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Abstract

Identifying and estimating a causal effect is a fun-
damental task when researchers want to infer a
causal effect using an observational study with-
out experiments. A conventional assumption is
the strict positivity of the given distribution, or
so called positivity (or overlap) under the uncon-
founded assumption that the probabilities of treat-
ments are positive. However, there exist many en-
vironments where neither observational data ex-
hibits strict positivity nor unconfounded assump-
tion holds. In this work, we examine the graphical
counterpart of the conventional positivity condi-
tion so as to license the use of an identification
formula without strict positivity. In particular, we
explore various approaches, including analysis in
a post-hoc manner, do-calculus, Q-decomposition,
and algorithmic, to yielding a positivity condition
for an identification formula. We relate these ap-
proaches, providing a comprehensive view.

Introduction The causal effect of a set of treatment vari-
ables X on a disjoint set of outcome variables Y is said
to be identifiable from a causal graph G if the quantity
Px(y) = P (y | do(x)) can be uniquely computed from
any positive distribution over the observed variables [10, 9].
One simple, widely adopted identification condition is the
adjustment criterion (backdoor criterion [5]; g-computation
[8]). It yields the following form of the formula for Px(y)

Px(y) =
∑

z P (y | x, z)P (z), (1)

where Z is an admissible set. Here, positivity P (x | z) > 0
is assumed to license the use of the above formula for the
causal effect. In the context of estimating average treatment
effect, Hernán and Robins [2] state that, for each value of
the covariate in the population, there are some subjects that
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Figure 1: (a) Napkin graph; (b) Anchor graph

received the treatment—i.e., P (X | z) > 0 for all z with
P (z) ̸= 0. With all individuals receiving the same treatment,
it would be impossible to estimate the causal effect from
observed data [2, 1]. This leads to the original positivity
condition for the adjustment:

∀z(P (z) = 0 ∨ P (x | z) > 0), (2)

which we will denote by adj(x;Z). In this study, we inves-
tigate the graphical equivalent of the conventional positivity
condition to allow the use of identification formulas without
requiring strict positivity P (V) > 0.

Contributions (i) We provide a comprehensive view of
eliciting a positivity condition over an observational distri-
bution for an identifiable causal query given an arbitrary
causal graph. (ii) In particular, we offer positivity conditions
for do-calculus and generalized Q-decomposition, which
are the main drivers of sound and complete identification
algorithms, providing a foundation for obtaining positivity
for causal effect identification. (iii) We devise an algorith-
mic approach to eliciting positivity through incorporating
a relaxed version of generalized Q-decomposition into an
existing identification algorithm. We establish a connection
to post-hoc analysis of positivity1.

There are two ways to verify if a given causal graph G is
identifiable over the strict positivity P (V): (i) do-calculus

1This work outlines our recently accepted manuscript [3].
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[6] and (ii) Q-decomposition [11]. We utilize these two
methods to devise more generalized and principled ways
of validating identification with relaxed positivity condi-
tions. To begin with, we can informally examine a positivity
condition under which the identification formula itself is
well-defined.

Post-hoc Approach to Positivity We introduce the con-
cept of well-definedness of a formula through a causal
diagram called Napkin (Fig. 1a) [7] where its formula is
Px(y) =

∑
w P (y,x|r,w)P (w)∑
w P (x|r,w)P (w) . Based on this formula, we con-

sider the (1) numerator and (2) denominator separately. If
the denominator is zero, the formula is undefined. We derive
the positivity condition as follows:

∃r
∑

w P (y,x|r,w)P (w)∑
w P (x|r,w)P (w) ≥ 0 ⇐ ∃r(① ≥ 0 ∧ ② > 0),

where ① and ② is a numerator and denominator, respectively.
Each condition can be expressed as

① ≥ 0 ⇐ adj(r;W ),

② > 0 ⇐ adj(r;W ) ∧ ∃w(P (x | r, w)P (w) > 0)

⇐ adj(r;W ) ∧ ∃w(P (x | r, w) > 0 ∧ P (w) > 0)

⇐ adj(r;W ) ∧ ∃w(P (x, r, w) > 0)

⇐ adj(r;W ) ∧ P (x, r) > 0.

Hence, the sufficient condition for the well-definedness of
the formula is ∃r

(
adj(r;W )∧P (x, r) > 0

)
. While it is true

that the positivity condition derived directly from a formula
ensures that the formula is well-defined, yet its validity
is unclear for now since the formula is derived under strict
positivity, and there might be some conditions that cannot be
read off from the formula. We formally provide the validity
of post-hoc analysis in the extended version [3].

Positivity for Do-calculus We consider developing a gen-
eral approach for deriving a positivity condition by exam-
ining the conditions for the application of do-calculus [6].
Pearl [6] implicitly stated that a causal effect is identifiable
from any P (V) > 0 in a model characterized by a graph
G if there exists a finite sequence of transformations, each
conforming to one of the three rules of do-calculus. How-
ever, we can relax the positivity conditions for do-calculus
taking advantage of the results from [4, 12].

Proposition 1. Let G be the directed acyclic graph (DAG)
associated with a causal model, and let P (·) be the proba-
bility distribution induced by the model. Then,

Rule 1: Px(y | z,w) = Px(y | w) if
(Y ⊥⊥ Z | W)(G\X) and Px(z,w) > 0

Rule 2: Px,z(y | w) = Px(y | z,w) if
(Y ⊥⊥ Z | W)(G\X)Z and Px(z,w) > 0

Rule 3: Px,z(y | w) = Px(y | w) if
(Y ⊥⊥ Z | W)(G\X)

Z(W)
and Px(w) > 0.

For instance, we derive the condition for Napkin:

Px(y) = Pw,r,x(y)

= Pw,r(y | x) if Pw,r(x) > 0

= Pw,r(y, x)/Pw,r(x) if Pw,r(x) > 0

= Pr(y, x)/Pr(x)

=
∑

w′ P (y,x|r,w′)P (w′)∑
w′ P (x|r,w′)P (w′) . if adj(r;W )

This derivation eventually yields the same result as the one
from the post-hoc analysis.

Relaxed Q-decomposition We modify Q-decomposition
[11] so that it does not rely on the strict positivity. The
intuition behind the generalization is that the product of
fractions often can be shortened by canceling out terms de-
pending on the topological order. We illustrate an example in
Fig. 1b. Here, Q[H] is factorized as Q[H] = Q[H1] ·Q[H2]
where H1 = {V1, V2, V4, V6, V7} and H2 = {V3, V5}. De-
noting Q[H⪯i] as Qi for brevity, if Q[H] = Q7 > 0, then
Q[H1] =

Q7

Q6
· Q6

Q5
· Q4

Q3
· Q2

Q1
· Q1

Q0
and Q[H2] =

Q5

Q4
· Q3

Q2

by [11, Lemma. 4]. Since Q6 and Q1 can be canceled out,
we can write Q[H1] =

Q7

Q5
· Q4

Q3
· Q2

Q0
. We show that this

expression is valid if Q5 > 0, and further show that it is still
possible to identify Q[H1] when some of the denominators
are 0, i.e., Q5 = 0 or Q3 = 0, relaxing the strict positivity
condition of Q[H] > 0 in Tian and Pearl [11].

Theorem 1. Given H ⊆ V, let H′ ∈ cc(G[H]) where
IG[H],≺(H

′) = {(ld, rd)}Td=1 and cc(·) is c-components.
Then, the following holds: (i) If Q[H⪯lT−1] > 0, then

Q[H′] =
∏T

d=1
Q[H⪯rd ]

Q[H⪯ld−1]
. (ii) If Q[H⪯rm ] = 0 and

Q[H⪯lm−1] > 0 for some m, then Q[H′] = 0.

This generalizes Tian and Pearl [11] where irrelevant
c-factors can be canceled out taking the positivity of
Q[H⪯lT−1]. Further, even when such positivity assumption
is violated, still it provides a condition where the c-factor
is identified as zero. In Fig. 1b, our theorem states that
Q[H1] =

Q7

Q5
· Q4

Q3
· Q2

Q0
if Q5 > 0, and Q[H2] =

Q5

Q4
· Q3

Q2
if

Q4 > 0. If Q4 = 0 and Q3 > 0, Q[H1] = 0. Similarly, if
Q2 = 0 then Q[H1] = 0. On the other hand, if Q4 > 0 and
Q5 = 0, we cannot make a conclusion on Q[H1].

This characterization of Q-decomposition with respect to
positivity allows us to construct an identification algorithm
named IDENTIFY+, which simultaneously returns a positiv-
ity condition implied by the resulting identification formula.
In the extended version of this paper [3], we formally present
IDENTIFY+ and provide its soundness.

Conclusion We offer a thorough approach to establishing
a positivity condition essential for identifying causal effects
in graphical models.
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