-advantage
 697 decomposition: Almost optimal regret and logarithmic communication cost. In *The Thirteenth
 698 International Conference on Learning Representations*, 2025a.

699

700 Zhong Zheng, Haochen Zhang, and Lingzhou Xue. Gap-dependent bounds for q -learning using
 701 reference-advantage decomposition. In *The Thirteenth International Conference on Learning
 702 Representations*, 2025b.

703 Runlong Zhou, Zhang Zihan, and Simon Shaolei Du. Sharp variance-dependent bounds in reinforce-
 704 ment learning: Best of both worlds in stochastic and deterministic environments. In *International
 705 Conference on Machine Learning*, pp. 42878–42914. PMLR, 2023.

In the appendix, Appendix A reviews related work. Appendix B provides the experimental results. Appendix C presents several lemmas that facilitate our proof. Appendix D establishes the fine-grained gap-dependent regret upper bound for the UCB-Hoeffding algorithm, representing the first such result for a UCB-based method. Appendix E applies the same fine-grained analytical framework from Appendix D to derive the gap-dependent regret upper bound for the ULCB-Hoeffding algorithm. Finally, Appendix F provides a detailed analysis of both algorithmic and technical issues in the original AMB algorithm and presents a proof of the fine-grained regret upper bound for our refined version of the AMB algorithm.

A RELATED WORK

Online RL for Tabular Episodic MDPs with Worst-Case Regret. There are mainly two types of algorithms for reinforcement learning: model-based and model-free algorithms. Model-based algorithms learn a model from past experience and make decisions based on this model, while model-free algorithms only maintain a group of value functions and take the induced optimal actions. Due to these differences, model-free algorithms are usually more space-efficient and time-efficient compared to model-based algorithms. However, model-based algorithms may achieve better learning performance by leveraging the learned model.

Next, we discuss the literature on model-based and model-free algorithms for finite-horizon tabular MDPs with worst-case regret. Auer et al. (2008), Agrawal & Jia (2017), Azar et al. (2017), Kakade et al. (2018), Agarwal et al. (2020), Dann et al. (2019), Zanette & Brunskill (2019), Zhang et al. (2021), Zhou et al. (2023) and Zhang et al. (2024) worked on model-based algorithms. Notably, Zhang et al. (2024) provided an algorithm that achieves a regret of $\tilde{O}(\min\{\sqrt{SAH^2T}, T\})$, which matches the information lower bound. Jin et al. (2018), Zhang et al. (2025b), Zhang et al. (2020), Li et al. (2021) and Ménard et al. (2021) work on model-free algorithms. The latter three have introduced algorithms that achieve minimax regret of $\tilde{O}(\sqrt{SAH^2T})$. There are also several works focusing on online federated RL settings, such as Zheng et al. (2024), Labbi et al. (2024), Zheng et al. (2025a), and Zhang et al. (2025b). Notably, the last three works all achieve minimax regret bounds up to logarithmic factors.

Suboptimality Gap. When there exists a strictly positive suboptimality gap, logarithmic regret becomes achievable. Early studies established asymptotic logarithmic regret bounds (Auer & Ortner, 2007; Tewari & Bartlett, 2008). More recently, non-asymptotic bounds have been developed (Jaksch et al., 2010; Ok et al., 2018; Simchowitz & Jamieson, 2019; He et al., 2021). Specifically, Jaksch et al. (2010) designed a model-based algorithm whose regret bound depends on the policy gap instead of the action gap studied in this paper. Ok et al. (2018) derived problem-specific logarithmic-type lower bounds for both structured and unstructured MDPs. Simchowitz & Jamieson (2019) extended the model-based algorithm proposed by Zanette & Brunskill (2019) and obtained logarithmic regret bounds. More recently, Chen et al. (2025) further improved model-based gap-dependent results. Logarithmic regret bounds have also been established in the linear function approximation setting (He et al., 2021), and Nguyen-Tang et al. (2023) provided gap-dependent guarantees for offline RL with linear function approximation.

Specifically, for model-free algorithms, Yang et al. (2021) demonstrated that the UCB-Hoeffding algorithm proposed in Jin et al. (2018) achieves a gap-dependent regret bound of $\tilde{O}(H^6SAT/\Delta_{\min})$. This result was later improved by Xu et al. (2021), who introduced the Adaptive Multi-step Bootstrap (AMB) algorithm to achieve tighter bounds. Furthermore, Zheng et al. (2025b) provided gap-dependent analyses for algorithms with reference-advantage decomposition (Zhang et al., 2022; Li et al., 2021; Zheng et al., 2025a). More recently, Zhang et al. (2025a) and Zhang et al. (2025b) extended gap-dependent analysis to federated Q -learning settings.

There are also some other works focusing on gap-dependent sample complexity bounds (Jonsson et al., 2020; Al Marjani & Proutiere, 2020; Al Marjani et al., 2021; Tirinzoni et al., 2022; Wagenmaker et al., 2022b; Wagenmaker & Jamieson, 2022; Wang et al., 2022; Tirinzoni et al., 2023).

Other Problem-Dependent Performance. In practice, RL algorithms often outperform what their worst-case performance guarantees would suggest. This motivates a recent line of works that investigate optimal performance in various problem-dependent settings (Fruit et al., 2018; Jin et al., 2020; Talebi & Maillard, 2018; Wagenmaker et al., 2022a; Zhao et al., 2023; Zhou et al., 2023).

B EXPERIMENTAL RESULTS

This section provides the four numerical plots for four experiment scales with $(H, S, A, K) = (2, 3, 3, 10^5), (5, 5, 5, 6 \times 10^5), (7, 8, 6, 5 \times 10^6)$, and $(10, 15, 10, 2 \times 10^7)$ in Section 5. The algorithms evaluated are AMB, represented by the blue curve; ULCB-Hoeffding, shown in purple; Refined AMB, depicted in green; and UCB-Hoeffding, indicated by the red curve.

Figure 1: Regret Comparison of Different Algorithms.

Each plot displays the comparative performance of four distinct algorithms. In each plot, we collect 10 sample trajectories per algorithm under the same MDP instance and plot the results of $\text{Regret}(T)/\log(K + 1)$ versus the number of episodes K . Solid lines represent the median regret, while shaded regions show the range between the 10th and 90th percentiles.

810 **C GENERAL LEMMAS**
 811

812 **Lemma C.1.** (Azuma-Hoeffding Inequality). *Suppose $\{X_k\}_{k=0}^\infty$ is a martingale and $|X_k -$
 813 $X_{k-1}| \leq c_k, \forall k \in \mathbb{N}_+$, almost surely. Then for any $N \in \mathbb{N}_+$ and $\epsilon > 0$, it holds that:*

814
$$\mathbb{P}(|X_N - X_0| \geq \epsilon) \leq 2 \exp\left(-\frac{\epsilon^2}{2 \sum_{k=1}^N c_k^2}\right).$$

 815
 816
 817

818 Based on the definition of η_n^N , it can be easily verified that $\sum_{n=1}^N \eta_n^N = \mathbb{I}[N > 0]$. We also have the
 819 following properties proved in Lemma 1 of Li et al. (2021).
 820

821 **Lemma C.2.** *For any integer $N > 0$, the following properties hold:*

822 (a) *For any $n \in \mathbb{N}_+$,*

823
$$\sum_{N=n}^{\infty} \eta_n^N \leq 1 + \frac{1}{H}.$$

 824
 825

826 (b) *For any $N \in \mathbb{N}_+$,*

827
$$\sum_{n=1}^N (\eta_n^N)^2 \leq \frac{2H}{N}.$$

 828
 829

830 (c) *For any $t \in \mathbb{N}_+$ and $\alpha \in (0, 1)$,*

831
$$\frac{1}{t^\alpha} \leq \sum_{i=1}^t \frac{\eta_i^t}{i^\alpha} \leq \frac{2}{t^\alpha}.$$

 832
 833

834 The following lemma summarizes some basic but useful properties of the defined weights. When
 835 (s, a, h) is clear from context, we also write $k^i := k^i(s, a, h)$ and $N_h^k := N_h^k(s, a)$ for simplicity.
 836

837 **Lemma C.3.** *For any given non-negative weight sequence $\{\omega_h^k\}_{k \in [K]}$ at step h , the following relationships hold for any $k' \in [K]$ and $h \leq h' < H$:*

839 (a) $\sum_{s,a} \tilde{\omega}_h(k', h' + 1, s, a) = \omega_h(k', h' + 1).$
 840

841 (b) $\|\omega_h(\cdot, h', s, a)\|_\infty \leq \|\omega_h(\cdot, h')\|_\infty.$
 842

843 (c) $\|\omega_h(\cdot, h', s, a)\|_1 \leq \|\omega_h(\cdot, h')\|_\infty N_{h'}^{K+1}(s, a).$
 844

845 (d) $\|\omega_h(\cdot, h')\|_1 = \sum_{s,a} \|\omega_h(\cdot, h', s, a)\|_1.$
 846

847 (e) $\|\omega_h(\cdot, h' + 1)\|_\infty \leq (1 + \frac{1}{H}) \|\omega_h(\cdot, h')\|_\infty, \|\omega_h(\cdot, h' + 1)\|_1 \leq \|\omega_h(\cdot, h')\|_1.$
 848

849 *Proof.* (a) is because

850
$$\sum_{s,a} \tilde{\omega}_h(k', h' + 1, s, a) = \sum_{s,a} \omega_h(k', h' + 1) \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s, a)] = \omega_h(k', h' + 1).$$

 851
 852

853 (b) is because for any $k' \in [K]$

854
$$\omega_h(k', h', s, a) = \omega_h(k', h') \cdot \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s, a)] \leq \omega_h(k', h') \leq \|\omega_h(\cdot, h')\|_\infty.$$

 855

856 (c) is because

857
$$\|\omega_h(\cdot, h', s, a)\|_1 \leq \|\omega_h(\cdot, h')\|_\infty \sum_{k'=1}^K \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s, a)] = \|\omega_h(\cdot, h')\|_\infty N_{h'}^{K+1}(s, a).$$

 858
 859

860 (d) is because

861
$$\sum_{s,a} \|\omega_h(\cdot, h', s, a)\|_1 = \sum_{s,a} \sum_{k'=1}^K \omega_h(k', h') \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s, a)] = \sum_{k'=1}^K \omega_h(k', h') = \|\omega_h(\cdot, h')\|_1.$$

 862
 863

864 For (e), we first prove that
 865

$$\begin{aligned}
 866 \quad \omega_h(k', h' + 1) &= \sum_{i=N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^{N_{h'}^{K+1}(s_{h'}^{k'}, a_{h'}^{k'})-1} \omega_h(k^{i+1}(s_{h'}^{k'}, a_{h'}^{k'}, h'), h') \eta_{N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^i \\
 867 \quad &= \sum_{k=1}^K \omega_h(k, h') \sum_{j=1}^{N_{h'}^k(s_{h'}^{k'}, a_{h'}^{k'})} \eta_j^{N_{h'}^k(s_{h'}^{k'}, a_{h'}^{k'})} \mathbb{I}[k^j(s_{h'}^{k'}, a_{h'}^{k'}, h') = k']. \quad (11)
 \end{aligned}$$

873 This is because according to the definition of k^j , $\mathbb{I}[k^j(s_{h'}^{k'}, a_{h'}^{k'}, h') = k'] = 1$ if and only if
 874 $(s_{h'}^{k'}, a_{h'}^{k'}) = (s_{h'}^k, a_{h'}^k)$, $k' \leq k - 1$ and $j = N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})$ and then we have:

$$\begin{aligned}
 875 \quad &\sum_{k=1}^K \omega_h(k, h') \sum_{j=1}^{N_{h'}^k(s_{h'}^{k'}, a_{h'}^{k'})} \eta_j^{N_{h'}^k(s_{h'}^{k'}, a_{h'}^{k'})} \mathbb{I}[k^j(s_{h'}^{k'}, a_{h'}^{k'}, h') = k'] \\
 876 \quad &= \sum_{k=k'+1}^K \omega_h(k, h') \eta_{N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^{N_{h'}^k(s_{h'}^{k'}, a_{h'}^{k'})} \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s_{h'}^k, a_{h'}^k)] \\
 877 \quad &= \sum_{i=N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^{N_{h'}^{K+1}(s_{h'}^{k'}, a_{h'}^{k'})-1} \omega_h(k^{i+1}(s_{h'}^{k'}, a_{h'}^{k'}, h'), h') \eta_{N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^i
 \end{aligned}$$

888 The last equation is because for $i = N_{h'}^k(s_{h'}^{k'}, a_{h'}^{k'})$ and $(s_{h'}^{k'}, a_{h'}^{k'}) = (s_{h'}^k, a_{h'}^k)$, we have $k = k^{i+1}(s_{h'}^{k'}, a_{h'}^{k'}, h')$. Moreover, due to the indicator $\mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s_{h'}^k, a_{h'}^k)]$, the summation in the
 889 second equation above only includes episodes in which $(s_{h'}^{k'}, a_{h'}^{k'})$ is visited. Therefore, it terminates
 890 at the episode of the last visit to $(s_{h'}^{k'}, a_{h'}^{k'})$ with $i = N_{h'}^{K+1}(s_{h'}^{k'}, a_{h'}^{k'}) - 1$. Therefore, for any
 891 $k' \in [K]$,

$$\omega_h(k', h' + 1) \leq \|\omega_h(\cdot, h')\|_\infty \sum_{i=N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^{N_{h'}^{K+1}(s_{h'}^{k'}, a_{h'}^{k'})-1} \eta_{N_{h'}^{k'+1}(s_{h'}^{k'}, a_{h'}^{k'})}^i \leq \left(1 + \frac{1}{H}\right) \|\omega_h(\cdot, h')\|_\infty.$$

895 This proves the first conclusion. The second conclusion is proved by Equation (11) and

$$\sum_{k'=1}^K \omega_h(k', h' + 1) = \sum_{k=1}^K \omega_h(k, h') \left(\sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \right) \leq \sum_{k=1}^K \omega_h(k, h') = \|\omega_h(\cdot, h')\|_1.$$

□

900 **Lemma C.4.** For any non-negative weight sequence $\{\omega_h^k\}_k$ at step $h \in [H]$, any subsequent step
 901 $h' \in [h, H]$, any state-action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$, and any $\alpha \in (0, 1)$, it holds that:

$$\sum_{k=1, N_{h'}^k > 0}^K \frac{\omega_h(k, h', s, a)}{N_{h'}^k(s_{h'}^k, a_{h'}^k)^\alpha} \leq \frac{1}{1-\alpha} \|\omega_h(\cdot, h')\|_\infty^\alpha \|\omega_h(\cdot, h', s, a)\|_1^{1-\alpha},$$

906 and

$$\sum_{k=1, N_{h'}^k > 0}^K \frac{\omega_h(k, h')}{N_{h'}^k(s_{h'}^k, a_{h'}^k)^\alpha} \leq \frac{1}{1-\alpha} (SA \|\omega_h(\cdot, h')\|_\infty)^\alpha \|\omega_h(\cdot, h')\|_1^{1-\alpha},$$

911 *Proof.* We first note that

$$\begin{aligned}
 912 \quad &\sum_{k=1, N_{h'}^k > 0}^K \frac{\omega_h(k, h', s, a)}{N_{h'}^k(s_{h'}^k, a_{h'}^k)^\alpha} = \sum_{k=1, N_{h'}^k > 0}^K \frac{\omega_h(k, h') \mathbb{I}[(s_{h'}^k, a_{h'}^k) = (s, a)]}{N_{h'}^k(s_{h'}^k, a_{h'}^k)^\alpha} \\
 913 \quad &= \sum_{i=1}^{N_{h'}^K(s, a)} \frac{\omega_h(k^{i+1}(s, a, h'), h')}{i^\alpha}. \quad (12)
 \end{aligned}$$

918 Then we have

$$919 \sum_{i=1}^{N_{h'}^K(s,a)} \omega_h(k^{i+1}(s,a,h'), h') \leq \|\omega_h(\cdot, h', s, a)\|_1.$$

$$920$$

$$921$$

922 Given the term on RHS of Equation (12), when the weights $\omega_h(k^{i+1}(s,a,h'), h')$ concentrate on
923 the former terms with smaller index $i \geq 1$, we can obtain the largest value. Let

$$924 c_{s,a,h'} = \left\lceil \frac{\|\omega_h(\cdot, h', s, a)\|_1}{\|\omega_h(\cdot, h')\|_\infty} \right\rceil \text{ and } d_{s,a,h'} = \|\omega_h(\cdot, h', s, a)\|_1 - (c_{s,a,h'} - 1)\|\omega_h(\cdot, h')\|_\infty.$$

$$925$$

$$926$$

927 Then we have:

$$928 \sum_{k=1, N_{h'}^k > 0}^K \frac{\omega_h(k, h', s, a)}{N_{h'}^k(s_{h'}^k, a_{h'}^k)^\alpha} \\ 929 \leq \sum_{i=1}^{c_{s,a,h'}-1} \frac{\|\omega_h(\cdot, h')\|_\infty}{i^\alpha} + \frac{d_{s,a,h'}}{c_{s,a,h'}^\alpha} \\ 930 \\ 931 \leq \|\omega_h(\cdot, h')\|_\infty \sum_{i=1}^{c_{s,a,h'}-1} \frac{i^{1-\alpha} - (i-1)^{1-\alpha}}{1-\alpha} + \frac{d_{s,a,h'}}{c_{s,a,h'}^\alpha} \\ 932 \\ 933 = \frac{\|\omega_h(\cdot, h')\|_\infty (c_{s,a,h'} - 1)^{1-\alpha}}{1-\alpha} + \frac{d_{s,a,h'}}{c_{s,a,h'}^\alpha} \\ 934 \\ 935 = \|\omega_h(\cdot, h')\|_\infty^\alpha \left(\frac{[(c_{s,a,h'} - 1)\|\omega_h(\cdot, h')\|_\infty]^{1-\alpha}}{1-\alpha} + \frac{d_{s,a,h'}}{(c_{s,a,h'}\|\omega_h(\cdot, h')\|_\infty)^\alpha} \right) \\ 936 \\ 937 \leq \|\omega_h(\cdot, h')\|_\infty^\alpha \left(\frac{[(c_{s,a,h'} - 1)\|\omega_h(\cdot, h')\|_\infty]^{1-\alpha}}{1-\alpha} + \frac{d_{s,a,h'}}{\|\omega_h(\cdot, h', s, a)\|_1^\alpha} \right). \quad (13)$$

$$938$$

$$939$$

$$940$$

$$941$$

$$942$$

$$943$$

$$944$$

945 Here the last inequality is because $c_{s,a,h'}\|\omega_h(\cdot, h')\|_\infty \geq \|\omega_h(\cdot, h', s, a)\|_1$. Equation (13) is be-
946 cause for any $0 < y < x$ and $\alpha \in (0, 1)$, we have:

$$947 \frac{x-y}{x^\alpha} \leq \frac{1}{1-\alpha}(x^{1-\alpha} - y^{1-\alpha}).$$

$$948$$

949 Then, let $x = i$ and $y = i - 1$, it holds that:

$$950 \frac{1}{i^\alpha} \leq \frac{1}{1-\alpha}(i^{1-\alpha} - (i-1)^{1-\alpha}).$$

$$951$$

952 Also let $x = \|\omega_h(\cdot, h', s, a)\|_1$ and $y = (c_{s,a,h'} - 1)\|\omega_h(\cdot, h')\|_\infty$, we have:

$$953 \frac{d_{s,a,h'}}{\|\omega_h(\cdot, h', s, a)\|_1^\alpha} + \frac{[(c_{s,a,h'} - 1)\|\omega_h(\cdot, h')\|_\infty]^{1-\alpha}}{1-\alpha} \leq \frac{\|\omega_h(\cdot, h', s, a)\|_1^{1-\alpha}}{1-\alpha}.$$

$$954$$

$$955$$

956 Applying this inequality to Equation (14), we have:

$$957 \sum_{k=1, N_{h'}^k > 0}^K \frac{\omega_h(k, h') \mathbb{I}[(s_{h'}^k, a_{h'}^k) = (s, a)]}{N_{h'}^k(s_{h'}^k, a_{h'}^k)^\alpha} \leq \frac{1}{1-\alpha} \|\omega_h(\cdot, h')\|_\infty^\alpha \|\omega_h(\cdot, h', s, a)\|_1^{1-\alpha}.$$

$$958$$

$$959$$

960 Therefore, we have proved the first conclusion. By summing this conclusion for all state-action pairs
961 (s, a) , we reach:

$$962 \sum_{k=1, N_{h'}^k > 0}^K \frac{\omega_h(k, h')}{N_{h'}^k(s_{h'}^k, a_{h'}^k)^\alpha} \leq \sum_{s,a} \frac{1}{1-\alpha} \|\omega_h(\cdot, h')\|_\infty^\alpha \|\omega_h(\cdot, h', s, a)\|_1^{1-\alpha} \\ 963 \\ 964 \leq \frac{1}{1-\alpha} (SA \|\omega_h(\cdot, h')\|_\infty)^\alpha \|\omega_h(\cdot, h')\|_1^{1-\alpha}.$$

$$965$$

$$966$$

$$967$$

968 The last inequality is by Hölder's inequality, as

$$969 \sum_{s,a} \|\omega_h(\cdot, h', s, a)\|_1^{1-\alpha} \leq (SA)^\alpha \|\omega_h(\cdot, h')\|_1^{1-\alpha}.$$

$$970$$

971

□

972 **D PROOF OF THEOREM 3.1**
 973

974 **D.1 PROOF OF LEMMAS IN SECTION 3.3**
 975

976 Before proceeding to the proof, we will provide several key lemmas. By Lemma 4.3 of Jin et al.
 977 (2018), we have the following conclusion.

978 **Lemma D.1.** *Using $\forall(s, a, h, k)$ as the simplified notation for $\forall(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$.
 979 With probability at least $1 - p$, and $\beta_0 = 0$ and $\beta_t = 8\sqrt{\frac{H^3 t}{t}}$ for $t \in \mathbb{N}_+$, the following event holds:*
 980

$$981 \mathcal{E} = \left\{ 0 \leq (Q_h^k - Q_h^*)(s, a) \leq \eta_0^{N_h^k} H + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} (V_{h+1}^{k^i} - V_{h+1}^*)(s_{h+1}^{k^i}) + \beta_{N_h^k}, \forall(s, a, h, k) \right\}.$$

985 We now proceed to prove the lemmas used in Section 3.3. We begin with the proof of Lemma 3.1.
 986 In fact, this result holds for any learning algorithm.

987 **Lemma D.2** (Formal statement of Lemma 3.1). *For any learning algorithm with K episodes and
 988 $T = HK$ steps, the expected regret is bounded as*

$$989 \mathbb{E}[\text{Regret}(T)] \leq \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \right).$$

993 *Proof.*

$$994 \begin{aligned} \left(V_1^* - V_1^{\pi^k} \right) (s_1^k) &= V_1^*(s_1^k) - Q_1^*(s_1^k, a_1^k) + \left(Q_1^* - Q_1^{\pi^k} \right) (s_1^k, a_1^k) \\ 995 &= \Delta_1(s_1^k, a_1^k) + \mathbb{E} \left[\left(V_2^* - V_2^{\pi^k} \right) (s_2^k) \mid s_2^k \sim P_1(\cdot \mid s_1^k, a_1^k) \right] \\ 996 &= \mathbb{E} \left[\Delta_1(s_1^k, a_1^k) + \Delta_2(s_2^k, a_2^k) \mid s_2^k \sim P_1(\cdot \mid s_1^k, a_1^k) \right] \\ 997 &\quad + \mathbb{E} \left[\left(Q_2^* - Q_2^{\pi^k} \right) (s_2^k, a_2^k) \mid s_2^k \sim P_1(\cdot \mid s_1^k, a_1^k) \right] \\ 998 &= \dots = \mathbb{E} \left[\sum_{h=1}^H \Delta_h(s_h^k, a_h^k) \mid s_{h+1}^k \sim P_h(\cdot \mid s_h^k, a_h^k), h \in [H-1] \right]. \end{aligned}$$

1004 Here, the second equation is from the Bellman Equation and the Bellman Optimality Equation in
 1005 Equation (1). Therefore, we can get another expression of expected regret:

$$1006 \mathbb{E}(\text{Regret}(T)) = \mathbb{E} \left[\sum_{k=1}^K \left(V_1^* - V_1^{\pi^k} \right) (s_1^k) \right] = \mathbb{E} \left[\sum_{k=1}^K \sum_{h=1}^H \Delta_h(s_h^k, a_h^k) \right].$$

1009 Note that

$$1010 \begin{aligned} \mathbb{E}(\text{Regret}(T)) &= \mathbb{E} \left(\sum_{h=1}^H \sum_{k=1}^K \Delta_h(s_h^k, a_h^k) \right) \\ 1011 &= \mathbb{E} \left(\sum_{h=1}^H \sum_{k=1}^K \sum_{s,a} \Delta_h(s, a) \mathbb{I}[(s_h^k, a_h^k) = (s, a)] \right) \\ 1012 &= \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \right). \end{aligned}$$

1019 We finish the proof of the lemma. □

1021 We then prove Lemma 3.2 by bounding the cumulative weighted estimation error

$$1023 \sum_{k=1}^K \omega_h^k (Q_h^k - Q_h^*)(s_h^k, a_h^k)$$

1025 for each state-action pair (s, a) .

1026
 1027 **Lemma D.3** (Formal statement of Lemma 3.2). *For UCB-Hoeffding, under event \mathcal{E} in Lemma D.1, for any non-negative weight sequence $\{\omega_h^k\}_k$ at step h , it holds simultaneously for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and subsequent step $h' \in [h, H]$ that:*
 1028

1029
 1030
$$\sum_{k=1}^K \omega_h(k, h', s, a) (Q_{h'}^k - Q_{h'}^*) (s_{h'}^k, a_{h'}^k) \leq \sum_{k'=1}^K \tilde{\omega}_h(k', h' + 1, s, a) (Q_{h'+1}^{k'} - Q_{h'+1}^*) (s, a)_{h'+1}^{k'+1}$$

 1031
 1032
 1033
$$+ \|\omega_h(\cdot, h')\|_\infty H + 16 \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}. \quad (15)$$

 1034

1035 *and*

1036
 1037
$$\sum_{k=1}^K \omega_h(k, h') (Q_{h'}^k - Q_{h'}^*) (s_{h'}^k, a_{h'}^k) \leq \sum_{k'=1}^K \omega_h(k', h' + 1) (Q_{h'+1}^{k'} - Q_{h'+1}^*) (s_{h'+1}^{k'}, a_{h'+1}^{k'})$$

 1038
 1039
$$+ \|\omega_h(\cdot, h')\|_\infty S A H + 16 \sum_{s, a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}. \quad (16)$$

 1040
 1041

1042 *Proof.* Under the event \mathcal{E} in Lemma D.1, we have the following relationship
 1043

1044
 1045
$$\sum_{k=1}^K \omega_h(k, h', s, a) (Q_{h'}^k - Q_{h'}^*) (s_{h'}^k, a_{h'}^k) \leq \sum_{k=1}^K \omega_h(k, h', s, a) \eta_0^{N_{h'}^k} H$$

 1046
 1047
 1048
$$+ \sum_{k=1}^K \omega_h(k, h', s, a) \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} (V_{h'+1}^{k^i} - V_{h'+1}^*) (s_{h'+1}^{k^i}) + \sum_{k=1}^K \omega_h(k, h', s, a) \beta_{N_{h'}^k}. \quad (17)$$

 1049
 1050
 1051

1052 Here $k^i = k^i(s_{h'}^k, a_{h'}^k, h')$. For the first term in Equation (17), we have
 1053

1054
$$\sum_{k=1}^K \omega_h(k, h', s, a) \eta_0^{N_{h'}^k} H \leq \|\omega_h(\cdot, h', s, a)\|_\infty H \sum_{k=1}^K \mathbb{I}[(s_{h'}^k, a_{h'}^k) = (s, a), N_{h'}^k(s, a) = 0]$$

 1055
 1056
$$\leq \|\omega_h(\cdot, h')\|_\infty H. \quad (18)$$

 1057

1058 The last inequality is because $\|\omega_h(\cdot, h', s, a)\|_\infty \leq \|\omega_h(\cdot, h')\|_\infty$ by (b) of Lemma C.3.
 1059

1060 For the second term in Equation (17), we have
 1061

1062
$$\sum_{k=1}^K \omega_h(k, h', s, a) \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} (V_{h'+1}^{k^i} - V_{h'+1}^*) (s_{h'+1}^{k^i})$$

 1063
 1064
 1065
$$= \sum_{k=1}^K \omega_h(k, h') \mathbb{I}[(s_{h'}^k, a_{h'}^k) = (s, a)] \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} (V_{h'+1}^{k^i} - V_{h'+1}^*) (s_{h'+1}^{k^i}) \left(\sum_{k'=1}^K \mathbb{I}[k^i = k'] \right)$$

 1066
 1067
 1068
$$= \sum_{k'=1}^K (V_{h'+1}^{k'} - V_{h'+1}^*) (s_{h'+1}^{k'}) \left(\sum_{k=1}^K \sum_{i=1}^{N_{h'}^k} \omega_h(k, h') \mathbb{I}[(s_{h'}^k, a_{h'}^k) = (s, a)] \eta_i^{N_{h'}^k} \mathbb{I}[k^i = k'] \right)$$

 1069
 1070
 1071
 1072
$$\leq \sum_{k'=1}^K (Q_{h'+1}^{k'} - Q_{h'+1}^*) (s_{h'+1}^{k'}, a_{h'+1}^{k'}) \left(\sum_{k=1}^K \sum_{i=1}^{N_{h'}^k} \omega_h(k, h') \eta_i^{N_{h'}^k} \mathbb{I}[k^i = k', (s_{h'}^k, a_{h'}^k) = (s, a)] \right)$$

 1073
 1074
 1075
$$= \sum_{k'=1}^K \tilde{\omega}_h(k', h' + 1, s, a) (Q_{h'+1}^{k'} - Q_{h'+1}^*) (s_{h'+1}^{k'}, a_{h'+1}^{k'}). \quad (19)$$

 1076
 1077

1078 The inequality is by $Q_{h'+1}^{k'}(s_{h'+1}^{k'}, a_{h'+1}^{k'}) \geq V_{h'+1}^{k'}(s_{h'+1}^{k'})$, $Q_{h'+1}^*(s_{h'+1}^{k'}, a_{h'+1}^{k'}) \leq V_{h'+1}^*(s_{h'+1}^{k'})$.
 1079 For Equation (19), by the definition of k^i , $\mathbb{I}[k^i(s_{h'}^k, a_{h'}^k, h') = k'] = 1$ holds only when $(s_{h'}^k, a_{h'}^k) =$

1080 $(s_{h'}^k, a_{h'}^k)$ and then we have:
 1081

$$\begin{aligned}
 1082 \quad & \sum_{k=1}^K \sum_{i=1}^{N_{h'}^k} \omega_h(k, h') \eta_i^{N_{h'}^k} \mathbb{I}[k^i = k', (s_{h'}^k, a_{h'}^k) = (s, a)] \\
 1083 \quad & = \mathbb{I}[(s_{h'}^{k'}, a_{h'}^{k'}) = (s, a)] \sum_{k=1}^K \sum_{i=1}^{N_{h'}^k} \omega_h(k, h') \eta_i^{N_{h'}^k} \mathbb{I}[k^i = k'] = \tilde{\omega}_h(k', h' + 1, s, a).
 \end{aligned}$$

1088 The last equation is because of Equation (11) and the definition of $\tilde{\omega}_h(k', h' + 1, s, a)$.
 1089

1090 For the last term of Equation (17), by Lemma C.4, it holds that
 1091

$$\begin{aligned}
 1092 \quad & \sum_{k=1}^K \omega_h(k, h', s, a) \beta_{N_{h'}^k} \leq 8\sqrt{H^3\iota} \sum_{k=1, N_{h'}^k > 0}^K \omega_h(k, h', s, a) \sqrt{\frac{1}{N_{h'}^k(s_{h'}^k, a_{h'}^k)}} \\
 1093 \quad & \leq 16\sqrt{H^3\|\omega_h(\cdot, h')\|_\infty\|\omega_h(\cdot, h', s, a)\|_1\iota}.
 \end{aligned} \tag{20}$$

1096 Combining the results of Equation (18), Equation (19) and Equation (20), we finish the proof
 1097 of Equation (15). Summing this conclusion over all state-action pairs (s, a) , and noting that
 1098 $\sum_{s,a} \tilde{\omega}_h(k', h' + 1, s, a) = \omega_h(k', h' + 1)$, we prove Equation (16). \square
 1099

1100 Lemma 3.3 then follows immediately from a recursive application of the results established above.
 1101

1102 **Lemma D.4** (Formal statement of Lemma 3.3). *For UCB-Hoeffding, under event \mathcal{E} in Lemma D.1,
 1103 for any non-negative weight sequence $\{\omega_h^k\}_k$ at step h , it holds simultaneously for any $(s, a) \in \mathcal{S} \times \mathcal{A}$
 1104 and subsequent step $h' \in [h, H]$ that:*

$$\begin{aligned}
 1105 \quad & \sum_{k=1}^K \omega_h(k, h') (Q_{h'}^k - Q_{h'}^*) (s_{h'}^k, a_{h'}^k) \\
 1106 \quad & \leq \sum_{h_1=h'}^H \|\omega_h(\cdot, h_1)\|_\infty SAH + 16 \sum_{h_1=h'}^H \sum_{s,a} \sqrt{H^3\|\omega_h(\cdot, h_1)\|_\infty\|\omega_h(\cdot, h_1, s, a)\|_1\iota}.
 \end{aligned}$$

1112 *Proof.* By applying recursion on steps $h', h' + 1, \dots, H$ in Equation (16), since $Q_{H+1}^k(s, a) = Q_{H+1}^*(s, a) = 0$ for any $(s, a, k) \in \mathcal{S} \times \mathcal{A} \times [K]$, the proof is complete. \square
 1113

1114 Building on the previous lemma, we now establish a novel upper bound on cumulative weighted
 1115 visitation counts

$$\sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a),$$

1116 which then enables the final bound on expected regret through Lemma D.2.
 1117

1118 **Lemma D.5** (Formal statement of Lemma 3.4). *For UCB-Hoeffding algorithm and $c_1 = 20736$,
 1119 under the event \mathcal{E} in Lemma D.1, it holds simultaneously for any $h \in [H]$ that:*

$$\begin{aligned}
 1120 \quad & \sum_{s,a} \frac{\Delta_h(s, a) N_h^{K+1}(s, a)}{c_1} \leq SAH^2 + \sum_{h'=h}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{H^4\iota}{\Delta_{h'}(s, a)} + \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h}} \\
 1121 \quad & + \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}}.
 \end{aligned}$$

1130 *Proof.* We use mathematical induction to prove this conclusion. For step h , let
 1131

$$\begin{aligned}
 1132 \quad & \omega_h^k = \mathbb{I}[Q_h^k(s_h^k, a_h^k) - Q_h^*(s_h^k, a_h^k) \geq \Delta_h(s_h^k, a_h^k), (s_h^k, a_h^k) \in Z_{\text{sub},h}] \\
 1133 \quad & = \mathbb{I}[(s_h^k, a_h^k) \in Z_{\text{sub},h}] \leq 1.
 \end{aligned}$$

1134 The second equation is because for any given $(h, k) \in [H] \times [k]$, if $(s_h^k, a_h^k) \in Z_{\text{sub},h}$, we have
 1135

$$1136 Q_h^k(s_h^k, a_h^k) - Q_h^*(s_h^k, a_h^k) \geq V_h^k(s_h^k) - Q_h^*(s_h^k, a_h^k) \geq V_h^*(s_h^k) - Q_h^*(s_h^k, a_h^k) = \Delta_h(s_h^k, a_h^k) > 0.$$

1137 The first inequality holds because $Q_h^k(s_h^k, a_h^k) \geq V_h^k(s_h^k)$, as guaranteed by the update rule in line
 1138 8 of Algorithm 1. The second inequality follows directly from the \mathcal{E} in Lemma D.1, which ensures
 1139 that $Q_h^k(s_h^k, a) \geq Q_h^*(s_h^k, a)$ for all $(a, h, k) \in \mathcal{A} \times [H] \times [K]$ and thus
 1140

$$1141 V_h^k(s_h^k) = \min \left\{ H, \max_a Q_h^k(s_h^k, a) \right\} \geq \min \left\{ H, \max_a Q_h^*(s_h^k, a) \right\} = \max_a Q_h^*(s_h^k, a) = V_h^*(s_h^k).$$

1143 Based on the definition of ω_h^k , for any $(s, a) \in Z_{\text{sub},h}$, we have
 1144

$$1145 \|\omega_h(\cdot, h, s, a)\|_1 = \sum_{k=1}^K \mathbb{I}[(s_h^k, a_h^k) = (s, a)] = N_h^{K+1}(s, a)$$

1146 and $\|\omega_h(\cdot, h, s, a)\|_1 = 0$ for $(s, a) \in Z_{\text{opt},h}$. By Lemma D.3, for any $(s, a) \in Z_{\text{sub},h}$, it holds that,
 1147

$$1148 \sum_{k=1}^K \omega_h^k (Q_h^k - Q_h^*) (s_h^k, a_h^k) \mathbb{I}[(s_h^k, a_h^k) = (s, a)] = \sum_{k=1}^K \omega_h(k, h, s, a) (Q_h^k - Q_h^*) (s_h^k, a_h^k) \\ 1149 \leq H + 16 \sqrt{H^3 N_h^{K+1}(s, a) \iota} + \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) (Q_{h+1}^{k'} - Q_{h+1}^*) (s_{h+1}^{k'}, a_{h+1}^{k'}). \quad (21)$$

1150 Also note that for any $(s, a) \in Z_{\text{sub},h}$, we have
 1151

$$1152 \sum_{k=1}^K \omega_h^k (Q_h^k - Q_h^*) (s_h^k, a_h^k) \mathbb{I}[(s_h^k, a_h^k) = (s, a)] \geq \Delta_h(s, a) \sum_{k=1}^K \omega_h^k \mathbb{I}[(s_h^k, a_h^k) = (s, a)] \\ 1153 = \Delta_h(s, a) N_h^{K+1}(s, a). \quad (22)$$

1154 Combining the results of Equation (21) and Equation (22), it holds for any $(s, a) \in Z_{\text{sub},h}$ that,
 1155

$$1156 \Delta_h(s, a) N_h^{K+1}(s, a) \\ 1157 \leq H + 16 \sqrt{H^3 N_h^{K+1}(s, a) \iota} + \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) (Q_{h+1}^{k'} - Q_{h+1}^*) (s_{h+1}^{k'}, a_{h+1}^{k'}).$$

1158 Solving this inequality, we can derive the following conclusion for any $(s, a) \in Z_{\text{sub},h}$:
 1159

$$1160 \Delta_h(s, a) N_h^{K+1}(s, a) \leq \frac{256H^3\iota}{\Delta_h(s, a)} + 2H + 2 \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) (Q_{h+1}^{k'} - Q_{h+1}^*) (s_{h+1}^{k'}, a_{h+1}^{k'}).$$

1161 Since $\Delta_h(s, a) = 0$ for $(s, a) \notin Z_{\text{sub},h}$ and $Q_{h+1}^k(s, a) \geq Q_{h+1}^*(s, a)$ for any $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$, by summing the inequality above over all state-action pairs $(s, a) \in Z_{\text{sub},h}$, we reach:
 1162

$$1163 \sum_{s, a} \Delta_h(s, a) N_h^{K+1}(s, a) \\ 1164 \leq \sum_{\Delta_h(s, a) > 0} \frac{256H^3\iota}{\Delta_h(s, a)} + 2SAH + 2 \sum_{k'=1}^K \omega_h(k', h+1) (Q_{h+1}^{k'} - Q_{h+1}^*) (s_{h+1}^{k'}, a_{h+1}^{k'}). \quad (23)$$

1165 Here we use
 1166

$$1167 \sum_{(s, a) \in Z_{\text{sub},h}} \tilde{\omega}_h(k', h+1, s, a) \leq \omega_h(k', h+1)$$

1168 by (a) of Lemma C.3.
 1169

1170 Let $h = H$, since $Q_{H+1}^k(s, a) = Q_{H+1}^*(s, a) = 0$ for any $(s, a, k) \in \mathcal{S} \times \mathcal{A} \times [K]$, we prove the
 1171 lemma for $h = H$ with Equation (23). Assuming the conclusion holds for steps $h+1, \dots, H$, we
 1172 now prove it for step h .
 1173

1188 By Lemma D.4, we have
 1189

$$\begin{aligned} 1190 & \sum_{k'=1}^K \omega_h(k', h+1)(Q_{h+1}^{k'} - Q_{h+1}^*)(s_{h+1}^{k'}, a_{h+1}^{k'}) \\ 1191 & \leq \sum_{h'=h+1}^H \|\omega_h(\cdot, h')\|_\infty SAH + 16 \sum_{h'=h+1}^H \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota} \end{aligned} \quad (24)$$

1195 with
 1196

$$\|\omega_h(\cdot, h')\|_\infty \leq \left(1 + \frac{1}{H}\right)^{h'-h} \|\omega_h(\cdot, h)\|_\infty \leq 3, \quad (25)$$

1198 and
 1199

$$\|\omega_h(\cdot, h')\|_1 \leq \|\omega_h(\cdot, h)\|_1 = \sum_{s,a} \|\omega_h(\cdot, h, s, a)\|_1 = \sum_{\Delta_h(s,a) > 0} N_h^{K+1}(s, a). \quad (26)$$

1201 by part (e) of Lemma C.3. In this case, by Equation (25) and part (c) of Lemma C.3, we further
 1202 obtain the following bound:
 1203

$$\|\omega_h(\cdot, h', s, a)\|_1 \leq \|\omega_h(\cdot, h')\|_\infty N_{h'}^{K+1}(s, a) \leq 3N_{h'}^{K+1}(s, a). \quad (27)$$

1204 Furthermore, by Equation (25), for the first term in Equation (24), we have:
 1205

$$\sum_{h'=h+1}^H \|\omega_h(\cdot, h')\|_\infty SAH \leq 3SAH^2.$$

1208 For the second term in Equation (24), we divide the state-action pairs (s, a) at each step h' into
 1209 two categories: $Z_{\text{opt}, h'}$, where $\Delta_{h'}(s, a) = 0$, and $Z_{\text{sub}, h'}$, where $\Delta_{h'}(s, a) > 0$. We apply the
 1210 Cauchy–Schwarz inequality to all sub-optimal state-action pairs **jointly across all steps**, and to
 1211 optimal state-action pairs **individually at each step h'** .
 1212

$$\begin{aligned} 1213 & 16 \sum_{h'=h+1}^H \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota} \\ 1214 & \leq 16\sqrt{3} \sqrt{H^3 \iota \left(\sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{1}{\Delta_{h'}(s,a)} \right) \left(\sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \Delta_{h'}(s,a) \|\omega_h(\cdot, h', s, a)\|_1 \right)} \\ 1215 & + 16\sqrt{3} \sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt}, h'}| \iota \sum_{(s,a) \in Z_{\text{opt}, h'}} \|\omega_h(\cdot, h', s, a)\|_1} \\ 1216 & \leq 48 \sqrt{H^3 \iota \left(\sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{1}{\Delta_{h'}(s,a)} \right) \left(\sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \Delta_{h'}(s,a) N_{h'}^{K+1}(s,a) \right)} \\ 1217 & + 16\sqrt{3} \left(\sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt}, h'}| \iota} \right) \sqrt{\sum_{\Delta_h(s,a) > 0} N_h^{K+1}(s,a)}. \end{aligned} \quad (28)$$

1218 The last inequality is because $\|\omega_h(\cdot, h', s, a)\|_1 \leq 3N_{h'}^{K+1}(s, a)$ by Equation (27) and
 1219

$$\sum_{(s,a) \in Z_{\text{opt}, h'}} \|\omega_h(\cdot, h', s, a)\|_1 \leq \|\omega_h(\cdot, h')\|_1 \leq \sum_{\Delta_h(s,a) > 0} N_h^{K+1}(s,a),$$

1220 where the first inequality follows from part (d) of Lemma C.3, and the second from Equation (26).
 1221

1222 For the first term in Equation (28), by AM-GM inequality, we have:
 1223

$$\begin{aligned} 1224 & 48 \sqrt{H^3 \iota \left(\sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{1}{\Delta_{h'}(s,a)} \right) \left(\sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \Delta_{h'}(s,a) N_{h'}^{K+1}(s,a) \right)} \\ 1225 & \leq 24\sqrt{c_1} \sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{H^4 \iota}{\Delta_{h'}(s,a)} + 24\sqrt{c_1} \sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{\Delta_{h'}(s,a) N_{h'}^{K+1}(s,a)}{H c_1}. \end{aligned} \quad (29)$$

1242 By the induction hypothesis, the lemma holds for all steps $h + 1 \leq h' \leq H$. Therefore, we obtain:
1243

$$\begin{aligned} 1244 \sum_{s,a} \frac{\Delta_{h'}(s,a)N_{h'}^{K+1}(s,a)}{c_1} &\leq SAH^2 + \sum_{i=h'}^H \sum_{\Delta_i(s,a)>0} \frac{H^4\iota}{\Delta_i(s,a)} \\ 1245 &+ \frac{H^3 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}} + \sum_{i=h'+1}^H \frac{H^2 \left(\sum_{t=i+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,i}}. \\ 1246 \end{aligned}$$

1250 By summing this inequality for $h + 1 \leq h' \leq H$, it holds that:
1251

$$\begin{aligned} 1252 \sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a)>0} \frac{\Delta_{h'}(s,a)N_{h'}^{K+1}(s,a)}{Hc_1} &\leq \sum_{h'=h+1}^H SAH + \sum_{h'=h+1}^H \sum_{i=h'}^H \sum_{\Delta_i(s,a)>0} \frac{H^3\iota}{\Delta_i(s,a)} \\ 1253 &+ \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}} + \sum_{h'=h+1}^H \sum_{i=h'+1}^H \frac{H \left(\sum_{t=i+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,i}} \\ 1254 &\leq SAH^2 + \sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a)>0} \frac{H^4\iota}{\Delta_{h'}(s,a)} + 2 \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}}. \\ 1255 \end{aligned}$$

1256 Applying the above inequality to Equation (29) and substituting it into Equation (28), we obtain:
1257

$$\begin{aligned} 1258 16 \sum_{h'=h+1}^H \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota} \\ 1259 &\leq 24\sqrt{c_1} \left(SAH^2 + 2 \sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a)>0} \frac{H^4\iota}{\Delta_{h'}(s,a)} + 2 \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}} \right) \\ 1260 &+ 16\sqrt{3} \left(\sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt},h'}| \iota} \right) \sqrt{\sum_{\Delta_h(s,a)>0} N_h^{K+1}(s,a)}. \\ 1261 \end{aligned} \tag{30}$$

1262 By applying this inequality to Equation (24) and substituting the result into Equation (23), and using
1263 the bound $\|\omega_h(\cdot, h')\|_\infty \leq 3$ from Equation (25), we conclude that the following inequality holds:
1264

$$\begin{aligned} 1265 \sum_{s,a} \Delta_h(s,a)N_h^{K+1}(s,a) \\ 1266 &\leq 96\sqrt{c_1} \left(SAH^2 + \sum_{h'=h}^H \sum_{\Delta_{h'}(s,a)>0} \frac{H^4\iota}{\Delta_{h'}(s,a)} + \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}} \right) \\ 1267 &+ 32\sqrt{3} \left(\sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt},h'}| \iota} \right) \sqrt{\sum_{\Delta_h(s,a)>0} N_h^{K+1}(s,a)}. \\ 1268 \end{aligned} \tag{31}$$

1269 Note that if $|Z_{\text{sub},h}| > 0$, which means $\Delta_{\min,h} > 0$, we have
1270

$$\sum_{s,a} \Delta_h(s,a)N_h^{K+1}(s,a) = \sum_{\Delta_h(s,a)>0} \Delta_h(s,a)N_h^{K+1}(s,a) \geq \Delta_{\min,h} \sum_{\Delta_h(s,a)>0} N_h^{K+1}(s,a).$$

1271 Define
1272

$$b = \Delta_{\min,h}, c = 32\sqrt{3} \left(\sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt},h'}| \iota} \right), x = \sqrt{\sum_{\Delta_h(s,a)>0} N_h^{K+1}(s,a)}$$

1273 and let the first term on the right-hand side of Equation (31) be denoted by d . Then Equation (31)
1274 can be rewritten as:
1275

$$bx^2 - cx - d \leq 0.$$

1296 When $b > 0$, solving the inequality yields:
 1297
 1298
$$x \leq \frac{c + \sqrt{c^2 + 4bd}}{2b}.$$

 1299

1300 Applying this upper bound to Equation (31), by AM-GM inequality, we obtain
 1301
 1302
$$\sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \leq cx + d \leq \frac{c^2 + c\sqrt{c^2 + 4bd}}{2b} + d \leq \frac{3c^2}{2b} + \frac{3d}{2}$$

 1303
 1304
$$\leq 144\sqrt{c_1} \left(SAH^2 + \sum_{h'=h}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{H^4 \iota}{\Delta_{h'}(s,a)} + \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}} \right)$$

 1305
 1306
$$+ 4608 \frac{H^3 \iota \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2}{\Delta_{\min,h}}.$$

 1307

1308 If $|Z_{\text{sub},h}| = 0$, then $\Delta_{\min,h} = \infty$ and $\sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) = 0$. In this case, the conclusion
 1309 holds trivially. Therefore, the result is established for step h , completing the proof. \square
 1310

1313 D.2 BOUNDING THE EXPECTED REGRET

1314 Now we bound the gap-dependent expected regret. Let $p = \frac{1}{T}$, then \mathcal{E} holds with probability at least
 1315 $1 - \frac{1}{T}$ and $\iota \leq O(\log(SAT))$. Therefore, by Lemma D.2, we have
 1316

$$\begin{aligned} 1317 \mathbb{E}(\text{Regret}(T)) &= \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \right) \\ 1318 &= \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \middle| \mathcal{E} \right) \mathbb{P}(\mathcal{E}) + \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \middle| \mathcal{E}^c \right) \mathbb{P}(\mathcal{E}^c) \\ 1319 &\leq O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \sum_{h=1}^H \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \log(SAT)}{\Delta_{\min,h}} + SAH^3 \right) \\ 1320 &\leq O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \frac{H^5 |Z_{\text{opt}}| \log(SAT)}{\Delta_{\min,h}} + SAH^3 \right). \end{aligned}$$

1321 The first inequality is because under the event \mathcal{E} , by Lemma D.5, we have
 1322

$$\begin{aligned} 1323 \sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \\ 1324 &\leq \sum_{h=1}^H SAH^2 + \sum_{h=1}^H \sum_{h'=h}^H \sum_{\Delta_{h'}(s,a) > 0} \frac{H^4 \iota}{\Delta_{h'}(s,a)} + \sum_{h=1}^H \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h}} \\ 1325 &\quad + \sum_{h=1}^H \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}} \\ 1326 &\leq O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \sum_{h=1}^H \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \log(SAT)}{\Delta_{\min,h}} + SAH^3 \right) \end{aligned}$$

1327 by Lemma D.5 and under the event \mathcal{E}^c ,
 1328

$$\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \leq HT.$$

1329 The last inequality uses Cauchy-Schwarz inequality and $\Delta_{\min,h} \geq \Delta_{\min}$ for any $h \in [H]$.
 1330

1350 E PROOF OF REGRET UPPER BOUNDS FOR ULCB-HOEFFDING
13511352 E.1 AUXILIARY LEMMAS
13531354 We first validate the upper bounds \bar{Q} and lower bounds \underline{Q} introduced in Algorithm 2. For simplicity,
1355 we denote $\mathbb{P}_{s,a,h}f = \mathbb{E}_{s_{h+1} \sim \mathbb{P}_h(\cdot|s,a)}(f(s_{h+1})|s_h = s, a_h = a)$ and $\mathbb{1}_s f = f(s)$ for any $(s, a, h) \in$
1356 $\mathcal{S} \times \mathcal{A} \times [H]$ and function $f : \mathcal{S} \rightarrow \mathbb{R}$. We first prove some probability events to facilitate our proof.
13571358 **Lemma E.1.** *For ULCB-Hoeffding algorithm (Algorithm 2), we have the following conclusions:*
1359(a) *With probability at least $1 - p$, the following event holds:*

1360
$$\mathcal{G}_1 = \left\{ \left| \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\mathbb{1}_{s_{h+1}^{k^i}} - \mathbb{P}_{s,a,h} \right) V_{h+1}^* \right| \leq 2 \sqrt{\frac{H^3 \iota}{N_h^k(s,a)}} \right\},$$

1361
1362
1363

(b) *With probability at least $1 - p$, the following event holds:*

1364
$$\mathcal{G}_2 = \left\{ \sum_{h=1}^H \sum_{k=1}^K \left(1 + \frac{1}{H} \right)^{h-1} \left(\mathbb{P}_{s_h^k, a_h^k, h} - \mathbb{1}_{s_{h+1}^k} \right) \left(V_{h+1}^* - V_{h+1}^{\pi^k} \right) \leq 27 \sqrt{2H^2 T \iota} \right\}.$$

1365
1366
1367
1368

1369 *Proof.* (a) The sequence
1370

1371
$$\left\{ \sum_{i=1}^N \eta_i^N \left(\mathbb{1}_{s_{h+1}^{k^i}} - \mathbb{P}_{s,a,h} \right) V_{h+1}^* \right\}_{N \in \mathbb{N}^+}$$

1372
1373

1374 is a martingale sequence with
1375

1376
$$\left| \sum_{i=1}^N \eta_i^N \left(\mathbb{1}_{s_{h+1}^{k^i}} - \mathbb{P}_{s,a,h} \right) V_{h+1}^* \right| \leq \eta_i^N H.$$

1377
1378

1379 Then according to Azuma-Hoeffding inequality and (b) of Lemma C.2, for any $\delta \in (0, 1)$, with
1380 probability at least $1 - \frac{p}{SAT}$, it holds for given $N_h^k(s, a) = N \in \mathbb{N}_+$ that:
1381

1382
$$\left| \sum_{i=1}^N \eta_i^N \left(\mathbb{1}_{s_{h+1}^{k^i}} - \mathbb{P}_{s,a,h} \right) V_{h+1}^* \right| \leq 2 \sqrt{\frac{H^3 \iota}{N}}.$$

1383
1384

1385 For any all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$, we have $N_h^k(s, a) \in [\frac{T}{H}]$. Considering all the possible
1386 combinations $(s, a, h, N) \in \mathcal{S} \times \mathcal{A} \times [H] \times [\frac{T}{H}]$, with probability at least $1 - p$, it holds simultaneously
1387 for all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$ that:
1388

1389
$$\left| \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\mathbb{1}_{s_{h+1}^{k^i}} - \mathbb{P}_{s,a,h} \right) V_{h+1}^* \right| \leq 2 \sqrt{\frac{H^3 \iota}{N_h^k(s,a)}}.$$

1390
1391

1392 (b) For \mathcal{G}_2 , the sequence
1393

1394
$$\left\{ \left(1 + \frac{1}{H} \right)^{h-1} \left(\mathbb{P}_{s_h^k, a_h^k, h} - \mathbb{1}_{s_{h+1}^k} \right) \left(V_{h+1}^* - V_{h+1}^{\pi^k} \right) \right\}_{k,h}$$

1395
1396

1397 can be reordered to a martingale sequence based on the “episode first, step second” rule. The ab-
1398 solute values of the sequence are bounded by $27H$. According to Azuma-Hoeffding inequality, for
1399 any $p \in (0, 1)$, with probability at least $1 - \delta$, it holds that:
1400

1401
$$\sum_{h=1}^H \sum_{k=1}^K \left(1 + \frac{1}{H} \right)^{h-1} \left(\mathbb{P}_{s_h^k, a_h^k, h} - \mathbb{1}_{s_{h+1}^k} \right) \left(V_{h+1}^* - V_{h+1}^{\pi^k} \right) \leq 27 \sqrt{2H^2 T \iota}.$$

1402
1403

□

1404 **Lemma E.2.** For all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$, when event \mathcal{G}_1 in Lemma E.1 happens, the
 1405 upper and lower confidence bounds in Algorithm 2 are valid:
 1406

$$1407 \quad \bar{V}_h^k(s) \geq V_h^*(s) \geq \underline{V}_h^k(s) \quad \text{and} \quad \bar{Q}_h^k(s, a) \geq Q_h^*(s, a) \geq \underline{Q}_h^k(s, a).$$

1408 *Proof.* We use mathematical induction on k to prove this lemma. For $k = 1$, the lemma holds based
 1409 on the initialization in line 2 of Algorithm 2. Assuming the conclusion holds for all $1, 2, \dots, k - 1$,
 1410 we will prove the conclusion for $k + 1$ at episode k .
 1411

1412 If $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] \setminus \{(s_h^k, a_h^k)\}_{h=1}^H$, then we have
 1413

$$1414 \quad \bar{V}_h^{k+1}(s) = \bar{V}_h^k(s) \geq V_h^*(s) \geq \underline{V}_h^k(s) = \underline{V}_h^{k+1}(s).$$

1415 and

$$1416 \quad \bar{Q}_h^{k+1}(s, a) = \bar{Q}_h^k(s, a) \geq Q_h^*(s, a) \geq \underline{Q}_h^k(s, a) = \underline{Q}_h^{k+1}(s, a).$$

1417 For (s_h^k, a_h^k, h) , based on the update rule in line 12 and line 13 in Algorithm 2, we have
 1418

$$1419 \quad \bar{Q}_h^{k+1}(s_h^k, a_h^k) = \eta_0^{N_h^{k+1}} H + \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(r_h(s_h^k, a_h^k) + \bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) + b_i \right) \\ 1420 \quad \geq \eta_0^{N_h^{k+1}} H + \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(r_h(s_h^k, a_h^k) + \bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) \right) + 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}}. \quad (32)$$

$$1425 \quad \underline{Q}_h^{k+1}(s_h^k, a_h^k) = \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(r_h(s_h^k, a_h^k) + \underline{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) - b_i \right). \\ 1426 \quad \leq \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(r_h(s_h^k, a_h^k) + \underline{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) \right) - 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}}. \quad (33)$$

1432 These two inequalities are because

$$1433 \quad \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} b_i = 2 \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \sqrt{\frac{H^3 \iota}{i}} \geq 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}}$$

1436 by (c) of Lemma C.2. Furthermore, by the Bellman Optimality Equation, it holds that:
 1437

$$1438 \quad Q_h^*(s_h^k, a_h^k) = r_h(s_h^k, a_h^k) + \mathbb{P}_{s_h^k, a_h^k, h} V_{h+1}^*.$$

1439 Combining with Equation (32) and Equation (33), we can derive the following conclusion:
 1440

$$1441 \quad (\bar{Q}_h^{k+1} - Q_h^*)(s_h^k, a_h^k) \\ 1442 \quad \geq \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) - \mathbb{P}_{s_h^k, a_h^k, h} V_{h+1}^* \right) + 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \\ 1443 \quad = \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} (\bar{V}_{h+1}^{k^i} - V_{h+1}^*)(s_{h+1}^{k^i}) + \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} (\mathbb{1}_{s_{h+1}^{k^i}} - \mathbb{P}_{s_h^k, a_h^k, h}) V_{h+1}^* + 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \geq 0.$$

1449 The last inequality is because $\bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) \geq V_{h+1}^*(s_{h+1}^{k^i})$ for $k^i \leq k$ and the event \mathcal{G}_1 . Similarly,
 1450

$$1451 \quad (\underline{Q}_h^{k+1} - Q_h^*)(s_h^k, a_h^k) \\ 1452 \quad \leq \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\underline{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) - \mathbb{P}_{s_h^k, a_h^k, h} V_{h+1}^* \right) - 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \\ 1453 \quad = \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} (\underline{V}_{h+1}^{k^i} - V_{h+1}^*)(s_{h+1}^{k^i}) + \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} (\mathbb{1}_{s_{h+1}^{k^i}} - \mathbb{P}_{s_h^k, a_h^k, h}) V_{h+1}^* - 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \leq 0.$$

1458 The last inequality is because $\underline{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) \leq V_{h+1}^*(s_{h+1}^{k^i})$ for $k^i \leq k$ and the event \mathcal{G}_1 . Now we
 1459 have proved that $\overline{Q}_h^{k+1}(s, a) \geq Q_h^*(s, a) \geq \underline{Q}_h^{k+1}(s, a)$. Therefore, by noting that
 1460

$$1461 \quad \overline{V}_h^{k+1}(s) = \min \left\{ H, \max_{a \in A_h^k(s)} \overline{Q}_h^{k+1}(s, a) \right\} \geq \max_{a \in A_h^k(s)} Q_h^*(s, a) = V_h^*(s)$$

1462 and

$$1463 \quad \underline{V}_h^{k+1}(s) = \max \left\{ 0, \max_{a \in A_h^k(s)} \underline{Q}_h^{k+1}(s, a) \right\} \leq \max_a Q_h^*(s, a) = V_h^*(s),$$

1464 we prove the conclusion for $k+1$ and thus complete the proof. \square

1465 **Lemma E.3.** *When event \mathcal{G}_1 in Lemma E.1 happens, for any $(h, k) \in [H] \times [K]$, we have that:*

$$1466 \quad \overline{V}_h^k(s_h^k) - \underline{V}_h^k(s_h^k) \leq \overline{Q}_h^k(s_h^k, a_h^k) - \underline{Q}_h^k(s_h^k, a_h^k).$$

1467 *Proof.* If $|A_h^k(s_h^k)| = 1$, based on the definition of $A_h^k(s_h^k)$, we have

$$1468 \quad \overline{V}_h^k(s_h^k) \leq \max_{a \in A_h^{k-1}(s_h^k)} \overline{Q}_h^k(s_h^k, a) = \overline{Q}_h^k(s_h^k, a_h^k).$$

1469 and

$$1470 \quad \underline{V}_h^k(s_h^k) \geq \max_{a \in A_h^{k-1}(s_h^k)} \underline{Q}_h^k(s_h^k, a) = \underline{Q}_h^k(s_h^k, a_h^k).$$

1471 Therefore, we prove the conclusion. If $|A_h^k(s_h^k)| > 1$, define:

$$1472 \quad \hat{a} = \arg \max_{a \in A_h^{k-1}(s_h^k)} \overline{Q}_h^k(s_h^k, a), \quad \tilde{a} = \arg \max_{a \in A_h^{k-1}(s_h^k)} \underline{Q}_h^k(s_h^k, a)$$

1473 Then we have

$$1474 \quad \begin{aligned} \overline{V}_h^k(s_h^k) - \underline{V}_h^k(s_h^k) &\leq \overline{Q}_h^k(s_h^k, \hat{a}) - \underline{Q}_h^k(s_h^k, \tilde{a}) \\ 1475 &= \left(\overline{Q}_h^k(s_h^k, \hat{a}) - \underline{Q}_h^k(s_h^k, \hat{a}) \right) + \left(\underline{Q}_h^k(s_h^k, \hat{a}) - \underline{Q}_h^k(s_h^k, \tilde{a}) \right) \\ 1476 &\leq \overline{Q}_h^k(s_h^k, a_h^k) - \underline{Q}_h^k(s_h^k, a_h^k). \end{aligned}$$

1477 The last inequality is because

$$1478 \quad a_h^k = \arg \max_{a \in A_h^k(s)} \overline{Q}_h^k(s_h^k, a) - \underline{Q}_h^k(s_h^k, a)$$

1479 when $|A_h^k(s_h^k)| > 1$ and $\underline{Q}_h^k(s_h^k, \hat{a}) \leq \underline{Q}_h^k(s_h^k, \tilde{a})$ based on the definition of \tilde{a} . \square

1480 **Lemma E.4.** *When event \mathcal{G}_1 in Lemma E.1 happens, for any $(h, k) \in [H] \times [K]$, we have that:*

$$1481 \quad \overline{Q}_h^k(s_h^k, a_h^k) - \underline{Q}_h^k(s_h^k, a_h^k) \geq \frac{\Delta_h(s_h^k, a_h^k)}{2}.$$

1482 *Proof.* If $|A_h^k(s_h^k)| = 1$, based on the definition of $A_h^k(s_h^k)$, we have

$$1483 \quad V_h^*(s_h^k) \leq \overline{V}_h^k(s_h^k) \leq \max_{a \in A_h^{k-1}(s_h^k)} \overline{Q}_h^k(s_h^k, a) = \overline{Q}_h^k(s_h^k, a_h^k).$$

1484 Combining the result with $\underline{Q}_h^k(s_h^k, a_h^k) \leq Q_h^*(s_h^k, a_h^k)$ by Lemma E.2, it holds that:

$$1485 \quad \overline{Q}_h^k(s_h^k, a_h^k) - \underline{Q}_h^k(s_h^k, a_h^k) \geq V_h^*(s_h^k) - Q_h^*(s_h^k, a_h^k) = \Delta_h(s_h^k, a_h^k).$$

1486 Therefore, we prove the conclusion. If $|A_h^k(s_h^k)| > 1$, define:

$$1487 \quad \hat{a} = \arg \max_{a \in A_h^{k-1}(s_h^k)} \overline{Q}_h^k(s_h^k, a).$$

1512 Then the conclusion follows from the following analysis:
 1513

$$\begin{aligned}
 1514 \Delta_h(s_h^k, a_h^k) \\
 1515 &= V_h^*(s_h^k) - Q_h^*(s_h^k, a_h^k) \\
 1516 &\leq \bar{V}_h^k(s_h^k) - \underline{Q}_h^k(s_h^k, a_h^k) \\
 1517 &= \bar{Q}_h^k(s_h^k, \hat{a}) - \underline{Q}_h^k(s_h^k, a_h^k) \\
 1518 &= (\bar{Q}_h^k(s_h^k, \hat{a}) - \underline{Q}_h^k(s_h^k, \hat{a})) + (\underline{Q}_h^k(s_h^k, \hat{a}) - \bar{Q}_h^k(s_h^k, a_h^k)) + (\bar{Q}_h^k(s_h^k, a_h^k) - \underline{Q}_h^k(s_h^k, a_h^k)) \quad (34) \\
 1519 \\
 1520 &\leq 2(\bar{Q}_h^k(s_h^k, a_h^k) - \underline{Q}_h^k(s_h^k, a_h^k)). \quad (35) \\
 1521 \\
 1522
 \end{aligned}$$

1523 Here, Equation (34) is because of $\bar{V}_h^k(s_h^k) \geq V_h^*(s_h^k)$ and $\underline{Q}_h^k(s_h^k, a_h^k) \leq Q_h^*(s_h^k, a_h^k)$ by event \mathcal{G}_1 of
 1524 Lemma E.2. Equation (35) is because
 1525

$$a_h^k = \arg \max_{a \in A_h^k(s)} \bar{Q}_h^k(s_h^k, a) - \underline{Q}_h^k(s_h^k, a)$$

1526 when $|A_h^k(s_h^k)| > 1$ and $\underline{Q}_h^k(s_h^k, \hat{a}) \leq \bar{V}_h^k(s_h^k) \leq \bar{Q}_h^k(s_h^k, a_h^k)$ since $a_h^k \in A_h^k(s_h^k)$. \square
 1527

1530 E.2 PROOF OF THEOREM 3.2

1532 In this section, we bound the worst-case regret under the event $\mathcal{G}_1 \cap \mathcal{G}_2$ in Lemma E.1.
 1533

1534 For $h \in [H + 1]$, denote:

$$\delta_h^k = (\bar{V}_h^k - V_h^*)(s_h^k), \quad \zeta_h^k = (\bar{V}_h^k - V_h^{\pi^k})(s_h^k).$$

1535 Here, $\delta_{H+1}^k = \zeta_{H+1}^k = 0$. Because $V_h^*(s) = \sup_{\pi} V_h^{\pi}(s)$, we have $\delta_h^k \leq \zeta_h^k$ for any $h \in [H + 1]$. In
 1536 addition, as $\bar{V}_h^k(s) \geq V_h^*(s)$ for all $(s, h, k) \in \mathcal{S} \times [H] \times [K]$ by Lemma E.2, we have:
 1537

$$\text{Regret}(T) = \sum_{k=1}^K (V_1^*(s_1^k) - V_1^{\pi^k}(s_1^k)) \leq \sum_{k=1}^K (\bar{V}_1^k(s_1^k) - V_1^{\pi^k}(s_1^k)) = \sum_{k=1}^K \zeta_1^k.$$

1538 Thus, we only need to bound $\sum_{k=1}^K \zeta_1^k$. Noting that
 1539

$$\begin{aligned}
 1540 \sum_{k=1}^K \zeta_1^k &\leq \sum_{k=1}^K (\bar{Q}_h^k - Q_h^{\pi^k})(s_h^k, a_h^k) \\
 1541 &= \sum_{k=1}^K (\bar{Q}_h^k - Q_h^*)(s_h^k, a_h^k) + \sum_{k=1}^K (Q_h^* - Q_h^{\pi^k})(s_h^k, a_h^k) \\
 1542 &= \sum_{k=1}^K (\bar{Q}_h^k - Q_h^*)(s_h^k, a_h^k) + \sum_{k=1}^K \mathbb{P}_{s_h^k, a_h^k, h} (V_{h+1}^* - V_{h+1}^{\pi^k}). \quad (36)
 \end{aligned}$$

1543 In the last inequality, we use the Bellman Equation (Equation (1)):
 1544

$$Q_h^*(s, a) = r_h(s, a) + \mathbb{P}_{s, a, h} V_{h+1}^*, \quad Q_h^{\pi^k}(s, a) = r_h(s, a) + \mathbb{P}_{s, a, h} V_{h+1}^{\pi^k}.$$

1545 Next, we will bound $\sum_{k=1}^K (\bar{Q}_h^k - Q_h^*)(s_h^k, a_h^k)$. Using Bellman Optimality Equation, we know
 1546

$$\begin{aligned}
 1547 (\bar{Q}_h^k - Q_h^*)(s_h^k, a_h^k) &\leq \eta_0^{N_h^k} H + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) - \mathbb{P}_{s_h^k, a_h^k, h} V_{h+1}^* \right) + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} b_i \\
 1548 &\leq \eta_0^{N_h^k} H + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) - \mathbb{P}_{s_h^k, a_h^k, h} V_{h+1}^* \right) + 4\sqrt{\frac{H^3 \iota}{N_h^k}} \\
 1549 &\leq \eta_0^{N_h^k} H + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) - V_{h+1}^* \right) (s_{h+1}^{k^i}) + 6\sqrt{\frac{H^3 \iota}{N_h^k}}. \quad (37)
 \end{aligned}$$

1566 The first inequality uses:
 1567

$$1568 \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} b_i = 2 \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \sqrt{\frac{H^3 \iota}{i}} \leq 4 \sqrt{\frac{H^3 \iota}{N_h^k}}.$$

$$1569$$

$$1570$$

1571 by Lemma C.2. The last inequality is by the event \mathcal{G}_1 in Lemma E.1. By summing Equation (37)
 1572 over $k \in [K]$, we reach
 1573

$$1574 \sum_{k=1}^K (\bar{Q}_h^k - Q_h^*)(s_h^k, a_h^k) \\ 1575 \leq \sum_{k=1}^K \eta_0^{N_h^k} H + \sum_{k=1, N_h^k > 0}^K \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} (\bar{V}_{h+1}^{k^i} - V_{h+1}^*)(s_{h+1}^{k^i}) + \sum_{k=1, N_h^k > 0}^K 6 \sqrt{\frac{H^3 \iota}{N_h^k}}. \quad (38)$$

$$1576$$

$$1577$$

$$1578$$

$$1579$$

1580 For the first term of Equation (38), we have:
 1581

$$1582 \sum_{k=1}^K \eta_0^{N_h^k} H = H \sum_{s, a} \sum_{k=1}^K \mathbb{I}[N_h^k = 0, (s_h^k, a_h^k) = (s, a)] \leq HSA. \quad (39)$$

$$1583$$

$$1584$$

1585 For the second term of Equation (38), by Lemma C.4, it holds that:
 1586

$$1587 \sum_{k=1, N_h^k > 0}^K 6 \sqrt{\frac{H^3 \iota}{N_h^k}} \leq 12 \sqrt{H^2 SAT \iota}. \quad (40)$$

$$1588$$

$$1589$$

$$1590$$

1591 For the last term of Equation (38), similar to proof of Equation (4.7) in Jin et al. (2018), it holds that:
 1592

$$1593 \sum_{k=1, N_h^k > 0}^K \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} (\bar{V}_{h+1}^{k^i} - V_{h+1}^*)(s_{h+1}^{k^i}) \leq \left(1 + \frac{1}{H}\right) \sum_{k=1}^K \delta_{h+1}^k. \quad (41)$$

$$1594$$

$$1595$$

1596 Taking the above results Equation (39), Equation (40) and Equation (41) together with Equation (38),
 1597 back to Equation (36) to reach
 1598

$$1599 \sum_{k=1}^K \zeta_h^k \leq \left(1 + \frac{1}{H}\right) \sum_{k=1}^K \delta_{h+1}^k + 12 \sqrt{H^2 SAT \iota} + HSA + \sum_{k=1}^K \mathbb{P}_{s_h^k, a_h^k, h} (V_{h+1}^* - V_{h+1}^{\pi^k})$$

$$1600$$

$$1601$$

$$1602 \leq \left(1 + \frac{1}{H}\right) \sum_{k=1}^K \zeta_{h+1}^k + 12 \sqrt{H^2 SAT \iota} + HSA + \sum_{k=1}^K (\mathbb{P}_{s_h^k, a_h^k, h} - \mathbb{1}_{s_{h+1}^k}) (V_{h+1}^* - V_{h+1}^{\pi^k}).$$

$$1603$$

$$1604$$

1605 By recursion on h , since $\zeta_{H+1}^k = 0$, we can get the following conclusion:
 1606

$$1607 \text{Regret}(T) \leq \sum_{k=1}^K \zeta_1^k$$

$$1608$$

$$1609$$

$$1610 \leq O \left(\sqrt{H^4 SAT \iota} + H^2 SA + \sum_{h=1}^H \sum_{k=1}^K \left(1 + \frac{1}{H}\right)^{h-1} (\mathbb{P}_{s_h^k, a_h^k, h} - \mathbb{1}_{s_{h+1}^k}) (V_{h+1}^* - V_{h+1}^{\pi^k}) \right)$$

$$1611$$

$$1612$$

$$1613 \leq O \left(\sqrt{H^4 SAT \iota} + H^2 SA \right).$$

$$1614$$

1615 The last inequality is because of the event \mathcal{G}_2 in Lemma E.1. We note that when $T \geq \sqrt{H^4 SAT \iota}$,
 1616 we have $\sqrt{H^4 SAT \iota} \geq H^2 SA$, and when $T \leq \sqrt{H^4 SAT \iota}$, we have $\sum_{k=1}^K \delta_1^k \leq HK = T \leq$
 1617 $\sqrt{H^4 SAT \iota}$. Therefore, we can remove the $H^2 SA$ term in the regret upper bound.
 1618

1619 To summarize, with probability at least $1 - 2p$, we have $\text{Regret}(T) \leq O(\sqrt{H^4 SAT \iota})$. Rescaling p to $p/2$ finishes the proof.

1620 E.3 PROOF OF THEOREM 3.3
1621

1622 In this section, we derive the fine-grained gap-dependent regret bound for ULCB-Hoeffding following
1623 a similar line of reasoning as in UCB-Hoeffding. Let $p = \frac{1}{T}$, then the event \mathcal{G}_1 holds with
1624 probability at least $1 - \frac{1}{T}$ and $\iota \leq O(\log(SAT))$. Therefore, by Lemma D.2, we have

$$\begin{aligned}
 & \mathbb{E}(\text{Regret}(T)) \\
 &= \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \right) \\
 &= \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \middle| \mathcal{G}_1 \right) \mathbb{P}(\mathcal{G}_1) + \mathbb{E} \left(\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \middle| \mathcal{G}_1^c \right) \mathbb{P}(\mathcal{G}_1^c) \\
 &\leq O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \sum_{h=1}^H \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \log(SAT)}{\Delta_{\min,h}} + SAH^3 \right).
 \end{aligned}$$

1626 The last inequality is because under the event \mathcal{G}_1 , by Lemma E.7, we have

$$\begin{aligned}
 & \sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \\
 &\leq O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \sum_{h=1}^H \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \log(SAT)}{\Delta_{\min,h}} + SAH^3 \right).
 \end{aligned}$$

1627 and under the event \mathcal{G}_1^c ,

$$\sum_{h=1}^H \sum_{s,a} \Delta_h(s,a) N_h^{K+1}(s,a) \leq HT.$$

1628 Now we only need to prove Lemma E.7. Using the same fine-grained analytical framework, we first
1629 bound the cumulative weighted estimation error for each state-action pair (s, a) at step h .

1630 **Lemma E.5.** *For ULCB-Hoeffding algorithm (Algorithm 2), under the event \mathcal{G}_1 in Lemma E.1, for
1631 any non-negative weight sequence $\{\omega_h^k\}_k$ at step h , it holds simultaneously for any $(s, a) \in \mathcal{S} \times \mathcal{A}$
1632 and subsequent step $h' \in [h, H]$ that:*

$$\begin{aligned}
 & \sum_{k=1}^K \omega_h(k, h', s, a) \left(\bar{Q}_{h'}^k - \underline{Q}_{h'}^k \right) (s_{h'}^k, a_{h'}^k) \leq \sum_{k'=1}^K \tilde{\omega}_h(k', h' + 1, s, a) \left(\bar{Q}_{h'+1}^{k'} - \underline{Q}_{h'+1}^{k'} \right) (s, a)_{h'+1}^{k'+1} \\
 & \quad + \|\omega_h(\cdot, h')\|_\infty H + 16\sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}. \tag{42}
 \end{aligned}$$

1633 and

$$\begin{aligned}
 & \sum_{k=1}^K \omega_h(k, h') \left(\bar{Q}_{h'}^k - \underline{Q}_{h'}^k \right) (s_{h'}^k, a_{h'}^k) \leq \sum_{k'=1}^K \omega_h(k', h' + 1) \left(\bar{Q}_{h'+1}^{k'} - \underline{Q}_{h'+1}^{k'} \right) (s_{h'+1}^{k'}, a_{h'+1}^{k'}) \\
 & \quad + \|\omega_h(\cdot, h')\|_\infty SAH + 16 \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}. \tag{43}
 \end{aligned}$$

1634 *Proof.* Under the event \mathcal{G}_1 in Lemma E.1, by Equation (32) and Equation (33), we have

$$\begin{aligned}
 \bar{Q}_{h'}^k (s_{h'}^k, a_{h'}^k) &= \eta_0^{N_{h'}^k} H + \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \left(r_{h'}(s_{h'}^k, a_{h'}^k) + \bar{V}_{h'+1}^{k^i}(s_{h'+1}^{k^i}) + b_i \right) \\
 &\leq \eta_0^{N_{h'}^k} H + \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \left(r_{h'}(s_{h'}^k, a_{h'}^k) + \bar{V}_{h'+1}^{k^i}(s_{h'+1}^{k^i}) \right) + 4\sqrt{\frac{H^3 \iota}{N_{h'}^k}}, \tag{44}
 \end{aligned}$$

1674

and

1675

$$\begin{aligned} 1676 \quad \underline{Q}_{h'}^k(s_{h'}^k, a_{h'}^k) &= \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \left(r_{h'}(s_{h'}^k, a_{h'}^k) + \underline{V}_{h'+1}^{k^i}(s_{h'+1}^{k^i}) - b_i \right). \\ 1677 \quad &\geq \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \left(r_{h'}(s_{h'}^k, a_{h'}^k) + \underline{V}_{h'+1}^{k^i}(s_{h'+1}^{k^i}) \right) - 4\sqrt{\frac{H^3\iota}{N_{h'}^k}}. \end{aligned} \quad (45)$$

1682

These two inequalities are because

1683

$$\sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} b_i = 2 \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \sqrt{\frac{H^3\iota}{i}} \leq 4\sqrt{\frac{H^3\iota}{N_{h'}^k}}$$

1684

by (c) of Lemma C.2. Therefore, by taking the difference between Equation (44) and Equation (45), we reach

1685

$$\begin{aligned} 1686 \quad \sum_{k=1}^K \omega_h(k, h', s, a) \left(\bar{Q}_{h'}^k - \underline{Q}_{h'}^k \right) (s_{h'}^k, a_{h'}^k) &\leq \sum_{k=1}^K \omega_h(k, h', s, a) \eta_0^{N_{h'}^k} H \\ 1687 \quad + \sum_{k=1}^K \omega_h(k, h', s, a) \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \left(\bar{V}_{h'+1}^{k^i} - \underline{V}_{h'+1}^{k^i} \right) (s_{h'+1}^{k^i}) + \sum_{k=1}^K \omega_h(k, h', s, a) \beta_{N_{h'}^k}. \end{aligned} \quad (46)$$

1688

Same as Equation (18) and Equation (20), we have

1689

$$\sum_{k=1}^K \omega_h(k, h', s, a) \eta_0^{N_{h'}^k} H \leq \|\omega_h(\cdot, h')\|_\infty H.$$

1690

and

1691

$$\sum_{k=1}^K \omega_h(k, h', s, a) \beta_{N_{h'}^k} \leq 16\sqrt{H^3\|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1 \iota}.$$

1692

For the second term in Equation (46), similar to Equation (19), we have

1693

$$\begin{aligned} 1694 \quad &\sum_{k=1}^K \omega_h(k, h', s, a) \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \left(\bar{V}_{h'+1}^{k^i} - \underline{V}_{h'+1}^{k^i} \right) (s_{h'+1}^{k^i}) \\ 1695 \quad &= \sum_{k=1}^K \omega_h(k, h') \mathbb{I}[(s_{h'}^k, a_{h'}^k) = (s, a)] \sum_{i=1}^{N_{h'}^k} \eta_i^{N_{h'}^k} \left(\bar{V}_{h'+1}^{k^i} - \underline{V}_{h'+1}^{k^i} \right) (s_{h'+1}^{k^i}) \left(\sum_{k'=1}^K \mathbb{I}[k^i = k'] \right) \\ 1696 \quad &= \sum_{k'=1}^K \left(\bar{V}_{h'+1}^{k'} - \underline{V}_{h'+1}^{k'} \right) (s_{h'+1}^{k'}) \left(\sum_{k=1}^K \sum_{i=1}^{N_{h'}^k} \omega_h(k, h') \mathbb{I}[(s_{h'}^k, a_{h'}^k) = (s, a)] \eta_i^{N_{h'}^k} \mathbb{I}[k^i = k'] \right) \\ 1697 \quad &\leq \sum_{k'=1}^K (\bar{Q}_{h'+1}^{k'} - \underline{Q}_{h'+1}^{k'})(s_{h'+1}^{k'}, a_{h'+1}^{k'}) \left(\sum_{k=1}^K \sum_{i=1}^{N_{h'}^k} \omega_h(k, h') \eta_i^{N_{h'}^k} \mathbb{I}[k^i = k', (s_{h'}^k, a_{h'}^k) = (s, a)] \right) \\ 1698 \quad &= \sum_{k'=1}^K \tilde{\omega}_h(k', h'+1, s, a) (\bar{Q}_{h'+1}^{k'} - \underline{Q}_{h'+1}^{k'})(s_{h'+1}^{k'}, a_{h'+1}^{k'}). \end{aligned}$$

1699

The inequality follows from Lemma E.3. Combining the upper bounds for each term in Equation (46), we finish the proof of Equation (42). Summing this conclusion over all state-action pairs (s, a) , and noting that $\sum_{s,a} \tilde{\omega}_h(k', h'+1, s, a) = \omega_h(k', h'+1)$, we prove Equation (43). \square

1700

1701

Building on the lemma above, we can establish the following result. The proof follows the same argument as in Lemma D.4.

1728
 1729 **Lemma E.6.** For ULCB-Hoeffding algorithm (Algorithm 2), under the event \mathcal{G}_1 in Lemma E.1, for
 1730 any non-negative weight sequence $\{\omega_h^k\}_k$ at step h , it holds simultaneously for any $(s, a) \in \mathcal{S} \times \mathcal{A}$
 1731 and subsequent step $h' \in [h, H]$ that:

$$\begin{aligned} & \sum_{k=1}^K \omega_h(k, h') \left(\bar{Q}_{h'}^k - \underline{Q}_{h'}^k \right) (s_{h'}^k, a_{h'}^k) \\ & \leq \sum_{h_1=h'}^H \|\omega_h(\cdot, h_1)\|_\infty S A H + 16 \sum_{h_1=h'}^H \sum_{s, a} \sqrt{H^3 \|\omega_h(\cdot, h_1)\|_\infty \|\omega_h(\cdot, h_1, s, a)\|_1}. \end{aligned}$$

1738 The following lemma bounds the summation $\sum_{s, a} \Delta_h(s, a) N_h^{K+1}(s, a)$, which directly contributes
 1739 to bounding the expected regret via Lemma D.2. The proof largely mirrors that of Lemma D.5, with
 1740 only minor differences; we therefore focus on the distinctions and omit the unchanged parts.

1741 **Lemma E.7.** For ULCB-Hoeffding algorithm (Algorithm 2), under the event \mathcal{G}_1 in Lemma D.1, it
 1742 holds for any $h \in [H]$ and $c_2 = 82944$ that:

$$\begin{aligned} & \sum_{s, a} \frac{\Delta_h(s, a) N_h^{K+1}(s, a)}{c_2} \leq S A H^2 + \sum_{h'=h}^H \sum_{\Delta_{h'}(s, a) > 0} \frac{H^4 \iota}{\Delta_{h'}(s, a)} + \frac{H^3 \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt}, t}|} \right)^2 \iota}{\Delta_{\min, h}} \\ & \quad + \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt}, t}|} \right)^2 \iota}{\Delta_{\min, h'}}. \end{aligned}$$

1751 *Proof.* We use mathematical induction to prove this conclusion. For step h , let

$$\begin{aligned} \omega_h^k &= \mathbb{I} \left[\bar{Q}_h^k(s_h^k, a_h^k) - \underline{Q}_h^k(s_h^k, a_h^k) \geq \frac{\Delta_h(s_h^k, a_h^k)}{2}, (s_h^k, a_h^k) \in Z_{\text{sub}, h} \right] \\ &= \mathbb{I} \left[(s_h^k, a_h^k) \in Z_{\text{sub}, h} \right] \leq 1. \end{aligned}$$

1757 The second equation is by Lemma E.4. Based on the definition of ω_h^k , for any $(s, a) \in Z_{\text{sub}, h}$,

$$\|\omega_h(\cdot, h, s, a)\|_1 = \sum_{k=1}^K \mathbb{I} \left[(s_h^k, a_h^k) = (s, a) \right] = N_h^{K+1}(s, a)$$

1761 and $\|\omega_h(\cdot, h, s, a)\|_1 = 0$ for $(s, a) \in Z_{\text{opt}, h}$. By Lemma E.5, for any $(s, a) \in Z_{\text{sub}, h}$, it holds that,

$$\begin{aligned} & \sum_{k=1}^K \omega_h^k \left(\bar{Q}_h^k - \underline{Q}_h^k \right) (s_h^k, a_h^k) \mathbb{I}[(s_h^k, a_h^k) = (s, a)] = \sum_{k=1}^K \omega_h(k, h, s, a) \left(\bar{Q}_h^k - \underline{Q}_h^k \right) (s_h^k, a_h^k) \\ & \leq H + 16 \sqrt{H^3 N_h^{K+1}(s, a) \iota} + \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) \left(\bar{Q}_{h+1}^{k'} - \underline{Q}_{h+1}^{k'} \right) (s_{h+1}^{k'}, a_{h+1}^{k'}). \quad (47) \end{aligned}$$

1768 Also note that for any $(s, a) \in Z_{\text{sub}, h}$ with $\Delta_h(s, a) > 0$, we have

$$\begin{aligned} & \sum_{k=1}^K \omega_h^k \left(\bar{Q}_h^k - \underline{Q}_h^* \right) (s_h^k, a_h^k) \mathbb{I}[(s_h^k, a_h^k) = (s, a)] \\ & \geq \frac{\Delta_h(s, a)}{2} \sum_{k=1}^K \omega_h^k \mathbb{I}[(s_h^k, a_h^k) = (s, a)] = \frac{\Delta_h(s, a) N_h^{K+1}(s, a)}{2}. \quad (48) \end{aligned}$$

1776 Combining the results of Equation (47) and Equation (48), it holds for any $(s, a) \in Z_{\text{sub}, h}$ that,

$$\begin{aligned} & \frac{\Delta_h(s, a) N_h^{K+1}(s, a)}{2} \\ & \leq H + 16 \sqrt{H^3 N_h^{K+1}(s, a) \iota} + \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) \left(\bar{Q}_{h+1}^{k'} - \underline{Q}_{h+1}^{k'} \right) (s_{h+1}^{k'}, a_{h+1}^{k'}). \end{aligned}$$

1782 Solving this inequality, we can derive the following conclusion for any $(s, a) \in Z_{\text{sub},h}$:

$$1784 \Delta_h(s, a) N_h^{K+1}(s, a) \leq \frac{1024H^3\iota}{\Delta_h(s, a)} + 4H + 4 \sum_{k'=1}^K \tilde{\omega}_h(k', h+1, s, a) (\bar{Q}_{h+1}^{k'} - \underline{Q}_{h+1}^{k'})(s_{h+1}^{k'}, a_{h+1}^{k'}).$$

1786 Since $\Delta_h(s, a) = 0$ for $(s, a) \notin Z_{\text{sub},h}$ and $\bar{Q}_{h+1}^k(s, a) \geq \underline{Q}_{h+1}^k(s, a)$ for any $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$, by summing the inequality above over all state-action pairs $(s, a) \in Z_{\text{sub},h}$, we reach:

$$1789 \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \\ 1790 \leq \sum_{\Delta_h(s,a)>0} \frac{1024H^3\iota}{\Delta_h(s, a)} + 4SAH + 4 \sum_{k'=1}^K \omega_h(k', h+1) (\bar{Q}_{h+1}^{k'} - \underline{Q}_{h+1}^{k'})(s_{h+1}^{k'}, a_{h+1}^{k'}). \quad (49)$$

1794 Let $h = H$. Since $Q_{H+1}^k(s, a) = Q_{H+1}^*(s, a) = 0$ for all $(s, a, k) \in \mathcal{S} \times \mathcal{A} \times [K]$, the base case
1795 $h = H$ follows immediately from Equation (49).

1796 Now, assume the lemma holds for steps $h+1, \dots, H$. Using the same inductive argument as in
1797 Lemma D.5, we prove the case for step h . From Lemma E.6, we have:

$$1799 \sum_{k'=1}^K \omega_h(k', h+1) (\bar{Q}_{h+1}^{k'} - \underline{Q}_{h+1}^{k'})(s_{h+1}^{k'}, a_{h+1}^{k'}) \\ 1800 \leq \sum_{h'=h+1}^H \|\omega_h(\cdot, h')\|_\infty SAH + 16 \sum_{h'=h+1}^H \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1} \iota. \quad (50)$$

1805 Similar to the proof of Equation (30), we can derive that

$$1806 16 \sum_{h'=h+1}^H \sum_{s,a} \sqrt{H^3 \|\omega_h(\cdot, h')\|_\infty \|\omega_h(\cdot, h', s, a)\|_1} \iota \\ 1807 \leq 24\sqrt{c_2} \left(SAH^2 + 2 \sum_{h'=h+1}^H \sum_{\Delta_{h'}(s,a)>0} \frac{H^4\iota}{\Delta_{h'}(s, a)} + 2 \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}(s, a)} \right) \\ 1808 + 16\sqrt{3} \left(\sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt},h'}| \iota} \right) \sqrt{\sum_{\Delta_h(s,a)>0} N_h^{K+1}(s, a)}.$$

1813 By applying this inequality to Equation (50) and substituting the result into Equation (49), and using
1814 the bound $\|\omega_h(\cdot, h')\|_\infty \leq 3$ from Equation (25), we conclude that the following inequality holds:

$$1815 \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \\ 1816 \leq 192\sqrt{c_1} \left(SAH^2 + \sum_{h'=h}^H \sum_{\Delta_{h'}(s,a)>0} \frac{H^4\iota}{\Delta_{h'}(s, a)} + \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}(s, a)} \right) \\ 1817 + 64\sqrt{3} \left(\sum_{h'=h+1}^H \sqrt{H^3 |Z_{\text{opt},h'}| \iota} \right) \sqrt{\sum_{\Delta_h(s,a)>0} N_h^{K+1}(s, a)}.$$

1822 By applying the same method used to solve Equation (31), we can similarly establish that

$$1823 \sum_{s,a} \Delta_h(s, a) N_h^{K+1}(s, a) \leq 18432 \frac{H^3\iota \left(\sum_{t=h+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2}{\Delta_{\min,h}} \\ 1824 + 288\sqrt{c_2} \left(SAH^2 + \sum_{h'=h}^H \sum_{\Delta_{h'}(s,a)>0} \frac{H^4\iota}{\Delta_{h'}(s, a)} + \sum_{h'=h+1}^H \frac{H^2 \left(\sum_{t=h'+1}^H \sqrt{|Z_{\text{opt},t}|} \right)^2 \iota}{\Delta_{\min,h'}} \right).$$

1828 This establishes the result for step h , thereby completing the proof. \square

1836 **F PROOF OF FINE-GRAINED GAP-DEPENDENT REGRET BOUND FOR AMB**
18371838 **F.1 REVIEW OF AMB ALGORITHM**
18391840 We first review the AMB algorithm (Xu et al., 2021) in Algorithm 3.
18411842 **Algorithm 3** Adaptive Multi-step Bootstrap (AMB)
1843

```

1: Input:  $p \in (0, 1)$  (failure probability),  $H, A, S, K \geq 1$ 
2: Initialization: For any  $\forall (s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$ , initialize  $\bar{Q}_h^1(s, a) \leftarrow H$ ,  $\underline{Q}_h^1(s, a) \leftarrow 0$ ,
1846    $G_h^1 = \emptyset$ ,  $A_h^1(s) \leftarrow \mathcal{A}$  and  $\bar{V}_h^1(s) = \underline{V}_h^1(s) = 0$ .
1847 3: for  $k = 1, 2, \dots, K$  do
1848    4: Step 1: Collect data:
1849    5: Rollout from a random initial state  $s_1^k \sim \mu$  using policy  $\pi_k = \{\pi_h^k\}_{h=1}^H$ , defined as:
1850
1851     $\pi_h^k(s) \triangleq \begin{cases} \arg \max_{a \in A_h^k(s)} \bar{Q}_h^k(s, a) - \underline{Q}_h^k(s, a), & \text{if } |A_h^k(s)| > 1 \\ \text{the element in } A_h^k(s), & \text{if } |A_h^k(s)| = 1 \end{cases}$ 
1853
1854    6: and obtain an episode  $\{(s_h^k, a_h^k, r_h^k = r_h(s_h^k, a_h^k))\}_{h=1}^H$ .
1855    7: Step 2: Update Q-function:
1856    8: for  $h = H, H-1, \dots, 1$  do
1857      9: if  $s_h^k \notin G_h^k$  then
1858        10: Let  $n = N_h^{k+1}(s, a)$  be the number of visits to  $(s, a)$  at step  $h$  in the first  $k$  episodes.
1859        11: Let  $h' = h'(k, h)$  be the first index after step  $h$  in episode  $k$  such that  $s_{h'}^k \notin G_{h'}^k$ . (If
1860          such a state does not exist, set  $h' = H+1$  and  $\bar{V}_{H+1}^k = \underline{V}_{H+1}^k(s) = 0$ .)
1861        12: Compute bonus:  $b_n' = 4\sqrt{H^3 \log(2SAT/p)/n}$ .
1862        13:  $\bar{Q}_h^{k+1}(s_h^k, a_h^k) = \min \left\{ H, (1-\eta_n) \bar{Q}_h^k(s_h^k, a_h^k) + \eta_n (\hat{Q}_h^{k,d}(s_h^k, a_h^k) + \bar{V}_{h'}^k(s_{h'}^k) + b_n') \right\}$ .
1863        14:  $\underline{Q}_h^{k+1}(s_h^k, a_h^k) = \max \left\{ 0, (1-\eta_n) \underline{Q}_h^k(s_h^k, a_h^k) + \eta_n (\hat{Q}_h^{k,d}(s_h^k, a_h^k) + \underline{V}_h^k(s_{h'}^k) - b_n') \right\}$ .
1864        15:  $\bar{V}_h^{k+1}(s_h^k) = \max_{a' \in A_h^k(s_h^k)} \bar{Q}_h^{k+1}(s_h^k, a')$ .
1865        16:  $\underline{V}_h^{k+1}(s_h^k) = \max_{a' \in A_h^k(s_h^k)} \underline{Q}_h^{k+1}(s_h^k, a')$ .
1866        17: end if
1867      18: end for
1868      19: for  $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] \setminus \{(s_h^k, a_h^k) | 1 \leq h \leq H, s_h^k \notin G_h^k\}_{h=1}^H$  do
1869        20:  $\bar{Q}_h^{k+1}(s, a) = \bar{Q}_h^k(s, a)$ ,  $\underline{Q}_h^{k+1}(s, a) = \underline{Q}_h^k(s, a)$ ,  $\bar{V}_h^{k+1}(s) = \bar{V}_h^k(s)$ ,  $\underline{V}_h^{k+1}(s) = \underline{V}_h^k(s)$ .
1870      21: end for
1871      22: Step 3: Eliminate the sub-optimal actions:
1872      23:  $\forall s \in \mathcal{S}, h \in [H]$ , set  $A_h^{k+1}(s) = \{a \in A_h^k(s) : \bar{Q}_h^k(s, a) \geq \underline{V}_h^k(s)\}$ .
1873      24: Set  $G_h^{k+1} = \{s \in \mathcal{S} : |A_h^{k+1}(s)| = 1\}$ .
1874      25: end for

```

1878
1879 AMB maintains upper and lower bounds $\bar{Q}_h^k(s, a)$ and $\underline{Q}_h^k(s, a)$ for each state-action-step triple
1880 (s, a, h) at the beginning of episode k . The policy π^k is selected by maximizing the confidence
1881 interval length $\bar{Q} - \underline{Q}$. Based on these bounds, for each state s and step h , AMB constructs a set
1882 of candidate optimal actions, denoted by $A_h^k(s)$, by eliminating any action a whose upper bound is
1883 lower than the lower bound of some other action. If $|A_h^k(s)| = 1$, the optimal action is identified,
1884 denoted by $\pi_h^*(s)$, and s is referred to as a *decided state*; otherwise, s is called an *undecided state*.
1885 Let $G_h^k = \{s \mid |A_h^k(s)| = 1\}$ denote the set of all decided states at step h in episode k .
1886

1887 Let $\mathcal{F}_{h,k}$ denote the filtration generated by the trajectory up to and including step h in episode k . In
1888 particular, $\mathcal{F}_{h,k}$ contains the policy π^k and the realized state-action pair (s_h^k, a_h^k) . AMB constructs
1889 upper and lower bounds of the Q -function by decomposing the Q -function into two parts: the re-
wards accumulated within the decided states and those from the undecided states. Formally, starting

from state s_h^k at step h and following the policy π^k , we observe the trajectory $\{(s_{h'}^k, a_{h'}^k, r_{h'}^k)\}_{h'=h}^H$. Let $h' = h'(k, h) > h$ denote the first index such that $s_{h'}^k \notin G_h^k$. Then, the optimal Q -value function $Q_h^*(s, a)$ can be decomposed as:

$$Q_h^{k,d}(s, a) \triangleq \mathbb{E} \left[\sum_{l=h}^{h'-1} r_l(s_l^k, \pi_l^*(s_l^k)) \mid \mathcal{F}_{h,k}, (s_h^k, a_h^k) = (s, a) \right]$$

and

$$Q_h^{k,ud}(s, a) \triangleq \mathbb{E} [V_{h'}^*(s_{h'}^k) \mid \mathcal{F}_{h,k}, (s_h^k, a_h^k) = (s, a)],$$

where $Q_h^{k,d}$ and $Q_h^{k,ud}$ represent the contributions from the decided and undecided parts, respectively. To estimate $Q_h^{k,d}(s_h, a_h)$, AMB uses the sum of empirical rewards in episode k :

$$\hat{Q}_h^{k,d}(s, a) = \sum_{l=h}^{h'-1} r_l(s_l^k, a_l^k).$$

To estimate $Q_h^{k,ud}(s_h, a_h)$, AMB performs bootstrapping using the existing upper-bound V -estimate $\bar{V}_h^k(s_h^k)$. The resulting update rules of the Q -estimates are:

$$\bar{Q}_h^{k+1}(s_h^k, a_h^k) = \min \left\{ H, (1 - \eta_n) \bar{Q}_h^k(s_h^k, a_h^k) + \eta_n \left(\hat{Q}_h^{k,d}(s_h^k, a_h^k) + \bar{V}_{h'}^k(s_{h'}^k) + b'_n \right) \right\}. \quad (51)$$

$$\underline{Q}_h^{k+1}(s_h^k, a_h^k) = \max \left\{ 0, (1 - \eta_n) \underline{Q}_h^k(s_h^k, a_h^k) + \eta_n \left(\hat{Q}_h^{k,d}(s_h^k, a_h^k) + \underline{V}_{h'}^k(s_{h'}^k) - b'_n \right) \right\}. \quad (52)$$

The learning rate $\eta_n = \frac{H+1}{H+n}$, where $n = N_h^{k+1}(s_h^k, a_h^k)$ represents the number of visits to state-action pair (s_h^k, a_h^k) at step h within the first k episodes. By unrolling the recursion in h , we obtain:

$$\bar{Q}_h^k(s_h^k, a_h^k) \leq \min \left\{ H, \eta_0^{N_h^k} H + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\hat{Q}_h^{k^i,d}(s_h^k, a_h^k) + \bar{V}_{h'}^{k^i}(s_{h'}^{k^i}) + b'_i \right) \right\}, \quad (53)$$

$$\bar{Q}_h^k(s_h^k, a_h^k) \geq \max \left\{ 0, \eta_0^{N_h^k} H + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\hat{Q}_h^{k^i,d}(s_h^k, a_h^k) + \underline{V}_{h'}^{k^i}(s_{h'}^{k^i}) - b'_i \right) \right\}. \quad (54)$$

To ensure the optimism of the Q -estimates \bar{Q} and the pessimism of Q , Xu et al. (2021) adopt the equality forms of Equation (53) and Equation (54) in their Equation (A.5). However, **these equalities do not hold under the actual update rules** in Equation (51) and Equation (52), due to the presence of truncations at H and 0. In fact, only the inequalities in Equation (53) and Equation (54) can be rigorously derived from the updates. This creates a fundamental inconsistency: to establish optimism and pessimism of Q -estimates, we require an upper bound on \bar{Q} and a lower bound on Q , which are the reverse of the inequalities implied by the truncated updates. Therefore, the truncations at H and 0 in the update rules Equation (51) and Equation (52) in the AMB algorithm are theoretically improper and should be removed to ensure analytical correctness.

Moreover, the bonus term b'_n is derived by bounding the deviation between $\bar{Q}_h^k(s, a)$ and $Q_h^*(s, a)$. This analysis relies on applying the Azuma–Hoeffding inequality to two martingale difference terms:

$$\sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\hat{Q}_h^{k^i,d}(s_h^k, a_h^k) - Q_h^{k^i,d}(s_h^k, a_h^k) \right) \quad \text{and} \quad \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i,ud}(s_h^k, a_h^k) \right),$$

based on the following assumed decomposition:

$$Q_h^{k,d}(s_h^k, a_h^k) + Q_h^{k,ud}(s_h^k, a_h^k) = Q_h^*(s_h^k, a_h^k). \quad (55)$$

This decomposition implies that the sum of the estimators $\hat{Q}_h^{k,d}(s, a)$ and $V_{h'}^*(s_{h'}^{k^i})$ in multi-step bootstrapping forms an unbiased estimate of $Q_h^*(s, a)$.

However, Xu et al. (2021) incorrectly apply the Azuma–Hoeffding inequality by centering the estimators $\hat{Q}_h^{k,d}(s, a)$ and $\bar{V}_{h'}^k(s_{h'}^{k^i})$ around their **expectations** (see their Equation (4.2) and Lemma

1944 4.1), rather than around their corresponding **conditional expectations** $Q_h^{k,d}(s, a)$ and $Q_h^{k,ud}(s, a)$.
 1945 Moreover, the unbiasedness of multi-step bootstrapping implied by Equation (55) requires formal
 1946 justification. These issues compromise the claimed optimism and pessimism properties of the Q -
 1947 estimators, thereby invalidating the corresponding fine-grained regret guarantees.

1948 To address these issues, we introduce the following key modifications:
 1949

1950 **(a) Revising update rules.** We move the truncations at H and 0 in Equation (51) and Equation (52)
 1951 to the corresponding V -estimates (lines 15–16 in Algorithm 4), retaining only the multi-step boot-
 1952 strapping updates. This allows us to recover the equalities in Equation (53) and Equation (54).

1953 **(b) Proving unbiasedness of multi-step bootstrapping.** We rigorously prove Equation (55), show-
 1954 ing that $\hat{Q}_h^{k,d}(s, a)$ and $\bar{V}_{h'}^k(s_{h'}^k)$ form an unbiased estimate of the optimal value function Q^* .
 1955

1956 **(c) Ensuring Martingale Difference Condition.** We ensure the validity of Azuma–Hoeffding in-
 1957 equality by centering the two estimators $\hat{Q}_h^{k,d}(s, a)$ and $\bar{V}_{h'}^k(s_{h'}^k)$ in multi-step bootstrapping around
 1958 their conditional expectations, $Q_h^{k,d}(s, a)$ and $Q_h^{k,ud}(s, a)$.

1959 **(c) Tightening confidence bounds.** By jointly analyzing the concentration of the estimators
 1960 $\hat{Q}_h^{k,d}(s, a)$ and $\bar{V}_{h'}^k(s_{h'}^k)$, we reduce the bonus b'_n by half, leading to better empirical performance.
 1961

1962 We detail our Refined AMB algorithm in the following subsection.
 1963

1964 F.2 Refined AMB ALGORITHM

1965 We present the Refined AMB algorithm in Algorithm 4 and Algorithm 5, which preserves the overall
 1966 structure of Xu et al. (2021).

1967 To recover valid upper and lower confidence bounds for the Q -estimators, we slightly modify the
 1968 update rules by shifting the truncation from the Q -estimates to the corresponding V -estimates:
 1969

$$\begin{aligned} \bar{Q}_h^k(s, a) &= (1 - \eta_n) \bar{Q}_h^{k-1}(s, a) + \eta_n \left(\hat{Q}_h^{k,d}(s, a) + \bar{V}_{h'}^k(s_{h'}^k) + b_n \right), \\ \underline{Q}_h^k(s, a) &= (1 - \eta_n) \underline{Q}_h^{k-1}(s, a) + \eta_n \left(\hat{Q}_h^{k,d}(s, a) + \underline{V}_{h'}^k(s_{h'}^k) - b_n \right), \\ \bar{V}_h^{k+1}(s) &= \min \left\{ H, \max_{a' \in A_h^k(s)} \bar{Q}_h^{k+1}(s, a') \right\}, \\ \underline{V}_h^{k+1}(s) &= \max \left\{ 0, \max_{a' \in A_h^k(s)} \underline{Q}_h^{k+1}(s, a') \right\}. \end{aligned}$$

1970 Here, the refined bonus is defined as $b_n = b'_n/2$, exactly half of the bonus used in the original AMB
 1971 algorithm. These modifications enable us to establish the following theorem:

1972 **Theorem F.1** (Formal statement of Theorem 4.1.). *With high probability (under the event \mathcal{H} in
 1973 Lemma F.1), the following conclusions hold simultaneously for all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$:*

$$\bar{V}_h^k(s) \geq V_h^*(s) \geq \underline{V}_h^k(s) \quad \text{and} \quad \bar{Q}_h^k(s, a) \geq Q_h^*(s, a) \geq \underline{Q}_h^k(s, a). \quad (56)$$

1974 Moreover, the following decomposition holds:
 1975

$$Q_h^{k,d}(s, a) + Q_h^{k,ud}(s, a) = Q_h^*(s, a). \quad (57)$$

1976 The proof is provided in Appendix F.3, where the optimism and pessimism properties of the Q -
 1977 estimators are formally established. By adapting the remaining arguments from Xu et al. (2021)
 1978 along with the simplifications in Appendix F.4, we show that the Refined AMB algorithm achieves
 1979 the following fine-grained gap-dependent expected regret upper bound:

$$O \left(\sum_{h=1}^H \sum_{\Delta_h(s, a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s, a)} + \frac{H^5 |Z_{\text{mul}}| \log(SAT)}{\Delta_{\min}} \right).$$

1980 Here, for any $h \in [H]$, we have $|Z_{\text{opt},h}(s)| = \{a \in \mathcal{A} | \Delta_h(s, a) = 0\}$ and
 1981

$$|Z_{\text{mul}}| = \{(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] | \Delta_h(s, a) = 0, |Z_{\text{opt},h}(s)| > 1\}.$$

1998 **Algorithm 4** Refined Adaptive Multi-step Bootstrap (Refined AMB)

1999 1: **Input:** $p \in (0, 1)$ (failure probability), $H, A, S, K \geq 1$

2000 2: **Initialization:** For any $\forall (s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$, initialize $\bar{Q}_h^1(s, a) \leftarrow H$, $\underline{Q}_h^1(s, a) \leftarrow 0$,

2001 $G_h^1 = \emptyset$, $A_h^1(s) \leftarrow \mathcal{A}$ and $\bar{V}_h^1(s) = \underline{V}_h^1(s) = 0$.

2002 3: **for** $k = 1, 2, \dots, K$ **do**

2003 4: **Step 1: Collect data:**

2004 5: Rollout from a random initial state $s_1^k \sim \mu$ using policy $\pi_k = \{\pi_h^k\}_{h=1}^H$, defined as:

2005
$$\pi_h^k(s) \triangleq \begin{cases} \arg \max_{a \in A_h^k(s)} \bar{Q}_h^k(s, a) - \underline{Q}_h^k(s, a), & \text{if } |A_h^k(s)| > 1 \\ \text{the element in } A_h^k(s), & \text{if } |A_h^k(s)| = 1 \end{cases}$$

2006 6: and obtain an episode $\{(s_h^k, a_h^k, r_h^k = r_h(s_h^k, a_h^k))\}_{h=1}^H$.

2007 7: **Step 2: Update Q-function:**

2008 8: **for** $h = H, H-1, \dots, 1$ **do**

2009 9: **if** $s_h^k \notin G_h^k$ **then**

2010 10: $\text{UPDATE}(s_h^k, a_h^k, k, h)$.

2011 11: **end if**

2012 12: **end for**

2013 13: **for** $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] \setminus \{(s_h^k, a_h^k) | 1 \leq h \leq H, s_h^k \notin G_h^k\}_{h=1}^H$ **do**

2014 14: $\bar{Q}_h^{k+1}(s, a) = \bar{Q}_h^k(s, a)$, $\underline{Q}_h^{k+1}(s, a) = \underline{Q}_h^k(s, a)$,

2015 15: $\bar{V}_h^{k+1}(s) = \bar{V}_h^k(s)$, $\underline{V}_h^{k+1}(s) = \underline{V}_h^k(s)$.

2016 16: **end for**

2017 17: **Step 3: Eliminate the sub-optimal actions:**

2018 18: $\forall s \in \mathcal{S}, h \in [H]$, set $A_h^{k+1}(s) = \{a \in A_h^k(s) : \bar{Q}_h^k(s, a) \geq \underline{V}_h^k(s)\}$

2019 19: $\forall s \in \mathcal{S}$, set $G_h^{k+1} = \{s \in \mathcal{S} : |A_h^{k+1}(s)| = 1\}$.

2020 20: **end for**

2026 **Algorithm 5** $\text{UPDATE}(s, a, k, h)$

2027 1: Set $\bar{V}_{H+1}^k = \underline{V}_{H+1}^k(s) = 0$.

2028 2: $\forall n$, set $\eta_n = \frac{H+1}{H+n}$.

2029 3: Let $n = N_h^{k+1}(s, a)$ be the number of visits to (s, a) at step h in the first k episodes.

2030 4: Let $h' = h'(h, k)$ be the first index after step h in episode k such that $s_{h'}^k \notin G_{h'}^k$. (If such a state

2031 does not exist, set $h' = H+1$.)

2032 5: Compute bonus: $b_n = 2\sqrt{H^3 \log(2SAT/p)/n}$.

2033 6: Compute partial return: $\hat{Q}_h^{k,d}(s, a) = \sum_{h \leq i < h'} r_i^k$.

2034 7: $\bar{Q}_h^{k+1}(s, a) = (1 - \eta_n) \bar{Q}_h^k(s, a) + \eta_n \left(\hat{Q}_h^{k,d}(s, a) + \bar{V}_{h'}^k(s_{h'}^k) + b_n \right)$.

2035 8: $\underline{Q}_h^{k+1}(s, a) = (1 - \eta_n) \underline{Q}_h^k(s, a) + \eta_n \left(\hat{Q}_h^{k,d}(s, a) + \underline{V}_{h'}^k(s_{h'}^k) - b_n \right)$.

2036 9: $\bar{V}_h^{k+1}(s) = \min \left\{ H, \max_{a' \in A_h^k(s)} \bar{Q}_h^{k+1}(s, a') \right\}$.

2037 10: $\underline{V}_h^{k+1}(s) = \max \left\{ 0, \max_{a' \in A_h^k(s)} \underline{Q}_h^{k+1}(s, a') \right\}$.

2043

2044 F.3 PROOF OF THEOREM F.1

2045

2046 We first prove some probability events to facilitate our proof.

2047 **Lemma F.1.** *Let $\iota = \log(2SAT/p)$ for any failure probability $p \in (0, 1)$. Then with probability at*

2048 least $1 - p$, the following event \mathcal{H} holds:

2049

$$\left| \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left((\hat{Q}_h^{k^i, d} - Q_h^{k^i, d})(s, a) + V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i, ud}(s, a) \right) \right| \leq 2 \sqrt{\frac{H^3 \iota}{N_h^k(s, a)}}, \quad \forall (s, a, h, k).$$

2052 *Proof.* The sequence
 2053

$$2054 \quad \left\{ \sum_{i=1}^N \eta_i^N \left((\hat{Q}_h^{k^i, d} - Q_h^{k^i, d})(s, a) + V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i, ud}(s, a) \right) \right\}_{N \in \mathbb{N}^+}$$

2057 is a martingale sequence with
 2058

$$2059 \quad \left| \eta_i^N \left((\hat{Q}_h^{k^i, d} - Q_h^{k^i, d})(s, a) + V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i, ud}(s, a) \right) \right| \leq \eta_i^N H.$$

2061 Then according to Azuma-Hoeffding inequality and (b) of Lemma C.2, for any $p \in (0, 1)$, with
 2062 probability at least $1 - \frac{p}{SAT}$, it holds for given $N_h^k(s, a) = N \in \mathbb{N}_+$ that:

$$2064 \quad \left| \sum_{i=1}^N \eta_i^N \left((\hat{Q}_h^{k^i, d} - Q_h^{k^i, d})(s, a) + V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i, ud}(s, a) \right) \right| \leq 2 \sqrt{\frac{H^3 \iota}{N}}.$$

2067 For any all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$, we have $N_h^k(s, a) \in [\frac{T}{H}]$. Considering all the possible
 2068 combinations $(s, a, h, N) \in \mathcal{S} \times \mathcal{A} \times [H] \times [\frac{T}{H}]$, with probability at least $1 - p$, it holds simultaneously
 2069 for all $(s, a, h, k) \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$ that:

$$2071 \quad \left| \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left((\hat{Q}_h^{k^i, d} - Q_h^{k^i, d})(s, a) + V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i, ud}(s, a) \right) \right| \leq 2 \sqrt{\frac{H^3 \iota}{N_h^k(s, a)}}.$$

2074 \square
 2075

2076 Now we use mathematical induction on k to prove Theorem F.1 under the event \mathcal{H} .
 2077

2079 *Proof. Part 1: Proof for $k = 1$.*

2080 For $k = 1$, the Equation (56) holds based on the initialization in line 2 of Algorithm 4.

2081 Now we prove Equation (57) for $k = 1$ by induction on $h = H, \dots, 1$.

2083 For $h = H$, we have $h'(1, H) = H + 1$. Equation (57) holds in this case since $Q_H^*(s, a) = r_H(s, a) = Q_H^{1,d}(s, a)$ and $Q_H^{1,ud}(s, a) = 0$. Now assume that Equation (57) holds for $H, \dots, h + 1$.
 2084 We will also show it holds for step h .

2086 First, we expand $Q_h^{1,d}(s, a)$ as follows:
 2087

$$2088 \quad Q_h^{1,d}(s, a) = \mathbb{E} \left[\sum_{l=h}^{h'-1} r_l(s_l^1, \pi_l^*(s_l^1)) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a) \right] \\ 2089 \quad = \left(\sum_{s' \notin G_{h+1}^1} + \sum_{s' \in G_{h+1}^1} \right) \mathbb{E} \left[\sum_{l=h}^{h'-1} r_l(s_l^1, \pi_l^*(s_l^1)) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a), s_{h+1}^1 = s' \right] \\ 2090 \quad \times \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \quad (58)$$

$$2091 \quad = \sum_{s' \notin G_{h+1}^1} r_h(s, a) \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2092 \quad + \sum_{s' \in G_{h+1}^1} (r_h(s, a) + Q_{h+1}^{1,d}(s', \pi_{h+1}^*(s'))) \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \quad (59)$$

$$2093 \quad = r_h(s, a) + \sum_{s' \in G_{h+1}^1} Q_{h+1}^{1,d}(s', \pi_{h+1}^*(s')) \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)). \quad (60)$$

2104 The Equation (58) is obtained by applying the law of total expectation with respect to s_{h+1}^1 , and
 2105 leveraging the Markov property of the process. Equation (59) is because:

2106 If $s_{h+1}^1 \notin G_{h+1}^1$, then $h' = h'(k, h) = h + 1$ and
 2107

$$2108 \mathbb{E} \left[\sum_{l=h}^{h'-1} r(s_l^1, \pi_l^*(s_l^1)) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a), s_{h+1}^1 = s' \right] = r_h(s, a);$$

2112 If $s_{h+1}^1 \in G_{h+1}^1$, then $h' = h'(k, h) = h'(k, h + 1)$. In this case, since $\bar{Q}_{h+1}^1 \geq Q_{h+1}^* \geq \bar{Q}_{h+1}^1$,
 2113 $a_{h+1}^1 = \pi_h^1(s_{h+1}^1)$ is the unique optimal action $\pi_{h+1}^*(s_{h+1}^1)$. Therefore we have
 2114

$$2115 \mathbb{E} \left[\sum_{l=h}^{h'-1} r(s_l^1, \pi_l^*(s_l^1)) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a), s_{h+1}^1 = s' \right] \\ 2116 = r_h(s, a) + \mathbb{E} \left[\sum_{l=h+1}^{h'-1} r(s_l^1, \pi_l^*(s_l^1)) \mid \mathcal{F}_{h+1,1}, (s_{h+1}^1, a_{h+1}^1) = (s', \pi_{h+1}^*(s')) \right] \\ 2117 = r_h(s, a) + Q_{h+1}^{1,d}(s', \pi_{h+1}^*(s')).$$

2123 Similarly, we also have

$$2124 Q_h^{1,ud}(s, a) = \mathbb{E} [V_{h'}^*(s_{h'}^1) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a)] \\ 2125 = \sum_{s' \notin G_{h+1}^1} \mathbb{E} [V_{h'}^*(s_{h'}^1) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a), s_{h+1}^1 = s'] \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2126 + \sum_{s' \in G_{h+1}^1} \mathbb{E} [V_{h'}^*(s_{h'}^1) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a), s_{h+1}^1 = s'] \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2127 = \sum_{s' \notin G_{h+1}^1} V_{h+1}^*(s') \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2128 + \sum_{s' \in G_{h+1}^1} Q_{h+1}^{1,ud}(s', \pi_{h+1}^*(s')) \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)). \quad (61)$$

2137 Here Equation (61) is because if $s_{h+1}^1 \notin G_{h+1}^1$, then $h' = h'(k, h) = h + 1$ and

$$2138 \mathbb{E} [V_{h'}^*(s_{h'}^1) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a), s_{h+1}^1 = s'] = V_{h+1}^*(s');$$

2140 If $s_{h+1}^1 \in G_{h+1}^1$, then $h' = h'(k, h) = h'(k, h + 1)$ and
 2141

$$2142 \mathbb{E} [V_{h'}^*(s_{h'}^1) \mid \mathcal{F}_{h,1}, (s_h^1, a_h^1) = (s, a), s_{h+1}^1 = s'] = Q_{h+1}^{1,ud}(s', \pi_{h+1}^*(s')).$$

2143 Combining the results of Equation (60) and Equation (61), we reach:

$$2144 Q_h^{1,d}(s, a) + Q_h^{1,ud}(s, a) \\ 2145 = r_h(s, a) + \sum_{s' \notin G_{h+1}^1} V_{h+1}^*(s') \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2146 + \sum_{s' \in G_{h+1}^1} (Q_{h+1}^{1,d}(s', \pi_{h+1}^*(s')) + Q_{h+1}^{1,ud}(s', \pi_{h+1}^*(s'))) \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2147 = r_h(s, a) + \sum_{s' \notin G_{h+1}^1} V_{h+1}^*(s') \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2148 + \sum_{s' \in G_{h+1}^1} V_{h+1}^*(s') \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \quad (62)$$

$$2149 = r_h(s, a) + \sum_{s'} V_{h+1}^*(s') \mathbb{P}(s_{h+1}^1 = s' \mid (s_h^1, a_h^1) = (s, a)) \\ 2150 = r_h(s, a) + Q_h^*(s, a) \quad (63)$$

2160 Equation (62) is because by induction, we have
 2161

$$2162 Q_{h+1}^{1,d}(s', \pi_{h+1}^*(s')) + Q_{h+1}^{1,ud}(s', \pi_{h+1}^*(s')) = Q_{h+1}^*(s', \pi_{h+1}^*(s')) = V_{h+1}^*(s').$$

2164 Equation (63) uses Bellman Optimality Equation in Equation (1).

2165 **Part 2.1: Proof of Equation (56) for $k + 1$.**

2166 Assuming that the conclusions Equation (56) and Equation (57) hold for all $1, 2, \dots, k$, we will prove
 2167 the conclusions for $k + 1$.

2169 If $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H] \setminus \{(s_h^k, a_h^k) | 1 \leq h \leq H, s_h^k \notin G_h^k\}_{h=1}^H$, then we have
 2170

$$2171 \bar{V}_h^{k+1}(s) = \bar{V}_h^k(s) \geq V_h^*(s) \geq \underline{V}_h^k(s) = \underline{V}_h^{k+1}(s).$$

2172 and

$$2174 \bar{Q}_h^{k+1}(s, a) = \bar{Q}_h^k(s, a) \geq Q_h^*(s, a) \geq \underline{Q}_h^k(s, a) = \underline{Q}_h^{k+1}(s, a).$$

2175 For (s_h^k, a_h^k, h) with $s_h^k \notin G_h^k$, based on the update rule in line 6 and line 7 in Algorithm 5, we have
 2176

$$2177 \bar{Q}_h^{k+1}(s_h^k, a_h^k) = \eta_0^{N_h^{k+1}} H + \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\hat{Q}_h^{k^i, d}(s, a) + \bar{V}_{h'(k^i, h)}^{k^i}(s_{h'(k^i, h)}^{k^i}) + b_i \right) \\ 2179 \geq \eta_0^{N_h^{k+1}} H + \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\hat{Q}_h^{k^i, d}(s, a) + \bar{V}_{h'(k^i, h)}^{k^i}(s_{h'(k^i, h)}^{k^i}) \right) + 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}}, \quad (64)$$

2184 and

$$2186 \underline{Q}_h^{k+1}(s_h^k, a_h^k) = \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\hat{Q}_h^{k^i, d}(s, a) + \underline{V}_{h'(k^i, h)}^{k^i}(s_{h'(k^i, h)}^{k^i}) - b_i \right). \\ 2187 \leq \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\hat{Q}_h^{k^i, d}(s, a) + \underline{V}_{h'(k^i, h)}^{k^i}(s_{h'(k^i, h)}^{k^i}) \right) - 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}}. \quad (65)$$

2192 These two inequalities are because
 2193

$$2194 \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} b_i = 2 \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \sqrt{\frac{H^3 \iota}{i}} \geq 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}}$$

2198 by (c) of Lemma C.2. Furthermore, by Equation (57) for $k^i \leq k$, it holds that:
 2199

$$2200 Q_h^*(s_h^k, a_h^k) = Q_h^{k^i, d}(s, a) + Q_h^{k^i, ud}(s, a).$$

2201 Combining with Equation (64) and Equation (65), we can derive the following conclusion:
 2202

$$2203 \left(\bar{Q}_h^{k+1} - Q_h^* \right) (s_h^k, a_h^k) \\ 2204 \geq \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\hat{Q}_h^{k^i, d}(s, a) + \bar{V}_{h'(k^i, h)}^{k^i}(s_{h'(k^i, h)}^{k^i}) - Q_h^*(s_h^k, a_h^k) \right) + 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \\ 2206 = \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\bar{V}_{h'}^{k^i} - V_{h'}^* \right) (s_{h'}^{k^i}) \\ 2208 + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\hat{Q}_h^{k^i, d}(s, a) - Q_h^{k^i, d}(s, a) + V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i, ud}(s, a) \right) + 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \geq 0.$$

2214 The last inequality holds because $\bar{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) \geq V_{h+1}^*(s_{h+1}^{k^i})$ for all $k^i \leq k$ and the event \mathcal{H} in
 2215 Lemma F.1. Similarly, we can prove the pessimism of \underline{Q}_h^{k+1} :
 2216

$$\begin{aligned}
 & (\underline{Q}_h^{k+1} - Q_h^*)(s_h^k, a_h^k) \\
 & \leq \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\hat{Q}_h^{k^i, d}(s, a) + \underline{V}_{h'(k^i, h)}^{k^i}(s_{h'(k^i, h)}^{k^i}) - Q_h^*(s_h^k, a_h^k) \right) + 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \\
 & = \sum_{i=1}^{N_h^{k+1}} \eta_i^{N_h^{k+1}} \left(\underline{V}_{h'}^{k^i} - V_{h'}^* \right) (s_{h'}^{k^i}) \\
 & \quad + \sum_{i=1}^{N_h^k} \eta_i^{N_h^k} \left(\hat{Q}_h^{k^i, d}(s, a) - Q_h^{k^i, d}(s, a) + V_{h'}^*(s_{h'}^{k^i}) - Q_h^{k^i, ud}(s, a) \right) - 2\sqrt{\frac{H^3 \iota}{N_h^{k+1}}} \leq 0.
 \end{aligned}$$

2229 The last inequality holds because $\underline{V}_{h+1}^{k^i}(s_{h+1}^{k^i}) \leq V_{h+1}^*(s_{h+1}^{k^i})$ for all $k^i \leq k$ and the event \mathcal{H} . With
 2230 this, we have shown that $\bar{Q}_h^{k+1}(s, a) \geq Q_h^*(s, a) \geq \underline{Q}_h^{k+1}(s, a)$. Therefore, by noting that
 2231

$$\bar{V}_h^{k+1}(s) = \min \left\{ H, \max_{a \in A_h^k(s)} \bar{Q}_h^{k+1}(s, a) \right\} \geq \max_{a \in A_h^k(s)} Q_h^*(s, a) = V_h^*(s)$$

2234 and

$$\underline{V}_h^{k+1}(s) = \max \left\{ 0, \max_{a \in A_h^k(s)} \underline{Q}_h^{k+1}(s, a) \right\} \leq \max_a Q_h^*(s, a) = V_h^*(s),$$

2235 we complete the proof of the Equation (56) for $k + 1$.
 2236

Part 2.2: Proof of Equation (57) for $k + 1$.

2237 Next we prove Equation (57) for $k + 1$ by induction on $h = H, \dots, 1$.
 2238

2239 For $h = H$, we have $h'(k, H) = H + 1$. Equation (57) holds in this case since $Q_H^*(s, a) = r_H(s, a) = Q_H^{1,d}(s, a)$ and $Q_H^{1,ud}(s, a) = 0$. Assume that the conclusion holds for $H, \dots, h + 1$. For
 2240 step h , similar to Equation (60) and Equation (61) for $k = 1$, we obtain:
 2241

$$Q_h^{k+1,d}(s, a) = r_h(s, a) + \sum_{s' \in G_{h+1}^{k+1}} Q_{h+1}^{k+1,d}(s', \pi_{h+1}^*(s')) \mathbb{P}(s_{h+1}^{k+1} = s' | (s_h^{k+1}, a_h^{k+1}) = (s, a))$$

2242 and

$$\begin{aligned}
 Q_h^{k+1,ud}(s, a) &= \sum_{s' \notin G_{h+1}^{k+1}} V_{h+1}^*(s') \mathbb{P}(s_{h+1}^{k+1} = s' | (s_h^{k+1}, a_h^{k+1}) = (s, a)) \\
 &+ \sum_{s' \in G_{h+1}^{k+1}} Q_{h+1}^{k+1,ud}(s', \pi_{h+1}^*(s')) \mathbb{P}(s_{h+1}^{k+1} = s' | (s_h^{k+1}, a_h^{k+1}) = (s, a)).
 \end{aligned}$$

2243 By combining these two equations, as in Equation (63), we establish Equation (57) at step h for
 2244 $k + 1$, which completes the inductive process and thus proves Lemma E.2. \square
 2245

2246 This lemma successfully establishes the optimism and pessimism properties of the Q -estimators.
 2247 Leveraging the remaining arguments in Xu et al. (2021), we can recover the same gap-dependent
 2248 expected regret upper bound presented in Equation (10).
 2249

F.4 RESULT SIMPLIFICATION

2250 By adapting the remaining arguments from Xu et al. (2021), we can recover the following bound for
 2251 Refined AMB algorithm:
 2252

$$O \left(\sum_{h=1}^H \sum_{\Delta_h(s, a) > 0} \frac{H^5 \log(SAT)}{\Delta_h(s, a)} + \frac{H^5 |Z_{\text{mul}}| \log(SAT)}{\Delta_{\min}} + SAH^2 \right) \quad (66)$$

2268 Define $Z_{\text{sub}} = \{(s, a, h) : \Delta_h(s, a) > 0\}$ and recall that $Z_{\text{opt}} = \{(s, a, h) : \Delta_h(s, a) = 0\}$ and
 2269 $Z_{\text{mul}} = \{(s, a, h) : \Delta_h(s, a) = 0, |Z_{\text{opt},h}(s)| > 1\}$, where $Z_{\text{opt},h}(s) = \{a : \Delta_h(s, a) = 0\}$. Then
 2270 we have

2271

$$|Z_{\text{sub}}| + |Z_{\text{mul}}| = |Z_{\text{sub}}| + |Z_{\text{opt}}| - (|Z_{\text{opt}}| - |Z_{\text{mul}}|) \geq S(A-1)H \geq \frac{SAH}{2},$$

2272

2273 because $|Z_{\text{sub}}| + |Z_{\text{opt}}| = HSA$ and

2274

$$|Z_{\text{opt}}| - |Z_{\text{mul}}| = |Z_{\text{opt}}/Z_{\text{mul}}| = |\{(s, a, h) : \Delta_h(s, a) = 0, |Z_{\text{opt},h}(s)| = 1\}| \leq HS$$

2275

2276 since for each $(s, a, h) \in Z_{\text{opt}}/Z_{\text{mul}}$, we have $|Z_{\text{opt},h}(s)| = 1$, which implies that the optimal action
 2277 a is unique for each state-step pair (s, h) . Therefore,

2278

$$\begin{aligned} & \sum_{h=1}^H \sum_{\Delta_h(s,a)>0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \frac{H^5 |Z_{\text{mul}}| \log(SAT)}{\Delta_{\min}} \\ & \geq \sum_{h=1}^H \sum_{\Delta_h(s,a)>0} H^4 \log(SAT) + H^4 |Z_{\text{mul}}| \log(SAT) \\ & = H^4 (|Z_{\text{sub}}| + |Z_{\text{mul}}|) \log(SAT) \\ & \geq \frac{SAH^5}{4}, \end{aligned}$$

2279

2280 where we used $0 < \Delta_h(s, a), \Delta_{\min} \leq H$ in the first inequality and $\log(SAT) \geq 1/2$ for $S, T \geq 1$
 2281 and $A \geq 2$ in the last inequality.

2282 Thus, the Refined AMB result in Equation (66) can be equivalently written as

2283

$$O \left(\sum_{h=1}^H \sum_{\Delta_h(s,a)>0} \frac{H^5 \log(SAT)}{\Delta_h(s,a)} + \frac{H^5 |Z_{\text{mul}}| \log(SAT)}{\Delta_{\min}} \right).$$

2284

2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321