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Abstract

Adversarial samples are helpful to explore vul-
nerabilities in neural network models, improve
model robustness, and explain their working
mechanism. However, the adversarial texts
generated by existing word substitution-based
methods are trapped in a one-to-one attack pat-
tern, which is inflexible and cramped. In this
paper, we propose ValCAT, a black-box attack
framework that misleads the language model by
applying variable-length contextualized trans-
formations to the original text. Experiments
show that our method outperforms state-of-
the-art methods on attacking several classifi-
cation tasks and inference tasks. More com-
prehensive human evaluations demonstrate that
ValCAT has a significant advantage in ensur-
ing the fluency of the adversarial samples and
achieves better semantic consistency. We re-
lease our code at https://github.com/
linerxliner/ValCAT.

1 Introduction

Deep learning is successfully applied in a variety of
fields, while previous works have found that neural
network models are vulnerable to adversarial sam-
ples (Goodfellow et al., 2014; Kurakin et al., 2016).
Adversarial samples are constructed with small per-
turbations to original inputs to fool these models
with incorrect decisions while being impercepti-
ble to humans. Therefore, exploring adversarial
samples is essential to improve the performance
of neural network models with higher reliability
and robustness. However, compared to the long-
studied image domain, generating adversarial sam-
ples on text is more difficult because texts are dis-
crete, where small changes can alter the original
meaning and make it unnatural (Xu et al., 2020;
Zhang et al., 2020).

Word substitution-based attack methods have
received much attention in the recent past. Sev-
eral previous works explore the substitution based
only on the properties of individual words, with the

AG News
(Business)

Lucent milestone: A profit Lucent Tech-
nologies yesterday posted higher fiscal
fourth-quarter earnings, helping lift the
telecommunications equipment maker
to its first profitable year since 2000.

BERT-Attack
(Sci/Tech)

Lucent node: A revenue Lucent tech yes-
terday reported higher revenue fourth-
quarter benefits, which lift the multime-
dia equipment maker to its first business
year year 2000.

Lucent milestone: A profit Lucent
Technologies [recently reported] higher
fiscal fourth-quarter earnings, helping
lift the telecommunications equipment
maker to its first profitable year since
2000.

Premise: He caught a grip on himself,

fighting the fantasies of his mind, and
took another breath of air.

ValCAT
(Sci/Tech)

MNLI
(Neutral)

Hypothesis: The air tasted like molten
metal - the taste of blood.

BERT-Attack  Hypothesis: The air tasted through boil-
(Contradiction) ing armor - the taste of betrayal.

ValCAT Hypothesis: The air tasted [nothing like
(Contradiction) air] - the taste of blood.

Table 1: Examples of adversarial texts generated by
ValCAT and BERT-Attack. The first one is the original
text, followed by adversarial texts generated by ValCAT
and BERT-Attack.

help of inflectional morphology (Tan et al., 2020),
counter-fitting word vectors (Jin et al., 2020), and
sememe (Zang et al., 2020), etc. The encoder lan-
guage models, like BERT, give us new insights of
considering context information for the substitu-
tion candidate generation (Li et al., 2020; Garg and
Ramakrishnan, 2020; Li et al., 2021). However, all
these works focus on single-word substitution like
examples shown in Table 1. This one-to-one attack
pattern limits the perturbation forms and overlooks
the interactions between words. However, the pos-
sibility of adding perturbations to larger semantic
units has not been discussed. For this sake, two
research questions are raised: 1) How to take into
account interactions between words in vulnerable-
position discovery? 2) How to perturb vulnerable
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Figure 1: Overview of ValCAT’s workflow.

positions with variable-length contextualized sub-
stitution?

We propose ValCAT, which generates high-
quality adversarial texts by applying variable-
length contextualized transformations to the origi-
nal text. Specifically, given a benign text, we enu-
merate all possible spans by traversing the text
with sliding windows of different sizes and eval-
uate their importance. Based on the importance
of each span, we propose two operations, Replace
and Insert to generate adversarial candidates by an
encoder-decoder language model. The encoder can
recover a mask token using a single word while
the decoder can only predict words after a prompt.
Therefore, joint use of encoder and decoder enables
ValCAT to generate variable-length contextualized
candidates at the arbitrary vulnerable position.

Furthermore, we evaluate ValCAT by attacking
fine-tuned BERT on several classification tasks and
inference tasks. Experimental results show that
it outperforms other baseline methods in attack
success rate, fluency and similarity. In particular,
we observe that the variable-length property can
significantly reduce perplexity, which is less than
50% compared to the best baseline. Although each
multi-word transformation perturbs more words
than one-word transformation, it requires fewer
transformations toward success. This in general
results in a tolerable perturbation rate, which is
even lower on some of the inference datasets. A
comprehensive human evaluation further verifies
that ValCAT has significant advantages in both flu-
ency&grammaticality and semantic similarity. The
main contributions of this paper are summarized as
follows:

e We propose ValCAT, the first variable-length con-
textualized adversarial attack against NLP models.
e Our work is the first to propose Sliding Win-
dow for vulnerable-position discovery and variable-
length adversarial candidate generation, which
fully exploits the advantage of encoder-decoder
models.

e Automatic evaluations and comprehensive human

evaluation demonstrates the superior quality of our
generated adversarial samples.

2 ValCAT

To further improve the attack effectiveness and si-
multaneously improve the fluency and semantic
similarity of the adversarial samples, we propose
ValCAT, which can generate high-quality adver-
sarial text by applying variable-length contextual-
ized transformations with a joint encoder-decoder
framework.

Problem Formalization Given a victim model
F : X — Y and a text £ = wiws...Wy_1Wp,
that can be correctly classified by F', the attack
goal is to generate an adversarial text z, which
can flip the model prediction, i.e. F'(Z) # F(x).
A continuous word sequence with length n can
be denoted as a span s,. In the soft-label black-
box setting, the attacker only has access to the
logit output P(y|x). The architecture, parameters
and configurations of F' are unknown to attacker.
To achieve human imperceptibility, the attacker
should minimize textual perturbations and maintain
semantic consistency.

ValCAT ValCAT performs the attack in a sequen-
tial manner, as the workflow in Figure 1. To locate
the most-vulnerable positions for the perturbations
in each iteration, ValCAT first rank the importance
of s, in x with a sliding window of length 1 to MAX,
as line 2-6 in Algorithm 1. Based on the sorted
ranking list R, ValCAT uses encoder-decoder lan-
guage model to generate variable-length contextu-
alized spans, as line 8-13. Using two perturbations
in line 9, REPLACE and INSERT, we obtain a can-
didate set 7. If some of the candidates can mislead
the victim model, ValCAT declares the one with
the highest cosine similarity with the original text
as the final successful result, as line 11. However,
if no candidate successes at this iteration, we select
the one with the highest negative impact to the vic-
tim model as the basic text for the next iteration,
as line 13. Note that, if a span in the ranked list
has been selected as the target span, the subsequent



spans which are overlapped with the target span
will be removed from the ranked list to avoid multi-
ple modifications on a token. The sequential attack
ends when successful attack occurs, or when the
upper limit of the perturbation constraints (See Sec-
tion 3.1) are reached. The latter case is considered
as a final failure. Below we elaborate on the two
stages of the attack in Section 2.1 and Section 2.2,
in detail.

2.1 Important Span Ranking

Echoing the observation to prior works (Niven
and Kao, 2019; Jin et al., 2020), only some key
words act as most-vulnerable positions for the vic-
tim model F'. Perturbations over these words can
be most beneficial in crafting adversarial texts.
Considering the interactions between words, Val-
CAT performs transformations on several impor-
tant spans instead of single words for each pertur-
bation.

Given a text x, we evaluate the importance of
a span s within x according to how removing the
span can impact the model prediction, in the black-
box setting. Let s denote the text of removing s
from x. Formally, we define the importance of s
with respect to x as:

if y=y
if y#y

d (JJ, js)v
b= { iy ,3,) + dif, ),

where y and y are the predictions of z and Z,,
respectively, and dy(x, T,) = P(y|z) — P(y|Zs) is
the difference of the probabilities that  and Z are
classified as y.

To compare spans of different lengths, we pro-
pose Sliding Windows to measure the importance of
variable-length spans. Specifically, we apply mul-
tiple sliding windows of the corresponding size,
which traverse the text from left to right. Each
span bounded by a sliding window is sequentially
deleted from the original text for its importance
calculation. Finally, we obtain a set of triples each
consisting of the length, the start position, and the
importance score of a span. We rank the triples
according to the importance score in descending
order.

2.2 Variable-Length Contextualized
Transformations

Based on the triple ranking list, ValCAT performs
sequential perturbations, where each step a target
span in the original text is replaced by or inserted

Algorithm 1: VALCAT

Input: Victim Model F'; Text x; Label y;
Maximum size of slide window M

Output: Adversarial sample

R+ D;t+x

forw=1rMdo

fori =1t LEN(z) —w + 1 do

S T, itw—1
Calculate span importance I, (s)
R <+ RU (i,w, I(s))

A M A W N =

~

Sort R by I(s) in descending order

for (7, w, _)in R do

9 T < REPLACE(t, %, w) U INSERT(t, 4)
10 if 37 € T's.t. F(Z) # y then

1 return argmax SIMILAR(Z,x)
TETF(2)#y

oo

12 else
13 t t < arg max |F(z) — y|
zeT

14 return NULL

with a set of adversarial spans generated by an
encoder-decoder language model. The variable-
length of the adversarial spans renders the language
model enough space to produce more contextually
appropriate candidates to improve fluency. Mean-
while, our variable-length method expands the per-
turbation forms, for it supports multi-word transfor-
mations while is compatible with traditional one-
to-one transformations. Compared with previous
methods, this further improves the attack success
rate under the same perturbation constraints. Be-
low we elaborate on the details of the adversarial
text generation.

Adversarial Span Generation To generate can-
didates of each adversarial span, ValCAT applies an
encoder-decoder language model to fill the mask to-
ken with a list of variable-length predictions. First,
the encoder model confer the capability of pre-
dicting the masked tokens, which is trained with
the masked language modeling (MLM) objective.
However, the encoder model fills one mask token
with only one suitable substitute rather than mul-
tiple words. The ability of the decoder could fill
the gap of the single word, since the decoder is
trained with a causal language modeling (CLM)
which can predict the sequence after a prompt. But,
the decoder can only generate sequences at the end
of the text. Hence, ValCAT combined these two



models with their complementary advantages, with
the predictive capability at arbitrary positions of en-
coder and variable-length generation of a decoder.
With the candidate spans for target span, ValCAT
performs two kinds of perturbation, Replace and
Insert to generate the adversarial candidates.

Replace The Replace operation substitutes the
target span s,, = wj...W;+m,m—1 With another s. For
example, the target “awesome” in the text "This
place is awesome." could be replaced by the ad-
versarial span “pretty good”. Specifically, we first
replace a mask token [mask] to s,,:

glisttm] — wW1...w;—1 [mask]|w; ... Wy,

and generate a set of variable-length adversarial
spans Z to fill the mask. The adversarial text is
denoted as:

i,[z:z—i—m] = wy.

P W1 R Wi4+m+1--- Wn,

where z € Z is a contextualized span.

Since the language model is blind to the infor-

mation of the target span, some of the generated
adversarial spans may deviate from the original
meaning to a large extent. To avoid this situation,
we only keep the adversarial spans with a high
degree of semantic similarity to the original span.
Specifically, we use Universal Sentence Encoder
(Cer et al., 2018) to restrict their cosine semantic
similarity. We also impose a limit on the word per-
turbation rate (See Section 3.1). To prevent the text
from being too long, we constrain the adversarial
spans to be at most two words longer than the target
span.
Insert. The Insert operation inserts a new span
s in front of the target span s,,. For example, "I
like this quite interesting movie.". Similar to the
Replace operation, it inserts a mask token in front
of the target span:

' = wy..w;—1[mask][w;... Wi {rm—1]Witm... W,

and corresponds with the adversarial text 7% =
Wi...Wi—1 2 W;...wy. The Insert perturbation also
follows the same perturbation constraints, men-
tioned in Section 3.1.

3 Experiments

In this section, we evaluate ValCAT on two NLP
tasks, text classification and natural language infer-
ence. To demonstrate the effectiveness of ValCAT
in terms of fluency&grammaticality and semantic
similarity, following Li et al. 2021, we design and
conduct a comprehensive human evaluation.

3.1 Implementation

Victim model In this work, we choose fine-tuned
BERT model as the victim of both the classification
and the inference tasks. Since BERT has achieved
good results on a variety of NLU tasks and has
been proven to be one of the most representative
pre-trained transformers (Devlin et al., 2019).

Span generation model To generate variable-
length contextualized spans, we choose T5 (Raffel
et al., 2020) for the generation. TS5 is a represen-
tative encoder-decoder language model that can
predict the missing words within a corrupted piece
of text, benefiting from the fill-in-the-blank pre-
training. Also, the large pre-training dataset C4
renders TS rich prior knowledge to enable the di-
versity and the high-quality of the generated spans.

Constraints To achieve human imperceptibility
and semantic preservation of the adversarial text,
we impose constraints on the word perturbation
rate and semantic similarity, as defined in Section
3.3. Following previous practices (Jin et al., 2020;
Lietal.,, 2021), we set the thresholds of word per-
turbation rate and semantic similarity respectively
for each dataset, with details shown in Appendix A.

Settings and Computation Cost All results are
derived from a single run since there is no random-
ness in our model. The maximum size of the sliding
window is set as 3. In our implementation, we ap-
ply SpaCy (Honnibal and Montani, 2017), NLTK
(Loper and Bird, 2002) for text manipulation. We
run ValCAT on Intel Xeon E5-2690 2.6GHz Pro-
cessor with V100 GPU. Averagely it takes 34 secs
to generate a successful adversarial sample.

3.2 Dataset and Baselines

To investigate the effectiveness of ValCAT on dif-
ferent types of text, we evaluate it on multiple En-
glish datasets. We randomly sample 1000 instances
from each of the following datasets: three for text
classification, i.e., AG News, Yelp Polarity and
IMDB; and three for natural language inference,
i.e., SNLI, MNLI and QNLI, with detailed informa-
tion shown in Appendix B. To prove the effective-
ness of ValCAT comprehensively, we compared
ValCAT with several state-of-the-art word-level
black-box attacks, i.e., TextBugger, TextFooler and
BERT-Attack. Details of these attacks are shown in
Appendix C. Note that, all the datasets and base-
line models are publicly available and are used in
accordance with their usage specifications.



Dataset Algorithm Orig Acc Atk Accl Suct PPL| Sim 7T Pert| GErr|
ValCAT 353 62.6 136.2 0.922 16.1 0.39
AG News BERT-Attack 944 47.5 49.7 326.9 0.873 17.3 1.12
(PPL=98.4)  TextFooler 44.8 52.5 418.6 0.883 15.7 1.37
TextBugger 62.0 343 500.7 0.886 19.7 2.78
ValCAT 6.8 93.1 81.6 0.950 11.6 0.11
Yelp Polarity BERT-Attack 08.3 20.2 79.5 162.9 0.881 14.1 0.15
(PPL=71.1)  TextFooler 27.7 71.8 174.5 0.890 11.2 0.33
TextBugger 53.7 45.4 255.4 0.876 16.1 2.17
ValCAT 12.8 86.5 65.6 0.977 6.7 0.09
IMDB BERT-Attack 046 18.3 80.7 98.0 0.950 7.8 0.08
(PPL=58.8)  TextFooler 30.2 68.1 95.6 0.956 5.9 0.24
TextBugger 55.9 40.9 123.2 0.952 8.7 1.49
ValCAT 10.6/9.7 88.2/89.2 90.9/78.6  0.854/0.840 21.3/22.9 0.22/0.15
SNLI BERT-Attack 298 34.8/20.5 61.2/77.2 184.5/116.9 0.734/0.741 24.8/19.3 0.31/0.09
(PPL=68.0)  TextFooler 41.7/23.3 53.6/74.0 235.9/146.8 0.734/0.745 24.4/19.4 0.64/0.22
TextBugger 55.5/34.9 38.2/61.1 374.0/190.9 0.728/0.754 31.0/25.1 1.80/0.69
ValCAT 7.3/2.5  91.2/97.0 93.5/89.5 0.879/0.869 18.5/20.4 0.19/0.15
MNLI BERT-Attack 27 22.4/17.7 729/78.6 172.9/146.9 0.754/0.764 22.6/18.9 0.09/0.12
(PPL=79.5)  TextFooler 28.9/21.4 65.1/74.1 228.1/183.4 0.754/0.770 22.1/18.2 0.63/0.38
TextBugger 41.1/34.7 50.3/58.0 317.6/218.2 0.744/0.771 27.3/22.4 1.98/1.05
ValCAT 18.7/6.4  79.2/92.9 70.4/87.5 0.828/0.892 27.8/18.4 0.13/0.18
QNLI BERT-Attack 90.0 32.5/24.7 63.8/72.6 101.2/215.5 0.734/0.744 24.2/26.5 0.31/0.63
(PPL=66.1)  TextFooler 41.0/34.3 54.4/61.9 120.3/252.0 0.757/0.754 20.7/24.0 0.51/1.11
TextBugger 50.4/44.1 43.9/51.0 152.6/388.8 0.753/0.744 27.4/31.8 1.25/3.02

Table 2: Performance of ValCAT in attack success rate (Suc), perplexity (PPL), semantic similarity (Sim), word
perturbation rate (Pert) and grammar error (GErr). Bold font indicates the best performance for each metric. 1 ({)
represents that the higher (lower) the better. The original PPL for each dataset is indicated in parentheses under its

name.

3.3 Automatic Evaluation

Metrics We evaluate the effectiveness of ValCAT
based on the following metrics:

o Artack success rate (Suc): is the percentage of
attack samples successfully interfered with the vic-
tim model’s prediction over the text dataset.

e Perplexity (PPL): is an automatic metric to eval-
uate the probability of a sentence appearing in a
natural corpus. So PPL can reflect the text’s nat-
ural fluency, the lower the better. We use GPT-2
(Radford et al., 2019) for this calculation.

e Semantic similarity (Sim): is the cosine similar-
ity between the original text and adversarial text
represented by Universal Sentence Encoder (USE)
embedding (Cer et al., 2018).

e Word perturbation rate (Pert): is the proportion
of the modified words over the original text. To
evaluate the perturbation rate on variable-length
perturbations more accurately, we design separate
calculations for these two perturbation approaches.
For Replace operation, the number of modifications
is max(ly,ly) — lpos, where Iy, g, and lpog are

the lengths of the target span, the adversarial span,
and their longest-common-subsequence (LCS), re-
spectively. For Insert operation, the number of
modifications is the length of the inserted span.

o Grammar error (GErr): is the incremental gram-
matical error of the adversarial text relative to the
original. We use LanguageTool ! to count the gram-
matical errors within a text.

Results The main experimental results are re-
vealed in Table 2. ValCAT outperforms baselines
on multiple datasets in both classification tasks and
inference tasks. Compared with BERT-Attack, the
best baseline method, ValCAT achieves higher suc-
cess rates in all experiments and the improvement
ranges from 5.9% even to 18.8%. This is attributed
to ValCAT’s ability to apply variable-length contex-
tualized transformations on spans at any position,
which largely extends the form of perturbations.
In addition, ValCAT achieves the highest semantic
similarity with the original text in all tasks. The per-

"https://www.languagetool.org/
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Figure 2: Success rate and perplexity of each attack
method under the constraints of different perturbation
rates and semantic similarities.

plexity of the adversarial text generated by ValCAT
is far superior to the baselines. It is basically only
50% of that of BERT-Attack and is almost consis-
tent with the original text. This indicates that the
adversarial text generated by ValCAT is with high
fluency. The underlying reason is that multi-word
transformations render the language model enough
space to generate the adversarial spans with approx-
imated distribution with natural language. At the
same time, ValCAT reaches the lowest average in-
crease in the number of grammatical errors on five
out of nine attacks, with only a slight disadvantage
on the natural language inference tasks.

In general, ValCAT generates adversarial sam-
ples that achieve more promising attacks and are
more imperceptible to humans. Figure 2 shows the
performance of ValCAT and baselines on the Yelp
dataset under different constraint settings. As we
can see, the success rate of ValCAT decays most
slowly as the limits of perturbation rate and seman-
tic similarity increase, still achieving a success rate
of almost 70% under the strongest limits. More-
over, ValCAT can maintain a low level under any
constraint, however, other attacks have to sacrifice
attack success rate to maintain their fluency.

3.4 Human Evaluation

Design We evaluate the quality of the ad-
versarial samples from three perspectives: flu-
ency&grammaticality, semantic similarity, and la-
bel consistency. The first two metrics are evalu-
ated by ratings, while the third one lets the anno-
tator categorize the texts into a set of labels. Five
annotators with bachelor’s degrees performed the
evaluation on two datasets, AG News and MNLI.
All annotators were informed and consented to
the use of the annotation, and were paid with re-
muneration higher than the regional average. To

construct the dataset for human evaluation, we
randomly select 100 samples each from the two
datasets, whose adversarial results generated by
both ValCAT and BERT-Attack can mislead the
victim model to make the same wrong classifica-
tion decision among multiple classes. For the eval-
uation of fluency&grammaticality, each original
text and its two adversarial samples are presented
in one group in a shuffled order. The annotators are
asked to rate them in terms of fluency and gram-
maticality. For the evaluation of similarity, given
the original text, the judges need to separately eval-
uate its semantic similarity with the two adversarial
samples presented in random order. The above two
tasks ask the annotator to rate the text or the text
pairs from 1-5. In each questionnaire, we give ex-
plicit criteria and clear examples for every score.
For the evaluation of label consistency, we mix all
the original texts with the adversarial samples and
let the annotators label the category of them, e.g.,
business or technology.

Dataset Metric ValCAT Original BERT-Attack
F&G 3.37 3.97 2.98
AG News Sim 3.92 - 3.41
Acc 63.0 65.0 62.0
F&G 3.97 4.30 3.49
MNLI Sim 3.28 - 2.83
Acc 46.0 65.0 41.0
Table 3: Results of human evaluation in flu-

ency&grammaticality, semantic similarity and label con-
sistency (accuracy).

Results For the two rating tasks, we normalize
the rates of the annotators and calculate the av-
erage score, while for the labeling task we take
the majority vote as the final result. As shown
in Table 3, ValCAT is rated with much higher flu-
ency&grammaticality scores than BERT-Attack on
both datasets. Also, it achieves obviously higher
semantic similarity. In terms of labeling accuracy,
ValCAT slightly outperforms BERT-Attack, still
indicating that ValCAT makes smaller changes to
the meanings of the text from the aspect of human
perception. All these results demonstrate the supe-
rior quality of the adversarial samples generated by
ValCAT.

4 Analysis

4.1 Ablation Study

We evaluate different attack strategies of ValCAT as
in Table 4. 3-Many results in the lowest perplexity,
for it renders the language model more space to gen-



Success Rate

erate a proper adversarial span. It also requires the
smallest number of queries, and we speculate the
reason as it perturbs more words in a single trans-
formation. For the same reason, 3-Many is less
likely to succeed since it’s easier to reach the per-
turbation constraint. As expected, the combination
of multiple types of Replace operation facilitates
the attack success rate while increasing the number
of queries. The Insert operation achieves high sim-
ilarity while requiring a large number of queries.
A comprehensive utility of all operations (i.e., Val-
CAT) achieves the highest success rate with the
lowest perturbation rate, which fully demonstrates
the advantages of the transformation diversity.

Algorithm Suct PPL] SimtT Pert| Query]
ValCAT 93.1 81.6 0950 11.6 673
1,2,3-Many 90.8 81.1 0938 134 490
1, 2-Many 91.7 82.6 0939 12.6 431
1-Many 879 844 0933 120 340
2-Many 86.1 815 0941 133 325
3-Many 80.7 771 0938 16.0 266
Insert 864 869 0953 144 799
BERT-Attack 79.5 162.8 0.881 14.1 449

Table 4: Results of ablation study. n-Many is a type of
Replace operation, which means that a span of length n
is replaced by an adversarial span.

4.2 Impact of Candidate Numbers

From the results under different numbers of can-
didates constraints shown in Figure 3, we observe
that the attack success rate is higher when there
are more candidates. Since we greedily select the
adversarial span with the greatest impact on the de-
cision, as the number of candidates increases, spans
with low occurrence probability can be added to
the text, making the perplexity higher. This is es-
pecially true for difficult-to-attack datasets like AG
News.
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2
Num of Candidates Num of Candidates

Figure 3: Success rate and perplexity of each dataset
under different candidate numbers.
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4.3 Properties of Transformations

We observe the properties of the transformations in
the successful adversarial samples from three per-
spectives: type of transformation, length of span,
and POS (Part-of-Speech) of span. Averagely, 62%
of the transformations in each sample are Replace
operations and 38% are Insert operations, indicat-
ing that Replace operations are more effective in
most cases. As shown in Table 10, the replaced
spans are most likely the longer ones, while the
adversarial spans generated by both two operations
are rather short. Additionally, Table 11 shows that
the adversarial spans of Replace operation share
identical POS distribution with the replaced span,
which guarantees the fluency of the adversarial text.
The Insert operation tends to use adverbs and adjec-
tives, which is consistent with the human intuition
of inserting words into text.

4.4 Adversarial Training

We investigate how adversarial training can miti-
gate our attack, as well as the power of our adver-
sarial samples for adversarial training as a general
defense to adversarial attacks. We randomly sam-
ple 10,000 instances from the Yelp training dataset
and apply ValCAT to generate adversarial samples.
These adversarial samples and their intermediate
results, approximately 60,000 texts, are then used
to fine-tune the BERT under the gold labels.

After adversarial training, the test accuracy of
the victim model decreases from 98.3% to 98.0%.
As shown in Table 5, the attack success rate of
ValCAT drops by about 20%, while both the word
perturbation rate and the number of queries have
significantly increased, indicating that the victim
model is hard to attack after the adversarial train-
ing. Compared to the results of BERT-Attack, the
adversarial samples generated by ValCAT have an
excellent generalization effect on adversarial train-
ing, with a higher success rate.

Algorithm  Victim Att Acc] Suct Pert] Queryl

ValCAT Orlgmal. 6.8 93.1 11.6 6733
Adv Train  27.0 724 140 8842

BERT-Attack Orlglnal. 20.2 795 141 4498
Adv Train  37.7 61.5 13.8 430.6

Table 5: Results of Adversarial Training from ValCAT
and BERT-Attack.

4.5 Generalization
We evaluate the generalization of ValCAT in two
aspects: 1) attack on other victim models and 2)



transferability.

Victim Orig Acc Att Accl Suct PPL] Sim{ Pert|
BERT 98.3 6.8 93.1 81.6 0.950 11.6
RoBERTa  99.1 133  86.6 81.2 0952 11.7
LSTM 95.3 0.7 99.3 785 0961 9.2

wordCNN 954 1.1 98.8 78.9 0.957 10.0

Table 6: Results of ValCAT on other victim models.

Attack on other victim models We try to attack
other common language models on the Yelp dataset
using ValCAT. Table 6 shows that LSTM and word-
CNN, two traditional NLP models, are extremely
vulnerable to ValCAT with a success rate of around
99%. Interestingly, RoOBERTa shows better robust-
ness, with a 6.5% decrease in attack success rate
relative to BERT, which we speculate is due to its
more optimized pre-training approach.

Transferability We evaluate transferability of
generated adversarial texts on all datasets. Specif-
ically, we utilize attack samples generated by dif-
ferent target models which successfully interfered
with the victim model, to attack other tested mod-
els. Results in Table 7 shows that, attack sam-
ples generated by transformer models (BERT and
RoBERT?3) could cause similar accuracy decay on
traditional NLP models (LSTM and wordCNN),
and vice versa. It indicates that transformer models
(BERT and RoBERTa) have better transferability
than traditional NLP models (LSTM and word-
CNN).

BERT RoBERTa LSTM wordCNN

BERT - 73.4 73.9 76.1
RoBERTa  68.9 - 72.8 74.2
LSTM 84.3 88.8 - 71.8
wordCNN 834 87.3 60.5 -

Table 7: Attacked accuracy of Transferability. Rows
are target models used in generating adversarial sam-
ples, and columns are tested models applied generated
adversarial samples.

4.6 Limitation

ValCAT makes the best effort to improve the qual-
ity of the generated adversarial samples, including
variable-length span ranking and multiple adversar-
ial text generation strategies. However, all these
efforts result in a larger number of queries to the
victim model, compared to word-level adversarial
substitutions. According to the results of the auto-
matic and human evaluation, such an increase in
the computation expense is tolerable, considering
the significant improvement in adversarial sample

quality and attack success rate. Furthermore, a sim-
plified version of ValCAT, /-Many (See Table 4),
outperforms the best baseline model in all aspects,
including the number of queries.

S Related Work

Textual adversarial attacks have been intensively
studied (Wang et al., 2019; Zhang et al., 2020).
Early on, the character-level attack methods
(Ebrahimi et al., 2018; Gao et al., 2018; Li et al.,
2019) are widely used, but them would destroy
words and are very perceptible (Pruthi et al., 2019).
Word-level attacks are now in the spotlight, evolv-
ing from substitution based only on the properties
of individual words themselves (Zang et al., 2020;
Jin et al., 2020; Tan et al., 2020) to perturbing
words by multiple strategies with knowledge of the
context (Li et al., 2020;Garg and Ramakrishnan,
2020;Li et al., 2021). However, these works only
focus on context-sensitive substitution on single
word, with absence of many possible forms of per-
turbations. Limitations on single-word substitution
hinders further improvement in attack success rate
and fluency. Although, Zhang et al. 2019, Wang
et al. 2020 and Huang and Chang 2021 attempt
to construct adversarial samples from levels above
words by simply merge single-word, they all ig-
nore the interactions between words are in finding
important positions.

We propose ValCAT, which takes into account
the interactions between words in both ranking im-
portant spans and generating variable-length con-
textualized spans. By introducing Sliding Window,
ValCAT can find important spans. Based on the
mechanism of encoder-decoder, ValCAT can gen-
erate variable-length substitution candidates with
two perturbation approaches, Replace and Insert.

6 Conclusion

In this paper, we propose ValCAT, the first variable-
length contextualized adversarial attack based on
the encoder-decoder language model. ValCAT
considers the interaction between words for the
vulnerable-position ranking and extends the form
and the flexibility of the perturbation. Experimental
results on several datasets demonstrate the effec-
tiveness of our model, which outperforms baselines
in terms of attack success rate, adversarial example
quality, transferability, and robustness against ro-
bust training. A comprehensive human evaluation
further verifies the high quality of our generated
adversarial samples in reality.
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A Constraints

Perturbation Rate ~ Semantic Similarity

AG News 0.4 0.8
Yelp Polarity 0.4 0.8
IMDB 0.3 0.9
SNLI 0.6 0.6
MNLI 0.6 0.6
QNLI 0.6 0.6

Table 8: Specific values of constraints of the pertur-
bation rate and semantic similarity used in the main
experiments.

B Datasets

We employ three datasets for text classification
and three datasets for natural language inference as
described below. In our experiments, we randomly
sample 1000 records.

e AG News: a collection of news articles catego-
rized into 4 types: World, Sports, Business, and
Sci/Tech (Zhang et al., 2015).

e Yelp Polarity: positive and negative restaurant
reviews collected from yelp (Zhang et al., 2015).
e IMDB: a dataset of movie reviews for binary
sentiment classification (Maas et al., 2011).

e SNLI: a collection of human-written English sen-
tence pairs (Bowman et al., 2015). Each sentence
pair consists of a premise and a hypothesis, which
is necessary to determine whether it is entailment,
contradiction, or neutral.

e MNLI: a similar dataset to SNLI (Williams et al.,
2018), but from a variety of genres.

e ONLI: a version of SQuAD which has been con-
verted to a binary classification task (Wang et al.,
2018).

C Baselines.

We compare ValCAT with state-of-the-art word-
level black-box attacks:

e TextBugger: an attack model compounded by
five bug generation methods (Li et al., 2019). Such
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methods include character insertion, character dele-
tion, character swapping, homograph character re-
placement, and synonym replacement.

e TextFooler: classical adversarial attack algorithm
based on synonym substitution (Jin et al., 2020).
Candidate synonyms are the closest neighbors of
the replaced word in the counter-fitting word em-
bedding space. It limits the cosine similarity and
makes the POS consistent.

e BERT-Attack: a state-of-the-art contextualized
attack model using BERT to fill mask tokens (Li
etal., 2020). It serves as a representative of the sim-
ilar BERT-based algorithms, such as BAE (Garg
and Ramakrishnan, 2020) and CLARE (Li et al.,
2021).

D Performance of Encoder-Decoder
Models

We present the results of generating adversarial
spans by several language models in the TS5 fam-
ily in Table 9. T'5,4,4c and mT 5y, take a longer
time to generate adversarial span due to their larger
capacity. The higher perplexity of T5v1.1p4sc is,
we conjecture, resulted from its specifically differ-
ent structure. In short, 75y, is good enough for
adversarial span generation.

Algorithm Suct PPL| Sim?T Pert| GErr| Time]
T5pase 93.1 81.6 0950 11.6 0.11 0.052
T5iarge 90.3 84.0 0.948 12.7 0.12 0.069
T5v1.1pase 923 101.8 0946 124 0.36 0.055
M Bpase 942 84.6 0949 123 0.06 0.070

Table 9: Encoder-Decoder Language Model

E Properties of Transformations

We observe the properties of the transformations in
the successful adversarial samples from three per-
spectives: type of transformation, length of span,
and POS (Part-of-Speech) of span. Results shown
as follows:

1 2 3 4 5
Replaced Span 26.2% 35.8% 38.0% - -
Span for Replace 33.1% 35.0% 24.6% 6.4% 0.9%
Span for Insert  37.5% 35.3% 27.2% - -

Table 10: Transformation Length Proportion
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Replaced Span

Span for Replace

Span for Insert

ADJ: 7.6%
NOUN: 6.3%
VERB: 5.0%

ADV: 3.8%

VERB-ADV: 2.3%
AUX-ADV: 1.9%
ADJ-PUNCT: 1.5%
ADV-VERB: 1.5%
PRON-VERB: 1.4%
ADV-ADIJ: 1.3%

ADIJ: 8.4%
VERB: 6.7%
NOUN: 5.8%

ADV: 5.5%

ADIJ-PUNCT: 1.8%
ADV-ADIJ: 1.7%
AUX-ADV: 1.7%
VERB-ADV: 1.5%

NOUN-PUNCT: 1.4%
ADJ-NOUN: 1.4%

ADV: 12.4%
ADJ: 6.7%

NOUN: 2.2%
ADJ-NOUN-PUNCT: 1.9%
VERB: 1.9%
ADV-ADV: 1.6%
ADJ-PUNCT: 1.5%
VERB-ADV: 1.4%
PRON-VERB: 1.4%
ADV-PUNCT: 1.2%

Table 11: Transformation POS Proportion



