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Abstract

The grammar, or syntax, of human language is typically understood in terms of abstract hier-

archical structures. However, theories of language processing that emphasize sequential

information, not hierarchy, successfully model diverse phenomena. Recent work probing

brain signals has shown mixed evidence for hierarchical information in some tasks. We ask

whether sequential or hierarchical information guides the expectations that a human listener

forms about a word’s part-of-speech when simply listening to every-day language. We com-

pare the predictions of three computational models against electroencephalography signals

recorded from human participants who listen passively to an audiobook story. We find that

predictions based on hierarchical structure correlate with the human brain response above-

and-beyond predictions based only on sequential information. This establishes a link

between hierarchical linguistic structure and neural signals that generalizes across the

range of syntactic structures found in every-day language.

Introduction

The hierarchical syntax of human language sets it apart from other communicative and cogni-

tive systems [1], yet there is significant debate about the role that this syntax plays in how the

brain understands and produces language in real-time [2, 3, 4]. While neural data is consistent

with brain systems that track hierarchical syntax rapidly and incrementally during listening [5,

6, 7, 8], studies that explicitly compare hierarchical syntax with alternatives that lack hierarchy

and only encode sequential information show mixed evidence for syntax [9, 10, 11]. We con-

tribute this debate by using electroencephalography (EEG) to test whether linguistic predic-

tions reflect hierarchicy, not just linear sequences, even when participants do something as

simple as listen to an audiobook story.

Human language syntax conforms to a formal class of languages that permit recursive self-

embedding [12, 13] and laboratory experiments indicate that such structure is necessary to

account for some aspects of real-time processing (e.g. [14]). But, day-to-day language-use need

not use the most complex syntactic representations licensed by these formal systems [15, 16].

While conceding that hierarchical linguistic structure might condition the comprehension of
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certain special sentence styles, some theorists contend that much language processing may

proceed based largely on the simplest and most frequent syntactic constructions. Applying

heuristic “short-cuts” based on linear sequences alone [17] offers one answer to how upcoming

linguistic input is processed rapidly and efficiently [18, 19].

The idea that language comprehension should be based on linear sequences alone, rather

than on any sort of grammar, has a distinguished history. It appears prominently in the per-

ceptual strategies proposed by Thomas Bever [20]; this included the famous Strategy D that

assumes the sequence N-V-N corresponds to Agent-Action-Patient. This line continues up to

the present day in the work of Christiansen and Chater [21] for whom word sequences, rather

than grammatical analyses, are the central explanatory element in theories of linguistic perfor-

mance. Indeed, eye-tracking data [9, 22], event-related potentials (ERPs) [10], and functional

magnetic resonance imaging data (fMRI) [23, 24] indicate that readers and listeners form pre-

dictions about word categories, parts of speech like Noun and Verb, based on the immediately

preceding linear sequence of words.

For example, Lopopolo and colleagues [24] report that expectations about a word’s part-of-

speech, conditioned just by the two immediately preceding words, modulate the fMRI signal

from the middle-temporal gyrus, the left superior frontal gyrus, and other regions. Frank et al.

[10] report that the N400 event-related potential (ERP) is sensitive to such sequence-based

expectations when participants listen to isolated sentences that are taken from literary sources.

This component, which is traditionally associated with semantically unexpected stimuli [25,

26], does not show sensitivity to expectations based on hierarchical structure in their analysis.

In contrast to Frank et al.’s result, fMRI studies have revealed left temporal brain regions

that are sensitive to linguistic predictions based on hierarchy above-and-beyond the linear

sequence of words [11]. But, fMRI data are only indirectly linked to the millisecond-level

dynamic brain states characteristic of language processing. Prior studies using electrocortico-

graphy (ECoG) [6] and Magnetoencephalography (MEG) [8, 27] that tie electrophysiological

dynamics with hierarchical processing do not explicitly pit hierarchy against sequential

models.

A strong test for the general role of hierarchical structure in language-use is whether it is

required during every-day language tasks which feature a wide range of sentence types. We

operationalize this by asking participants to simply listen passively to a 12 minute audiobook

story, the first chapter of Alice’s Adventures in Wonderland, while we record brain activity

with EEG. EEG is highly sensitive to linguistic expectations [25, 26, 28]. To examine the cogni-

tive representations that guide these expectations, we leverage the computational construct of

a language model which describes a probability distribution of word-sequences [10]. We con-

struct three such probabilistic language models: two which condition probabilities solely on

solely based on linear sequence information, and one which conditions probabilities based on

the hierarchical structure assigned to a particular sequence of words. Each model quantifies

the probability of an upcoming word’s part-of-speech. We use multiple regression to test

which model of linguistic expectations best characterizes EEG brain activity.

To preview our results, we find that word-by-word expectations that are conditioned by

hierarchical structure capture variance in the EEG data above-and-beyond expectations that

are conditioned by word sequences alone.

Materials and methods

Audiobook stimulus

The stimulus was chapter one of Alice’s Advenctures in Wonderland as read by Kristen

McQuillan and distributed by librivox.org. The audio was slowed by 20% using the pitch-
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preserving PSOLA algorithm to improve comprehensibility and was normalized to 70 dB SPL.

An independent rater judged the digitally altered stimulus to sound natural and to be easier to

understand than the original. The stimulus lasted 12.4 minutes. This same stimulus has been

used in prior work [11, 29].

The stimulus chapter comprises 2,129 words in 84 sentences which are on average 25.8

words long (SD = 24.2). As part of our analysis, described below, these sentences are parsed

using the Stanford Parser [30]. The resulting tree-structures indicate that the stimuli have a

reasonable syntactic diversity: The stimuli average 2.31 clauses each and attest, for example,

153 different types of VP rules. For comparison, standard Penn Treebank training split is

950,028 words. If we kept seeing new VP types at the same rate in that corpus as we see in our

2,129-word text, we would expect to find 67,000 such rules. Instead, that corpus attests just

3,691 different types of VP rules. This indicates that our stimuli exercise many of the most typ-

ical VP types.

Three models of incremental prediction

We quantify the expectation of a word w conditioned by a linguistic context C via surprisal
[31]:

surprisalðwÞ ¼ � log2ðpðwjCÞÞ

This yields a value in bits corresponding to the amount of information conveyed by a word:

unpredicted words convey more information and have higher surprisal values. For all models,

we focus on the part of speech (POS) of w while varying the complexity of C.

We follow prior work by modeling POS surprisal here, which is termed “syntactic surprisal”

by Roark et al. [32]. This choice permits a close comparison with prior work using sequence-

based models [23, 24], and also hierarchical grammars [11, 32]. In separate work we examine

lexical surprisal itself using a different class of models [29]. The present analysis relies on an

assumption that comprehenders form expectations at the POS-level. This assumption is con-

sistent with prior ERP research that has examined the brain response to violations of word-cat-

egory expectations [33, 34, 35], but the degree of abstractness in natural language predictions

remains a matter of debate (cf. [36]).

In an Ngram model, C is the POS of the linearly preceding words. We use the two preceding

words, an un-lexicalized trigram model, which has successfully modeled language-related eye-

movements, ERPs, and fMRI signals [9, 10, 24]: CNgram = wi−2, wi−1. Ngram surprisal estimates

come from a trigram language model estimated with OpenGRM with Witten-bell smoothing

[37].

Following Frank and colleagues [10] we also derive surprisal values from a three-level sim-

ple recurrent neural network (SRN) which conditions probabilities on a weighted sum over

the full preceding context [38]: CSRN = w1, w2 . . . wi−1. SRN surprisal estimates come from a

three-layer network estimated with the rwthlm toolkit [39]. Network structure follows that

used by Frank et al. (see also [40]): The network has 36 input and output nodes (one for each

POS) and a 500 unit recurrently connected hidden layer consisting of sigmoid units. The net-

work was trained using BPTT (batch size and learning rate set to software defaults); training

was stopped when perplexity on the development set stopped improving.

Against these sequential models, we test for contributions from hierarchical structure using

a broad-coverage un-lexicalized context-free grammar (CFG) [41]. While human languages

are arguably more expressive than the Context Free languages [13], CFG-definable structures

have been the flash-point for debate about the role of abstract hierarchy in every-day language

processing [2]. Here, C is the set of grammatical structures that are compatible with the
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sequence of words preceding w [42]: CCFG = structure(w1, w2 . . . wi−1). CFG surprisal estimates

come from the Stanford parser probabalistic context-free grammar [30] excluding terminal

rules [32]. Surprisal values from this probabilistic context-free grammar were estimated using

EarleyX [43, 44]. This is the same algorithm used in [31] and [45].

These three language models were chosen to hew closely to previous work comparing

sequential with hierarchical accounts [9, 10, 11]. Both the SRN and CFG models use the entire

prior context. The SRN is capable in principle of encoding arbitrary dependencies, but in prac-

tice such architectures are limited in their capacity to recover hierarchical dependencies such

as subject-verb agreement [46, 47]. This is because the SRN enforces a recency bias which lim-

its its capacity to capture long-distance dependencies [46]. This property, as well as the promi-

nence of SRNs in prior work arguing against hierarchy in language-comprehension, supports

their use as a conservative baseline against which to test the contributions of the explicitly hier-

archical CFG model. Alternative neural network architectures such as those with memory

gates may better capture context-free hierarchical structure [8, 48, 49, 50] and can be seen as

mechanisms for approximating the function carried out by our CFG model. Thus, our aim is

not to evaluate neural network architectures for sentence comprehension against others, but

rather to evaluate the cognitive representations that are involved in comprehension, which

may be recognized by some neural network architectures or by other means.

Because linguistic expectations are flexible and sensitive to genre [51], all models were

trained on POS sequences returned by the Stanford parser applied to the entire story text.

Examining the average number of bits used to encode an upcoming word’s POS is a measure

of “linguistic accuracy” in the sense of [9]. This measure shows that the trained models cap-

ture properties of target text. There are 36 POS terms, so without any context this value is

log2(36) = 5.17 bits. The three models each improve on this: The average bits per word (i.e. the

average surprisal) for Ngram is 2.95, for SRN is 3.25 and for CFG is 3.69. In other words, con-

text C carries an average of 2.22, 1.92 and 1.19 bits of information for each model, respectively.

The differences in mean surprisal between each of the models is statistically reliable (Ngram <

CFG: t(2149) = 16.3, p < 0.001, SRN< CFG: t(2149) = 10.0, p< 0.001, Ngram< SRN:

t(2149) = 14.4, p< 0.001).

Fig 1 shows the distribution of surprisal values from the three models. These mean surprisal

values are summarized in Table 1 along with the perplexity of each model, which is a common

metric for comparing probability models (§8.3 [52]; see also S1 File). The perplexity of a model

tested on words w1, w2. . .wN is:

2
� 1

N

PN

w¼1
log2ðPrðwjCÞÞ

or, equivalently:

2meanðsurprisalðw1 ;w2...wN Þ

This analysis indicates that the models recover linguistically useful information and that

sequential models do better than the hierarchical model in predicting an upcoming word’s

POS.

Fig 2 (top) illustrates how word-by-word surprisal in a short passage of text may vary

depending on whether the context used to condition those expectations includes sequential

information (red and green bars) or includes hierarchical structure (blue bars) (see S1 File for

more example sentences). Thus, while each model performs better than chance, they differ in

how well they capture the expectation for each individual word. Following prior work [9, 10],

we distinguish a model’s adequacy in capturing properties of the text with its adequacy in

Hierarchy and linguistic prediction
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Fig 1. Surprisal distributions from each of three models along with mean surprisal ±1 standard error of the mean (black bars). Surprisal from a

model where each POS tag is uniformly probably is indicated with the dashed line.

https://doi.org/10.1371/journal.pone.0207741.g001

Table 1. Linguistic accuracy of language models. Model perplexity, average surprisal, and the bits of information

encoded by the context in each of the three language models in comparison to a null model lacking context, where

each POS tag is equally probable.

Null Ngram SRN CFG
Perplexity 36 7.74 9.52 12.90

Mean surprisal 5.17 2.95 3.25 3.69

Bits encoded in context 0 2.22 1.92 1.19

https://doi.org/10.1371/journal.pone.0207741.t001
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capturing human cognitive dynamics (“psychological accuracy”). The latter is our primary

interest, which we address by testing how well the word-by-word predictions from these mod-

els match human sentence processing using electrophysiological signals that reflect linguistic

expectations.

Participants

52 adult volunteers, 44 women and 8 men, aged 18–28 (Median = 20), participated in the

story-listening sessions. The volunteers provided written informed consent and were compen-

sated $15/h for their participation. The experiment was approved by the University of Michi-

gan Health Sciences and Behavioral Sciences Institutional Review Board (#HUM00081060).

An independent analysis of these data is reported by Hale et al. in a 2018 proceedings paper

[29].

Data from three participants was not analyzed due to experimenter error and ten partici-

pants did not meet behavioral criteria (see below). Six datasets were excluded due to excessive

noise during pre-processing, leaving 33 datasets for the final analysis. All exclusions were

assessed prior to running the statistical analyses.

Participants completed an eight-question multiple choice questionnaire concerning the

contents of the story at the end of the experimental session. Each question had four possible

answers. Under the binomial distribution, correctly answering at least 5 questions is required

to exceed chance at α = 0.05. We excluded data from all participants who did not meet this

Fig 2. Language models and data analysis. Word-by-word surprisal values (top) estimated from one hierarchy-based and two sequential language

models are time-aligned to the audiobook stimulus (middle). Epochs aligned with the onset of each word are extracted from filtered EEG data and

amplitudes from each time-point and electrode serve as the dependent measure of a regression model (right) that includes surprisal values and low-level

covariates as predictors.

https://doi.org/10.1371/journal.pone.0207741.g002

Hierarchy and linguistic prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0207741 January 16, 2019 6 / 17

https://doi.org/10.1371/journal.pone.0207741.g002
https://doi.org/10.1371/journal.pone.0207741


behavioral threshold. A supplemental analysis examines whether our results are sensitive to

this behavioral exclusion criterion (S1 File).

Procedure

After being briefed on the study procedure and providing informed consent, participants were

fitted with an elastic cap with 61 actively-amplified electrodes and one ground electrode (acti-

Cap, Brain Products GmbH). Electrodes were distributed equidistantly across the scalp

according to the Easycap M10 layout. Conductive gel was inserted into each electrode to

reduce impedences to 25 kOhms or below.

Participants listened to the stimulus with insert earphones (EA-2, Etymotic Inc.) in an iso-

lated booth. Prior to hearing the audiobook, a hearing threshold was determined per partici-

pant and per ear using 1 kHz tones (300 ms, 10ms fade in/out). The audiobook story was

played at 45 dB above this threshold.

Data were recorded at 500 Hz between 0.1 and 200 Hz referenced to an electrode placed on

the right mastoid (actiCHamp, Brain Products GmbH). Following the 12.4 m story, partici-

pants completed an eight-question multiple-choice questionnaire asking about events in the

story. The entire experimental session lasted 1–1.5 h.

EEG data processing

Data processing was conducted using the Fieldtrip toolbox in MATLAB [53]. Raw EEG data

were re-referenced to the average of left and right mastoid electrodes, high-pass filtered at 0.1

Hz, and divided into 2,129 epochs spanning -0.3–1 s around the onset of each word in the

story (919 corresponding to content words, and 1,210 corresponding to function words). Ocu-

lar signals were removed using Independent Component Analysis [54] and remaining artifacts

were identified and removed following visual inspection. 2.3%–26.2% of epochs were removed

across participants (M = 13.5%), leaving on average 1,851 epochs for analysis per participant.

Signals from electrodes with supra-threshold impedance or exceptional noise were replaced

using surface spline interpolation [55] (Median = 4, Range = [0 12]). Each epoch was low-pass

filtered at 40 Hz (4th order, butterworth). No baseline correction was applied.

Statistical analysis

The statistical analysis addresses two questions: (i) what EEG signals reflect sentence-level sur-

prisal, and (ii) which of these might reflect hierarchical structure above-and-beyond linear-

sequence expectations. An initial whole-head EEG analysis identifies time-points and elec-

trodes where EEG amplitudes are modulated by surprisal from any of the models we consider.

A second ROI analysis uses step-wise model comparison to test for the unique contribution of

each surprisal model.

Whole-head single-trial analysis. Single-trial linear regression was used per-participant

at each time-point and electrode to identify EEG amplitudes that correlate with surprisal

(Fig 2, right). Control predictors included sentence order, word order (within each sentence),

word frequency (log-transformed) of the current, preceding, and following word, and sound
power at word onset. Word frequency was based on the HAL corpus via the English Lexicon

Project [56]. All predictors were mean-centered. Following [32], we conducted separate regres-

sion analyses for function words and for content words; a follow-up analysis explicitly tests for

interactions with word-class. To these control predictors we added surprisal values from each

of our three language models. We add these predictors in three separate regression models in

order to best identify any candidate EEG signals that correlate with surprisal. A follow-up

Hierarchy and linguistic prediction
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analysis using model comparison, described below, tests for the unique contribution of each

language model above-and-beyond other terms.

Bivariate correlations between all predictors, prior to residualization, are shown in Table 2.

We also constructed “null” regression models in which the rows of the design matrix were ran-

domly permuted. These were used in the group-level analysis which is described next.

β coefficients for each effect were tested at the group level across time-points t from 0–1 s

and across all electrodes e using a non-parametric permutation test [57]: (i) A dependent-sam-

ples t-test (df = 32) was conducted at each [t, e] comparing the target β against the matched β
from the null model, (ii) [t, e] points with p< 0.05 were clustered based on spatio-temporal

adjacency and their t-statistics were summed, (iii) Steps (i-ii) were repeated for 10,000 permu-

tations where each single-subject regression result was re-asigned randomly to either the “tar-

get” or “null” conditions, and (iv) clusters with summed test statistics that exceeded at least

95% of the values from this permutation test were retained as “significant” at a multiple-com-

parison corrected α = 0.05.

Model comparison analysis. A second analysis used step-wise model comparison to test

how well each surprisal model fits with the EEG data above-and-beyond the other models.

These model comparisons were conducted over spatio-temporal regions of interest (ROI) that

were defined by taking the union of all effects that were statistically significant according to

the whole-head analysis, described above. By considering all sets of electrodes and time-points

that were identified when each surprisal term was entered alone into a regression model, we

minimize biasing this ROI analysis towards any one of our target models (c.f. [58]). In other

words, each surprisal term was given equal footing to pick out electrodes and time-points at

which it showed the strongest effect, and each such ROI was evaluated on equal grounds in

these model comparisons.

As described in the Results section, below, the whole-head analysis yielded five separate

effects for CFG, Ngram, and SRN. Per-trial EEG amplitudes were averaged across the time-

span of each effect from the five most statistically-robust electrodes. This was done separately

for each effect even when there was overlap of electrodes and/or time-points to meet the goal

of minimizing bias, as just mentioned. One of the effects had a strongly bimodel topography

over left anterior and right anterior electrodes (see Fig 3C); we divided this effect into two

ROIs across the midline. This procedure yielded six ROIs.

The step-wise comparisons were structured to test four statistical hypotheses based on our

research question:

Table 2. Correlations between predictors. Bivariate correlation matrix giving Pearson’s r between terms entered into the single-subject regression models. sent: sentence

order; word: word order within each sentence; frq, frq-, frq+: log-frequency for the current, previous, and following words; sndpwr: sound power at word onset; Ngram,
SRN, CFG: surprisal from three language models. Off-diagonal correlations where |r|> 0.2 are highlighted with grey shading.

sent word frq frq- frq+ sndpwr Ngram SRN CFG
sent 1.00

word 0.22 1.00

frq -0.02 -0.05 1.00

frq- -0.01 0.00 -0.15 1.00

frq+ -0.02 -0.02 -0.15 0.00 1.00

sndpwr -0.01 -0.02 -0.01 -0.02 -0.01 1.00

Ngram -0.00 -0.06 -0.01 -0.15 -0.03 0.05 1.00

RNN 0.00 -0.07 -0.03 -0.17 -0.01 0.05 0.84 1.00

CFG -0.00 -0.03 0.08 -0.05 -0.02 0.00 0.29 0.33 1.00

https://doi.org/10.1371/journal.pone.0207741.t002
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1. Does CFG improve model fits above-and-beyond both Ngram and SRN?

2. Does Ngram improve model fits above-and-beyond CFG?

3. Does SRN improve model fits above-and-beyond CFG?

4. Does SRN improve model fits above-and-beyond Ngram?

For each of these questions, we defined a baseline model which included all of the control

predictors from the whole-head analysis described above, a binary term representing word-
class (content vs. functional; sum-coded), and any surprisal terms that are being tested against

(e.g. for point 1, above, this would be Ngram and SRN). For each such surprisal term, we also

entered its interaction with word-class. Two types of model were compared against this base-

line: A model in which we add just the surprisal term that we are testing for (e.g. CFG for point

1, above), and a model with that term and also its interaction with word-class.

The model comparison was conducted in R using the brms package [59] to construct fully

Bayesian hierarchical regression models with the Stan programming language ([60]; see [61]

for an introduction to Bayesian methods aimed towards language scientists). Models were fit

with the brm() function containing population-level (“fixed”) terms and interactions as

described above. All terms were centered and scaled so as to fall near to the range of ±10.

Group-level (“random”) terms included by-subject intercepts and by-subject slopes for sen-

tence-order and for word-class. Models were fit using four chains of 1000 warm-up iterations

and 1000 sampling iterations. Prior distributions on all terms were the default values from

brm(). Models were compared in terms of the Widely-Applied Information Criterion

Fig 3. Whole-head regression results. β coefficients (M ± CI95) and model-reconstructed ERPs. (A) Regression time-series for log-transformed word

frequency fit against content-word measurements. Dark grey shading indicates significant time-points and the inset shows significant channels and

coefficient averages across significant time-points. (B) Estimated content-word ERP for three word frequency values ranging from low (200 corpus

counts) to high (2,000,000 corpus counts) from a represenative central channel (inset) shows a classic N400 effect. (C) Regression time-series for

hierarchical CFG surprisal fit against content-word data (inset and shading as in (A)). (D) Estimated content-word ERP for three CFG surprisal values

from a representative channel (inset). (E) Regression time-series for sequential Ngram surprisal fit against function-word data (inset and shading as in

(A)). (F) Estimated function-word ERP for three Ngram surprisal values from a representative channel (inset).

https://doi.org/10.1371/journal.pone.0207741.g003
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(WAIC; [62]) from the loo package. We highlight as “statistically significant” comparisons

where the difference in WAIC exceeds two standard errors.

Results

Whole-head results

For content words, the word frequency control predictor correlates reliably with central activ-

ity in an interval spanning 266–400 ms, pmc = 0.004. Fig 3A shows the grand-averaged regres-

sion coefficient time-course from electrodes that show this significant effect; this is an “rERP”

plot following [63]. The predominant polarity during this time-span is negative-going. This is

indicated in Fig 3B, in which the grand-average regression coefficients have been used to

reconstruct an estimated ERP for words with different frequencies [63]. This result serves as a

“sanity check”. It is consistent with the N400 ERP [64], replicating the familiar effect that more

frequent words elicit smaller N400 amplitudes. This demonstrates that our analysis is sensitive

to word-level variation within the naturally-presented story (see also [65]).

Hierarchical CFG surprisal correlates negatively with anterior activity from content words

from 216–554 ms (pmc < 0.001) (Fig 3C). The topography of this effect appears to be bi-modal

over left-anterior and right-anterior electrodes. Averaging the regression coefficients across

participants shows the model-estimated ERP for words with different CFG surprisal values at a

left anterior electrode (Fig 3D).

There are no effects of Ngram or SRN surprisal on content-word activity (Ngram min(pmc) =

0.098; SRN min(pmc) = 0.378).

When considering grammatical function words, Ngram-based surprisal correlates posi-

tively with anterior activity in two time-windows: 102–158 ms and 174–420 ms (pmc = 0.035

and pmc = 0.001, respectively). The latter more right-lateralized of these is shown in Fig 3E.

Both SRN and CFG-based surprisal show positive correlations with function-word activity that

are very similar in topography and latency to the latter Ngram effect (SRN: 174-252 ms, pmc =

0.011; CFG: 210–310 ms, pmc = 0.021). The rERP plots for all significant effects are shown in S1

File.

Model comparison results

Step-wise model comparison tests for contributions of the hierarchical and sequential models

above-and-beyond each-other and other control covariates. These comparisons also explicitly

test for interactions with content or function word-class. Model-comparisons were tested in

six spatio-temporal ROIs that were determined by the results of the whole-head analysis. Each

of these ROIs are shown in the top-row of Fig 4. The remaining rows of Fig 4 appear in four

sets, each of which corresponds to a specific statistical question concerning whether a target

predictor significantly improves model fit above-and-beyond a model that includes other sur-

prisal terms and covariates.

The top row-set tests whether CFG-based surprisal improves model fits above-and-beyond

the fit achieved by a model already containing Ngram, SRN, interactions between both of those

terms and word-class, and other control covariates. The results indicate just such an improve-

ment. This is shown by the change in WAIC, a measure of model fit, that is indicated bold-

face in four of six ROIs spanning left- and right-anterior electrodes from about 200 to 500 ms.

These ROIs include those that were identified with the CFG term in the whole-head analysis

(see Fig 3C), but crucially they also include ROIs defined with other terms, such as Ngram in

the third column (see Fig 3E). This effect is not found in two ROIs spanning midline and

right-lateralized electrodes and only early time-points (� 100–250 ms). Fit improvements are

seen when CFG interacts with word-class, but not when CFG alone is tested against a baseline
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model. This indicates that CFG-based surprisal improves the fit against anterior scalp voltages

in a window spanning roughly 200-500 ms, and this effect is specific to the EEG response to

content-words.

The second and third row-sets in Fig 4 indicate that both Ngram and SRN improve model

fits above-and-beyond CFG in several of the ROIs. This improvement is observed in right-

anterior and midline electrodes in an interval spanning roughly 200 to 400 ms. Furthmore,

improvement is seen when either the main effect of Ngram (second row-set) or SRN (third

row-set) is compared to a baseline model. There is no reliable improvement in model fits

when either surprisal term interacts with word-class. These results indicate that some aspects

of the EEG record reflect sequential information independent of hierarchy, and such effects do

not appear to be specific to content or to function words.

Of the two sequence-based models, there is no evidence that SRN shows improved fits com-

pared to Ngram (Fig 4, fourth row-set). This may not be surprising given the similarity

between the Ngram and SRN predictors (r> 0.8, see Table 2), and it is also consistent with the

similar pattern of fits observed between the second and third row-sets in Fig 4.

Based on a comment from a Reviewer, We repeated the same set of step-wise model com-

parisons adding in data from participants who did not meet our behavioral criteria. The same

qualitative patterns were observed with the larger sample of N = 41 for each of the four

Fig 4. Model comparison results. WAIC difference scores (± standard error) indicate changes in model fit across six ROIs (columns). Each set of rows

tests a different statistical question using step-wise model comparison. Terms that are being evaluated are indicated to the left of “>”; interactions with

word-class are indicated with “:WC”. For each row-set, the baseline model includes all control covariates along with the indicated surprisal term(s) and

interactions between word-class and those surprisal terms. The WAIC values are scaled so that positive numbers represent improvements for the larger

model, while negative numbers indicate that the added complexity of the larger model is not matched by a better fit. Bold-face indicates WAIC

improvements that are more than two standard errors from zero.

https://doi.org/10.1371/journal.pone.0207741.g004
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statistical questions. These model comparison results are reported in the supporting informa-

tion (S1 File).

Diagnostic checks did not reveal any problems with the models used in this comparison.

The residuals from each model were normally distributed with a first-order autocorrelation <

0.2; all terms had a R-hat value < 1.1, indicating that the Markov chains used in the estimation

procedure were consistent (see https://github.com/stan-dev/stan/wiki/Stan-Best-Practices).

Goodness-of-fit summaries are given in S1 File.

Discussion

EEG signals collected during a natural story-listening task indicate that expectations do reflect

the hierarchical structure of language above-and-beyond linear sequence information as repre-

sented in the control models used here. Negative voltages over frontal electrodes correlate with

higher hierarchical surprisal for a word’s POS. These results are observed for content words

beginning around 200 ms after the onset of a word, but not for function words. This result is

consistent with prior research showing increased anterior negativities for unexpected word-

categories (e.g. [33, 34, 66]) and suggests that these expectations are conditioned in part by

hierarchical syntactic structures across a range of sentence types. The CFG surprisal results are

robust against alternative model paramaterizations, such as whether or not variance associated

with lower-order sequential surprisals are partialed out (Fig 4, row-set 1), or whether data

from participants who did not meet behavioral criteria are factored in (S1 File).

The model-comparison results in the first row-set of Fig 4 indicate that CFG surprisal inter-

acts with word-class such that scalp voltages are more negative for high surprisal content-word

POS, but not for function words. There are several possible interpretations of this interaction.

Psycholinguists have long recognized that unexpected content-words and unexpected func-

tion-words may lead to different processing strategies [67]. For example, unexpected content

words may lead to more lexical access effort on the part of the comprehender, while unex-

pected function words may lead to increased effort in syntactic reanalysis. Or, when consider-

ing just POS, an unexpected adjective can be accomodated via adjunction to a noun phrase,

while an unexpected auxilliary, determiner, or preposition, may require a more radical adjust-

ment to one’s incremental interpretation. Such strategic differences are evident, for example,

in the eye-tracking record where function words are much more commonly skipped, as com-

pared to content words. This difference motivates [32] to completely separate these two word

classes in their analysis of the effects of surprisal on eye-movements. The present result thus

reinforces prior observations that the processing consequences of a violated expectation varies

across different types of words, although these results do not alone narrow down how such

processes might differ.

This CFG effect appears in both left-anterior and right-anterior electrodes after around 200

ms. The current analysis does not indicate whether the time-course of the effect may be differ-

ent across the two hemispheres. The anterior topography contrasts with that of the N400 ERP,

which is typically central or central-parietal [25, 26, 28]. But, the topography and time-course

is similar to other anterior negativities, like the “left anterior negativity” LAN that has been

associated with unexpected morphosyntax during language comprehension (e.g. [68], see also

[69, 70]). In fact, a “early left anterior negativity” (ELAN; [34, 35, 66]), which overlaps with the

CFG effect observed here, has been reported specifically for unexpected word-categories where

context provides strong constraint (but see also [71] for a critical perspective).

In a report using the same dataset as studied here, Hale and colleagues [29] find an anterior

positivity for high surprisal words in roughly the same time-window. That analysis is based an

a different computational model which, crucially, characterizes surprisal for individual lexical
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items, not POS. It is possible that the differences in polarity between these two results may sug-

gest a sensitivity to POS surprisal versus lexical surprisal. These comparisons invite further

study in order to tease out the function(s) reflected by the anterior effects found in the present

study. But we are cautious to speculate furthur here so as to avoid a “reverse inference” from

the scalp topography to a specific functional interpretation.

The improved fit against EEG signals afforded by CFG surprisals contrasts with how well

the three language models predict the text itself. The CFG model performs numerically worse

than the two sequential models in terms of predicting a word’s POS based on the left context

(Table 1). This observation militates against an alternative explanation for our findings: That

the CFG results follow from “building in” additional sequence-based information via the

grammatical rules. Such information could have, arguably, not been recovered by the Ngram
or SRN models during training. However, the two sequential models perform better at the task

of predicting upcoming POS terms; they do not suffer from a lack of training data. Still, the

present experiment does not indicate the degree to which training effects (size of training data,

genre, etc.) may impact the relative fit of alternative models; we aim to quantify the choice of

training data in future work. Keeping this limitation in mind, we contend that the improved

fits shown by the CFG model against EEG data reflect the fact that this model better matches

the underlying representations used by the human participants during the task.

The present conclusions depend on taking the two sequence-based models tested as reason-

able estimators of human-like sequence processing. Of course, these models are imperfect and

noisy approximations of human processing; whether more complex sequence-based models

might better capture latent hierarchical structure is a matter of ongoing research [47, 72]. But,

the high performance of the current sequence-based models just noted, and their use in prior

ERP studies of surprisal [10], recommend them as useful baseline models for this study.

In fact, statistically reliable effects for sequence-based surprisal from the Ngram and SRN
models are also observed. Ngram and SRN surprisal correlates positively with right-frontal

voltages in an early window beginning around 100 ms. In contrast to CFG, these sequence-

based effects do not interact with word-class. This pattern does not correspond to a known

language-related ERP component, but the timing and temporal topography is consistent with

top-down modulation of sensory responses to language [35, 73, 74]. This effect holds even

when when variance associated with CFG surprisal is first partialed out (Fig 4, row-sets 2 and

3, columns 3 and 5). We observe no effects for SRN surprisal when Ngram effects are partialed

out (Fig 4, row-set 4). These results are consistent with some processes that reflect sequence-

based expectations, and not just hierarchy [9, 10, 22, 24].

To conclude, hierarchical structure appears to condition word-by-word expectations even

when participants perform a simple and natural task like listening to an audiobook. Hierar-

chy-based estimates for an upcoming word’s part-of-speech correlate with EEG-recorded

scalp voltages in a time-window consistent with word-expectation effects from less natural lab-

oratory tasks. These correlations are observed above-and-beyond estimates from sequential

language models that have had prior success in fitting human reading times and ERPs. The

present results generalize across a wide range of sentence types that appear in every-day

language.

Supporting information

S1 File. Supporting figures & tables. Supplemental materials include further examples of

model output, figures for all whole-head results, and analyses that include participants who

did not meet behavioral criteria.

(PDF)
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