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Abstract

Adversarial samples are helpful to explore vul-001
nerabilities in neural network models, improve002
model robustness, and explain their working003
mechanism. However, the adversarial texts004
generated by existing word substitution-based005
methods are trapped in a one-to-one attack pat-006
tern, which is inflexible and cramped. In this007
paper, we propose ValCAT, a black-box attack008
framework that misleads the language model by009
applying variable-length contextualized trans-010
formations to the original text. Experiments011
show that our method outperforms state-of-012
the-art methods on attacking several classifi-013
cation tasks and inference tasks. More com-014
prehensive human evaluations demonstrate that015
ValCAT has a significant advantage in ensur-016
ing the fluency of the adversarial samples and017
achieves better semantic consistency. We re-018
lease our code at https://github.com/019
linerxliner/ValCAT.020

1 Introduction021

Deep learning is successfully applied in a variety of022

fields, while previous works have found that neural023

network models are vulnerable to adversarial sam-024

ples (Goodfellow et al., 2014; Kurakin et al., 2016).025

Adversarial samples are constructed with small per-026

turbations to original inputs to fool these models027

with incorrect decisions while being impercepti-028

ble to humans. Therefore, exploring adversarial029

samples is essential to improve the performance030

of neural network models with higher reliability031

and robustness. However, compared to the long-032

studied image domain, generating adversarial sam-033

ples on text is more difficult because texts are dis-034

crete, where small changes can alter the original035

meaning and make it unnatural (Xu et al., 2020;036

Zhang et al., 2020).037

Word substitution-based attack methods have038

received much attention in the recent past. Sev-039

eral previous works explore the substitution based040

only on the properties of individual words, with the041

AG News
(Business)

Lucent milestone: A profit Lucent Tech-
nologies yesterday posted higher fiscal
fourth-quarter earnings, helping lift the
telecommunications equipment maker
to its first profitable year since 2000.

BERT-Attack
(Sci/Tech)

Lucent node: A revenue Lucent tech yes-
terday reported higher revenue fourth-
quarter benefits, which lift the multime-
dia equipment maker to its first business
year year 2000.

ValCAT
(Sci/Tech)

Lucent milestone: A profit Lucent [IT]
Technologies [recently reported] higher
fiscal fourth-quarter earnings, helping
lift the telecommunications equipment
maker to its first profitable year since
2000.

MNLI
(Neutral)

Premise: He caught a grip on himself,
fighting the fantasies of his mind, and
took another breath of air.
Hypothesis: The air tasted like molten
metal - the taste of blood.

BERT-Attack
(Contradiction)

Hypothesis: The air tasted through boil-
ing armor - the taste of betrayal.

ValCAT
(Contradiction)

Hypothesis: The air tasted [nothing like
air] - the taste of blood.

Table 1: Examples of adversarial texts generated by
ValCAT and BERT-Attack. The first one is the original
text, followed by adversarial texts generated by ValCAT
and BERT-Attack.

help of inflectional morphology (Tan et al., 2020), 042

counter-fitting word vectors (Jin et al., 2020), and 043

sememe (Zang et al., 2020), etc. The encoder lan- 044

guage models, like BERT, give us new insights of 045

considering context information for the substitu- 046

tion candidate generation (Li et al., 2020; Garg and 047

Ramakrishnan, 2020; Li et al., 2021). However, all 048

these works focus on single-word substitution like 049

examples shown in Table 1. This one-to-one attack 050

pattern limits the perturbation forms and overlooks 051

the interactions between words. However, the pos- 052

sibility of adding perturbations to larger semantic 053

units has not been discussed. For this sake, two 054

research questions are raised: 1) How to take into 055

account interactions between words in vulnerable- 056

position discovery? 2) How to perturb vulnerable 057
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Figure 1: Overview of ValCAT’s workflow.

positions with variable-length contextualized sub-058

stitution?059

We propose ValCAT, which generates high-060

quality adversarial texts by applying variable-061

length contextualized transformations to the origi-062

nal text. Specifically, given a benign text, we enu-063

merate all possible spans by traversing the text064

with sliding windows of different sizes and eval-065

uate their importance. Based on the importance066

of each span, we propose two operations, Replace067

and Insert to generate adversarial candidates by an068

encoder-decoder language model. The encoder can069

recover a mask token using a single word while070

the decoder can only predict words after a prompt.071

Therefore, joint use of encoder and decoder enables072

ValCAT to generate variable-length contextualized073

candidates at the arbitrary vulnerable position.074

Furthermore, we evaluate ValCAT by attacking075

fine-tuned BERT on several classification tasks and076

inference tasks. Experimental results show that077

it outperforms other baseline methods in attack078

success rate, fluency and similarity. In particular,079

we observe that the variable-length property can080

significantly reduce perplexity, which is less than081

50% compared to the best baseline. Although each082

multi-word transformation perturbs more words083

than one-word transformation, it requires fewer084

transformations toward success. This in general085

results in a tolerable perturbation rate, which is086

even lower on some of the inference datasets. A087

comprehensive human evaluation further verifies088

that ValCAT has significant advantages in both flu-089

ency&grammaticality and semantic similarity. The090

main contributions of this paper are summarized as091

follows:092

•We propose ValCAT, the first variable-length con-093

textualized adversarial attack against NLP models.094

• Our work is the first to propose Sliding Win-095

dow for vulnerable-position discovery and variable-096

length adversarial candidate generation, which097

fully exploits the advantage of encoder-decoder098

models.099

•Automatic evaluations and comprehensive human100

evaluation demonstrates the superior quality of our 101

generated adversarial samples. 102

2 ValCAT 103

To further improve the attack effectiveness and si- 104

multaneously improve the fluency and semantic 105

similarity of the adversarial samples, we propose 106

ValCAT, which can generate high-quality adver- 107

sarial text by applying variable-length contextual- 108

ized transformations with a joint encoder-decoder 109

framework. 110

Problem Formalization Given a victim model 111

F : X → Y and a text x = w1w2...wn−1wn 112

that can be correctly classified by F , the attack 113

goal is to generate an adversarial text x̃, which 114

can flip the model prediction, i.e. F (x̃) ̸= F (x). 115

A continuous word sequence with length n can 116

be denoted as a span sn. In the soft-label black- 117

box setting, the attacker only has access to the 118

logit output P (y|x). The architecture, parameters 119

and configurations of F are unknown to attacker. 120

To achieve human imperceptibility, the attacker 121

should minimize textual perturbations and maintain 122

semantic consistency. 123

ValCAT ValCAT performs the attack in a sequen- 124

tial manner, as the workflow in Figure 1. To locate 125

the most-vulnerable positions for the perturbations 126

in each iteration, ValCAT first rank the importance 127

of sn in x with a sliding window of length 1 to MAX, 128

as line 2-6 in Algorithm 1. Based on the sorted 129

ranking list R, ValCAT uses encoder-decoder lan- 130

guage model to generate variable-length contextu- 131

alized spans, as line 8-13. Using two perturbations 132

in line 9, REPLACE and INSERT, we obtain a can- 133

didate set T . If some of the candidates can mislead 134

the victim model, ValCAT declares the one with 135

the highest cosine similarity with the original text 136

as the final successful result, as line 11. However, 137

if no candidate successes at this iteration, we select 138

the one with the highest negative impact to the vic- 139

tim model as the basic text for the next iteration, 140

as line 13. Note that, if a span in the ranked list 141

has been selected as the target span, the subsequent 142
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spans which are overlapped with the target span143

will be removed from the ranked list to avoid multi-144

ple modifications on a token. The sequential attack145

ends when successful attack occurs, or when the146

upper limit of the perturbation constraints (See Sec-147

tion 3.1) are reached. The latter case is considered148

as a final failure. Below we elaborate on the two149

stages of the attack in Section 2.1 and Section 2.2,150

in detail.151

2.1 Important Span Ranking152

Echoing the observation to prior works (Niven153

and Kao, 2019; Jin et al., 2020), only some key154

words act as most-vulnerable positions for the vic-155

tim model F . Perturbations over these words can156

be most beneficial in crafting adversarial texts.157

Considering the interactions between words, Val-158

CAT performs transformations on several impor-159

tant spans instead of single words for each pertur-160

bation.161

Given a text x, we evaluate the importance of162

a span s within x according to how removing the163

span can impact the model prediction, in the black-164

box setting. Let x̃s denote the text of removing s165

from x. Formally, we define the importance of s166

with respect to x as:167

Ix(s) =

{
dy(x, x̃s), if y = ỹ

dy(x, x̃s) + dỹ(x̃s, x), if y ̸= ỹ
168

where y and ỹ are the predictions of x and x̃s,169

respectively, and dy(x, x̃s) = P (y|x)−P (y|x̃s) is170

the difference of the probabilities that x and x̃ are171

classified as y.172

To compare spans of different lengths, we pro-173

pose Sliding Windows to measure the importance of174

variable-length spans. Specifically, we apply mul-175

tiple sliding windows of the corresponding size,176

which traverse the text from left to right. Each177

span bounded by a sliding window is sequentially178

deleted from the original text for its importance179

calculation. Finally, we obtain a set of triples each180

consisting of the length, the start position, and the181

importance score of a span. We rank the triples182

according to the importance score in descending183

order.184

2.2 Variable-Length Contextualized185

Transformations186

Based on the triple ranking list, ValCAT performs187

sequential perturbations, where each step a target188

span in the original text is replaced by or inserted189

Algorithm 1: VALCAT
Input: Victim Model F ; Text x; Label y;

Maximum size of slide window M
Output: Adversarial sample

1 R← ∅; t← x
2 for w = 1 to M do
3 for i = 1 to LEN(x)− w + 1 do
4 s← xi,...,i+w−1

5 Calculate span importance Ix(s)
6 R← R ∪ ⟨i, w, Ix(s)⟩

7 Sort R by Ix(s) in descending order
8 for (i, w, _) in R do
9 T ← REPLACE(t, i, w) ∪ INSERT(t, i)

10 if ∃x̃ ∈ T s. t. F (x̃) ̸= y then
11 return argmax

x̃∈T,F (x̃)̸=y
SIMILAR(x̃, x)

12 else
13 t← argmax

x̃∈T
|F (x̃)− y|

14 return NULL

with a set of adversarial spans generated by an 190

encoder-decoder language model. The variable- 191

length of the adversarial spans renders the language 192

model enough space to produce more contextually 193

appropriate candidates to improve fluency. Mean- 194

while, our variable-length method expands the per- 195

turbation forms, for it supports multi-word transfor- 196

mations while is compatible with traditional one- 197

to-one transformations. Compared with previous 198

methods, this further improves the attack success 199

rate under the same perturbation constraints. Be- 200

low we elaborate on the details of the adversarial 201

text generation. 202

Adversarial Span Generation To generate can- 203

didates of each adversarial span, ValCAT applies an 204

encoder-decoder language model to fill the mask to- 205

ken with a list of variable-length predictions. First, 206

the encoder model confer the capability of pre- 207

dicting the masked tokens, which is trained with 208

the masked language modeling (MLM) objective. 209

However, the encoder model fills one mask token 210

with only one suitable substitute rather than mul- 211

tiple words. The ability of the decoder could fill 212

the gap of the single word, since the decoder is 213

trained with a causal language modeling (CLM) 214

which can predict the sequence after a prompt. But, 215

the decoder can only generate sequences at the end 216

of the text. Hence, ValCAT combined these two 217
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models with their complementary advantages, with218

the predictive capability at arbitrary positions of en-219

coder and variable-length generation of a decoder.220

With the candidate spans for target span, ValCAT221

performs two kinds of perturbation, Replace and222

Insert to generate the adversarial candidates.223

Replace The Replace operation substitutes the224

target span sm = wi...wi+m−1 with another s̃. For225

example, the target “awesome” in the text "This226

place is awesome." could be replaced by the ad-227

versarial span “pretty good”. Specifically, we first228

replace a mask token [mask] to sm:229

x̃[i:i+m] = w1...wi−1[mask]wi+m...wn,230

and generate a set of variable-length adversarial231

spans Z to fill the mask. The adversarial text is232

denoted as:233

x̃[i:i+m]
z = w1...wi−1zwi+m+1...wn,234

where z ∈ Z is a contextualized span.235

Since the language model is blind to the infor-236

mation of the target span, some of the generated237

adversarial spans may deviate from the original238

meaning to a large extent. To avoid this situation,239

we only keep the adversarial spans with a high240

degree of semantic similarity to the original span.241

Specifically, we use Universal Sentence Encoder242

(Cer et al., 2018) to restrict their cosine semantic243

similarity. We also impose a limit on the word per-244

turbation rate (See Section 3.1). To prevent the text245

from being too long, we constrain the adversarial246

spans to be at most two words longer than the target247

span.248

Insert. The Insert operation inserts a new span249

s̃ in front of the target span sm. For example, "I250

like this quite interesting movie.". Similar to the251

Replace operation, it inserts a mask token in front252

of the target span:253

x̃i = w1...wi−1[mask][wi...wi+m−1]wi+m...wn,254

and corresponds with the adversarial text x̃iz =255

w1...wi−1 z wi...wn. The Insert perturbation also256

follows the same perturbation constraints, men-257

tioned in Section 3.1.258

3 Experiments259

In this section, we evaluate ValCAT on two NLP260

tasks, text classification and natural language infer-261

ence. To demonstrate the effectiveness of ValCAT262

in terms of fluency&grammaticality and semantic263

similarity, following Li et al. 2021, we design and264

conduct a comprehensive human evaluation.265

3.1 Implementation 266

Victim model In this work, we choose fine-tuned 267

BERT model as the victim of both the classification 268

and the inference tasks. Since BERT has achieved 269

good results on a variety of NLU tasks and has 270

been proven to be one of the most representative 271

pre-trained transformers (Devlin et al., 2019). 272

Span generation model To generate variable- 273

length contextualized spans, we choose T5 (Raffel 274

et al., 2020) for the generation. T5 is a represen- 275

tative encoder-decoder language model that can 276

predict the missing words within a corrupted piece 277

of text, benefiting from the fill-in-the-blank pre- 278

training. Also, the large pre-training dataset C4 279

renders T5 rich prior knowledge to enable the di- 280

versity and the high-quality of the generated spans. 281

Constraints To achieve human imperceptibility 282

and semantic preservation of the adversarial text, 283

we impose constraints on the word perturbation 284

rate and semantic similarity, as defined in Section 285

3.3. Following previous practices (Jin et al., 2020; 286

Li et al., 2021), we set the thresholds of word per- 287

turbation rate and semantic similarity respectively 288

for each dataset, with details shown in Appendix A. 289

Settings and Computation Cost All results are 290

derived from a single run since there is no random- 291

ness in our model. The maximum size of the sliding 292

window is set as 3. In our implementation, we ap- 293

ply SpaCy (Honnibal and Montani, 2017), NLTK 294

(Loper and Bird, 2002) for text manipulation. We 295

run ValCAT on Intel Xeon E5-2690 2.6GHz Pro- 296

cessor with V100 GPU. Averagely it takes 34 secs 297

to generate a successful adversarial sample. 298

3.2 Dataset and Baselines 299

To investigate the effectiveness of ValCAT on dif- 300

ferent types of text, we evaluate it on multiple En- 301

glish datasets. We randomly sample 1000 instances 302

from each of the following datasets: three for text 303

classification, i.e., AG News, Yelp Polarity and 304

IMDB; and three for natural language inference, 305

i.e., SNLI, MNLI and QNLI, with detailed informa- 306

tion shown in Appendix B. To prove the effective- 307

ness of ValCAT comprehensively, we compared 308

ValCAT with several state-of-the-art word-level 309

black-box attacks, i.e., TextBugger, TextFooler and 310

BERT-Attack. Details of these attacks are shown in 311

Appendix C. Note that, all the datasets and base- 312

line models are publicly available and are used in 313

accordance with their usage specifications. 314
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Dataset Algorithm Orig Acc Atk Acc↓ Suc↑ PPL↓ Sim↑ Pert↓ GErr↓

AG News
(PPL=98.4)

ValCAT

94.4

35.3 62.6 136.2 0.922 16.1 0.39
BERT-Attack 47.5 49.7 326.9 0.873 17.3 1.12
TextFooler 44.8 52.5 418.6 0.883 15.7 1.37
TextBugger 62.0 34.3 500.7 0.886 19.7 2.78

Yelp Polarity
(PPL=71.1)

ValCAT

98.3

6.8 93.1 81.6 0.950 11.6 0.11
BERT-Attack 20.2 79.5 162.9 0.881 14.1 0.15
TextFooler 27.7 71.8 174.5 0.890 11.2 0.33
TextBugger 53.7 45.4 255.4 0.876 16.1 2.17

IMDB
(PPL=58.8)

ValCAT

94.6

12.8 86.5 65.6 0.977 6.7 0.09
BERT-Attack 18.3 80.7 98.0 0.950 7.8 0.08
TextFooler 30.2 68.1 95.6 0.956 5.9 0.24
TextBugger 55.9 40.9 123.2 0.952 8.7 1.49

SNLI
(PPL=68.0)

ValCAT

89.8

10.6/9.7 88.2/89.2 90.9/78.6 0.854/0.840 21.3/22.9 0.22/0.15
BERT-Attack 34.8/20.5 61.2/77.2 184.5/116.9 0.734/0.741 24.8/19.3 0.31/0.09
TextFooler 41.7/23.3 53.6/74.0 235.9/146.8 0.734/0.745 24.4/19.4 0.64/0.22
TextBugger 55.5/34.9 38.2/61.1 374.0/190.9 0.728/0.754 31.0/25.1 1.80/0.69

MNLI
(PPL=79.5)

ValCAT

82.7

7.3/2.5 91.2/97.0 93.5/89.5 0.879/0.869 18.5/20.4 0.19/0.15
BERT-Attack 22.4/17.7 72.9/78.6 172.9/146.9 0.754/0.764 22.6/18.9 0.09/0.12
TextFooler 28.9/21.4 65.1/74.1 228.1/183.4 0.754/0.770 22.1/18.2 0.63/0.38
TextBugger 41.1/34.7 50.3/58.0 317.6/218.2 0.744/0.771 27.3/22.4 1.98/1.05

QNLI
(PPL=66.1)

ValCAT

90.0

18.7/6.4 79.2/92.9 70.4/87.5 0.828/0.892 27.8/18.4 0.13/0.18
BERT-Attack 32.5/24.7 63.8/72.6 101.2/215.5 0.734/0.744 24.2/26.5 0.31/0.63
TextFooler 41.0/34.3 54.4/61.9 120.3/252.0 0.757/0.754 20.7/24.0 0.51/1.11
TextBugger 50.4/44.1 43.9/51.0 152.6/388.8 0.753/0.744 27.4/31.8 1.25/3.02

Table 2: Performance of ValCAT in attack success rate (Suc), perplexity (PPL), semantic similarity (Sim), word
perturbation rate (Pert) and grammar error (GErr). Bold font indicates the best performance for each metric. ↑ (↓)
represents that the higher (lower) the better. The original PPL for each dataset is indicated in parentheses under its
name.

3.3 Automatic Evaluation315

Metrics We evaluate the effectiveness of ValCAT316

based on the following metrics:317

• Attack success rate (Suc): is the percentage of318

attack samples successfully interfered with the vic-319

tim model’s prediction over the text dataset.320

• Perplexity (PPL): is an automatic metric to eval-321

uate the probability of a sentence appearing in a322

natural corpus. So PPL can reflect the text’s nat-323

ural fluency, the lower the better. We use GPT-2324

(Radford et al., 2019) for this calculation.325

• Semantic similarity (Sim): is the cosine similar-326

ity between the original text and adversarial text327

represented by Universal Sentence Encoder (USE)328

embedding (Cer et al., 2018).329

•Word perturbation rate (Pert): is the proportion330

of the modified words over the original text. To331

evaluate the perturbation rate on variable-length332

perturbations more accurately, we design separate333

calculations for these two perturbation approaches.334

For Replace operation, the number of modifications335

is max(lt, la) − lLCS , where lt, la, and lLCS are336

the lengths of the target span, the adversarial span, 337

and their longest-common-subsequence (LCS), re- 338

spectively. For Insert operation, the number of 339

modifications is the length of the inserted span. 340

• Grammar error (GErr): is the incremental gram- 341

matical error of the adversarial text relative to the 342

original. We use LanguageTool 1 to count the gram- 343

matical errors within a text. 344

Results The main experimental results are re- 345

vealed in Table 2. ValCAT outperforms baselines 346

on multiple datasets in both classification tasks and 347

inference tasks. Compared with BERT-Attack, the 348

best baseline method, ValCAT achieves higher suc- 349

cess rates in all experiments and the improvement 350

ranges from 5.9% even to 18.8%. This is attributed 351

to ValCAT’s ability to apply variable-length contex- 352

tualized transformations on spans at any position, 353

which largely extends the form of perturbations. 354

In addition, ValCAT achieves the highest semantic 355

similarity with the original text in all tasks. The per- 356

1https://www.languagetool.org/
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Figure 2: Success rate and perplexity of each attack
method under the constraints of different perturbation
rates and semantic similarities.

plexity of the adversarial text generated by ValCAT357

is far superior to the baselines. It is basically only358

50% of that of BERT-Attack and is almost consis-359

tent with the original text. This indicates that the360

adversarial text generated by ValCAT is with high361

fluency. The underlying reason is that multi-word362

transformations render the language model enough363

space to generate the adversarial spans with approx-364

imated distribution with natural language. At the365

same time, ValCAT reaches the lowest average in-366

crease in the number of grammatical errors on five367

out of nine attacks, with only a slight disadvantage368

on the natural language inference tasks.369

In general, ValCAT generates adversarial sam-370

ples that achieve more promising attacks and are371

more imperceptible to humans. Figure 2 shows the372

performance of ValCAT and baselines on the Yelp373

dataset under different constraint settings. As we374

can see, the success rate of ValCAT decays most375

slowly as the limits of perturbation rate and seman-376

tic similarity increase, still achieving a success rate377

of almost 70% under the strongest limits. More-378

over, ValCAT can maintain a low level under any379

constraint, however, other attacks have to sacrifice380

attack success rate to maintain their fluency.381

3.4 Human Evaluation382

Design We evaluate the quality of the ad-383

versarial samples from three perspectives: flu-384

ency&grammaticality, semantic similarity, and la-385

bel consistency. The first two metrics are evalu-386

ated by ratings, while the third one lets the anno-387

tator categorize the texts into a set of labels. Five388

annotators with bachelor’s degrees performed the389

evaluation on two datasets, AG News and MNLI.390

All annotators were informed and consented to391

the use of the annotation, and were paid with re-392

muneration higher than the regional average. To393

construct the dataset for human evaluation, we 394

randomly select 100 samples each from the two 395

datasets, whose adversarial results generated by 396

both ValCAT and BERT-Attack can mislead the 397

victim model to make the same wrong classifica- 398

tion decision among multiple classes. For the eval- 399

uation of fluency&grammaticality, each original 400

text and its two adversarial samples are presented 401

in one group in a shuffled order. The annotators are 402

asked to rate them in terms of fluency and gram- 403

maticality. For the evaluation of similarity, given 404

the original text, the judges need to separately eval- 405

uate its semantic similarity with the two adversarial 406

samples presented in random order. The above two 407

tasks ask the annotator to rate the text or the text 408

pairs from 1-5. In each questionnaire, we give ex- 409

plicit criteria and clear examples for every score. 410

For the evaluation of label consistency, we mix all 411

the original texts with the adversarial samples and 412

let the annotators label the category of them, e.g., 413

business or technology. 414

Dataset Metric ValCAT Original BERT-Attack

AG News
F&G 3.37 3.97 2.98
Sim 3.92 - 3.41
Acc 63.0 65.0 62.0

MNLI
F&G 3.97 4.30 3.49
Sim 3.28 - 2.83
Acc 46.0 65.0 41.0

Table 3: Results of human evaluation in flu-
ency&grammaticality, semantic similarity and label con-
sistency (accuracy).

Results For the two rating tasks, we normalize 415

the rates of the annotators and calculate the av- 416

erage score, while for the labeling task we take 417

the majority vote as the final result. As shown 418

in Table 3, ValCAT is rated with much higher flu- 419

ency&grammaticality scores than BERT-Attack on 420

both datasets. Also, it achieves obviously higher 421

semantic similarity. In terms of labeling accuracy, 422

ValCAT slightly outperforms BERT-Attack, still 423

indicating that ValCAT makes smaller changes to 424

the meanings of the text from the aspect of human 425

perception. All these results demonstrate the supe- 426

rior quality of the adversarial samples generated by 427

ValCAT. 428

4 Analysis 429

4.1 Ablation Study 430

We evaluate different attack strategies of ValCAT as 431

in Table 4. 3-Many results in the lowest perplexity, 432

for it renders the language model more space to gen- 433
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erate a proper adversarial span. It also requires the434

smallest number of queries, and we speculate the435

reason as it perturbs more words in a single trans-436

formation. For the same reason, 3-Many is less437

likely to succeed since it’s easier to reach the per-438

turbation constraint. As expected, the combination439

of multiple types of Replace operation facilitates440

the attack success rate while increasing the number441

of queries. The Insert operation achieves high sim-442

ilarity while requiring a large number of queries.443

A comprehensive utility of all operations (i.e., Val-444

CAT) achieves the highest success rate with the445

lowest perturbation rate, which fully demonstrates446

the advantages of the transformation diversity.447

Algorithm Suc↑ PPL↓ Sim↑ Pert↓ Query↓
ValCAT 93.1 81.6 0.950 11.6 673
1, 2, 3-Many 90.8 81.1 0.938 13.4 490
1, 2-Many 91.7 82.6 0.939 12.6 431
1-Many 87.9 84.4 0.933 12.0 340
2-Many 86.1 81.5 0.941 13.3 325
3-Many 80.7 77.1 0.938 16.0 266
Insert 86.4 86.9 0.953 14.4 799
BERT-Attack 79.5 162.8 0.881 14.1 449

Table 4: Results of ablation study. n-Many is a type of
Replace operation, which means that a span of length n
is replaced by an adversarial span.

4.2 Impact of Candidate Numbers448

From the results under different numbers of can-449

didates constraints shown in Figure 3, we observe450

that the attack success rate is higher when there451

are more candidates. Since we greedily select the452

adversarial span with the greatest impact on the de-453

cision, as the number of candidates increases, spans454

with low occurrence probability can be added to455

the text, making the perplexity higher. This is es-456

pecially true for difficult-to-attack datasets like AG457

News.458
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Figure 3: Success rate and perplexity of each dataset
under different candidate numbers.

4.3 Properties of Transformations 459

We observe the properties of the transformations in 460

the successful adversarial samples from three per- 461

spectives: type of transformation, length of span, 462

and POS (Part-of-Speech) of span. Averagely, 62% 463

of the transformations in each sample are Replace 464

operations and 38% are Insert operations, indicat- 465

ing that Replace operations are more effective in 466

most cases. As shown in Table 10, the replaced 467

spans are most likely the longer ones, while the 468

adversarial spans generated by both two operations 469

are rather short. Additionally, Table 11 shows that 470

the adversarial spans of Replace operation share 471

identical POS distribution with the replaced span, 472

which guarantees the fluency of the adversarial text. 473

The Insert operation tends to use adverbs and adjec- 474

tives, which is consistent with the human intuition 475

of inserting words into text. 476

4.4 Adversarial Training 477

We investigate how adversarial training can miti- 478

gate our attack, as well as the power of our adver- 479

sarial samples for adversarial training as a general 480

defense to adversarial attacks. We randomly sam- 481

ple 10,000 instances from the Yelp training dataset 482

and apply ValCAT to generate adversarial samples. 483

These adversarial samples and their intermediate 484

results, approximately 60,000 texts, are then used 485

to fine-tune the BERT under the gold labels. 486

After adversarial training, the test accuracy of 487

the victim model decreases from 98.3% to 98.0%. 488

As shown in Table 5, the attack success rate of 489

ValCAT drops by about 20%, while both the word 490

perturbation rate and the number of queries have 491

significantly increased, indicating that the victim 492

model is hard to attack after the adversarial train- 493

ing. Compared to the results of BERT-Attack, the 494

adversarial samples generated by ValCAT have an 495

excellent generalization effect on adversarial train- 496

ing, with a higher success rate. 497

Algorithm Victim Att Acc↓ Suc↑ Pert↓ Query↓

ValCAT
Original 6.8 93.1 11.6 673.3
Adv Train 27.0 72.4 14.0 884.2

BERT-Attack
Original 20.2 79.5 14.1 449.8
Adv Train 37.7 61.5 13.8 430.6

Table 5: Results of Adversarial Training from ValCAT
and BERT-Attack.

4.5 Generalization 498

We evaluate the generalization of ValCAT in two 499

aspects: 1) attack on other victim models and 2) 500
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transferability.501

Victim Orig Acc Att Acc↓ Suc↑ PPL↓ Sim↑ Pert↓
BERT 98.3 6.8 93.1 81.6 0.950 11.6
RoBERTa 99.1 13.3 86.6 81.2 0.952 11.7
LSTM 95.3 0.7 99.3 78.5 0.961 9.2
wordCNN 95.4 1.1 98.8 78.9 0.957 10.0

Table 6: Results of ValCAT on other victim models.

Attack on other victim models We try to attack502

other common language models on the Yelp dataset503

using ValCAT. Table 6 shows that LSTM and word-504

CNN, two traditional NLP models, are extremely505

vulnerable to ValCAT with a success rate of around506

99%. Interestingly, RoBERTa shows better robust-507

ness, with a 6.5% decrease in attack success rate508

relative to BERT, which we speculate is due to its509

more optimized pre-training approach.510

Transferability We evaluate transferability of511

generated adversarial texts on all datasets. Specif-512

ically, we utilize attack samples generated by dif-513

ferent target models which successfully interfered514

with the victim model, to attack other tested mod-515

els. Results in Table 7 shows that, attack sam-516

ples generated by transformer models (BERT and517

RoBERTa) could cause similar accuracy decay on518

traditional NLP models (LSTM and wordCNN),519

and vice versa. It indicates that transformer models520

(BERT and RoBERTa) have better transferability521

than traditional NLP models (LSTM and word-522

CNN).523

BERT RoBERTa LSTM wordCNN
BERT - 73.4 73.9 76.1
RoBERTa 68.9 - 72.8 74.2
LSTM 84.3 88.8 - 71.8
wordCNN 83.4 87.3 60.5 -

Table 7: Attacked accuracy of Transferability. Rows
are target models used in generating adversarial sam-
ples, and columns are tested models applied generated
adversarial samples.

4.6 Limitation524

ValCAT makes the best effort to improve the qual-525

ity of the generated adversarial samples, including526

variable-length span ranking and multiple adversar-527

ial text generation strategies. However, all these528

efforts result in a larger number of queries to the529

victim model, compared to word-level adversarial530

substitutions. According to the results of the auto-531

matic and human evaluation, such an increase in532

the computation expense is tolerable, considering533

the significant improvement in adversarial sample534

quality and attack success rate. Furthermore, a sim- 535

plified version of ValCAT, 1-Many (See Table 4), 536

outperforms the best baseline model in all aspects, 537

including the number of queries. 538

5 Related Work 539

Textual adversarial attacks have been intensively 540

studied (Wang et al., 2019; Zhang et al., 2020). 541

Early on, the character-level attack methods 542

(Ebrahimi et al., 2018; Gao et al., 2018; Li et al., 543

2019) are widely used, but them would destroy 544

words and are very perceptible (Pruthi et al., 2019). 545

Word-level attacks are now in the spotlight, evolv- 546

ing from substitution based only on the properties 547

of individual words themselves (Zang et al., 2020; 548

Jin et al., 2020; Tan et al., 2020) to perturbing 549

words by multiple strategies with knowledge of the 550

context (Li et al., 2020;Garg and Ramakrishnan, 551

2020;Li et al., 2021). However, these works only 552

focus on context-sensitive substitution on single 553

word, with absence of many possible forms of per- 554

turbations. Limitations on single-word substitution 555

hinders further improvement in attack success rate 556

and fluency. Although, Zhang et al. 2019, Wang 557

et al. 2020 and Huang and Chang 2021 attempt 558

to construct adversarial samples from levels above 559

words by simply merge single-word, they all ig- 560

nore the interactions between words are in finding 561

important positions. 562

We propose ValCAT, which takes into account 563

the interactions between words in both ranking im- 564

portant spans and generating variable-length con- 565

textualized spans. By introducing Sliding Window, 566

ValCAT can find important spans. Based on the 567

mechanism of encoder-decoder, ValCAT can gen- 568

erate variable-length substitution candidates with 569

two perturbation approaches, Replace and Insert. 570

6 Conclusion 571

In this paper, we propose ValCAT, the first variable- 572

length contextualized adversarial attack based on 573

the encoder-decoder language model. ValCAT 574

considers the interaction between words for the 575

vulnerable-position ranking and extends the form 576

and the flexibility of the perturbation. Experimental 577

results on several datasets demonstrate the effec- 578

tiveness of our model, which outperforms baselines 579

in terms of attack success rate, adversarial example 580

quality, transferability, and robustness against ro- 581

bust training. A comprehensive human evaluation 582

further verifies the high quality of our generated 583

adversarial samples in reality. 584
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A Constraints 759

Perturbation Rate Semantic Similarity
AG News 0.4 0.8
Yelp Polarity 0.4 0.8
IMDB 0.3 0.9
SNLI 0.6 0.6
MNLI 0.6 0.6
QNLI 0.6 0.6

Table 8: Specific values of constraints of the pertur-
bation rate and semantic similarity used in the main
experiments.

B Datasets 760

We employ three datasets for text classification 761

and three datasets for natural language inference as 762

described below. In our experiments, we randomly 763

sample 1000 records. 764

• AG News: a collection of news articles catego- 765

rized into 4 types: World, Sports, Business, and 766

Sci/Tech (Zhang et al., 2015). 767

• Yelp Polarity: positive and negative restaurant 768

reviews collected from yelp (Zhang et al., 2015). 769

• IMDB: a dataset of movie reviews for binary 770

sentiment classification (Maas et al., 2011). 771

• SNLI: a collection of human-written English sen- 772

tence pairs (Bowman et al., 2015). Each sentence 773

pair consists of a premise and a hypothesis, which 774

is necessary to determine whether it is entailment, 775

contradiction, or neutral. 776

• MNLI: a similar dataset to SNLI (Williams et al., 777

2018), but from a variety of genres. 778

• QNLI: a version of SQuAD which has been con- 779

verted to a binary classification task (Wang et al., 780

2018). 781

C Baselines. 782

We compare ValCAT with state-of-the-art word- 783

level black-box attacks: 784

• TextBugger: an attack model compounded by 785

five bug generation methods (Li et al., 2019). Such 786
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methods include character insertion, character dele-787

tion, character swapping, homograph character re-788

placement, and synonym replacement.789

• TextFooler: classical adversarial attack algorithm790

based on synonym substitution (Jin et al., 2020).791

Candidate synonyms are the closest neighbors of792

the replaced word in the counter-fitting word em-793

bedding space. It limits the cosine similarity and794

makes the POS consistent.795

• BERT-Attack: a state-of-the-art contextualized796

attack model using BERT to fill mask tokens (Li797

et al., 2020). It serves as a representative of the sim-798

ilar BERT-based algorithms, such as BAE (Garg799

and Ramakrishnan, 2020) and CLARE (Li et al.,800

2021).801

D Performance of Encoder-Decoder802

Models803

We present the results of generating adversarial804

spans by several language models in the T5 fam-805

ily in Table 9. T5large and mT5base take a longer806

time to generate adversarial span due to their larger807

capacity. The higher perplexity of T5v1.1base is,808

we conjecture, resulted from its specifically differ-809

ent structure. In short, T5base is good enough for810

adversarial span generation.811

Algorithm Suc↑ PPL↓ Sim↑ Pert↓ GErr↓ Time↓
T5base 93.1 81.6 0.950 11.6 0.11 0.052
T5large 90.3 84.0 0.948 12.7 0.12 0.069
T5v1.1base 92.3 101.8 0.946 12.4 0.36 0.055
mT5base 94.2 84.6 0.949 12.3 0.06 0.070

Table 9: Encoder-Decoder Language Model

E Properties of Transformations812

We observe the properties of the transformations in813

the successful adversarial samples from three per-814

spectives: type of transformation, length of span,815

and POS (Part-of-Speech) of span. Results shown816

as follows:817

1 2 3 4 5
Replaced Span 26.2% 35.8% 38.0% - -
Span for Replace 33.1% 35.0% 24.6% 6.4% 0.9%
Span for Insert 37.5% 35.3% 27.2% - -

Table 10: Transformation Length Proportion

Replaced Span Span for Replace Span for Insert
ADJ: 7.6% ADJ: 8.4% ADV: 12.4%

NOUN: 6.3% VERB: 6.7% ADJ: 6.7%
VERB: 5.0% NOUN: 5.8% NOUN: 2.2%
ADV: 3.8% ADV: 5.5% ADJ-NOUN-PUNCT: 1.9%

VERB-ADV: 2.3% ADJ-PUNCT: 1.8% VERB: 1.9%
AUX-ADV: 1.9% ADV-ADJ: 1.7% ADV-ADV: 1.6%

ADJ-PUNCT: 1.5% AUX-ADV: 1.7% ADJ-PUNCT: 1.5%
ADV-VERB: 1.5% VERB-ADV: 1.5% VERB-ADV: 1.4%

PRON-VERB: 1.4% NOUN-PUNCT: 1.4% PRON-VERB: 1.4%
ADV-ADJ: 1.3% ADJ-NOUN: 1.4% ADV-PUNCT: 1.2%

Table 11: Transformation POS Proportion
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