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Abstract

As large language models (LLMs) converge to-001
wards similar capabilities, the key to advancing002
their performance lies in identifying and in-003
corporating valuable new information sources.004
However, evaluating which text collections are005
worth the substantial investment required for006
digitization, preprocessing, and integration into007
LLM systems remains a significant challenge.008
We present a novel approach to this challenge:009
an automated pipeline that evaluates the poten-010
tial information gain from text collections with-011
out requiring model training or fine-tuning. Our012
method generates multiple choice questions013
(MCQs) from texts and measures an LLM’s014
performance both with and without access to015
the source material. The performance gap be-016
tween these conditions serves as a proxy for the017
collection’s information potential. We validate018
our approach using five strategically selected019
datasets: EPFL PhD manuscripts, a private col-020
lection of Venetian historical records, two sets021
of Wikipedia articles on related topics, and a022
synthetic baseline dataset. Our results demon-023
strate that this method effectively identifies col-024
lections containing valuable novel information,025
providing a practical tool for prioritizing data026
acquisition and integration efforts.027

1 Introduction028

Recent advances in large language models (LLMs)029

have revealed a striking phenomenon: as these030

models scale, they tend to develop remarkably031

similar internal representations and capabilities032

regardless of their architecture (Huh et al., 2024).033

This convergence, coupled with established034

scaling laws (Kaplan et al., 2020) and the growing035

recognition that AI development should shift from036

model-centric to data-centric approaches (Zha037

et al., 2025), suggests that the key to advancing038

LLM capabilities lies in identifying and incorpo-039

rating novel, high-quality information sources040

rather than architectural innovations. However,041

identifying valuable text collections for model 042

enhancement presents significant challenges: 043

digitization and preprocessing are costly, and 044

training or fine-tuning models on new data requires 045

substantial computational resources. 046

047

This creates a critical need: how can we 048

efficiently evaluate whether a text collection 049

contains information that would meaningfully 050

expand an LLM’s knowledge? Current approaches 051

typically require actually training or fine-tuning 052

models on new data to assess its value - an 053

expensive and time-consuming process. While 054

retrieval-augmented generation (RAG) (Lewis 055

et al., 2020) offers a promising approach for 056

helping models access long-tail knowledge without 057

full retraining (Kandpal et al., 2023), this still 058

requires careful curation of knowledge bases and 059

comes with its own computational costs. More- 060

over, the challenge of identifying valuable text 061

collections remains: digitization and preprocessing 062

are costly, and organizations need ways to evaluate 063

the information potential of document collections 064

before investing in their integration. 065

066

We present a novel approach to this challenge: 067

an automated pipeline that evaluates the potential 068

information gain from text collections without 069

requiring model training or fine-tuning. Our 070

method generates and leverages multiple choice 071

questions (MCQs) to systematically probe whether 072

the knowledge contained in a text collection 073

is already accessible to an LLM or represents 074

genuinely novel information. 075

076

To rigorously validate our approach, we evalu- 077

ate it across three strategically selected datasets: 078

(1) EPFL PhD manuscripts, containing specialized 079

academic knowledge likely novel to LLMs, (2) 080

Wikipedia articles that were presumably part of the 081

LLMs’ training data, and (3) a synthetic baseline 082

1



dataset composed of model-generated texts. Our083

key contributions are:084

1. A novel end-to-end pipeline that uses MCQs085

to efficiently evaluate the potential informa-086

tion gain from text collections without requir-087

ing model training or fine-tuning088

2. An automated filtering methodology for ensur-089

ing MCQ quality through complementary sim-090

ilarity metrics that address two key challenges:091

verifying question relevance and grounding in092

source material, while ensuring distractors are093

plausible yet unambiguously incorrect094

3. A systematic analysis of knowledge gaps095

across diverse text collections that identifies096

areas of model uncertainty, quantifies the po-097

tential value of different information sources,098

and guides strategic decisions about data col-099

lection and integration100

Importantly, our approach is dataset-agnostic101

and can be applied to any text corpus. This makes it102

applicable to different domains and research ques-103

tions. This pipeline could be leveraged to select104

textual data for model enhancements through fine-105

tuning or retrieval-augmented generation systems.106

2 Related Work107

Information Gain. The challenge of efficiently108

selecting new information sources for LLMs can109

be viewed through the lens of optimal experiment110

design, a field pioneered by Fedorov et al. (1972).111

This framework emphasizes maximizing infor-112

mation gain while being strategic about resource113

allocation – a particularly relevant consideration114

given the costs associated with integrating new115

data into LLM systems. Information gain itself116

has been conceptualized across various fields:117

in information theory, it relates to reductions in118

algorithmic information content (Cover et al.,119

1989); in machine learning, it quantifies a feature’s120

contribution to model performance (Odhiambo121

Omuya et al., 2021); and in cognitive science, it122

represents uncertainty reduction in our experience123

of the world (Damiano et al., 2021). While these124

theoretical frameworks provide valuable insights,125

they have not been previously applied to the126

specific challenge of evaluating the potential value127

of text collections for enhancing LLM knowledge.128

Our work bridges this gap by proposing a practical,129

MCQ-based approach that quantifies information130

gain by measuring an LLM’s ability to answer131

questions about a text collection with and without132

access to the source material. 133

134

Knowledge Detection in LLMs. Prior research 135

has developed several methods to analyze how 136

LLMs process and retain textual information. Work 137

on memorization (Hartmann et al., 2023; Shi et al., 138

2024b) and data contamination (Yax et al., 2024; 139

Golchin and Surdeanu, 2024) focuses on identi- 140

fying verbatim recall of training data, while hal- 141

lucination detection (Farquhar et al., 2024) aims 142

to identify when models generate false informa- 143

tion. Research on novelty detection has primarily 144

focused on linguistic and semantic novelty (McCoy 145

et al., 2023; Lin et al., 2024), with less attention 146

paid to factual novelty. While these approaches 147

provide valuable insights into model behavior, they 148

are retrospective – analyzing what models have al- 149

ready learned or memorized. In contrast, our work 150

takes a prospective approach, developing metrics 151

to evaluate the potential value of new information 152

sources before investing in their integration into 153

LLM systems. 154

3 Methods 155

Multiple Choice Questions (MCQs) are a well- 156

established tool for knowledge assessment, sup- 157

ported by research in cognitive science and edu- 158

cational psychology (Thomas M. Haladyna and 159

Rodriguez, 2002). Their four-option format, con- 160

sisting of one correct answer and three distractors, 161

offers an optimal balance between assessment reli- 162

ability and cognitive load (Vyas and Supe, 2007). 163

MCQs are particularly valuable for automated eval- 164

uation as they provide objective correctness mea- 165

sures while efficiently testing understanding across 166

diverse topics (Oc and Hassen, 2024). When work- 167

ing with Large Language Models (LLMs), MCQs 168

offer an additional advantage: they constrain the 169

output space to a finite set of options, eliminat- 170

ing the ambiguity and variability inherent in open- 171

ended responses and enabling precise evaluation of 172

model knowledge. 173

Generating high-quality MCQs presents unique 174

challenges, particularly due to the absence of 175

ground truth signals typically available in human- 176

curated educational assessments. Without explicit 177

supervision on what constitutes a good question 178

or appropriate distractors, we must derive reliable 179

metrics to filter and validate the generated MCQs. 180

This automated filtering setting raises two critical 181

challenges: ensuring questions are both relevant 182
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and non-trivial, and guaranteeing that distractors183

are plausible yet unambiguously incorrect. The lat-184

ter is particularly crucial when evaluating LLMs –185

if distractors are too simple, models might succeed186

through elimination rather than true knowledge; if187

too similar to the correct answer, they might con-188

fuse models even when provided with context. To189

address these challenges, we propose similarity-190

based filtering metrics that serve as proxy signals191

for question quality and difficulty, enabling auto-192

mated quality control without human supervision.193

Figure 1: Overview of our knowledge evaluation
pipeline. The framework consists of three main com-
ponents: (1) MCQ Generation using LLMs to create
questions from input datasets, (2) Quality-focused filter-
ing using similarity metrics, and (3) Position-debiased
evaluation to assess model knowledge with and without
context. (c: context, q: question, g: ground truth, di:
distractors)

3.1 Pipeline194

As illustrated in Figure 1, our pipeline consists of195

three key stages: (1) MCQ generation from text196

using LLMs, (2) quality-focused filtering using 197

similarity metrics, and (3) position-debiased eval- 198

uation to assess model knowledge both with and 199

without context. 200

3.2 MCQ Generation and Filtering 201

Question Generation Process. The input text 202

is first divided into manageable chunks of 2000 203

words to ensure consistent context length across 204

questions. These chunks serve as the basis for 205

LLM-generated MCQs, where each question is 206

crafted to test understanding of specific informa- 207

tion within the chunk. The exact prompts used 208

for generation can be found in table 2 of the 209

Supplementary Methods. 210

211

Two-Stage Quality Filtering. To address the dual 212

challenges of ensuring question relevance and ap- 213

propriate distractor difficulty without human su- 214

pervision, we employ two complementary filtering 215

mechanisms: 216

1. Context-Answer Alignment Filter: To ensure 217

questions are both relevant and grounded in 218

the source material, we verify that the cor- 219

rect answer is more strongly aligned with the 220

source context than any distractor: 221

min
i

[sim(c, g)− sim(c, di)] for i = 1, 2, 3

(1) 222

where similarity is measured using both Jac- 223

card index and ROUGE-L score (Lin, 2004). 224

This helps eliminate misleading or incorrect 225

MCQs while ensuring questions test informa- 226

tion actually present in the context. 227

2. Distractor Plausibility Filter: To prevent triv- 228

ial questions while maintaining unambiguous 229

correctness, we ensure distractors are seman- 230

tically similar to the correct answer but not 231

identical: 232

max
i

[cos-sim(g, di)] for i = 1, 2, 3 (2) 233

using NVIDIA’s state-of-the-art NV-Embed- 234

v2 model (de Souza P. Moreira et al., 2024; 235

Lee et al., 2024) for text embeddings. This 236

creates challenging questions where distrac- 237

tors are plausible enough to require true under- 238

standing while remaining distinctly incorrect. 239

3.3 Evaluation 240

We evaluate the information potential (IP ) of a 241

context c for a given LLM f with Eq 3 as the 242
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improvement in correctness when incorporating243

context in the prompt. Formally, it is defined as:244

IP =
Ccontext − Cdirect

|Q| − (Icontext + Idirect)
(3)245

where:246

Ccontext =
∑

q,c∈Q

1(f(q|c) = g), Cdirect =
∑
q∈Q

1(f(q) = g),247

248

Icontext =
∑

q,c∈Q

1(f(q|c) ̸= g), Idirect =
∑
q∈Q

1(f(q) ̸= g).249

Here, 1(·) is an indicator function equal to 1250

if the condition is true, and 0 otherwise. The251

denominator excludes questions that the model252

gets wrong both with and without context, ensuring253

we only measure improvement on questions where254

success is possible in at least one condition.255

256

Position Bias Mitigation. To address the known257

issue of positional bias in LLMs (Shi et al., 2024a),258

we evaluate each MCQ four times, rotating the259

correct answer through all possible positions (A,260

B, C, D) while randomly arranging the distractors.261

This effect can be seen in Figures 4, 5, and 6. This262

ensures that model performance reflects true knowl-263

edge rather than position-based preferences.264

3.4 Data265

To evaluate our pipeline’s efficacy, we conduct ex-266

periments across five strategically selected datasets267

representing distinct knowledge domains: (1) 177268

EPFL PhD manuscripts containing specialized269

academic research, (2) a private collections of270

historical records on Venetian urban history, (3)271

Wikipedia articles related to EPFL manuscript272

topics, (4) Wikipedia articles connected to273

Venetian history, and (5) synthetic LLM-generated274

text. This dataset selection facilitates a systematic275

evaluation of knowledge coverage and novelty.276

277

We hypothesize that PhD manuscripts and the278

Venetian historical records will yield the highest279

knowledge gaps, as they both contain information280

likely absent from training data - recent research281

contributions in the case of PhD manuscripts, and282

rare historical records in the case of the Venetian283

collection. The synthetic dataset, comprising284

model-generated content, serves as a lower-bound285

baseline for knowledge novelty. Wikipedia articles,286

being a primary source for LLM training (Brown287

et al., 2020; Touvron et al., 2023), function288

as a control group representing knowledge pre- 289

sumably well-embedded in the models’ parameters. 290

291

Data collection. The EPFL PhD manuscripts 292

were systematically acquired from the university’s 293

institutional repository, which functions as the au- 294

thoritative digital archive for doctoral dissertations. 295

The Venetian urban history collection consists of 296

public domain books about Venice and its history. 297

The vast majority had not been digitized previously, 298

suggesting that they contain historical knowledge 299

likely absent from the training data of contempo- 300

rary large language models (LLMs). 301

The Wikipedia datasets are created by leverag- 302

ing the Wikipedia API. With the help of the PhD 303

manuscript titles and Venetian history topics, re- 304

lated articles are fetched and combined into similar- 305

sized texts. Similarly, these titles and topics are 306

used to generate the baseline dataset. To over- 307

come the LLMs’ generation limits, in a first step, 308

subtopics are generated surrounding the manuscript 309

titles and Venetian history themes. Then, chunks 310

of around 600 words are generated, using the 311

subtopics as overarching themes, and concatenated. 312

All data used in our experiments (including 313

chunks, synthetic and baseline datasets) as well 314

as the complete code of our evaluation pipeline are 315

made available open-source with this submission 316

under creative commons license. 317

4 Results 318

Our analysis reveals three key findings: (1) simi- 319

larity thresholding effectively increases question 320

difficulty while maintaining answerable questions, 321

(2) PhD manuscripts and Venetian records contain 322

significantly more novel information compared to 323

Wikipedia and synthetic datasets, and (3) larger lan- 324

guage models show consistently lower information 325

potential across all remaining datasets, suggesting 326

better knowledge retention during pre-training. We 327

present detailed evidence for each of these findings 328

below. 329

4.1 Effectiveness of Similarity Thresholding 330

Effect of Cosine Similarity Thresholding. Figure 331

3 displays the effect of cosine thresholding. It 332

shows a strong decrease of around 10% between 333

the absence of thresholding and the 50th percentile 334

cutoff in the performance of the model with no 335

context (NC 4x), while that of the model with con- 336

text (WC 4x) remains steady. Therefore, the cosine 337
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Figure 2: Information Potential Analysis Across
Datasets and Models. Stacked barplot showing cor-
rect response overlap between context-free and context-
provided conditions. Overlaying the barplot is a line plot
showing the Information Potential (IP) scores. Higher IP
scores indicate greater novel information content, with
PhD manuscripts (EPFL) showing consistently higher
IP (0.211-0.229) compared to Wikipedia (0.110-0.136)
and synthetic baseline (0.125). Both open and closed-
source models exhibit similar patterns despite architec-
tural differences.

similarity has the expected effect of increasing the338

MCQ difficulty when answering without context339

while maintaining the context-based performance.340

341

Effect of Jaccard and ROUGE-L Thresholding.342

A different trend is observed when applying the343

Jaccard and ROUGE-L thresholding, as seen in344

Figure 3. Here, a slight increase in performance345

with context (WC 4x) of 2% can be observed346

between no thresholding and the 50th percentile347

cutoff, while performance without context (NC 4x)348

remains stable.349

350

Comparative Analysis of Thresholding Meth-351

ods. Our results demonstrate that cosine similar-352

ity thresholding is effective at increasing question353

difficulty while Jaccard and ROUGE-L slightly im-354
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Figure 3: Llama 3 70B Performance on EPFL Dataset
Across Different Cutoff Percentages. (with Separated
Thresholding and Number of MCQs for the Correspond-
ing Percentiles). NC 4x: Evaluation with no context
correct for all 4 bias mitigation evaluations of each ques-
tion; WC 4x: Evaluation with context correct for all
4 bias mitigation evaluations of each question. Ques-
tions Remaining: Fraction of the original number of
questions still remaining for the given cutoff threshold.
Cosine: Only cosine thresholding applied. Rouge-L
and Jaccard: Only Rouge-L and Jaccard thresholding
applied.

prove question clarity shown by the small increase 355

in performance when the model is extended with 356

context. Due to the separate percentile-based filter- 357

ing of Jaccard and ROUGE-L scores followed by 358

their combination, a substantial drop in the number 359

of retained questions is observed between the 50th 360

and 60th percentiles. 361

4.2 Information Potential (IP) Across 362

Different Datasets 363

Limited-Access Knowledge Collections (IP: 364

0.229 - 0.265). Both the EPFL PhD manuscripts 365

and Venetian historical records yield substantially 366

higher information potential than other tested 367

collections. We observe significant performance 368

gaps between context-free (73.4% and 70.5%, 369

respectively) and context-provided (98% and 370

97.5%) conditions, indicating considerable novel 371

information content. These complementary results 372

confirm our hypothesis that specialized collec- 373

tions with limited digital accessibility—whether 374

recent academic research or rare historical 375

records—represent particularly valuable informa- 376
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tion sources for LLMs, containing knowledge that377

is hard to retrieve or not well-represented in their378

training data.379

380

Wikipedia Datasets (IP: 0.110 - 0.180). Both381

Wikipedia datasets demonstrate moderate informa-382

tion potential, with notably smaller gaps between383

context-free and context-provided performance384

(83.6% vs. 97.8% for EPFL-related Wikipedia385

articles and 82.8% vs. 97.2% for Venetian386

history Wikipedia articles). This attenuated387

differential suggests that a substantial portion of388

this information is already encoded in the models’389

parameters. We hypothesize that these Wikipedia390

articles, or semantically equivalent content, were391

included in the models’ training corpora, allowing392

them to answer derived MCQs with relatively high393

accuracy even without contextual assistance. This394

observation corroborates our initial hypothesis and395

validates our methodological approach of using396

Wikipedia as a controlled baseline.397

398

Synthetic Baseline Dataset (IP: 0.125). Among399

the three datasets, the synthetic baseline yields the400

lowest information potential. We observe a mini-401

mal performance gap between conditions (85.5%402

vs. 98.8%), with high performance in the context-403

free setting reflecting the model’s inherent familiar-404

ity with self-generated content. This dataset effec-405

tively serves as a lower bound for the information406

potential metric, providing a useful reference point407

for evaluating other collections.408

4.3 Comparison between open and closed409

source model410

Despite their architectural and size differences,411

both Llama 70B and GPT-4o exhibit similar412

patterns in information potential across datasets,413

though with notable variations in magnitude.414

GPT-4o shows slightly lower information potential415

scores compared to Llama 70B, suggesting better416

baseline knowledge retention in the larger model.417

Interestingly, the relative gap between datasets418

remains consistent across both models - EPFL419

manuscripts consistently show approximately420

double the information potential compared to421

Wikipedia. This consistency across different model422

architectures and training approaches strengthens423

the validity of our information potential metric.424

Additionally, both models maintain near-perfect425

performance (>97%) when provided with context,426

regardless of the dataset, indicating robust compre-427

hension capabilities when given access to relevant 428

information. 429

430

While a more comprehensive analysis compar- 431

ing a wider range of LLMs could provide additional 432

insights into the relationship between model archi- 433

tecture, size, and information potential, such an 434

investigation falls outside the scope of this study, 435

which focuses on establishing the validity of our 436

evaluation methodology. 437

4.4 Qualitative Analysis of High-Value 438

Information 439

The MCQs presented in Table 1 exemplify three 440

key patterns in identifying valuable information: 441

1. Technical Terminology: The question about 442

articulatory features demonstrates the signifi- 443

cant performance gap when dealing with spe- 444

cialized terminology. This question, drawn 445

from speech recognition research, requires 446

specific context to understand how articu- 447

latory features differ from phone posterior 448

features in their prediction approach. The 449

model’s inability to answer correctly without 450

context highlights how technical domains in 451

PhD manuscripts contain specialized knowl- 452

edge not captured in pre-training. Such 453

terminology-heavy questions serve as reliable 454

indicators of domain-specific knowledge. 455

2. Unique Mentions: The question regarding 456

"interference errors" exemplifies how PhD 457

manuscripts capture recent research outcomes. 458

The detailed distinction between interfer- 459

ence errors and reduction of intentionality er- 460

rors represents novel academic insights that 461

weren’t available during model pre-training. 462

This type of question effectively identifies 463

valuable new knowledge contributions from 464

academic manuscripts. The consistency with 465

which models fail these questions without con- 466

text, despite their strong general reasoning ca- 467

pabilities, suggests genuine knowledge gaps 468

rather than reasoning limitations. 469

3. Complex Relationships: The question about 470

repetition errors showcases the importance of 471

precise contextual information in understand- 472

ing intricate conceptual relationships. The 473

distinction between repetition and other error 474

types (omission, timing, sequence) requires 475

careful understanding of how these concepts 476

interrelate. This category highlights a key 477
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MCQ (correct answer in italics) Relevant Context Passages
What is a common feature of ’interference errors’
and ’reduction of intentionality errors’?
A) Both involve replacing the correct subject with an-
other similar one.
B) Both typically result from incorrect or incomplete
mental models.
C) Both involve action reversals.
D) Both require complex decision-making at the
knowledge-based level.

[...] Interference errors. These errors occur when people
multi-task, i.e., when multiple sequences of action are
active at the same time, which can result in a person
combining them. [...] this error and the ones for reduced
intentionality and perceptual confusions can be modeled
by replacing the correct subject with another one. [...]
Reversals [...] cause a person to undo a previously per-
formed action

Which error describes memorizing an action without
proceeding to its next logical step?
A) Repetition.
B) Omission.
C) Timing error.
D) Sequence error.

[...] Repetitions. These errors cause a person to misjudge
the progress of a sequence of actions, making them per-
form an action already carried on. [...] Omission, when
a user skips the current action and execution continues
with its successor, e.g., jumping from action i to action
i + 1 [...] Timing errors, when users interact with a sys-
tem at the wrong time, e.g., too early or too late [...]
Sequence errors, when users execute an action out of
order [...]

How are articulatory features (AF) different from
phone posterior features in terms of prediction?
A) AFs rely on spectral analysis.
B) AFs use a frame-to-phoneme alignment.
C) AFs map phonemes to articulatory features.
D) AFs predict phonemes directly.

[...] There are different ways to represent phonemes as ar-
ticulatory features, e.g. as binary features (Chomsky and
Halle, 1968) or multi-valued features (Ladefoged, 1993).
Similar to phone posterior features, they are trained from
a frame-to-phoneme alignment. However, instead of pre-
dicting phonemes, a mapping from phones to AF is used
as targets of the predictor. [...] AFs are modeled by
18 off-the-shelf recurrent neural networks (RNN) based
binary classifiers, i.e. D = 18 × 2. The RNNs take as
input log energies of 33-dimensional Mel filterbank en-
ergies. [...] Similar to phone posterior features, [AFs]
are trained from a frame-to-phoneme alignment [...]

Table 1: Examples of technical terminology, unique mentions, and complex relationships in EPFL PhD
manuscripts. MCQs requiring context for correct model responses

challenge in assessing knowledge: the line478

between pure knowledge recall and reason-479

ing ability becomes blurred when concepts480

are interconnected in complex ways. The481

model’s performance on such questions sug-482

gests that even sophisticated reasoning capa-483

bilities cannot compensate for missing foun-484

dational knowledge.485

Additional examples of these patterns can be found486

in Table 3.487

5 Conclusion488

This work introduces a novel and efficient approach489

for evaluating the information potential of text col-490

lections for large language models. Our key contri-491

butions include:492

1. Efficient Evaluation Pipeline: We present493

a systematic approach combining automated494

MCQ generation, sophisticated filtering mech-495

anisms, and comparative evaluation to assess496

information potential without requiring model497

training or fine-tuning.498

2. Empirical Validation: Our results validate 499

the method’s effectiveness by demonstrating 500

alignment with intuitive expectations across 501

both dataset types and model scales. The in- 502

formation potential increases from synthetic 503

baseline (0.125) to Wikipedia articles (0.136- 504

0.142) to EPFL manuscripts (0.229) to Vene- 505

tian historical records (0.267), while larger 506

models (GPT-4o) consistently show lower in- 507

formation potential than smaller ones (Llama 508

70B), suggesting better knowledge retention. 509

3. Qualitative Framework: We propose a tax- 510

onomy of high-value information types (tech- 511

nical terminology, novel research findings, 512

and complex relationships), providing deeper 513

insights into the nature of valuable informa- 514

tion sources for LLMs. 515

The successful application of our method to both 516

PhD manuscripts and the Venetian historical col- 517

lection highlights its versatility across specialized 518

knowledge domains, reinforcing its potential as a 519

practical tool for evaluating diverse information 520

sources—from contemporary academic research to 521
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rare historical records. This cross-domain appli-522

cability underscores the importance of identifying523

areas where large language models (LLMs) strug-524

gle to retrieve information, as these “gray zones”525

may correspond to gaps in pretraining data. As526

isolating the dataset’s intrinsic contribution would527

require costly fine-tuning experiments, directly cor-528

relating information gain with missing pretraining529

data remains challenging. Nonetheless, recogniz-530

ing these limitations is crucial. Just as students531

who are aware of their weakest subjects can bet-532

ter prepare for an exam—perhaps even bringing a533

well-structured cheat sheet if allowed—models that534

can identify and incorporate these gray zones as535

input in domain-specific tasks may achieve greater536

proficiency in handling specialized knowledge.537

6 Limitations538

Practical Considerations. Our approach, while ef-539

fective, presents several methodological limitations540

that suggest directions for future research. First,541

the current pipeline’s generation-first approach,542

where questions are created before applying fil-543

tering criteria, could be enhanced by incorporating544

context-answer alignment and distractor plausibil-545

ity directly into the generation process. Such an546

integrated approach could improve question quality547

while reducing computational overhead.548

Second, the scope of our evaluation faces an549

inherent challenge: identifying datasets that are550

definitively outside the training distribution of large551

language models. While PhD manuscripts offer a552

reasonable proxy for novel content, the growing553

scale and opacity of training corpora make it in-554

creasingly difficult to verify whether any given555

dataset was truly unseen. This limitation under-556

scores the urgency of developing methods to assess557

and prioritize valuable textual resources before they558

are absorbed into future training data.559

Finally, our method focuses exclusively on se-560

lection rather than integration. While our results561

highlight where information gaps likely exist, they562

do not resolve how selected content might be op-563

timally incorporated into LLMs. Emerging work,564

such as SKILL (Moiseev et al., 2022), proposes565

promising directions for efficient knowledge injec-566

tion, while others (Liu et al., 2024) caution against567

potential interference with previously learned rep-568

resentations. Addressing these tensions remains an569

important challenge for future research.570

On Human Evaluation and Pre-training Exper-571

iments. This study also omits human evalua- 572

tion and pre-training-based validation. This is a 573

deliberate design choice: our goal is to develop 574

a lightweight, scalable method that can be used 575

when such resource-intensive steps are impracti- 576

cal. Rather than replacing these approaches, our 577

pipeline is designed as a screening mechanism. 578

Importantly, our results exhibit strong alignment 579

with expected knowledge gaps across datasets (e.g., 580

low information potential for synthetic text, mod- 581

erate for Wikipedia, high for novel PhD and his- 582

torical records), providing empirical support for 583

the method’s validity. Furthermore, we integrate 584

multiple safeguards—including MCQ quality fil- 585

ters, position-debiased evaluation, and multi-model 586

testing—to enhance robustness. While future work 587

may explore downstream fine-tuning or human vali- 588

dation, we argue that our approach already provides 589

reliable, cost-effective insight for strategic dataset 590

selection. 591

Broader Considerations. While our approach re- 592

quires digital text for MCQ generation, it offers a 593

significantly more efficient alternative to full model 594

training or fine-tuning. This enables strategic sam- 595

pling approaches where representative portions 596

of larger collections can be evaluated to inform 597

broader digitization decisions. For instance, as- 598

sessing a few chapters can inform decisions about 599

entire book collections, making the method partic- 600

ularly valuable for resource-constrained scenarios. 601

This sampling-based approach could revolutionize 602

how institutions prioritize their digitization efforts, 603

allowing for data-driven decisions about resource 604

allocation in preservation projects. 605

More broadly, our effort to categorize high value 606

information sheds light on fundamental challenges 607

in distinguishing between information that is un- 608

known to an LLM versus information it fails to 609

retrieve. This raises important questions about the 610

relationship between knowledge possession and 611

practical competence in AI systems. When an 612

LLM consistently fails to demonstrate knowledge 613

in a specific domain, the distinction between these 614

cases may become less relevant from a practical per- 615

spective. This observation has broader implications 616

for how we conceptualize and evaluate knowledge 617

in AI systems, suggesting that performance-based 618

metrics can also bring complementary analysis to 619

theoretical attempts that map internal knowledge 620

representations. 621
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A Appendix 765

A.1 Supplementary Methods 766

A.1.1 LLM Prompts 767

Task LLM Prompt
Multiple-Choice Ques-
tion Generation

From the following piece of a scientific PhD manuscript:
’TEXT_HERE’
Design a multiple-choice question with four answers: ’A’, ’B’, ’C’, ’D’. Please provide the
correct answer. The question needs to be difficult, but answers should not be ambiguous.
Start the question with [’QUESTION’] and the answers with ’A’, ’B’, ’C’, ’D’. Be concise!
Please generate a total of 10 MCQs. Avoid references to the manuscript itself (e.g., do
not use phrases like ’according to the text,’ ’as stated in the manuscript,’ or ’based on the
passage’ etc.). Use the following format: ’[QUESTION] <question>
A) <option A>
B) <option B>
C) <option C>
D) <option D>
Correct answer: <correct answer letter>) <correct answer>’

Multiple Choice Ques-
tion Answer Generation

For the following multiple choice question:
’QUESTION_TEXT_HERE’
Please write which answer option (A, B, C, or D) is the correct one. Answer in the
following format: ’Correct answer: <answer letter>.’

Context-Based Multiple
Choice Question An-
swer Generation

Using the information of the following passage:
’PASSAGE_TEXT_HERE’
Answer the following multiple-choice question:
’QUESTION_TEXT_HERE’
Please write which answer option (A, B, C, or D) is the correct one. Answer in the
following format: ’Correct answer: <answer letter>.’

Baseline Subtopic List
Generation

For the following topic:
’TOPIC_HERE’
Please generate a list of 5 subtopics that could be used to create a comprehensive PhD
manuscript about this topic. List them in order and number them in the following format:
’1) <write subtopic 1 here>
2) <write subtopic 2 here>
3) <write subtopic 3 here>
4) <write subtopic 4 here>
5) <write subtopic 5 here>
<end>’

Baseline Chapter Gener-
ation

For a scientific manuscript with the following title:
’MANUSCRIPT_TITLE_HERE’
Please generate a comprehensive chapter that covers the following subtopic:
’SUBTOPIC_HERE’. Aim for around 600 words, include facts and numbers, and focus
solely on substantial content. Omit any introductory or closing remarks and just output
the content that this chapter would have.

Table 2: LLM Task Prompt Templates
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A.2 Supplementary Results768

In the following we present additional results for the baseline, Wikipedia-EPFL, and EPFL datasets.769

A.2.1 Positional Bias770

For all three generated MCQ datasets, GPT-4o shows a strong tendency to place the correct answer in the771

answer options B and C over A and D in around 80% of the time. This tendency may come from training772

biases where datasets exhibited a similar distribution in MCQ formats.773

When ignored, this positional bias may skew a model’s performance during evaluation. To counteract774

this effect, this project employed the rotation of the correct answer position and evaluated each question775

four times independently. This ensures a balanced distribution of the correct answer among the four776

positions and reduces the risk of skewing the evaluation statistics with the positional MCQ generation bias.777

After the positional bias mitagation strategy is applied, the correct answer is distrubuted evenly, appearing778

in each option 25% of the time. During evaluation, the models also show some levels of positional bias,779

however on a lower scale than during the MCQ generation.780
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Figure 4: Distribution of the Correct Answer Among the Answer Options for the MCQ Dataset Generated with
GPT-4o Before Positional Bias Mitigation.
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Figure 5: Distribution of Correct Answer Letter Prediction for EPFL and Wikipedia MCQ Datasets Evaluated on
GPT-4o After Positional Bias Mitigation.
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Figure 6: Distribution of Correct Answer Letter Prediction for EPFL, Wikipedia, and Baseline MCQ Datasets
Evaluated on Llama 70B After Positional Bias Mitigation.
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A.2.2 Information Potential782

Figure 7 shows the models’ performance with an emphasis on the positional bias mitigation strategy. As783

every MCQ is evaluated four times, this allows the analysis of a model’s consistency. It is clearly visible784

that the models become less consistent without context in datasets with higher information potential while785

this trend is less pronounced with context. Figure 8 shows the performance of Llama 70B along with the786

information potential across the datasets and cutoff percentiles.787

(a) Llama 70B EPFL
IP: 0.229

(b) GPT-4o EPFL
IP: 0.211

(c) GPT-4o Venice
IP: 0.265

(d) Llama 70B Wikipedia-EPFL
IP: 0.136

(e) GPT-4o Wikipedia-EPFL
IP: 0.110

(f) GPT-4o Wikipedia-Venice
IP: 0.180

(g) Llama 70B Baseline
IP: 0.125 (h) Legend

Figure 7: Statistics of Model Performances Including whether Model was Correct on all Four Evaluations of Each
MCQ
Venn diagrams of the number of correctly answered questions when answered with or without context.
IP: Information Potential computed with Equation 3
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Metric Thresholding and Number of MCQs for the Corresponding Percentiles.
NC 4x: Evaluation with no context correct for all 4 bias mitigation evaluations of each question.
WC 4x: Evaluation with context correct for all 4 bias mitigation evaluations of each question.
IP Score: The Information Potential computed with Equation 3

A.2.3 Qualitative Analysis of EPFL MCQ Dataset 788
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MCQ (correct answer in italics) Relevant Context Passages Category
What is the only possible scheme for Bernstein wave
excitation in the TCV tokamak due to its plasma equi-
libria?
A) O-SX-B scheme.
B) FX-B scheme.
C) EB-B scheme.
D) SX-O-B scheme.

[...] As a consequence, the extremely steep density gradients
necessary for the FX-B mode conversion cannot be obtained in
TCV plasma equilibria and the only possible Bernstein waves
excitation scheme in TCV is the O-SX-B double mode conversion.
[...]

Technical
Terminol-
ogy

What technological challenge is associated with reduc-
ing power consumption in CMOS circuits?
A) Maintaining acceptable dynamic range in the face of
digital noise
B) Reducing the intrinsic capacitance per unit area.
C) Ensuring constant voltage swing at all frequencies.
D) Achieving higher gain at lower supply voltages.

[...] In downscaled processes with lower supply voltages, the cou-
pling and noise through the substrate is higher, partially because
of the limitations of the substrate and well bias [40,41]. Therefore,
sometimes noise that is produced by the chip due to the digital
blocks may be orders of magnitude above the thermal noise, so
to achieve the required dynamic range we require a proportional
increase in power. [...]

Technical
Terminol-
ogy

In learning molecule representations directly in the
sparse code domain, what is the main constraint im-
posed on sparse codes?
A) They must be linear combinations of deformed
molecules.
B) They must be nonlinear mixtures of entire signal sets.
C) They must consist of deactivated elements.
D) They must strictly adhere to original signal morphol-
ogy.

[...] We constrain sparse codes to be linear combinations of a few,
possibly deformed, molecules and we design an algorithm that can
learn the structure from the codes without transforming them back
into the signal domain. [...]

Technical
Terminol-
ogy

Which component significantly contributes to total
variance in back-to-back scan-rescan scenarios?
A) 2-week-gap variance.
B) Scan-rescan variability
C) Session-dependent offsets.
D) Repositioning effects.

[...] The scan-rescan differences in back-to-back scanning scenario
significantly contributed to the total variance and represented a
significant proportion of between-subject variance for all of the
investigated structures. [...] Both repositioning (R2) and 2-week-
gap between a rescan (R3) did not significantly contribute to the
total variability compared to back-to-back scans and between-
subject variability. [...]

Complex Re-
lationship

Which factor most critically affects the measurement
noise in an ex-situ detection setup?
A) The frequency at which measurements are taken.
B) The remanence of the magnetic core.
C) The sensitivity of the lock-in amplifier.
D) The microbead placement precision.

[...] However, this increases the measurement noise, as the mea-
surement is carried out in the 1/f noise frequency range. [...]

Complex Re-
lationship

What condition allows the bond in the RMIB model to
be unbreakable under compressive deformation?
A) High hydrostatic compressive stress.
B) High thermal conductivity.
C) Low volumetric strain.
D) Low thermal resistance.

[...] It is known that the hydrostatic compressive strength is infinite
for most materials, which means the bond in RMIB model for these
cases cannot be broken under compressive deformation. [...]

Complex Re-
lationship

What is the approach used by RouLette to manage
materialization overhead in symmetric joins?
A) Symmetric join pruning of tuples forming outputs.
B) Incremental materialization of queried tuples.
C) Partial materialization of all relations.
D) Deferred materialization until query execution.

[...] Symmetric joins require that all relations be materialized and
hence incur materialization overhead. To reduce the overhead,
RouLette materializes only tuples that can form output tuples for
their query-set. We call this symmetric join pruning [...]

Unique Men-
tions

What primary limitation affects the clinical success of
MPCs in bone healing?
A) Limited number of available endogenous MPCs.
B) Extensive proliferation in vitro.
C) Over-differentiation into non-mesenchymal lineages.
D) High heterogeneity in cell populations.

[...] its clinical outcome was rather disappointing 4 . One of
reasons for this seems to be the limiting number of available
endogenous mesenchymal progenitor cells (MPCs) that can give
rise to bone cells. [...]. Hence, there is a clear clinical need
for implants that augment the homing/recruitment of endogenous
MPCs to fracture sites [...]

Unique Men-
tions

What leads to the gradual increase in average THC
concentration over time during oscillations?
A) Accumulation of carbonates on ceria sites.
B) Thermal degradation of the catalyst.
C) Continuous ceria site activation.
D) Increasing gas hour space velocity (GHSV).

[...] The higher average THC concentrations levels with time was
caused by the gradual accumulation of carbonates on ceria sites
during the periodic oscillations. [...]

Unique Men-
tions

Table 3: Selection of EPFL Dataset MCQs and their Relevant Context Passages Categorized by Question Type
where GPT-4o Required Context to Correctly Answer Consistently
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