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Abstract

Vision language models have achieved impressive results
across various fields. However, adoption in remote sensing
remains limited, largely due to the scarcity of paired image-
text data. To bridge this gap, synthetic caption generation has
gained interest, traditionally relying on rule-based methods
that use metadata or bounding boxes. While these approaches
provide some description, they often lack the depth needed to
capture complex wide-area scenes. Large language models
(LLMs) offer a promising alternative for generating more de-
scriptive captions, yet they can produce generic outputs and
are prone to hallucination. In this paper, we propose a new
method to enhance vision-language datasets for remote sens-
ing by integrating maps as external data sources, enabling the
generation of detailed, context-rich captions. Additionally,
we present methods to measure and mitigate hallucinations in
LLM-generated text. We introduce fMoW-mm, a multimodal
dataset incorporating satellite imagery, maps, metadata, and
text annotations. We demonstrate its effectiveness for auto-
matic target recognition in few-shot settings, achieving supe-
rior performance compared to other vision-language remote
sensing datasets.

Introduction
In recent years, there have been significant advancements
in vision-language models, leading to powerful applications
across many fields (Zhang et al. 2024a; Long et al. 2022; Du
et al. 2022). However, adoption within the remote sensing
community has lagged, largely due to the limited availabil-
ity of paired data for remote sensing imagery and text. Re-
cently, researchers have started to address this gap by gener-
ating synthetic captions for remote sensing images (Khanna
et al. 2024; Liu et al. 2024; Zhang et al. 2024b). Tradition-
ally, rule-based methods leveraging metadata (Khanna et al.
2024) and bounding boxes (Liu et al. 2024) have been used,
but these approaches fall short when it comes to fully de-
scribing the complexity of wide-area remote sensing scenes.

The adoption of large language models (LLMs) offers
a promising alternative, as LLMs can potentially generate
more descriptive and contextually rich captions (Zhang et al.
2024b). Yet, LLM-generated text for remote sensing data of-
ten remains generic, and importantly, is prone to hallucina-
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The image depicts Mdantsane City Mall in Mdantsane, Eastern Cape, South 
Africa. The large shopping mall structure is prominently situated in the center, 
showcasing a rectangular layout with visible parking areas located mainly to 

the south and east. To the northeast, Nkqubela Hospital stands out with its 
distinct red-roofed buildings...

The scene depicts a large commercial area with a prominent, rectangular 
shopping center complex occupying the center. The building is surrounded by 
an extensive parking lot filled with numerous vehicles, arranged in organized 
rows. To the northeast, a cluster of red-roofed, rectangular structures suggest 

a residential or industrial complex…
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Figure 1: Comparison of captioning methods: Rule-based
captions are limited in detail. Unimodal LLM captions are
fluid but often generic. Wide-area scenes covering diverse
structures and objects require semantically rich descriptions.
We leverage the semantic density of maps to generate com-
prehensive and detailed captions.

tion. This issue of hallucination has yet to be thoroughly ex-
plored in the context of vision-language dataset for remote
sensing, where accurate and detailed scene descriptions are
important for data curation.

In this paper, we propose a new approach for curating
vision-language datasets for remote sensing by integrating
external sources of information, such as maps and meta-
data. Maps offer a rich source of contextual information,
including labels and segmentation maps. Using these exter-
nal sources, we introduce a method to generate more com-
prehensive and detailed captions for remote sensing images
than existing methods allow (Figure 1).

To address the issue of hallucinations, we present meth-
ods to measure and mitigate hallucination in LLM-generated
captions. Additionally, we introduce fMoW-mm, a new
multimodal dataset (built upon fMoW (Christie et al. 2018)),
which includes satellite imagery, maps, metadata, and text
annotations. Finally, we demonstrate the effectiveness of



Dataset Name Captioning Method Caption Quality External Info

RSVQA (Lobry et al. 2020) Map data rules-based Focuses on reasoning Maps (OSM)

Skyscript (Wang et al. 2023) Map data rules-based Rigid and limited to OSM tags Maps (OSM)

DiffusionSAT (Khanna et al. 2024) Metadata rules-based Rigid with details limited to metadata Metadata

RemoteCLIP (Liu et al. 2024) Bounding box rules-based Rigid with details limited to bounding box objects None

ChatEarthNet (Yuan et al. 2024) LLM-based Fluid sounding with details limited to landcover Landcover (WorldCover)

RS5M (Zhang et al. 2024b) Web-filtered, LLM-based Coarse detail with focus on central objects None

fMoW-mm (Ours) Multimodal LLM-based Fluid sounding with comprehensive, specific details Metadata + maps (OSM)

Table 1: Overview of various vision-language remote sensing datasets.

fMoW-mm in automatic target recognition under few-shot
conditions, showcasing the potential of this dataset for en-
hancing remote sensing applications with limited labeled
data. Our contributions are as follows:
• We introduce a novel dataset curation method that lever-

ages external data sources, specifically maps, for en-
hanced language descriptions of remote sensing images.

• We present fMoW-mm, a comprehensive multimodal
dataset cross-referenced with fMoW, consisting of satel-
lite imagery, map, metadata, and text annotations.

• We explore methods to measure and mitigate hallucina-
tions in LLM-generated captions for remote sensing.

• We demonstrate the utility of fMoW-mm for automatic
target recognition in limited-label scenarios.

Related Work
Vision-Language Datasets for Remote Sensing
Although large vision-language datasets are less common
in the remote sensing domain, several have been developed
in recent years. We review six existing datasets in Table 1.
Datasets that rely on rules-based captions, such as RSVQA
(Lobry et al. 2020), Skyscript (Wang et al. 2023), Diffu-
sionSAT (Khanna et al. 2024), and RemoteCLIP (Liu et al.
2024), often produce rigid captions with limited detail. The
content is constrained by the external information fed into
the rules-based frameworks, such as OpenStreetMap (OSM)
data for RSVQA and Skyscript, metadata for Diffusion-
SAT, and bounding boxes for RemoteCLIP. ChatEarthNet
(Yuan et al. 2024) and RS5M (Zhang et al. 2024b) lever-
age LLMs, resulting in more fluid sounding captions. How-
ever, ChatEarthNet captions primarily describe landcover,
while RS5M captions, generated using BLIP-2 (Li et al.
2023), contain coarse details. RS5M also includes internet-
scraped image-text data, often centered on a single object,
which may not represent typical remote sensing images.
We address these shortcomings by leveraging a multimodal
LLM (GPT-4o) with multiple sources of external informa-
tion (maps and metadata) to generate comprehensive, de-
tailed, and fluid captions for complex remote sensing scenes.

Hallucination Metrics and Mitigation Strategies
Measuring and mitigating hallucinations in LLM-generated
captions is critical. Existing hallucination metrics include

statistical, model-based, and vision-language measures (Ji
et al. 2023). Statistical metrics like ROUGE (Lin 2004),
BLEU (Papineni et al. 2002), and PARENT (Dhingra
et al. 2019) assess hallucinations based on n-gram over-
laps. Model-based metrics include Information Extraction
(Singh 2018), QA-based methods (Deutsch, Bedrax-Weiss,
and Roth 2021), Natural Language Inference (Dušek and
Kasner 2020), and Faithfulness Classification (Liu et al.
2022), and LM-based approaches (Filippova 2020). How-
ever, many rely on task-specific datasets or LLM access,
which may not be available. Metrics specific to vision-
language hallucinations are very scarce (Rohrbach et al.
2019). To address the lack of suitable metrics, we propose a
statistical metric inspired by BLEU precision that uses OSM
tags as source text to measure hallucination rates.

LLM hallucination mitigation strategies include data-
based, modeling-based, and post-processing methods (Ji
et al. 2023). Data-based strategies include caption ranking
or filtering and information augmentation with synthetic or
external data. Modeling techniques include planning and
sketching (Wang et al. 2021), reinforcement learning (Uc-
Cetina et al. 2022), multi-task learning (Weng et al. 2020),
and controllable generation (Rashkin et al. 2021; Wu et al.
2021). Post-processing focuses on correcting hallucinations
after captions are generated. Without direct LLM access re-
quired by many modeling methods, we mitigate hallucina-
tions using data-based strategies (external data augmenta-
tion) and post-processing techniques (prompt ensembling).

Multimodal Dataset Curation
Figure 2 outlines the fMoW-mm curation process: 1) Gather
satellite images and metadata from fMoW-rgb, 2) Use
bounding box metadata to perform an OSM Mapbox query
and retrieve map tiles, 3) Input satellite images, maps, and
metadata into GPT-4o to generate captions, 4) Combine
these elements to create fMoW-mm. Each step is detailed
in the following subsections.

Functional Map of the World (fMoW-rgb)
The fMoW-rgb dataset consists of 83,412 remote sensing
images that feature objects in 63 categories (Christie et al.
2018). Each image comes with corresponding metadata such
as category label, latitude, longitude, timestamp, ground
sampling distance (GSD), and bounding box.



Figure 2: fMoW-mm data curation pipeline

OpenStreetMap (OSM) Tile Retrieval
We use the bounding box coordinates from the fMoW-rgb
metadata to query the corresponding OSM Static Image tiles
through the Mapbox API. Map styles are customized using
the online Mapbox studio.

Caption Generation with GPT-4o
To generate captions, we use the GPT-4o API from Ope-
nAI, which accepts visual and text inputs. For each sample,
we input the fMoW-rgb satellite image, metadata and OSM
tile. The input metadata includes the category label, location
(city, state/region, country), latitude, longitude, and GSD.
We prompt GPT-4o to describe the remote sensing scene
and to include landmarks, relative positions, sizes, colors,
and quantities, while leveraging the metadata and map for
context. Other LLMs, including open-source options, can be
substituted for GPT-4o, as long as they accept visual inputs.

Multimodal Functional Map of the World
(fMoW-mm)
We combine the fMoW-rgb satellite image and metadata,
the OSM tile, and the GPT-4o generated caption to create
83,412 tuples of {satellite, metadata, map, text}. Figure 3
shows a sample from the fMoW-mm dataset. The full dataset
is available at https://bit.ly/fMoW-mm.

Hallucination Metric
Hallucinations often occur when the LLM infers incorrect
landmarks during caption generation. To quantify these hal-
lucinations, we compute the false discovery rate (FDR),
inspired by BLEU precision, which measures the propor-
tion of false positives in the generated text. Unlike BLEU,
which evaluates n-gram overlaps, we calculate precision
over variable-length proper nouns and define FDR as 1 −
precision:

FDR = 1−
∑

c∈C
1R(c)

K
(1)

where the candidate list C = [c1, c2, ..., cK ] is an array of K
proper nouns, and the reference list R = [r1, r2, ..., rM ] is

an array of M proper nouns. The indicator function 1R(c) =
1 if c ∈ R and 0 otherwise. FDR reflects the proportion of
false positives among all predicted positives, quantifying the
rate of hallucinations in the generated (candidate) captions.

Experiments
We perform ablations to evaluate how components of our
curation pipeline affect hallucination rates (FDR) and mea-
sure the percentage of uncertain words as a proxy for LLM
uncertainty. We then demonstrate fMoW-mm’s effectiveness
in enhancing few-shot object detection performance.

Ablations
• Map Resolution: We vary the resolution of the OSM in-

put to GPT-4o, considering {256, 512, 1024}.
• Map Types: We explore four map variations:

– All Labels: Includes all available labels on the map.
– Landmarks-Only: Includes only landmark labels, ex-

cluding street names.
– Streets-Only: Includes only street names, excluding

landmark labels.
– No Labels: Displays the segmentation map without

any text labels.

• Prompt Ensembling: We generate multiple prompts for
the same question and aggregate the responses to analyze
convergence. We experiment with {1, 3, 5} prompts.

Figure 4 shows that increasing map resolution reduces
hallucination rates and uncertain word percentages, high-
lighting the importance of map legibility. We use a 1024 ×
1024 resolution for fMoW-mm. While further increases in
resolution may offer additional benefits, we leave this ex-
ploration for future work due to computational constraints.

Adding text labels, such as landmarks and street names,
predictably increases hallucination rates. The inclusion
of street names (e.g., streets-only, all-labels) results in a
more pronounced increase, likely because non-horizontally
aligned street names introduce ambiguity that leads to hallu-
cinations. Landmark names, which are consistently horizon-
tal, cause fewer issues. Captions generated without labels
(i.e., no-label) achieve the lowest hallucination rates but are
often overly generic, with a high rate of uncertain word us-
age. For the fMoW-mm dataset, we selected the landmarks-
only configuration as it strikes a good balance, minimizing
hallucinations while maintaining reasonable specificity.

Prompt ensembling did not result in noticeable improve-
ments. We suspect that repeated hallucinations across re-
sponses may increase overlap, propagating errors into the
final captions. For fMoW-mm, we aggregate responses from
three prompts, yielding the lowest FDR.

Few-Shot Object Detection with CLIP
We continually pretrain the CLIP (Radford et al. 2021) ViT-
L/14 model using the fMoW-mm dataset and evaluate the
learned visual representation on few-shot object detection
(Bou et al. 2024). The model was continually trained for



Satellite Image Metadata
The image depicts an area in Watford, 
England, near the coordinates 51.65 

latitude and -0.39 longitude. The scene 
shows a railway bridge crossing over a 
river, with a nearby retail area, Arches 
Retail Park, to the north. The bridge is 
surrounded by dense greenery, likely 

part of Oxhey Dell to the south. Several 
large buildings are visible, including a 

B&Q and The Range to the north, and a 
Mercedes Benz dealership to the east. A 

parking area is evident, filled with 
numerous vehicles. The image was 

captured on February 18, 2016, with a 
spatial resolution of 0.53 meters.

Map Caption

Figure 3: A sample from the fMoW-mm dataset. The generated caption accurately incorporates information from the
satellite image, map, and metadata.

(b) Map type ablation(a) Map resolution ablation

(c) Prompt ensembling ablation

Figure 4: Ablations. (a) Map Resolution: Higher resolu-
tion reduces hallucination rates and uncertainty in generated
captions. (b) Map Types: Using landmarks-only gives the
best balance, reducing hallucinations while limiting uncer-
tainty. (c) Prompt Ensembling: Combining captions from
multiple prompts did not significantly impact the metrics,
however increasing from 3 to 5 prompts may result in re-
peated hallucinations that propagate into the final caption.

50 epochs with a batch size of 125. We compare perfor-
mance with vision-language baselines: CLIP, OpenCLIP,
GeoRSCLIP, and RemoteCLIP.

Table 2 shows the mAP50 scores for 5, 10 and 30-shot de-
tection on the DIOR dataset (Li et al. 2020), averaged over
5 splits. Our model demonstrates improved performance
across all n-shots, showing its viability for data-scarce sce-
narios. Although the fMoW-mm dataset is much smaller
than the datasets used for GeoRSCLIP (RS5M, ~5M) and
RemoteCLIP (~150k), it achieves superior performance,
highlighting the benefits of increased semantic density in the

Backbone 5-shot 10-shot 30-shot

CLIP (Radford et al. 2021) 0.1447 0.1872 0.1810

OpenCLIP (Cherti et al. 2023) 0.1477 0.1863 0.1804

GeoRSCLIP (Zhang et al. 2024b) 0.1401 0.1791 0.1815

RemoteCLIP (Liu et al. 2024) 0.1571 0.1893 0.1903

Ours 0.1574 0.1902 0.1972

Table 2: mAP50 scores for 5, 10, and 30-shot object detec-
tion on the DIOR dataset using various visual backbones
with ViT-L/14, averaged across 5 splits.

generated captions. To isolate the impact of the dataset, com-
parisons are limited to CLIP models.

Conclusion
In this work, we explored methods to measure and miti-
gate hallucinations in captions describing remote sensing
imagery. Previous approaches to caption generation have of-
ten resulted in rigid and generic descriptions. Our approach
enhances vision-language datasets in remote sensing by inte-
grating maps as external data sources, enabling the creation
of more detailed and contextually rich captions. Through the
introduction of fMoW-mm—a multimodal dataset extending
the fMoW dataset with satellite imagery, maps, metadata,
and text annotations—we demonstrate a reduced rate of hal-
lucinations and improved performance in automatic target
recognition under few-shot conditions.
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