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ABSTRACT

Multi-Source Multi-Modal Domain Adaptation (MSM2DA) is a method that
leverages data from multiple sources and modalities to train machine learning
models capable of generalizing well across various domains. Existing MSM2DA
methods mostly use structural semantic alignment by visual data to enhance the
correlation between different modality data, while neglecting the low-frequency
perceptual shifts in visual data that hinder cross-modal fusion. However, visual
data are particularly sensitive to domain shifts including low-level semantics such
as style and illumination variations. To handle this problem, we propose Phase-
guided Perceptual Alignment (PGPA) to align the visual styles by transferring
low-frequency spectral components from target to source images while preserving
high-frequency semantic structures. Specifically, PGPA decomposes images into
amplitude and phase spectra in the Fourier domain, where the amplitude captures
style-related low-level statistics and the phase retains high-level structural seman-
tics. By selectively blending the amplitude of the target image with the phase
of the source image, our method improve diversity and ensures domain-invariant
style adaptation without distorting critical semantic details. Furthermore, we pro-
vide a bound proof that formalizes the effectiveness of our approach, demonstrat-
ing that PGPA guarantees improved cross-domain generalization within a speci-
fied bound and ensuring theoretical validity. Extensive experiments demonstrate
that our approach significantly improves cross-domain generalization tasks.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) Wilson & Cook (2020) aims to transfer knowledge from a
labeled source domain to an unlabeled target domain, assuming task consistency but distributional
differences. However, conventional UDA methods often consider only a single source and a single
modality, which does not reflect the complexity of real-world data.

To address this, multi-source domain adaptation (MSDA) Sun et al. (2015) extends UDA by utilizing
multiple labeled source domains. It improves generalization by mitigating inter-source distribution
gaps through techniques such as domain-specific encoders, source weighting, and shared latent space
learning. However, most existing MSDA approaches are restricted to unimodal settings and fail to
capture multi-modal interactions. Multi-modal domain adaptation (MMDA) Hu et al. (2023) focuses

Figure 1: Effiectiveness of proposed Phase-guided Perceptual Alignment. The source image (a) is
transformed by our proposed PGPA from the target image (b), resulting in an aligned image (c) that
reduced perceptual domain gap and preserved semantics.
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on aligning different modalities such as image and text under domain shifts. Traditional methods of-
ten rely on early or late fusion and use adversarial learning or distribution matching. However, these
methods usually assume a single source domain and overlook challenges from source heterogeneity.
As a result, they experience performance degradation when extended to multi-source settings.

To address this, multi-source multi-modal domain adaptation (MSM2DA) has recently gained atten-
tion Zhao et al. (2025). MSM2DA aims to train a generalized model using multiple labeled source
domains with diverse modalities to achieve strong performance in an unlabeled target domain. This
approach is more aligned with practical cross-modal applications where both domain generalization
and modality fusion are crucial. In the MSM2DA setting, the visual modality plays a critical role
in model performance. Compared to other modalities, visual data typically contain more structural
information and act as an anchor for multi-modal semantic alignment. However, the visual modality
is highly sensitive to domain differences. For example, images from different sources often differ
significantly in visual style, even in similar tasks. These perceptual differences, although they do not
affect semantic content, introduce large distribution shifts that hinder feature learning. This results
in inconsistencies during the fusion stage, creating a bottleneck for multi-modal alignment. There-
fore, reducing domain shift in the visual modality is essential for stable fusion and improved transfer
performance.

To tackle this challenge, we introduce Phase-guided Perceptual Alignment (PGPA), a method that
leverages Fourier transform for frequency-based alignment in the visual modality. The key idea
behind PGPA is to enhance diversity by shifting alignment to the frequency domain, specifically
targeting the low-frequency components. By doing so, PGPA reduces perceptual conflicts between
modalities and mitigates the impact of domain shifts. PGPA works by injecting low-frequency style
information from the target domain into the source domain images before they enter the multi-modal
model. This process narrows the perceptual gap in visual style while maintaining the integrity
of semantic structures. As illustrated in Figure 1, PGPA effectively transfers the target domain’s
visual style to the source image through low-frequency alignment, producing an image with reduced
domain discrepancy and preserved semantic content. Additionally, we provide a theoretical proof
that demonstrates PGPA’s ability to reduce error. Our approach enhances the diversity of multi-
source multi-modal data through Fourier transform-based alignment, bridging both modality and
domain gaps. PGPA is training-free, architecture-independent, and can be seamlessly integrated into
any MSM2DA framework. By performing pixel-level alignment in the visual stream, PGPA offers a
stable foundation for multi-modal fusion and domain adaptation. Overall, the main contribution of
this paper can be summarized as follows:

• We propose a novel method called PGPA which reduces perceptual conflicts between
modalities and mitigates the impact of domain shifts by aligning the low-frequency com-
ponents, which improve stability in multi-modal fusion and domain adaptation.

• We provide a theoretical proof that demonstrates PGPA’s ability to reduce error and im-
prove alignment accuracy. This formal validation strengthens the theoretical foundation
of PGPA, showing its effectiveness in addressing domain shift and enhancing the transfer
performance in MSM2DA.

• Our method achieves state-of-the-art performance on MSM2DA benchmarks such as aes-
thetics assessment and sentiment analysis, effectively extending previously successful
MSDA approaches to the MSM2DA setting.

2 RELATED WORK

Unsupervised domain adaptation bridges the gap between a labeled source domain and an unla-
beled target domain by reducing distribution shifts Shrivastava et al. (2017); Mekhazni et al. (2020);
Huang & Liu (2021); Li et al. (2024). Although extensive research has been devoted to single-
source, single-modal settings, real-world applications often involve multiple heterogeneous sources
and diverse modalities. This complexity gives rise to more challenging scenarios, including multi-
source domain adaptation, multi-modal domain adaptation, and multi-source multi-modal domain
adaptation. Multi-source domain adaptation seeks to leverage labeled data from multiple source do-
mains to enhance generalization on an unlabeled target domain. Compared to single-source settings,
MSDA address not only source-target discrepancies but also source-source inconsistencies. Exist-
ing methods are mainly classified into three categories: aligning domain distributions via adversarial

2
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learning or moment-based metrics Zhao et al. (2020); Gao et al. (2024), generating domain-invariant
representations through intermediate feature space Zhao et al. (2019); Lin et al. (2020), or refining
classifiers to reduce inter-domain variance and inter-class ambiguity Zhu et al. (2019); Karisani
(2022). Although these approaches have shown effectiveness, they often assume a single modality
and struggle when modality gaps are coupled with domain shifts. Multi-modal domain adaptation
addresses the challenge of transferring knowledge across different modalities within a single do-
main. The existing work mainly focuses on exploring early and late fusion strategies, with alignment
occurring at the modality-specific feature level or after fusion Munro & Damen (2020); Jaritz et al.
(2020); Peng et al. (2021). However, most existing MMDA methods focus on single-source sce-
narios and lack the capacity to unravel complex interactions between source diversity and modality
heterogeneity. To bridge domain and modality discrepancies, M2CAN Zhao et al. (2025) intro-
duces a unified framework that combines contrastive and adversarial learning for joint alignment. It
performs multilevel alignment across feature and prediction spaces through cross-modal contrastive
learning, cross-domain contrastive alignment, and adversarial objectives. However, M2CAN mainly
targets high-level semantic features and overlooks low-frequency perceptual style shifts in the visual
modality. These seemingly irrelevant variations can disrupt multimodal fusion and hinder cross-
modal interaction. To address this, we propose a model-agnostic, plug-and-play alignment strategy
that aligns visual styles at the input level. By shifting the alignment perspective to the perceptual
layer, our method facilitates more stable multimodal fusion and cross-domain generalization.
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Figure 2: Overview of proposed PGPA in the MSM2DA framework. PGPA selectively replaces the
low-frequency amplitude of source images with that from the target domain in the Fourier space,
preserving semantic structures while reducing style discrepancy. The aligned images and other
modalities are then fed into a multi-source multi-modal adaptation framework consisting of four
modules: CMCFA, CDCFA and CDAFA for feature-level alignment, and UACR for label space-
level alignment.

3 METHOD

3.1 PROBLEM STATEMENT

Multi-source Multi-modal Domain Adaptation is considered under the covariate shift assumption.
Let S = {Si}Ni=1 denote N labeled source domains, and let T denote the target domain, which
contains only unlabeled samples. Each source domain Si consists of examples drawn from a joint
distribution p(Si)(x1, x2, . . . , xM , y) over M modalities and the label space Y , with input space
X1×· · ·×XM . Although all domains share the same input and output spaces, their joint distributions
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differ, and there may also be a distributional gap among different source domains. Our goal is to
learn a multi-modal classifier f : X1×· · ·×XM → Y that can generalize to the target domain using
only labeled data from the source domains.

3.2 PHASE-GUIDED PERCEPTUAL ALIGNMENT

In multi-source multi-modal domain adaptation tasks, each source domain may involve multiple
modalities. For a given modality, its perceptual characteristics and representational forms often vary
across different domains, leading to inconsistent behaviors during domain transfer. This issue is
especially pronounced in the visual modality, as cross-domain discrepancies in image style, illumi-
nation, and background textures often emerge as key bottlenecks that hinder transfer performance.
While these low-level perceptual variations do not alter the semantic content of an image, they can
still disrupt the early stages of representation learning. To better understand and mitigate their im-
pact, we consider the frequency-domain perspective. From this point of view, these domain-induced
differences are primarily encoded in the low-frequency components of the image spectrum, cor-
responding to global attributes such as tone, brightness, and background layout. In contrast, the
high-frequency components tend to preserve fine-grained structures like edges and textures, which
are more semantically informative.

Motivated by the above observation, we target the low-frequency statistical discrepancies in the
visual modality by proposing a Phase-guided Perceptual Alignment (PGPA) method. PGPA modi-
fies the low-frequency amplitude spectrum of source images to match that of target images, while
retaining the high-frequency structure that carries semantic information. This operation reduces
perceptual mismatches across domains without altering semantic content, thereby enhancing visual
consistency during domain adaptation. Given that such low-level perceptual variations are unique to
the visual modality, we apply frequency-domain alignment exclusively to the image modality, while
leaving the remaining modalities unchanged. Formally, given source and target image modalities
z
(i)
s , zt ∈ RH×W×C , we compute Fourier transforms F for a single-channel image z as:

F(z)(h′, w′) =

H−1∑
h=0

W−1∑
w=0

z(h,w) · e−j2π
(

hh′
H +ww′

W

)
(1)

The Fourier transform F consists of an amplitude FA(z) and a phase FP (z), which capture fre-
quency magnitude and structural information, respectively.

To selectively replace domain-specific style statistics while preserving semantic structure, we intro-
duce a low-frequency mask Mβ(h,w) ∈ {0, 1}, which is applied to the amplitude spectrum. Specif-
ically, the mask takes the value 1 within a centered rectangular region of size (2βH)× (2βW ), and
0 elsewhere. Formally, the low-frequency mask is defined as follow:

Mβ(h,w) = 1(h,w)∈[−βH:βH, −βW :βW ], (2)

where β ∈ (0, 1) controls the proportion of low-frequency components to be transferred. The
transformed source image z̃

(i)
s is then constructed by blending the low-frequency amplitude from

a randomly sampled target image zt with the original source amplitude outside the masked region,
while retaining the source phase:

z̃(i)s = F−1
(
Mβ · FA(zt) + (1−Mβ) · FA(z

(i)
s ), FP (z

(i)
s )
)

(3)

z
(i)
s visually resembles the target domain in style while preserving its semantic content. We inde-

pendently process each source domain to obtain an aligned set as follow:

S̃i =
{(

z̃(i)s , y(i)s

) ∣∣ z(i)s ∼ Si, zt ∼ T
}

(4)

The final training set is obtained by merging all adapted source domains S̃ =
⋃N

i=1 S̃i. Then S̃ and
T are fed into a multi-modal domain adaptation framework. It is important to note that PGPA is
independent of downstream network architectures, and can be used as a standalone input-level per-
ceptual alignment strategy for the image modality. Its primary objective is to mitigate low-frequency
perceptual discrepancies across domains. By preserving semantic content while harmonizing per-
ceptual styles, PGPA improves cross-domain visual consistency and facilitates more effective feature
extraction and multi-modal fusion.
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3.3 MULTI-SOURCE MULTI-MODAL CONTRASTIVE ADVERSARIAL NETWORK

Cross-modal Contrastive Feature Alignment (CMCFA). CMCFA reduces representational
gaps between different modalities within a single source domain. For modalities u and v, let Xu and
Xv denote batches of original features, and X ′

u and X ′
v denote their augmented versions. The base

contrastive loss between modalities u and v is defined as:

Luv
CMCFA = −

1

n
· 1⊤ · log

 eI◦T + eI◦T
′
+ eI

′◦T + eI
′◦T ′

1⊤ ·
(
eI·T⊤ + eI·T ′⊤ + eI′·T⊤ + eI′·T ′⊤

)
· 1

 (5)

where I = Xu, I′ = X ′
u, T = Xv , T ′ = X ′

v; ◦ denotes the Hadamard product. To avoid forced
alignment of mismatched modalities, CMCFA estimate modality matching using KL-divergence
between predictions of modality-specific classifiers. For classifiers Fu and Fv for modalities u and
v, the mismatch variance is:

Varuv = KL (Fu(Xu|θu), Fv(Xv|θv)) (6)

where a larger Varuv indicates lower matching. The final CMCFA loss aggregates all modality pairs
as follow:

LCMCFA = E

[∑
u,v

(Luv
CMCFA · exp{−Varuv}+ Varuv)

]
(7)

Cross-domain Contrastive Feature Alignment (CDCFA). CDCFA aligns modality-specific fea-
tures across source domains using Maximum Mean Discrepancy (MMD) Gretton et al. (2006) to
measure distribution differences. The cross-domain contrastive loss for modality u is defined as:

Lu
CDCFA =

∑
s1,s2

∑
Is1 ,Is2

(
− 2

ns1ns2

ns1∑
i=1

ns2∑
j=1

k
(
Is1i , Is2j

))
(8)

where s1, s2 ∈ Dom, Dom = {S̃1, . . . , S̃N} or includes T if pseudo-labels are used; ns1 , ns2
denote the batch sizes of domains s1 and s2, respectively; Isi ∈ Xs

u ∪ Xs′
u represents features of

the i-th sample in domain s; and k is a kernel function. For computational efficiency, we adopt
a linear kernel k(x, y) = x⊤y. The overall CDCFA loss is computed across all M modalities as
LCDCFA =

∑M
u=1 Lu

CDCFA.

Cross-domain Adversarial Feature Alignment (CDAFA). CDAFA aligns domains globally in
the fused multi-modal feature space by using domain discriminators to separate features from differ-
ent domains, while encouraging the extractor to produce domain-invariant representations. We use
MLB Kim et al. (2016) to implement the multi-modal projection fmm : X1 × · · · × XM → Xmm,
which fuses modality-specific features into a shared space. To achieve global domain alignment
in the fused multi-modal feature space, CDAFA introduces a set of domain discriminators Dij ,
each responsible for distinguishing fused features from domain pair (si, sj). Given fused features
f i
m ∈ Xmm and predicted logits gim, a class-conditional projection G(f i

m, gim) is applied using
MultiLinearMap Long et al. (2018). To mitigate overconfidence caused by noisy multi-modal rep-
resentations, CDAFA further adopt environment label smoothing Zhang et al. (2023) with soft prob-
abilities. The CDAFA loss is formalized as follows:

LCDAFA =
∑
si,sj

(
Exi

m∼si
W ij

m log
[
α+Dij(G(f i

m, gim))
]

+E
x
j
n∼sj

W ij
n log

[
1− α−Dij(G(f j

n, g
j
n))
] )

,

(9)

where α = 0.8 is the smoothing factor. Weights are determined by the entropy of predicted logits
as:

wij
k = 1 + exp {−gsk · log gsk} ,W ij

k =
(nsi + nsj ) · w

ij
k∑nsi

m=1 w
ij
m +

∑nsj

n=1 w
ij
n

, (10)

where k is a sample in domain s ∈ {si, sj}, and nsi , nsj denote the batch sizes of domains si and
sj , respectively.
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Uncertainty-aware Classifier Refinement (UACR). UACR progressively improves the target do-
main classifier via pseudo-labeling and uncertainty modeling. Specifically, to enable self-learning,
a preliminary model is first trained by aligning only the source domains. It then generates target
pseudo-labels, which are filtered using uncertainty and confidence from multiple classifiers to re-
duce noise. For a target sample feature f t, the uncertainty score measures inter-head disagreement
among N source-specific classifiers F i

cls, and is defined as suncer = exp(−Varps), where Varps is the
average pairwise KL divergence, formalized as follows:

Varps =

N∑
i=1

N∑
j=i+1

(
E
[
KL
(
F i

cls(f
t|θi), F j

cls(f
t|θj)

)]
+E

[
KL
(
F j

cls(f
t|θj), F i

cls(f
t|θi)

)])
.

(11)

Prediction confidence is measured by the aggregated score, obtained by averaging outputs from all
N classification heads as follows:

stcls =

∑N
i=1 F

i
cls(f

t|θi)
N

. (12)

Pseudo-labels are filtered by the score = suncer · stcls, which integrates uncertainty and confidence.
Top-ranked samples from each class are selected for reliable self-training.

Objective Function.We adopt the standard cross-entropy (CE) loss as classification task loss Ltask:

Ltask =

N∑
i=1

CE(F i
cls(fmm(X|θi)), y) +

M∑
j=1

CE(Fj(Xj |θj), y), (13)

where X = {X1, . . . , XM} denotes multi-modal features of samples x ∈ S̃ ∪ T , and y is the
corresponding label or pseudo-label. MCC Jin et al. (2020) is introduced for label-space alignment
as Lmcc = MCC(stcls). The overall objective function is formalized as follows:

LM2CAN = α1 · LCMCFA + β1 · LCDCFA + γ · (LCMAFA + Lmcc) + Ltask. (14)

where α1, β1, and γ are hyperparameters used to balance the different loss terms.

3.4 THEORETICAL ANALYSIS OF PGPA

Theorem 1 Let H be the hypothesis space. Given multiple source domains S = {Si}Ni=1 and target
domain T , the expected error on the target domain RT (h) for hypothesis h ∈ H can be bounded
by:

∀h ∈ H, RT (h) ≤
1

N

N∑
i=1

RSi
(h) +

1

2

N∑
i=1

dH∆H(Si, T ) + C (15)

where RSi
(h) is the expected source error on the i-th source domains, dH∆H(RSi

, T ) is the H∆H-
divergence between the i-th source and the target, and C is the shared expected loss term. In con-
ventional MSDA, C is often assumed to be negligibly small and disregarded by methods. However,
in the MSM2DA setting, C becomes critical and cannot be ignored due to two key factors. First,
different source domains exhibit distinct joint distributions in modalities and labels. This diversity
increases the risk of semantic misalignment between source and target domains. Second, in multi-
modal learning, the heterogeneity of data distributions across domains affects cross-modal fusion,
resulting in poor feature representations.

Definition 1 C is defined as:

C = min
h∈H

N∑
i=1

RSi
(h, fSi

) +RT (h, fT ), (16)

6
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Let fS and fT represent the true labeling functions for the source and target domains, respectively.
According to the result in Ben-David et al. (2010), for any pair of labeling functions fSi

from the
source domain and fT from the target domain, the following inequality holds:

R(fS1
, fT ) ≤ R(fS1

, fT ) +R(fS2
, fT ) + · · ·+R(fSN

, fT ) (17)

Then, we have:

C =min
h∈H

N∑
i=1

RS(h, fSi
) +RT (h, fT )

≤min
h∈H

N∑
i=1

RS(h, fSi
) +

N∑
i=1

RT (h, fSi
) +

N∑
i=1

RT (fSi
, fT )

≤min
h∈H

N∑
i=1

RS(h, fSi
) +

N∑
i=1

RT (h, fSi
) +

N∑
i=1

RT (fSi
, fT̂ ) +

N∑
i=1

RT (fT , fT̂ ).

(18)

where fT̂ is the pseudo-labeling function. The first two terms measure the disagreement between h
and fSi

, which can be minimized by learning h on labeled source data. The third term RT (fSi
, fT̂ )

reflects the discrepancy between i-th source and pseudo-label functions, and RT (fT , fT̂ ) is the
discrepancy between the true and pseudo-labeling functions in the target domain.

Reducing Domain Divergence. PGPA directly contributes to reducing the H∆H-divergence
dH∆H(Si, T ). By aligning the low-frequency amplitude of the source data with that of the target do-
main, PGPA effectively narrows the distribution shift between domains, thereby directly optimizing
the domain discrepancy term in the error bound.

Reducing Label Function Discrepancy. PGPA reduces the discrepancy RT (fSi
, fT̂ ) by aligning

source domain semantic structures with target domain perceptual style. The domain-invariant visual
inputs enables the feature representations to be learned in a shared space, better regularizing fT̂ to
match the source function fSi and minimizing their discrepancy. Besides, the visual consistency
further facilitates cross-modal alignment, reinforcing the consistency between fSi and fT̂ .

Standard Method Detail Avg. →AVA (→A) →PCCD (→P) →RPCD (→R)
Acc P R F1 Acc P R F1 Acc P R F1

Source-only Single-best – 66.3 68.0 69.1 66.6 66.3 64.7 65.3 64.4 64.1 66.2 68.9 68.6 66.2
Combined – 66.7 70.5 74.3 71.9 70.1 66.1 67.4 66.0 65.4 63.5 72.3 68.0 62.7

Single-best DA

CDANLong et al. (2018) CDAN+ELS 71.1 73.3 76.9 74.7 73.0 68.4 69.7 68.3 67.7 71.6 70.7 70.8 70.7
MCCJin et al. (2020) CDAN+MCC+ELS 72.6 76.0 76.6 76.6 76.0 69.2 70.7 69.1 68.6 72.7 72.7 73.4 72.5
SDATRangwani et al. (2022) CDAN+SDAT+ELS 70.9 77.9 77.9 78.1 77.9 68.2 69.0 68.2 67.9 66.5 67.4 66.8 66.2
ELSZhang et al. (2023) CDAN+MCC+SDAT+ELS 70.8 77.1 77.6 77.6 77.1 68.7 68.9 68.7 68.6 66.6 70.2 69.4 66.5

xMUDAJaritz et al. (2020)
Text-only 72.6 75.3 76.5 76.1 75.3 69.3 71.5 69.4 68.6 73.1 73.7 74.4 73.1
Image-only 54.4 54.2 60.4 50.2 35.6 50.5 63.5 50.8 35.6 58.6 29.3 50.0 36.9
Fusion 72.1 74.0 77.1 72.5 72.3 69.5 71.8 69.7 69.1 72.7 73.0 73.6 72.6

DsCML Peng et al. (2021)
Text-only 71.8 76.5 76.8 76.9 76.5 66.9 70.3 67.1 65.6 72.1 71.6 70.1 70.4
Image-only 54.5 53.7 51.3 50.5 42.7 51.2 52.1 50.3 36.5 58.6 29.3 50.0 36.9
Fusion 71.1 77.0 77.2 77.3 77.0 66.5 69.8 66.7 65.3 69.7 69.5 66.9 67.1

Source-combined DA

CDANLong et al. (2018) CDAN+ELS 69.3 75.7 76.3 76.2 75.7 67.5 68.1 67.5 67.2 64.8 66.0 66.3 64.8
MCCJin et al. (2020) CDAN+MCC+ELS 71.9 77.3 77.7 76.7 76.9 67.8 68.9 67.7 67.2 70.7 73.1 73.0 70.7
SDATRangwani et al. (2022) CDAN+SDAT+ELS 69.4 76.0 77.5 76.9 76.0 68.5 68.8 68.4 68.3 63.6 65.9 65.8 63.6
ELSZhang et al. (2023) CDAN+MCC+SDAT+ELS 70.7 70.4 73.5 71.7 70.0 68.8 69.3 68.9 68.7 73.0 75.3 75.3 73.0

xMUDAJaritz et al. (2020)
Text-only 67.2 71.2 76.5 76.5 70.6 67.5 69.2 67.4 66.8 62.8 61.8 62.0 61.9
Image-only 53.9 54.0 47.0 49.9 35.5 50.3 25.2 50.0 33.5 57.3 54.2 53.4 52.4
Fusion 67.7 72.9 76.1 74.2 72.6 67.4 69.1 67.3 66.6 62.8 61.9 62.1 62.0

DsCMLPeng et al. (2021)
Text-only 66.7 71.9 76.2 73.4 71.5 67.3 68.3 67.2 66.8 60.8 70.8 65.7 59.6
Image-only 52.3 54.6 54.2 51.2 42.4 50.5 58.4 50.8 36.3 51.8 53.7 53.3 50.9
Fusion 66.5 72.4 76.5 73.9 72.0 67.7 68.5 67.4 67.0 59.4 70.7 64.6 57.8

MSDA
MDANZhao et al. (2018) – 69.8 72.9 75.8 74.1 72.6 68.5 68.5 68.5 68.4 68.1 72.9 71.4 68.0
M3SDA Peng et al. (2019) – 69.8 74.9 77.3 76.0 74.7 68.0 69.5 67.9 67.3 66.5 65.3 64.6 64.8
T-SVDNet Li et al. (2021) – 70.7 75.3 76.9 76.2 75.3 68.2 68.4 68.2 68.2 68.7 73.7 72.0 68.6

MSM2DA M2CAN Zhao et al. (2025) – 74.7 79.9 79.8 80.0 79.9 69.8 69.8 69.8 69.8 74.5 74.7 75.4 74.4
Ours – 75.8 81.1 81.4 81.5 81.1 70.5 70.5 70.5 70.5 75.8 76.7 77.3 75.8

∆ +1.1 +1.2 +1.6 +1.5 +1.2 +0.7 +0.7 +0.7 +0.7 +1.3 +2.0 +1.9 +1.4

Table 1: Comparison with state-of-the-art methods on ResNet50+BERT for aesthetics assessment.
The best results are highlighted in bold, and the second-best results are underlined. Our method
achieves the highest average performance, demonstrating superior cross-domain generalization. The
numbers in red indicate the improvement relative to the baseline performance.
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Standard Method Detail Avg. →TumEmo (→TE) →T4SA (→T) →Yelp (→Y)
Acc P R F1 Acc P R F1 Acc P R F1

Source-only Single-best – 58.0 57.3 59.4 57.3 57.0 61.1 61.6 61.1 56.7 55.5 37.3 55.5 44.6
Combined – 56.6 56.4 58.1 56.4 56.3 58.3 59.8 58.3 58.3 55.0 52.6 55.0 48.3

Single-best DA

CDANLong et al. (2018) CDAN+ELS 62.7 60.9 60.4 60.9 60.5 68.5 74.9 68.5 68.9 58.7 57.5 58.7 56.8
MCCJin et al. (2020) CDAN+MCC+ELS 61.9 61.6 60.4 61.6 60.1 67.2 67.7 67.2 67.4 56.9 56.8 56.9 56.7
SDATRangwani et al. (2022) CDAN+SDAT+ELS 62.7 59.6 60.5 59.6 60.0 68.5 68.6 68.5 67.9 59.9 59.9 59.9 59.8
ELSZhang et al. (2023) CDAN+MCC+SDAT+ELS 62.3 57.5 60.0 57.5 57.4 74.1 74.7 74.1 73.9 55.3 55.1 55.3 54.6

xMUDAJaritz et al. (2020)
Text-only 58.3 57.8 58.1 57.8 57.3 60.2 58.9 60.2 54.4 56.9 54.3 56.9 48.5
Image-only 34.9 33.8 41.9 33.8 20.3 35.8 35.7 35.8 35.6 35.0 36.0 35.0 26.0
Fusion 58.8 57.9 58.2 57.9 57.8 61.9 61.2 61.9 58.4 56.5 55.0 56.5 49.1

DsCMLPeng et al. (2021)
Text-only 61.6 59.5 59.8 59.5 58.8 69.1 74.4 69.1 69.3 56.1 38.9 56.1 45.3
Image-only 36.4 37.3 37.2 37.3 34.6 33.9 33.9 33.9 33.8 37.9 38.0 37.9 36.9
Fusion 62.0 60.2 60.5 60.2 59.5 69.6 75.8 69.6 70.0 56.1 39.0 56.1 45.3

Source-combined DA

CDANLong et al. (2018) CDAN+ELS 58.9 57.9 57.4 57.9 57.6 63.0 68.7 63.0 62.0 55.8 55.1 55.8 55.1
MCCJin et al. (2020) CDAN+MCC+ELS 62.7 57.3 56.7 57.3 55.6 75.1 78.1 75.1 75.3 55.7 55.3 55.7 55.5
SDATRangwani et al. (2022) CDAN+SDAT+ELS 62.2 57.9 57.0 57.9 56.9 69.8 70.6 69.8 69.9 58.9 60.0 58.9 59.2
ELSZhang et al. (2023) CDAN+MCC+SDAT+ELS 67.9 62.3 62.8 62.3 62.3 83.4 83.6 83.4 83.5 57.9 57.7 57.9 57.2

xMUDAJaritz et al. (2020)
Text-only 59.6 59.1 59.5 59.1 58.9 64.1 64.3 64.1 59.1 55.7 51.6 55.7 45.0
Image-only 36.8 34.0 37.5 34.0 26.5 39.7 39.6 39.7 39.3 36.8 39.8 36.8 28.6
Fusion 59.5 57.4 58.4 57.4 57.6 64.3 64.5 64.3 59.5 56.7 53.3 56.7 48.1

DsCMLPeng et al. (2021)
Text-only 58.8 58.3 58.1 58.3 57.6 62.7 64.0 62.7 61.1 55.5 49.1 55.5 45.9
Image-only 37.9 40.7 41.0 40.7 40.2 36.9 36.8 36.9 36.6 36.1 36.3 36.1 35.9
Fusion 58.9 58.7 58.8 58.7 58.1 63.0 64.6 63.0 62.5 55.1 48.3 55.1 43.6

MSDA
MDANZhao et al. (2018) – 58.8 59.1 60.1 59.1 59.2 61.9 67.8 61.9 62.2 55.5 53.1 55.5 52.8
M3SDA Peng et al. (2019) – 60.4 58.0 56.7 58.0 56.9 67.1 69.9 67.1 67.1 56.1 54.7 56.1 53.6
T-SVDNet Li et al. (2021) – 59.1 58.2 59.1 58.2 58.0 61.5 63.7 61.5 53.9 57.7 54.8 57.7 53.9

MSM2DA M2CAN Zhao et al. (2025) – 69.9 63.8 63.2 63.8 63.4 84.7 84.8 84.7 84.7 61.2 61.4 61.2 61.0
Ours – 71.5 64.3 63.8 64.3 64.0 86.4 86.5 86.4 86.4 63.9 64.0 63.9 64.0

∆ +1.6 +0.5 +0.6 +0.5 +0.6 +1.7 +1.7 +1.7 +1.7 +2.7 +2.6 +2.7 +3.0

Table 2: Comparison with state-of-the-art methods for sentiment assessment. The best results are
highlighted in bold, and the second-best results are underlined. Our method consistently outperforms
others, demonstrating improved sentiment adaptation across domains. The numbers in red indicate
the improvement relative to the baseline performance.

4 EXPERIMENTS

4.1 DATASETS

Following prior work Zhao et al. (2025), we evaluate our method using two groups of datasets,
covering aesthetics assessment and sentiment analysis respectively. Each dataset is treated as an
individual domain due to differences in data distribution. For aesthetics assessment, we use AVA
Zhou et al. (2016), PCCD Chang et al. (2017), and RPCD Vera Nieto et al. (2022). For AVA,
we label images with an average rating above 5.5 as high-quality and the rest as low-quality. For
PCCD, images with a mean score above 8.0 are labeled as high-quality, while others are labeled
as low-quality. For RPCD, following Vera Nieto et al. (2022), we retain only samples where both
models Liu et al. (2019); Loureiro et al. (2022) yield identical predictions. To ensure a fair com-
parison across domains, we randomly sample 3,388 images for training and 847 for testing from
each dataset. For sentiment analysis, we adopt TumEmo Yang et al. (2020), T4SA Vadicamo et al.
(2017), and Yelp Truong & Lauw (2019). For TumEmo, emotions are grouped into negative (Angry,
Bored, Fear, Sad), neutral (Calm), and positive (Love, Happy). For T4SA, Twitter posters are anno-
tated as negative, neutral, or positive based on content. For Yelp, ratings of 1-2 are labeled negative,
3 as neutral, and 4-5 as positive. To maintain domain balance, we uniformly sample 15,000 training
and 1,500 testing examples from each sentiment dataset. In this work, we select one domain as the
target and using the remaining domains as sources for MSM2DA task. This results in six adaptation
scenarios: AVA (→A), PCCD (→P), and RPCD (→R) for aesthetics-related domains, and TumEmo
(→TE), T4SA (→T), and Yelp (→Y) for sentiment-related domains.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

We compare our method with four types of baselines, including source-only models, single-source
domain adaptation (DA) methods, and multi-source DA methods. Source-only and single-source
DA methods are both evaluated under two training settings: single-best, where models are trained
on each individual source domain, and source-combined, where models are trained on all source
domains jointly. Multi-source DA methods aim to leverage multiple labeled source domains for
better generalization to the target domain. We evaluate model performance using five key metrics,
including average accuracy across domains (Avg.), domain-specific accuracy (Acc), precision (P),
recall (R), and F1-score (F1). All metrics are computed using macro-averaging to ensure fair and
balanced evaluation across classes.
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As shown in Tables 1 and Figure 2, our method significantly outperforms the baseline methods on
both aesthetic and sentiment assessment tasks, achieving consistent improvements across all met-
rics on their respective three target domains. In terms of average accuracy across domains metirc,
our approach achieves gains of 1.1% and 1.6% on the two tasks, respectively, demonstrating strong
generalization capability and robustness to imbalanced data. The results confirm that the proposed
perceptual alignment strategy effectively enhances cross-modal adaptation and prediction perfor-
mance under domain shift.

4.3 ABLATION STUDY

Figure 3: (a) The effect of the parameter β on performance, and (b)(c) t-SNE visualizations of text
feature distributions for the ablated model (w/o PGPA) and the full model (w/ PGPA), respectively.

Effect of β. As presented in Table 3 (a), we show the effect of various choices of β along with
the macro accuracy of our method on the AVA dataset. We varied the beta parameter to assess its
effect on macro accuracy. Results show the model is sensitive to β. Specifically, performance shows
instability at low β values (0.01-0.05),shows an upward trend and reaches the best peak between
0.05-0.12, and declines beyond this range. These results identify 0.05-0.12 as the optimal β range
for maximizing classification performance, while too small or large values cause degradation.

Effect on other modality. To evaluate the impact of PGPA on other modality, we compare text
representations under w/o PGPA and w/ PGPA settings. Specifically, we extract the output features
from the text feature extracor on the target domain and apply t-SNE under same configurations. As
shown in Figure 3 (b), in the w/o PGPA setting, text features exhibit a ring-shaped mixed distribu-
tion, where the two classes are interleaved with blurred boundaries, leading to weak discriminability.
In contrast, w/ PGPA clearly separates the text features into two independent clusters, as shown in
Figure 3 (c), leading to larger inter-class margins and simpler decision boundaries. These findings
indicate that applying PGPA to the visual modality significantly enhances the discriminability of text
features in the target domain. This improvement may stem from the domain-invariant visual repre-
sentations constructed by PGPA, which serve as a stable anchor during multimodal interactions and
indirectly facilitate the correction of textual feature shifts in the target domain.

5 CONCLUSION

In this paper, we propose Phase-Guided Perceptual Alignment (PGPA) to address the low-frequency
perceptual discrepancy of the visual modality across multiple domains in Multi-source Multi-modal
Domain Adaptation (MSM2DA). PGPA aligns source images to the target domain by replacing their
low-frequency amplitude with that of randomly sampled target images in the Fourier domain, while
retaining source-phase information. The modified spectrum is then transformed back to the spatial
domain, yielding aligned images that preserve semantic structure and reduce perceptual style dis-
crepancy. By performing pixel-level alignment prior to feature extraction, PGPA provides a more
stable foundation for subsequent cross-modal fusion and domain adaptation. It is training-free,
architecture-independent, and can be seamlessly integrated into existing MSM2DA frameworks. Ex-
perimental results on aesthetic assessment and sentiment analysis tasks demonstrate that our method
consistently outperforms state-of-the-art approaches, underscoring the importance of perceptual-
level alignment in complex cross-domain scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. We present PGPA, a framework for multi-source
multi-modal domain adaptation, evaluated on publicly available benchmark datasets. These datasets
contain no personally identifiable or sensitive information, ensuring no risks to privacy or security.
Our research advances energy-efficient multi-source multi-modal domain adaptation with potential
benefits for scientific and technological applications. All experimental protocols are transparently
documented, with fair comparisons to prior work. The contributions are intended solely for research,
supporting AI development.
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APPENDIX

A IMPLEMENTATION DETAILS.

We use a ResNet-50 pre-trained on ImageNet for visual feature extraction and a 12-layer bert-base-
uncased BERT model for textual encoding. All classifiers, modality heads, and discriminators are
implemented as fully connected layers. Training follows a two-stage strategy. A one-epoch warm-
up phase first trains on source domain data only. This is followed by a nine-epoch main phase where
filtered target samples with pseudo-labels are gradually incorporated for joint domain alignment.
Loss weights are set to 0.5 for domain alignment, 0.2 for modality alignment, and 0.05 for classifi-
cation. The pseudo-label update rate is fixed at 3. All experiments are implemented in PyTorch and
conducted on a single NVIDIA RTX 3090 GPU. We use the Adam optimizer with a batch size of 8.
The learning rate is set to 2e-5 for feature extractors and 5e-4 for other modules.

B EXAMPLE OF SAMPLE CLASSIFICATION.

AVA

PCCD

RPCD

TumEmo

Twitter

Yelp

"I don't like that the wings are cropped out of 
the picture, but the colors are nice and bright."

"Level your horizon. I would crop out not 
only most of the branches, but also most of 
the dead black space right bottom, which is 
about 1/5 of the image. Pretty shot.",

"Noise, scratches, folds, cracks in PS, maybe 
a vignette.."

"At this base level of underexposure this 
needs a light to be interesting. I see what you 
were going for, dark spooky path into the fog 
and leaveless trees, but as-is in this 
composition you have no actual subject..",

 "Working on this."    "(x)"    "From my mother."  
   

"That first kiss was like a Colorado hit, we 
better keep on keepin it lit  

"RT @latimes: Coastal Commission staff 
calls for shrinking a proposed O.C. beach 
development       

"RT @IndoSport: Paul O'Donovan reveals the 
bullish promise he made to friends before 
winning World gold  

 "@NewLookHelp Is the Irish / Euro website 
down? Won't load have been trying for the 
last hour. GBP site loading ok.”

"i like it but i do n't love it .",
"i actually would give it 3.5 stars.",

"one of the best places to get tacos after 
clubbing do n't know why yelp has there 
hours that they close at 10 pm on saturdays 
but it actually closes at 230 pm ."

"i 've been to a fair share of shabu places and 
this definitely ranks in the bottom of my list .",
 "i was just not impressed .",
"to start with , the broth was not great .",

"one of the top place to eat if your around 
alameda , perfect location- next to the beach , 
shopping centers and next to a place where 
someone could wash your car .",
"though it can get crowded during dinner 
hour , but there 's some bench you could sit if 
it 's do n't taken ."

"The resolution is very low so it's hard to see 
if the focus is in the right spot...",

"Hello Peter,  This is an image that would be 
sellable to a bride and groom.  The rings are 
the focus of the shot and you have a nice 
depth of field.  ",  

"Very well exposed and good use of your 
controls."

"Well done!",
"Good composition and colour",
"oh oh oh, here's my winner"

"Clever idea nicely lit and focused",
"I really like this one.   I think maybe because 
I am hungry.   :)",
"It's makin me hungry...  nice interpretation of 
the challenge :)",
"Great idea, nicely framed.",

"classic, a little less dead tree and more of 
that perfect sky would be nice",
"I don't know that I like the snag in the 
foreground.   BTW, you might want to be 
really careful about using this shot ...",

"nice color and expsoure, but too sterile, sky 
too plain",
"WAY Funny!",

"Hi Sadi, I am happy you like the italian art, 
and Rome is my favorite town in the world. 
Being italian I visited and photographed 
Rome many many times, and I know it's not 
easy to photograph this town as you are 
totally overwhelmed by beauty while walking 
through it.., so I want to encourage you to try 
shooting it again next time you'll visit it...

"@Seiskafes #concierto #rondilla 
#RondillaNacion #Valladolid #ska #music 
#love #instagood #photooftheday #tbt #cute 
#beautifulindies.)"

Figure 4: Example results on the aesthetic assessment and sentiment assessment tasks. For each
example, predictions from top to bottom are generated by Source-only, MDAN, M2CAN, Ours, and
the Ground Truth, respectively.
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were only used to improve the clarity, grammar, and fluency of the
manuscript. They were not involved in the development of research ideas, experimental design, data
analysis, or any other aspect of the scientific content.
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