
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RL3: BOOSTING META REINFORCEMENT LEARNING
VIA RL INSIDE RL2

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta reinforcement learning (meta-RL) methods such as RL2 have emerged as
promising approaches for learning data-efficient RL algorithms tailored to a given
task distribution. However, they show poor asymptotic performance and struggle
with out-of-distribution tasks because they rely on sequence models, such as re-
current neural networks or transformers, to process experiences rather than sum-
marize them using general-purpose RL components such as value functions. In
contrast, traditional RL algorithms are data-inefficient as they do not use domain
knowledge, but do converge to an optimal policy in the limit. We propose RL3,
a principled hybrid approach that incorporates action-values, learned per task via
traditional RL, in the inputs to meta-RL. We show that RL3 earns greater cumu-
lative reward in the long term compared to RL2 while drastically reducing meta-
training time and generalizes better to out-of-distribution tasks. Experiments are
conducted on both custom and benchmark discrete domains from the meta-RL lit-
erature that exhibit a range of short-term, long-term, and complex dependencies.

1 INTRODUCTION

Reinforcement learning (RL) has been shown to produce effective policies in a variety of appli-
cations including both virtual (Mnih et al., 2015) and embodied (Schulman et al., 2017; Haarnoja
et al., 2018) systems. However, traditional RL algorithms have three major drawbacks: they can be
slow to converge, require a large amount of data, and often have difficulty generalizing to out-of-
distribution (OOD) tasks not practiced during training. These shortcomings are especially glaring
in settings where the goal is to learn policies for a collection or distribution of problems that share
some similarities, and for which traditional RL must start from scratch for each problem. For exam-
ple, many robotic manipulation tasks require interacting with an array of objects with similar but not
identical shapes, sizes, weights, materials, and appearances, such as mugs and cups. It is likely that
effective manipulation strategies for these tasks will be similar, but they may also differ in ways that
make it challenging to learn a single policy that is highly successful on all instances. Recently, meta
reinforcement learning (meta-RL) has been proposed as an approach to mitigate these shortcomings
by deriving RL algorithms (or meta-RL policies) that adapt efficiently to a distribution of tasks that
share some common structure (Duan et al., 2016; Wang et al., 2016).

While meta-RL systems represent a significant improvement over traditional RL in such settings,
they still require large amounts of data during meta-training time, can have poor asymptotic perfor-
mance during adaptation, and although they “learn to learn,” they often generalize poorly to tasks

Table 1: RL3 combines the strengths of meta-RL (e.g., RL2) and traditional RL. Like RL2, RL3 uses finite-
context sequence models to represent data-efficient RL algorithms, optimized for tasks within a specified distri-
bution. However, RL3 also includes a general-purpose RL routine that distills arbitrary amounts of data into op-
timal value-function estimates during adaptation. This improves long-term reasoning and OOD generalization.

RL RL2 RL3

Short-Term Efficiency x ✓ ✓
Long-Term Performance ✓ x ✓
OOD Generalization ✓ x ✓

(General Purpose) (Improved)
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not represented in the meta-training distribution. This is partly because they rely on black-box se-
quence models like recurrent neural networks or transformers to process experience data. These
models cannot handle arbitrary amounts of data effectively and lack integrated general-purpose RL
components that could induce a broader generalization bias.

Hence, we propose RL3, an approach that embeds the strengths of traditional RL within meta-RL.
Table 1 highlights our primary aims and the foremost insight informing our approach. The key
idea in RL3 is an additional ‘object-level’ RL procedure executed within the meta-RL architecture
that computes task-specific optimal Q-value estimates as supplementary inputs to the meta-learner,
in conjunction with sequences of states, actions and rewards. In principle, our approach allows
the meta-learner to learn how to optimally fuse raw experience data with summarizations provided
by the Q-estimates. Ultimately, RL3 leverages Q-estimates’ generality, ability to compress large
amounts of experiences into useful summaries, direct actionability, and asymptotic optimality to
enhance long-term performance and OOD generalization and drastically reduce meta-training time.

While Q-value estimates can be injected into any other meta-RL algorithm, for clarity of exposition,
we implement RL3 by injecting Q-value estimates into one of the most popular and easily understood
meta-RL algorithm, RL2 (Duan et al., 2016) (hence, the name RL3). However, it should be noted
that our baseline implementation of RL2 includes significant enhancements like using transformers
instead of LSTMs to improve long-context reasoning, in addition to incorporating numerous recom-
mendations from Ni et al. (2022) that have been shown to make recurrent model-free RL algorithms
like RL2 competitive with state-of-the-art meta-RL baselines like VeriBAD (Zintgraf et al., 2020).

The primary contribution of this paper is a proof-of-concept that injecting Q-estimates obtained via
traditional object-level RL alongside the typical experience histories within a meta-RL agent leads
to higher long-term returns and better OOD generalization, while maintaining short-term efficiency.
We further demonstrate that our approach can also work with an abstract, or coarse, representation
of the object-level MDP. We experiment with discrete domains that both reflect the challenges faced
by meta-RL and simultaneously allow transparent analysis of the results. Finally, we examine the
key insights that inform our approach and show theoretically that object-level Q-values are directly
related to the optimal meta-value function.

2 RELATED WORK

Although meta-RL is a fairly new topic of research, the general concept of meta-learning is decades
old (Vilalta & Drissi, 2002), which, coupled with a significant number of design decisions for
meta-RL systems, has created a large number of different proposals for how systems ought to best
exploit the resources available within their deployment contexts (Beck et al., 2023). At a high
level, most meta-RL algorithms can be categorized as either parameterized policy gradient (PPG)
models (Finn et al., 2017; Li et al., 2017; Sung et al., 2017; Al-Shedivat et al., 2018; Gupta et al.,
2018; Yoon et al., 2018; Stadie et al., 2018; Vuorio et al., 2019; Zintgraf et al., 2019; Raghu et al.,
2019; Kaushik et al., 2020; Ghadirzadeh et al., 2021; Mandi et al., 2022) or black box models (Duan
et al., 2016; Heess et al., 2015; Wang et al., 2016; Foerster et al., 2018; Mishra et al., 2018; Humplik
et al., 2019; Fakoor et al., 2020; Yan et al., 2020; Zintgraf et al., 2020; Liu et al., 2021; Emukpere
et al., 2021; Beck et al., 2022). PPG approaches assume that the underlying learning process is best
represented as a policy gradient, where the set of parameters that define the underlying algorithm
ultimately form a differentiable set of meta-parameters that the meta-RL system may learn to
adjust. The additional structure provided by this assumption, combined with the generality of policy
gradient methods, means that typically PPG methods retain greater generalization capabilities on
out-of-distribution tasks. However, due to their inherent data requirements, PPG methods are often
slower to adapt and initially train.

In this paper we focus on black box models, which represent the meta-learning function as a neural
network, often a recurrent neural network (RNN) (Duan et al., 2016; Heess et al., 2015; Wang et al.,
2016; Humplik et al., 2019; Fakoor et al., 2020; Yan et al., 2020; Zintgraf et al., 2020; Liu et al.,
2021) or a transformer (Mishra et al., 2018; Wang et al., 2021; Melo, 2022). There are also several
hybrid approaches that combine PPG and black box methods, either during meta-training (Ren et al.,
2023) or fine-tuning (Lan et al., 2019; Xiong et al., 2021). Using black box models simplifies the
process of augmenting meta states with Q-estimates and allows us to retain relatively better data effi-
ciency while relying on the Q-value injections for better long-term performance and generalization.
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Meta-RL systems may also leverage extra information available during training, such as task
identification (Humplik et al., 2019; Liu et al., 2021). Such ‘privileged information’ can of course
lead to more performant systems, but is not universally available. As our hypothesis does not rely
on the availability of such information, we expect our approach to be orthogonal to, and compatible
with, such methods. Black box meta-RL systems that do not use privileged information still vary in
several ways, including the choice between on-policy and off-policy learning and, in systems that
use neural networks, the choice between transformers (Vaswani et al., 2017) and RNNs (Elman,
1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014).

The most relevant methods to our work are end-to-end methods, which use a single function
approximator to subsume both learner and meta-learner, such as RL2 (Duan et al., 2016), L2L
(Wang et al., 2016), SNAIL (Mishra et al., 2018), and E-RL2 (Stadie et al., 2018), and methods
that exploit the formal description of the meta-RL problem as a POMDP or a Bayes-adaptive MDP
(BAMDP) (Duff, 2002). These methods attempt to learn policies conditioned on the BAMDP belief
state while also approximating this belief state by, for example, variational inference (VariBAD)
(Zintgraf et al., 2020; Dorfman et al., 2020), or random network distillation on belief states
(HyperX) (Zintgraf et al., 2021). Or, they simply encode enough experience history to approximate
POMDP beliefs (RL2) (Duan et al., 2016; Wang et al., 2016).

Our proposed method is an end-to-end system that exploits the BAMDP structure of the meta-RL
problem by spending a small amount of extra computation to provide inputs to the end-to-end learner
that more closely resemble important constituents of BAMDP value functions. Thus, the primary
difference between this work and previous work is the injection of Q-value estimates into the meta-
RL agent state at each meta-step, in addition to the state-action-reward histories. In this work, our
approach, RL3, is implemented by simply injecting Q-value estimates into RL2 alongside experience
history, although any other meta-RL algorithm can be used.

3 BACKGROUND AND NOTATION

In this section, we briefly cover some notation and concepts upon which this paper is built.

3.1 PARTIALLY OBSERVABLE MDPS

We use the standard notation defining a Markov decision process (MDP) as a tuple M =
⟨S,A, T,R⟩, where S is a set of states; A is a set of actions; T is the transition and R is the reward
function. A partially observable Markov decision process (POMDP) extends MDPs to settings with
partially observable states. A POMDP is described as a tuple ⟨S,A, T,R,Ω, O⟩, where S,A, T,R
are as in an MDP. Ω is the set of possible observations, and O : S × A× Ω → [0, 1] is an observa-
tion function representing the probability of receiving observation ω after performing action a and
transitioning to state s′. POMDPs can alternatively be represented as continuous-state belief-MDPs
where a belief state b ∈ ∆|S| is a probability distribution over all states. In this representation, a
policy π is a mapping from belief states to actions, π : ∆|S| → A.

3.2 REINFORCEMENT LEARNING

Reinforcement learning (RL) agents learn an optimal policy given an MDP with unknown dynamics
using only transition and reward feedback. This is often done by incrementally estimating the opti-
mal action-value function Q∗(s, a) (Watkins & Dayan, 1992), which satisfies the Bellman optimality
equation Q∗(s, a) = Es′ [R(s, a)+ γmaxa′∈A Q∗(s′, a′)]. In large or continuous state settings, it is
popular to use deep neural networks to represent the action-value functions (Mnih et al., 2015). We
denote the vector representing the Q-estimates of all actions at state s as Q(s), and after t feedback
steps, as Qt(s). Q-learning is known to converge asymptotically (Sutton & Barto, 2018), provided
each state-action pair is explored sufficiently. As a rough general statement, ||Qt(s) − Q∗(s)||∞
is proportional to ≈ 1√

t
, with strong results on the convergence error available (Szepesvári, 1997;

Kearns & Singh, 1998; Even-Dar et al., 2003). The theoretical objective in RL is to optimize the
value of the final policy i.e., the cumulative reward per episode, disregarding the data cost incurred
and the cumulative reward missed (or regret) during learning due to suboptimal exploration.
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Object-level 
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Figure 1: Overview diagram of RL3 . Black entities represent standard components from RL2, and purple
entities represent additions for RL3 . Mi is the current MDP; s is a state; r is a reward; ti and tτ are the amount
of time spent experiencing the current MDP and current episode, respectively; Qt

i is the Q-value estimate for
MDP i after t actions;∇J is the policy gradient for meta-training.

3.3 META REINFORCEMENT LEARNING

Meta-RL seeks action selection strategies that minimize regret in MDPs drawn from a distribution
of MDPs that share the same state and action spaces. Therefore, the objective in meta-RL is to max-
imize the cumulative reward over the entire interaction (or adaptation) period with an MDP, which
may span multiple episodes, in order to optimize the exploration-exploitation tradeoff. Formally,

J (θ) = EMi∼M

[ H∑
t=0

γtE(st,at)∼ρ
πθ
i
[Ri(st, at)]

]
(1)

where the meta-RL policy πθ is interpreted as a ‘fast’ or ‘inner’ RL algorithm that maps the experi-
ence sequence (s0, a0, r0, ..., st) within an MDP Mi to an action at using either a recurrent neural
network or a transformer network. ρπθ

i is the state-action occupancy induced by the meta-RL pol-
icy in MDP Mi, and H is the length of the adaptation period, or interaction budget. The objective
J (θ) is maximized using a conventional ‘slow’ or ‘outer’ deep RL algorithm, given the reformu-
lation of the interaction period with an MDP as a single (meta-)episode in the objective function,
which maximizes the cumulative reward throughout this period. We will use the term ‘experience
history’, denoted by Υ, to refer to the state-action-reward sequence within a meta-episode, which
spans across multiple episodes {τ0, τ1, ...τn}. Fig. 1 illustrates how these components interconnect.

Another way to conceptualize this problem is to recognize that the meta-RL problem may be written
as a meta-level POMDP, where the hidden variable is the particular MDP (or task) at hand, Mi,
which varies across meta-episodes. This framing, known as Bayesian RL (Ghavamzadeh et al.,
2015), leverages the fact that augmenting the task-specific state s with belief over tasks b(i) results
in a Markovian meta-state [s, b] for optimal action selection, a model known as the Bayes Adaptive
MDP (or BAMDP) (Duff, 2002). That is, this belief state captures all requisite information for the
purpose of acting. We will revisit this concept to develop intuition on the role of object-level Q-value
estimates in the meta-RL value function.

4 RL3

To address the limitations of black box meta-RL methods, we propose RL3, a principled approach
that leverages (1) the inherent generality of action-value estimates, (2) their ability to compress ex-
perience histories into useful summaries, (3) their direct actionability & asymptotic optimality, (4)
their ability to inform task-identification, and (5) their relation to the optimal meta-value function,
in order to enhance out-of-distribution (OOD) generalization and performance over extended adap-
tation periods. The central, novel mechanism in RL3 is an additional ‘object-level’ RL procedure
executed within the meta-RL architecture, shown in Fig. 1, that computes task-specific optimal Q-
value estimates Qt

i(st) and state-action counts as supplementary inputs to the meta-RL policy in
conjunction with the sequence of states, actions and rewards (s0, a0, r0, ..., st). The Q-estimates are
computed off-policy, and may involve model estimation and planning, for greater data efficiency.
The estimates and the counts are reset at the beginning of each meta-episode as a new task Mi is
sampled. In all subsequent text, Q-value estimates used as input entail the inclusion of state-action
counts as well. We now present a series of key insights informing our approach.
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a)

c)

b)

Figure 2: Sub-figure (a) shows a meta-episode in a shortest-path environment where the goal position (green cir-
cles) and the obstacles (black regions) may vary across tasks. In this meta-episode, after the meta-RL agent nar-
rows its belief about the goal position of this task (dark-green circle) having followed a principled exploration
strategy (τ0), it explores potential shorter paths in subsequent episodes (τ1, τ2, τ3, τ4). Throughout this pro-
cess, the estimated value-function Q̂∗ implicitly “remembers” the goal position and previous paths traversed in a
finite-size representation, and updates the shortest path calculation (highlighted in bold) using Bellman backups
when paths intersect. Sub-figures (b) and (c) illustrate the many-to-one mapping of object- and meta-level data
streams to Q-estimates, and thus their utility as compression and summarization mechanisms for meta-learning.

First, estimating action-values is a key component in many universal RL algorithms, and
asymptotically, they fully inform optimal behavior irrespective of domain. Strategies for optimal
exploration-exploitation trade-off are domain-dependent and rely on historical data, yet many explo-
ration approaches use estimated Q-values and some notion of counts alone, such as epsilon-greedy,
Boltzmann exploration, upper confidence bounds (UCB/UCT) (Auer, 2002; Kocsis & Szepesvári,
2006), count-based exploration (Tang et al., 2017), curiosity based exploration (Burda et al., 2019)
and maximum-entropy RL (Haarnoja et al., 2018). This creates a strong empirical case that using
Q-value estimates and state-action counts for efficient exploration has inherent generality.

Second, Q-estimates summarize experience histories of arbitrary length and order in one constant-
size vector. This mapping is many-to-one, and any permutation of transitions (⟨s, a, r, s′⟩ tuples) or
episodes in a history of experiences yield the same Q-estimates. Although this compression is lossy,
it still “remembers” important aspects of the experienced episodes, such as high-return actions and
goal positions (see Fig. 2) since Q-estimates persist across episodes. This simplifies the mapping the
meta agent needs to learn as Q-estimates represent a smaller and more salient set of inputs compared
to all possible histories with the same implication.

Third, Q-estimates are actionable. Estimated off-policy, they explicitly represent the optimal ex-
ploitation policy for the current task given the data insofar as the RL module is data-efficient, reliev-
ing the meta-RL agent from performing such calculations inside the transformer/RNN. Over time,
Q-estimates become more reliable and directly indicate the optimal policy whereas processing raw
data becomes more challenging. Fortunately, by incorporating Q-estimates the meta-RL agent can
eventually ignore the history in the long run (or towards the end of the interaction period) and simply
exploit the Q-estimates by selecting actions greedily.

Fourth, Q-estimates are excellent task discriminators and serve as another line of evidence vis-
à-vis maintaining belief over tasks. In a simple domain like Bernoulli multi-armed bandits (Duan
et al., 2016), Q-estimates and action-counts combined are sufficient for Bayes-optimal behavior even
without providing raw experience data – a result surprisingly unstated in the literature to the best
of our knowledge (see Appendix A.1). However, Q-estimates and action-counts may not always be
sufficient for Bayes-optimal beliefs1. In more complex domains, it is hard to prove the sufficiency
of Q-estimates regarding task discrimination. However, via empirical analysis in Appendix D, we
argue that i) it is highly improbable for two tasks to have similar Q∗ functions and ii) Q-estimates
tend to become accurate task predictors in just a few steps. This implies that the meta-agent may use
this finite summary for task inference rather than relying completely on arbitrarily long histories,
potentially contributing to enhanced performance over long adaptation periods.

It can be theoretically argued that since the meta agent is a BAMDP policy, it is meta-trained to
select greedy actions w.r.t. the BAMDP meta-value function and thus should not require construct-

1For example, in Gaussian multi-armed bandits, the sufficient statistics include the variance in rewards for
each action (see Appendix A.2).
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ing a task-specific plan internally. However, the optimality of the meta action-value function de-
pends on implicitly (or explicitly in some approaches (Humplik et al., 2019; Zintgraf et al., 2020;
Dorfman et al., 2020; Zintgraf et al., 2021)) maintaining a Bayes-optimal belief over tasks in the
transformer/RNN architecture. This may be challenging if the task distribution is too broad and the
function approximator is not powerful enough to integrate experience histories into Bayes-optimal
beliefs, or altogether impossible if there is a distribution shift at meta-test time. This latter condi-
tion is common in practice and is a frequent target use case for meta-RL systems. Incorporating
task-specific Q-estimates gives the agent a simple alternative (even if not Bayes-optimal) line of rea-
soning to translate experiences into actions. Incorporating Q-estimates thus reduces susceptibility
to distribution shifts since the arguments presented in this section are domain independent.

Finally, Q-estimates often converge far more quickly than the theoretical rate of 1√
t
, allowing them

to be useful in the short and medium term, since i) most real-world domains contain significant de-
terminism, ii) it is not necessary to estimate Q-values for states unreachable by the optimal policy,
and iii) optimal meta-RL policies may represent active exploration strategies in which Q-estimates
converge faster, or evolve in a manner leading to quicker task identification. This is intuitively ap-
parent in shortest-path problems, as illustrated in Fig. 2(a). In a deep neural network, it is difficult to
know exactly how Q-estimates will combine with state-action-reward histories when approximating
the meta-value function. However, as we show below, we can write an equation for the meta-value
function in terms of these constituent streams of information, which may explain why this function
is seemingly relatively easy to learn compared to predicting meta-values from histories alone.

4.1 THEORETICAL JUSTIFICATION

Here, we consider the interpretation of meta-RL as performing RL on a partially observable Markov
decision process (POMDP) in which the partially observable state factor is the identity of the object-
level MDP. Without loss of generality, all analysis assumes the infinite horizon setting. We will
denote meta-level entities, belonging in this case to a POMDP, with an overbar. For example, we
have a meta-level value function V̄ and a meta-level belief b̄.

First, we show a basic result, that the optimal meta-level value function is upper bounded by the
object-level Q-value estimates in the limit.

Proof: Given a task distribution M, then for state s, there exists a maximum object-level optimal
value function V ∗

max(s), corresponding to some MDP Mmax ∈ M, such that for all MDPs Mi ∈
M, V ∗

max(s) ≥ V ∗
i (s). The expected cumulative discounted reward experienced by the agent cannot

be greater than the most optimistic value function over all tasks, since V̄ ∗(b̄) is a weighted average
of individual value functions V πθ (s), which are themselves upper bounded by V ∗

max(s). Thus,

max
Mi∈M

V ∗
i (s) ≥ V̄ ∗(b̄) ∀s ∈ S. (2)

Next, we see that combining the asymptotic accuracy of Q-estimates and Equation equation 2 yields

lim
t→∞

max
a∈A,Mi∈M

Qt
i(s, a) ≥ V̄ ∗(b̄) ∀s ∈ S. (3)

Furthermore, it follows if the meta-level observation ω̄ includes Q-value estimates of the current
task Mi, it can be shown that as t → ∞, the optimal meta-value function approaches the optimal
value function for the current task, i.e., for any ϵ > 0, there exists κ ∈ N such that for t ≥ κ,∣∣∣max

a∈A

[
Qt

i(s, a)
]
− V̄ ∗(b̄)

∣∣∣ ≤ ϵ ∀s ∈ S. (4)

Equation 4 (proof in Appendix A.3) shows that for t ≥ κ, acting greedily w.r.t. Q∗
i leads to Bayes-

optimal behavior, and knowing the Bayes-optimal belief over tasks is not required, implying that the
experience history can be ignored at that point. Moreover, it follows from equation 4 that for t < κ,

V̄ ∗(b̄) = max
a∈A

[
Qt

i(s, a)
]
+ εi(Υ) (5)

where error εi(Υ) is the error in Q-value estimates. While this error will diminish as t → ∞, in the
short run, a function f(Υ) could be learned to either estimate the error or estimate V̄ ∗(b̄) entirely.

The better performance of RL3 could be explained by either error εi(Υ) being simpler to estimate,
or, the meta-agent behavior being more robust to errors in estimates of εi(Υ) when Q-estimates are

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

supplied directly as inputs, than to errors in a more complicated approximation of V̄ ∗(b̄). Moreover,
this composition benefits from the fact that the convergence rate for Q-estimates suggests a natural,
predictable rate of shifting reliance from f(Υ) to Qt

i(s) as t → ∞. However, we do not bake this
structure into the network and instead let it implicitly learn how much to use the Q-estimates.

Finally, we note that near-perfect function approximation of V̄ ∗(b̄) as t → ∞ reduces error in meta-
value function approximation for all preceding belief states, as meta-values for consecutive belief
states b̄ and b̄′ are linked through the Bellman equation for BAMDPs (see details in Appendix A.3)

V̄ ∗(b̄) = max
a∈A

[ ∑
Mi∈M

b̄(i)Ri(s, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
. (6)

This dependency helps meta-training in RL3 with temporal-difference based learning algorithms.
Without conditioning on Q-estimates, error in V̄ ∗(b̄) would instead increase as t → ∞, as the meta-
critic would be conditioned on a larger history, which could destabilize the meta-value learning for
all preceding belief states during meta-training.

4.2 IMPLEMENTATION

Implementing RL3 involves simply replacing each MDP in the task distribution with a corresponding
value-augmented MDP (VAMDP) and solving the resulting VAMDP distribution using RL2. Each
VAMDP has the same action space and reward function as the corresponding MDP. The value aug-
mented state ŝt ∈ S × Rk × Ik includes the object level state st, k real values and k integer values
for the Q-estimates (Qt(st, a)) and action counts (N t(st, a)) for each of the k actions.In practice,
we provide action advantages along with the max Q-value (value function) instead of Q-estimates.
When the object-level state space S is discrete, st needs to be represented as an |S|-dimensional
one-hot vector. Note that the value augmented state space is continuous. In the VAMDP transition
function, the object-level state s has the same transition dynamics as the original MDP, while the
dynamics of Q-estimates are a function of T , R, and the specific object-level RL algorithm used for
estimating Q-values. An episode of the VAMDP spans the entire interaction period with the corre-
sponding MDP, which may include multiple episodes of the MDP, as Q-estimates continue to evolve
beyond episode boundaries. In code, a VAMDP RL environment is implemented as a wrapper over a
given MDP environment. The pseudocode, additional implementation details and hyperparameters
for RL2 and RL3 are mentioned in Appendix B.

5 EXPERIMENTS

We compare RL3 to our enhanced implementation of RL2. In our implementation, we replace
LSTMs with transformers in both the meta-actor and meta-critic for the purpose of mapping ex-
periences to actions and meta-values, respectively. This is done to improve RL2 ’s ability to handle
long-term dependencies instead of suffering from vanishing gradients. Moreover, RL2-transformer
trains significantly faster than RL2-LSTM. Second, we include in the state space the total number
of interaction steps and the total number of steps within each episode during a meta-episode (see
Fig. 1). Third, we use PPO (Schulman et al., 2017) for training the meta actor-critic, instead of
TRPO (Schulman et al., 2015). These modifications and other minor-implementation details incor-
porate the recommendations made by Ni et al. (2022), who show that model-free recurrent RL is
competitive with other state-of-the-art meta RL approaches such as VeriBAD (Zintgraf et al., 2020),
if implemented properly. RL3 simply applies the modified version of RL2 to the distribution of
value-augmented MDPs explained in section 4.2. Within each VAMDP, our choice of object-level
RL is a model-based algorithm to maximize data efficiency – we estimate a tabular model of the
environment and run finite-horizon value-iteration using the model. Once again, we emphasize that
the core of our approach, which is augmenting MDP states with action-value estimates, is not inher-
ently tied to RL2 and is orthogonal to most other meta-RL research. VAMDPs can be plugged into
any base meta-RL algorithm with a reasonable expectation of improving it.

In our test domains, each meta-episode involves procedurally generating an MDP according to a
parameterized distribution, which the meta-actor interacts with for a fixed adaptation period, or
interaction budget, H . This interaction might consist of multiple object-level episodes of variable
length, each of which are no longer than a maximum task horizon. For a given experiment, each
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Table 2: Test scores (mean ± standard error) for Bandits domain and the †OOD variation.

Budget H RL2 RL3 RL3 (Markov)

100 76.9± 0.6 77.5± 0.5 75.2± 0.5
500 392.1± 2.5 393.2± 2.7 391.75± 2.6
500† 430.2± 2.8 434.9± 2.8 433.7± 2.8

approach is trained on the same series of MDPs. Each experiment is done for 3 seeds and the
results of the median performing model are reported. For testing, each approach is evaluated on
an identical set of 1000 MDPs distinct from the training MDPs. For testing OOD generalization,
MDPs are generated from distributions with different parameters than in training. We select three
discrete domains for our experiments, which cover a range of short-term, long-term, and complex
dependencies. These domains both reflect the challenges faced by meta-RL and simultaneously
allow transparent analysis of the results.

Bernoulli Bandits: We use the same setup described by Duan et al. (2016) with k = 5 arms. To test
OOD generalization, we generate bandit tasks by sampling success probabilities from N (0.5, 0.5).
We should note that this is an easy domain and serves as a sanity check to ensure that Q-value
estimates do not hurt RL3, causing inferior performance.

Random MDPs: We use the same setup described by Duan et al. (2016). The MDPs have 10
states, 5 actions, and task horizon 10. The rewards and transition probabilities are drawn from a
normal and a flat Dirichlet distribution (α = 1.0), respectively. OOD test MDPs use Dirichlet
α = 0.25. We should note that this domain is particularly challenging for RL3 due to the high
degree of stochasticity and thus the slower convergence rate of Q-estimates.

GridWorld Navigation: A set of navigation tasks in a 2D grid environment. We experiment with
11x11 (121 states) and 13x13 (169 states) grids. The agent starts in the center and needs to navigate
through obstacles to a single goal. The grid also contains slippery tiles, dangerous tiles and warning
tiles. See Fig. 4(a) for an example of a 13x13 grid. The state representation is coordinates (x, y).
To test OOD generalization, we vary parameters including the stochasticity of actions, density of
obstacles and the number of dangerous tiles. For this domain, we consider an additional variation of
RL3, called RL3-coarse where a given grid is partitioned into clusters of 2 adjacent tiles (or abstract
states), which are used solely for the purpose of estimating the object-level Q-values. Our goal is to
test whether coarse-level Q-value estimates are still useful to the meta-RL policy. The domains and
the abstraction strategy are described in greater detail in Appendices E and B.3, respectively.

6 RESULTS

In summary, we observe that beyond matching or exceeding the performance of RL2 in all test
domains i) RL3 shows better OOD generalization, which we attribute to the increased generality
of the Q-value representation, ii) the advantages of RL3 increase with longer interactions periods
and less stochastic tasks, which we attribute to the increased accuracy of the Q-value estimates, iii)
RL3 performs well even with coarse-grained object-level RL over abstract states with substantial
computational savings, showing minimal drop in performance in most cases, and iv) RL3 shows
faster meta-training.

Bandits: Fig 2 shows the results for this sanity-check domain. For H = 100 and H = 500,
both approaches perform comparably. However, the OOD generalization for RL3 is slightly better.
We also experiment with a Markovian version of RL3, where a feed-forward neural network is
conditioned only on the Q-estimates and action-counts, since those are sufficient for Bayes-optimal
behavior in this domain. As expected, the results are similar to regular RL3 .

MDPs: Figures 3a and 3b show the results for the MDPs domain. In Figure 3a, we see that for
relatively short budgets, H ≤ 500, both RL3 and RL2-transformer perform comparably on in-
distribution problems, with RL3 performing slightly better on OOD tasks. We suspect that, due
to the short budgets and highly stochastic domain, Q-estimates do not converge enough to be very
useful for RL3 . However, as the budget increases, we see that RL3 continues to improve while
RL2-transformer actually becomes worse and the performance gap on both in-distribution and OOD
tasks becomes significant. Overall, we see that RL3 preserves asymptotic scaling properties of tra-
ditional RL while simultaneously maintaining strong OOD performance. Moreover RL3 it is able to
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Figure 3: Results for the MDPs and GridWorlds domains. Figure 3a shows the average cumulative reward
(negligible standard error) earned as a fraction of the oracle policy for in-distribution (solid) and OOD (dashed)
tasks; Figure 3b shows the fraction of RL2-transformer meta-training iterations that RL3 requires (variance is
insignificant across seeds) to match RL2-transformer performance or fully converge, both as functions of the
adaptation period. Note the log horizontal axis on both plots. Figure 3c shows the average cumulative reward
(± standard error) earned by RL2, RL3 , and RL3-coarse agents on several variations of the GridWorlds domain.

learn meta-policies much more efficiently. Figure 3b shows the number of iterations of PPO RL3

takes to converge completely, as well as to match the performance of RL2-transformer, measured as
a fraction of the time it takes for RL2-transformer to converge. This advantage of RL3 is again most
pronounced for longer adaptation periods, but we still do observe significant meta-training speedup
on even moderate ones. Overall, it is clear that as adaptation periods grow, RL3 achieves nearer-to-
optimal policies in a fraction of the meta-training time and maintains better OOD generalization.

GridWorlds: Fig 3c shows the results for the GridWorld domain. On 11x11 grids with H = 250,
RL3 significantly outperforms RL2. On 13x13 grids with H = 350, the performance margin is
even greater, showing that while RL2-transformer struggles with a greater number of states, a longer
adaptation period and more long-term dependencies, RL3 can take advantage of the Q-estimates to
overcome the challenge. We also test the OOD generalization of both approaches in different ways
by varying certain parameters of the 13x13 grids, namely, increasing the obstacle density (DENSE),
making actions on non-water tiles deterministic (DETERMINISTIC), increasing the number of wet
‘W’ tiles (WATERY), increasing the number of danger ‘X’ tiles (DANGEROUS) and having the goal
only in the corners (CORNER). On all variations, RL3 continues to significantly outperform RL2. In a
particularly interesting outcome, both approaches show improved performance on the DETERMINIS-
TIC variation. However, RL3 gains 80% more points than RL2 , which is likely because Q-estimates
converge faster on this less stochastic MDP and therefore provide greater help to RL3 . Conversely,
in the WATERY variation, which is more stochastic, both RL2 and RL3 lose roughly equal number of
points. Overall, in each case, RL3-coarse significantly outperforms RL2-transformer. In fact, it per-
forms on par with RL3, even outperforming it on CORNER variation, except on the canonical 13x13
case and its DETERMINISTIC variation, where it scores about 90% of the scores for RL3. Finally,
we see similar meta-training speedups where RL3 requires just 50% and 30% of the total iterations
to match the performance of RL2-transformer on the 11x11 and 13x13 grids, respectively.

Fig. 4 shows a sequence of snapshots of a meta-episode where the trained RL3 agent is interacting
with an instance of a 13x13 grid. The first snapshot shows the agent just before reaching the goal
for the first time. Prior to the first snapshot, the agent had explored many locations in the grid. The
second snapshot shows the next episode just after the agent finds the goal, resulting in value estimates
being updated using object-level RL for all visited states. Snapshot 3 shows the agent consequently
using the Q-estimates to navigate to the goal presumably by choosing high-value actions. The agent
also explores several new nearby states for which it does not have Q-estimates. Snapshot 4 shows
the final Q-value estimates. A set of short videos of the GridWorld environment, showing both RL2

and RL3 agents solving the same set of problem instances, is included in the supplementary material.

Computation Overhead Considerations: As mentioned earlier, for implementing object-level RL,
we use model estimation followed by finite-horizon value-iteration to obtain Q-estimates. The com-
putation overhead is negligible for Bandits (5 actions, task horizon = 1) and very little for the MDPs
domain (10 states, 5 actions, task horizon 10). For 13x13 GridWorlds (up to 169 states, 5 actions,
task horizon = 350), RL3 takes approximately twice the computation time of RL2 per meta-episode.
However, RL3-coarse requires only 10% overhead while still outperforming RL2 and retaining more
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Figure 4: An RL3 policy on a selected meta-episode visualized using a sequence of snapshots. ‘S’ is the starting
tile, ‘G’ is the goal tile and the black circle shows the current position of the agent. Blue tiles marked ‘W’ are
wet tiles. Wet tiles always lead to the agent slipping to one of the directions orthogonal to the intended direction
of movement. Entering wet tiles yield an immediate reward of -2. Yellow tiles marked ‘!’ are warning tiles
and entering them causes -10 reward. Red tiles marked ‘X’ are fatally dangerous. Entering them ends the
episode and leads to a reward of -100. Black tiles are obstacles. White tiles yield a reward of -1 to incentive
the agent to reach the goal quickly. On all tiles other than wet tiles, there is a chance of slipping sideways with
a probability of 0.2. The object-level state-values vt(s) = maxaQ

t(s, a), as approximated by object-level RL,
is represented using shades of green (and the accompanying text), where darker shades represent higher values.

than 90% of the performance of RL3. This demonstrates the utility of state abstractions in RL3

for scaling. Finally, the meta-training sample efficiency demonstrated by RL3 translates directly to
wall-time efficiency as training is dominated by gradient computation, not value iteration during
data collection in PPO. Our implementation is available in the supplementary material.

7 LIMITATIONS AND CONCLUSION

Though it compares favorably to strong meta-RL approaches like RL2-transformer where applicable,
RL3 does have some limitations. First, it assumes the object-level decision-making model is an
MDP, which although a common assumption in the literature, may be challenged in practice. While
in principle we could extend RL3 to POMDPs using methods like point-based value iteration, this
has yet to be tested empirically. Second, RL3 relies on fast, potentially approximate methods for
object-level RL, and using value iteration complicates application to problems with continuous state
spaces. However, we speculate that a crude linear function approximation would suffice. Finally,
inference time is slightly slower at deploy time due to running object-level RL. However, the overall
training time is actually faster because of better meta-training efficiency. In fact, RL3 could enable
working with adaptation periods that are otherwise prohibitively long for many meta-RL approaches.

To conclude, in this paper, we introduced RL3, a principled hybrid approach that combines the
strengths of traditional RL and meta-RL and provides a more robust and efficient meta-RL algorithm.
We advanced intuitive and theoretical arguments regarding its suitability for meta-RL and presented
empirical evidence to validate those ideas. Specifically, we demonstrated that RL3 holds potential
to enhance long-term performance, generalization on out-of-distribution tasks and reducing meta-
training time. In future work, we plan to explore extending RL3 to handle continuous state spaces.
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A PROOFS

A.1 BAYES OPTIMALITY OF Q-VALUE ESTIMATES IN BERNOULLI MULTI-ARMED BANDITS

Given an instance of a Bernoulli multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up
to time T , we would like to show that the probability P (i|Υ1:T ) can be determined entirely from
Q-estimates QT

i and action-counts NT
i , as long as the initial belief is uniform or known.

In the following proof, we represent an instance i of K-armed Bandits as a K-dimensional vector
of success probabilities [pi1, ..., piK ], such that pulling arm k is associated with reward distribution
P (r = 1|i, k) = pik and P (r = 0|i, k) = (1− pik).

Let the number of times arm k is pulled up to time T be NT
ik, and the number of successes associated

with pulling arm k up to time T be qTik. Given that this is an MDP with just a single state and task
horizon of 1, the Q-estimate associated with arm k is just the average reward for that action, which
is the ratio of successes to counts associated with that action i.e., QT

ik =
qTik
NT

ik

. To reduce the clutter
in the notation, we will drop the superscript T for the rest of the subsection.

Now,

P (i|Υ1:T ) = αP (i) · P (Υ1:T |i) (7)

where α is the normalization constant, P (i) is the prior probability of task i (which is assumed to be
known beforehand), and Υ1:T is the sequence of actions and the corresponding rewards up to time
T . Assuming, without loss of generality, that the sequence of actions used to disambiguate tasks is
a given, P (Υ1:T |i) becomes simply the product of probabilities of reward outcomes up to time T ,
noting that the events are independent. Therefore,

P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

([rtk = 1]pik + [rtk = 0](1− pik)) (8)

=
∏

k=1:K

p
qik
ik · (1− pik)

Nik−qik (9)

=
∏

k=1:K

p
QikNik
ik · (1− pik)

Nik−QikNik (10)

Putting everything together,

P (i|Υ1:T ) = αP (i) ·
∏

k=1:K

p
QikNik
ik · (1− pik)

Nik−QikNik (11)

This equation proves that NT
i and QT

i are sufficient statistics to determine P (i|Υ1:T ) in this domain,
assuming that the prior over task distribution is known.

A.2 NON-BAYES OPTIMALITY OF Q-VALUE ESTIMATES IN GAUSSIAN MULTI-ARMED
BANDITS

Given an instance of a Gaussian multi-armed bandit MDP, Mi ∼ M, and trajectory data Υ1:T up
to time t, here we derive the closed-form expression of the probability P (i|Υ1:T ) and show that it
contains terms other than Q-estimates Qt

i and action-counts N t
i .

In the following proof, we represent an instance i of K-armed Bandits as a 2K-dimensional vector
of means and standard deviations [µi1, ..., µiK , σi1, ..., σiK ], such that pulling arm k is associated
with reward distribution P (r|i, k) = 1√

2πσik
exp( r−µik

σik
)2.

Let the number of times arm k is pulled up to time T be NT
ik. Given that this is an MDP with just

a single state and the task horizon is 1, the Q-estimate associated with arm k is just the average

14
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reward for that action Avg[rk] up to time T . To reduce the clutter in the notation, we will drop the
superscript T for the rest of the subsection.

As in the previous subsection, we now compute the likelihood P (Υ1:T |i).

P (Υ1:T |i) =
∏

k=1:K

∏
t=1:T

1√
2πσik

exp(
rtk − µik

σik
)2 (12)

Therefore, the log likelihood is

logP (Υ1:T |i) =
∑

k=1:K

∑
t=1:T

(rtk − µik)
2

σ2
ik

− log (2πσik)/2 (13)

=
∑

k=1:K

Nik
Avg[(rtk − µik)

2]

σ2
ik

−Nik log (2πσik)/2 (14)

=
∑

k=1:K

Nik
Avg[r2k]− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2 (15)

=
∑

k=1:K

Nik
(Var[rk] + Avg[rk]2)− 2µikAvg[rk] + µ2

ik

σ2
ik

−Nik log (2πσik)/2 (16)

=
∑

k=1:K

Nik
Var[rk] + (Qik)

2 − 2µikQik + µ2
ik

σ2
ik

−Nik log (2πσik)/2 (17)

Therefore, computing this expression requires computing the variance in rewards, Var[rk], associ-
ated with each arm up to time T , apart from the Q-estimates and action-counts. This proves that
Q-estimates and action-counts alone are insufficient to completely determine P (i|Υ1:T ) in Gaussian
multi-armed bandits domain.

A.3 OBJECT-LEVEL Q-ESTIMATES AND META-LEVEL VALUES

Proof of Equation 4: In standard meta-RL, the only observed variable in the POMDP state s̄t =
[st, i] at time t is the state st of the current MDP i.e., ω̄t = st, while the task identity i is hidden.
However, in RL3, ω̄t includes the vector of Q-estimates Qt

i(st) for the hidden task, which means that
the meta-level observation function Ō(ω̄|b̄, a) factors in the probability that a particular Q-esimate
will be observed following an action a given an initial belief b̄ state. (Note that we will use b̄(s̄) and
b̄(i) interchangeably since i is the only hidden variable in s̄). In practice, such Q-value estimates
provide excellent evidence (see Appendix D) for task identification. This allows for robust belief
recovery even if the initial belief is not Bayes-optimal (or altogether not maintained), especially as
the Q-estimates converge and stabilize in the limit, leading to two cases:

Case 1: The observed Q-values are unique to MDP Mi. In this case, the belief distribution will
collapse rapidly to zero for tasks j ̸= i, and thus maxa∈A Qi(s, a) = V̄ ∗(b̄).

Case 2: The observed Q-values are not unique. In this case, belief will not collapse to a single MDP.
However, belief will still reduce to zero for tasks not compatible with the observed Q-values. The
meta-level value function V̄ ∗(b̄), which will be an expectation over object-level values, will simplify
to maxa∈A Qi(s, a) since Q-values for all remaining tasks are identical, where i may represent any
of the (identical Q-valued) tasks with non-zero belief.

This proves equation 4. Note that in the limit, the task can be identified perfectly from the stream
of experiences as all state-action pairs are explored, and the meta-level value function becomes
equivalent to the optimal object-level value function of the identified (or current) task. However,
the above proof demonstrates that RL3 can infer this equivalency implicitly in the limit without
relying on the stream of experiences or identifying the task fully, and furthermore, directly model
the meta-value function in terms of the supplied object-level value function.
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Proof of Equation 6: We first write the Bellman equation for the optimal meta-level POMDP value
function in its belief-MDP representation:

V̄ ∗(b̄) = max
a∈A

[∑
s̄∈S̄

b̄(s̄)R̄(s̄, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
. (18)

However, given that in the POMDP state s̄ = [s, i], the only hidden variable is the task i, we can
re-write this as

V̄ ∗(b̄) = max
a∈A

[ ∑
Mi∈M

b̄(i)Ri(s, a) + γ
∑
ω̄∈Ω̄

Ō(ω̄|b̄, a)V̄ ∗(b̄′)
]
, (19)

where b̄(i) denotes the meta-level belief that the agent is operating in MDP Mi, and Ri(s, a) is the
reward experienced by the agent if it executes action a in state s in MDP Mi. Here, b̄′ may be
calculated via the belief update as in §3.1.

B ARCHITECTURE

B.1 RL2

Our modified implementation of RL2 uses transformer decoders (Vaswani et al., 2017) instead of
RNNs to map trajectories to action probabilities and meta-values, in the actor and the critic, respec-
tively, and uses PPO instead of TRPO for outer RL. The decoder architecture is similar to (Vaswani
et al., 2017), with 2 layers of masked multi-headed attention. However, we use learned position
embeddings instead of sinusoidal, followed by layer normalization. Our overall setup is similar
to (Esslinger et al., 2022).

For each meta-episode of interactions with an MDP Mi, the actor and the critic transformers look
at the entire history of experiences up to time t and output the corresponding action probabilities
π1...πt and meta-values V̄1...V̄t, respectively. An experience input to the transformer at time t
consists of the previous action at−1, the latest reward rt−1, the current state st, episode time step
tτ , and the meta-episode time step t, all of which are normalized to be in the range [0, 1]. In order to
reduce inference complexity, say at time step t, we append t new attention scores (corresponding to
experience input t w.r.t. the previous t−1 experience inputs) to a previously cached (t−1)× (t−1)
attention matrix, instead of recomputing the entire t × t attention matrix. This caching mechanism
is implemented for each attention head and reduces the inference complexity at time t from O(t2)
to O(t).

B.2 RL3

The input of the transformer in RL3 includes a vector of Q estimates (in practice, they are supplied as
the vector of advantage estimates (Q− maxaQ) along with the value function (maxaQ) separately)
and a vector of action counts at each step t for the corresponding state. As mentioned in Section
4.2, this is implemented in our code simply by converting MDPs in the problem set to VAMDPs
using a wrapper and running our implementation of RL2 thereafter. The pseudocode is shown in the
algorithm 1. The Markov version of RL3 uses a dense neural network, with two hidden layers of 64
nodes each, with the ReLU activation function.

For object-level RL, we use model estimation followed by value iteration (with discount factor
γ = 1) to obtain Q-estimates. The transition probabilities and the mean rewards are estimated using
maximum likelihood estimation (MLE), with Laplace smoothing (coefficient = 0.1) for transition
probabilities estimation. For unseen actions, rewards are assumed to be zero, and transitions equally
likely to other states. States are added to the model incrementally when they are visited, so that
value iteration does not compute values for unvisited states. Moreover, value iteration is carried out
only for iterations equal to the task horizon (which is 1, 10, 250, 350 for Bandits, MDPs, 11x11
GridWorld, 13x13 GridWorld domains, respectively), unless the maximum Bellman error drops
below 0.01.
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Algorithm 1 Value-Augmenting Wrapper for Discrete MDPs
procedure RESETMDP(vamdp)

vamdp.t← 0; vamdp.tτ ← 0
vamdp.N [s, a]← 0; vamdp.Q[s, a]← 0 ∀s ∈ S, a ∈ A
vamdp.rl← INITRL()
s = RESETMDP(vamdp.mdp)
return ONEHOT(s) ·Q[s] ·N [s]

procedure STEPMDP(vamdp, a)
s← mdp.s
r, s′ ← STEPMDP(vamdp.mdp, a)
d← TERMINATED(vamdp.mdp)
vamdp.t, vamdp.N [s, a], vamdp.tτ ← += 1
vamdp.Q← UPDATERL(vamdp.rl, s, a, r, s′, d)
if d or vamdp.tτ ≥ task horizon then

vamdp.tτ ← 0
s′ ← RESETMDP(vamdp.mdp)

return r, ONEHOT(s′) ·Q[s′] ·N [s′] ▷ Concatenate state, Q-estimates and action counts
procedure TERMINATED(vamdp)

return vamdp.t ≥ H

B.3 RL3-COARSE

During model estimation in RL3-coarse, concrete states in the underlying MDP are incrementally
clustered into abstract states as they are visited. When a new concrete state is encountered, its
abstract state ID is set to that of a previously visited state within a ‘clustering radius’, unless that
previous state is already part of a full cluster (determined by a maximum ‘cluster size’ parameter).
If multiple visited states satisfy the criteria, the ID of the closet one is chosen. If none of the visited
states that satisfy the criteria, then the new state is assigned a new abstract state ID, increasing the
number of abstract states in the model. It is worth noting that this method of deriving abstractions
does not take advantage of any structure in the underlying domain. However, this simplicity makes
it general purpose, efficient, and impartial, while still leading to excellent performance. For our
GridWorld domain, we chose a cluster size of 2 and a clustering radius such that only non-diagonal
adjacent states are clustered (Manhattan radius of 1).

The mechanism for learning the transition function and the reward function in the abstract MDP is
the same as before. For estimating Q-values for a given concrete state, value iteration is carried out
on the abstract MDP and the Q-estimates of the corresponding abstract state are returned.

C TRAINING

Figs. 5, and 6 show the training curves for MDPs, and GridWorld environments, respectively, across
3 random seeds. The results in the main text correspond to the median model. We ran the experi-
ments on Nvidia GeForce RTX 2080 Ti GPUs for context length ≤ 256 which took approximately
12-24 hours, and on Nvidia A100 GPUs for higher context lengths, which took 1-2 days.

D ADDITIONAL ANALYSIS

In this section, we show that Q-estimates, though imperfect, produce reasonable signals for task
identification. Here, we test this claim thoroughly with 3 analyses.

D.1 REQUIREMENTS FOR A UNIQUE Q∗-FUNCTION

Throughout, we assume fixed state space and action space. Below, we show that if the transition
function is fixed, then two Q∗-tables will be identical if and only if both reward functions are also
equal. First, we show that identical Q∗ functions imply identical reward functions. Given the
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Figure 5: Average meta-episode return vs PPO iterations for MDPs domain for different interaction budgets.

Figure 6: Average meta-episode return vs PPO iterations for GridWorld 11x11 (left) and 13x13 (right).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Bellman equations,

Q∗
1(s, a) = R1(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (20)

Q∗
2(s, a) = R2(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
2(s

′, a′) (21)

Substituting Q∗
2 = Q∗

1 in Equation equation 21, we get

Q∗
1(s, a) = R2(s, a) + γ

∑
s′

T (s, a, s′)maxa′Q∗
1(s

′, a′) (22)

Subtracting Equation equation 20 from Equation equation 22, we get R1(s, a) = R2(s, a). Thus,
(Q∗

1 = Q∗
2) ∧ (T1 = T2) =⇒ (R1 = R2).

Now, if two MDPs have the same reward and transition function, they are the same MDP and will
have the same optimal value function. So, (R1 = R2) ∧ (T1 = T2) =⇒ (Q∗

1 = Q∗
2).

Since encountering similar Q∗-tables is thus dependent on both transitions and rewards ‘balancing’
each other, the question is then for practitioners: How likely are we to get many MDPs that all
appear to have very similar Q∗-tables?

D.2 EMPIRICAL TEST USING MAX NORM

Given an MDP with 3 states and 2 actions, we want to find the probability that ||Q∗
1 −Q∗

2||∞ < δ,
where Q∗

1 and Q∗
2 are 6-entry (3 states × 2 actions) Q∗-tables. The transition and reward functions

are drawn from distributions parameterized by α and β, respectively. Transition probabilities are
drawn from a Dirichlet distribution, Dir(α), and rewards are sampled from a normal distribution,
N (1, β). In total, we ran 3 combinations of α and β, each with 50,000 MDPs, a task horizon of
10, and δ = 0.1. To get the final probability, we test all ((50, 000− 1)2)/2 non-duplicate pairs and
count the number of max norms less than δ.

Results: For α = 1.0, β = 1.0, we found the probability of a given pair of MDPs having duplicate
Q∗-table to be ϵ = 2.6 × 10−9. For α = 0.1, β = 1.0, which is a more deterministic setting, we
found ϵ = 4.6× 10−9. Further, with α = 0.1, β = 0.5, where rewards are more closely distributed,
we found ϵ = 1.1×10−7. Overall, we can see that even for a set of very small MDPs, the probability
of numerically mistaking one Q∗-table for another is vanishingly small.

D.3 PREDICTING TASK FAMILIES

The near uniqueness of Q∗-functions is encouraging, but max norm is not a very sophisticated
metric. Here, we test whether a very simple multi-class classifier (1 hidden layer of 64 nodes),
can accurately identify individual tasks based on their Q-estimates. Moreover, we track how the
classification accuracy improves as a function of the number of steps taken within the MDP as the
estimates improve. In this experiment, the same random policy is executed in each MDP for 50 time
steps. As before, our MDPs have 3 states and 2 actions.

We instantiate 10,000 MDPs whose transition and reward functions are drawn from the same distri-
bution as before: transitions from a Dirichlet distribution with α = 0.1 and rewards sampled from
a normal distribution N(1, 0.5). Thus, this is a classification problem with 10,000 classes. A priori,
this exercise seems relatively difficult given the number of tasks and the parameters chosen for the
distributions. Fig. 7 shows a compelling result given the simplicity of the model and the relative
difficulty of the classification problem. Clearly, Q-estimates, even those built from only 20 experi-
ences, provide a high signal-to-noise ratio w.r.t. task identification. And this is for a random policy.
In principle, the meta-RL agent could follow a much more deliberate policy that actively disam-
biguates trajectories such that the Q-estimates evolve in a way that leads to faster or more reliable
discrimination.
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Figure 7: The task-identification power of Q-estimates. Left: Fraction of δ-duplicates, with δ = 0.1, as a
function of time steps in a set of 5,000 random MDPs. Right: Accuracy of a simple multi-class classifier in
predicting task ID given Q-table estimates, as function of time step. Both figures are generated using the same
policy.

E DOMAIN DESCRIPTIONS

E.1 BERNOULLI MULTI-ARMED BANDITS

We use the same setup described by Duan et al. (2016). At the beginning of each meta-episode, the
success probability corresponding to each arm is sampled from a uniform distribution U(0, 1). To
test OOD generalization, we sample success probabilities from N (0.5, 0.5)

E.2 RANDOM MDPS

We use the same setup described by Duan et al. (2016). The MDPs have 10 states and 5 actions. For
each meta-episode, the mean rewards R(s, a) and transition probabilities T (s, a, s′) are initialized
from a normal distribution (N (1, 1)) and a flat Dirichlet distribution (α = 1), respectively. More-
over, when an action a is performed in state s, a reward is sampled from N (R(s, a), 1). To test
OOD generalization, the transition probabilities are initialized with Dirichlet α = 0.25.

Each episode begins at state s = 1 and ends after task horizon = 10 time steps.

E.3 GRIDWORLDS

A set of navigation tasks in a 2D grid environment. We experiment with 11x11 (121 states)
and 13x13 (169 states) grids. The agent always starts in the center of the grid and needs to
navigate through obstacles to a single goal location. The goal location is always at a mini-
mum of min goal manhat Manhattan distance from the starting tile. The grid also contains
slippery wet tiles, fatally dangerous tiles and warning tiles surrounding the latter. There are
num obstacle sets set of obstacles, and each obstacle set spans obstacle set len tiles,
in either horizontal or vertical configuration. There are num water sets set of wet regions and
each wet region always spans water set length, in either a horizontal or vertical configuration.
Entering wet tiles yields an immediate reward of -2. There are num dangers danger tiles and en-
tering them ends the episode and leads to a reward of -100. Warning tiles always occur as a set of 4
tiles non-diagonally surrounding the corresponding danger tiles. Entering warning tiles causes -10
reward. Normal tiles yield a reward of -1 to incentivize the agent to reach the goal quickly. On all
tiles, there is a chance of slipping sideways with a probability of 0.2, except for wet tiles, where the
probability of slipping sideways is 1.

The parameters for our canonical 11x11 and 13x13 GridWorlds are: num obstacle sets = 11,
obstacle set len = 3, num water sets = 5, water set length = 2, num dangers
= 2, and min goal manhat = 8. The parameters for the OOD variations are largely the same
and the differences are as follows. For DETERMINISTIC variation, the slip probability on non-wet
tiles is 0. For DENSE variation, obstacle set len is increased to 4. For WATERY variation,
num water sets is increased to 8. For DANGEROUS variation, num dangers is increased to
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Table 3: RL2 /RL3 Hyperparameters

Hyperparameter Value

Learning Rate (Actor and Critic) 0.0003 (Bandits, MDPs)
0.0002 (GridWorlds)

Adam β1, β2, ϵ 0.9, 0.999, 10−7

Weight Decay (Critic Only) 10−2

Batch size 32768
Rollout Length Interaction Budget (H)
Number of Parallel Envs Batch Size ÷H
Minibatch Size 4096
Entropy Regularization Coeff 0.1 with decay (MDPs)

0.04 (GridWorlds)
0.01 (Bandits)

PPO Iterations See training curves
Epochs Per Iteration 8
Max KL Per Iteration 0.01
PPO Clip ϵ 0.2
GAE λ 0.3
Discount Factor γ 0.99
Decoder Layers 2
Attention Heads 4
Activation Function gelu
Decoder Size (d model) 64

4. For CORNER variation, min goal manhat is set to 12, so that the goal is placed on one of the
corners of the grid.

There is no fixed task horizon for this domain. An episode ends when the agent reaches the goal
or encounters a danger tile. In principle, an episode can last through the entire meta-episode if a
terminal state is not reached.

When a new grid is initialized at the beginning of each meta-episode, we ensure that the optimal,
non-discounted return within a fixed horizon of 100 steps is between 50 and 100. This is to ensure
that the grid both has a solution and the solution is not trivial.
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