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ABSTRACT

Multi-Source Multi-Modal Domain Adaptation (MSMZ2DA) is a method that
leverages data from multiple sources and modalities to train machine learning
models capable of generalizing well across various domains. Existing MSM?DA
methods mostly use structural semantic alignment by visual data to enhance the
correlation between different modality data, while neglecting the low-frequency
perceptual shifts in visual data that hinder cross-modal fusion. However, visual
data are particularly sensitive to domain shifts including low-level semantics such
as style and illumination variations. To handle this problem, we propose Phase-
guided Perceptual Alignment (PGPA) to align the visual styles by transferring
low-frequency spectral components from target to source images while preserving
high-frequency semantic structures. Specifically, PGPA decomposes images into
amplitude and phase spectra in the Fourier domain, where the amplitude captures
style-related low-level statistics and the phase retains high-level structural seman-
tics. By selectively blending the amplitude of the target image with the phase
of the source image, our method improve diversity and ensures domain-invariant
style adaptation without distorting critical semantic details. Furthermore, we pro-
vide a bound proof that formalizes the effectiveness of our approach, demonstrat-
ing that PGPA guarantees improved cross-domain generalization within a speci-
fied bound and ensuring theoretical validity. Extensive experiments demonstrate
that our approach significantly improves cross-domain generalization tasks.

1 INTRODUCTION

FOR

Unsupervised domain adaptation (UDA) Wilson & Cook|(2020) aims to transfer knowledge from a
labeled source domain to an unlabeled target domain, assuming task consistency but distributional
differences. However, conventional UDA methods often consider only a single source and a single
modality, which does not reflect the complexity of real-world data.

To address this, multi-source domain adaptation (MSDA)|Sun et al.|(2015) extends UDA by utilizing
multiple labeled source domains. It improves generalization by mitigating inter-source distribution
gaps through techniques such as domain-specific encoders, source weighting, and shared latent space
learning. However, most existing MSDA approaches are restricted to unimodal settings and fail to
capture multi-modal interactions. Multi-modal domain adaptation (MMDA)Hu et al.|(2023) focuses

(a) Source Domain Image (b) Target Domain Image  (c) Source Image in Target style

Figure 1: Effiectiveness of proposed Phase-guided Perceptual Alignment. The source image (a) is
transformed by our proposed PGPA from the target image (b), resulting in an aligned image (c) that
reduced perceptual domain gap and preserved semantics.
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on aligning different modalities such as image and text under domain shifts. Traditional methods of-
ten rely on early or late fusion and use adversarial learning or distribution matching. However, these
methods usually assume a single source domain and overlook challenges from source heterogeneity.
As a result, they experience performance degradation when extended to multi-source settings.

To address this, multi-source multi-modal domain adaptation (MSM?DA) has recently gained atten-
tion Zhao et al.| (2025). MSM2DA aims to train a generalized model using multiple labeled source
domains with diverse modalities to achieve strong performance in an unlabeled target domain. This
approach is more aligned with practical cross-modal applications where both domain generalization
and modality fusion are crucial. In the MSM?DA setting, the visual modality plays a critical role
in model performance. Compared to other modalities, visual data typically contain more structural
information and act as an anchor for multi-modal semantic alignment. However, the visual modality
is highly sensitive to domain differences. For example, images from different sources often differ
significantly in visual style, even in similar tasks. These perceptual differences, although they do not
affect semantic content, introduce large distribution shifts that hinder feature learning. This results
in inconsistencies during the fusion stage, creating a bottleneck for multi-modal alignment. There-
fore, reducing domain shift in the visual modality is essential for stable fusion and improved transfer
performance.

To tackle this challenge, we introduce Phase-guided Perceptual Alignment (PGPA), a method that
leverages Fourier transform for frequency-based alignment in the visual modality. The key idea
behind PGPA is to enhance diversity by shifting alignment to the frequency domain, specifically
targeting the low-frequency components. By doing so, PGPA reduces perceptual conflicts between
modalities and mitigates the impact of domain shifts. PGPA works by injecting low-frequency style
information from the target domain into the source domain images before they enter the multi-modal
model. This process narrows the perceptual gap in visual style while maintaining the integrity
of semantic structures. As illustrated in Figure [T, PGPA effectively transfers the target domain’s
visual style to the source image through low-frequency alignment, producing an image with reduced
domain discrepancy and preserved semantic content. Additionally, we provide a theoretical proof
that demonstrates PGPA’s ability to reduce error. Our approach enhances the diversity of multi-
source multi-modal data through Fourier transform-based alignment, bridging both modality and
domain gaps. PGPA is training-free, architecture-independent, and can be seamlessly integrated into
any MSM2DA framework. By performing pixel-level alignment in the visual stream, PGPA offers a
stable foundation for multi-modal fusion and domain adaptation. Overall, the main contribution of
this paper can be summarized as follows:

* We propose a novel method called PGPA which reduces perceptual conflicts between
modalities and mitigates the impact of domain shifts by aligning the low-frequency com-
ponents, which improve stability in multi-modal fusion and domain adaptation.

* We provide a theoretical proof that demonstrates PGPA’s ability to reduce error and im-
prove alignment accuracy. This formal validation strengthens the theoretical foundation
of PGPA, showing its effectiveness in addressing domain shift and enhancing the transfer
performance in MSM?DA.

 Our method achieves state-of-the-art performance on MSM2DA benchmarks such as aes-
thetics assessment and sentiment analysis, effectively extending previously successful
MSDA approaches to the MSM?DA setting.

2 RELATED WORK

Unsupervised domain adaptation bridges the gap between a labeled source domain and an unla-
beled target domain by reducing distribution shifts [Shrivastava et al.|(2017)); Mekhazni et al.| (2020);
Huang & Liu| (2021); [Li et al.| (2024). Although extensive research has been devoted to single-
source, single-modal settings, real-world applications often involve multiple heterogeneous sources
and diverse modalities. This complexity gives rise to more challenging scenarios, including multi-
source domain adaptation, multi-modal domain adaptation, and multi-source multi-modal domain
adaptation. Multi-source domain adaptation seeks to leverage labeled data from multiple source do-
mains to enhance generalization on an unlabeled target domain. Compared to single-source settings,
MSDA address not only source-target discrepancies but also source-source inconsistencies. Exist-
ing methods are mainly classified into three categories: aligning domain distributions via adversarial
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learning or moment-based metrics|Zhao et al.|(2020);|Gao et al.| (2024), generating domain-invariant
representations through intermediate feature space|[Zhao et al.| (2019); [Lin et al.| (2020)), or refining

classifiers to reduce inter-domain variance and inter-class ambiguity [Zhu et al.| (2019); |[Karisani
(2022). Although these approaches have shown effectiveness, they often assume a single modality
and struggle when modality gaps are coupled with domain shifts. Multi-modal domain adaptation
addresses the challenge of transferring knowledge across different modalities within a single do-
main. The existing work mainly focuses on exploring early and late fusion strategies, with alignment
occurring at the modality-specific feature level or after fusion Munro & Damen| (2020); [Jaritz et al.
(2020); Peng et al. (2021). However, most existing MMDA methods focus on single-source sce-
narios and lack the capacity to unravel complex interactions between source diversity and modality
heterogeneity. To bridge domain and modality discrepancies, M2CAN [Zhao et al. (2023)) intro-
duces a unified framework that combines contrastive and adversarial learning for joint alignment. It
performs multilevel alignment across feature and prediction spaces through cross-modal contrastive
learning, cross-domain contrastive alignment, and adversarial objectives. However, M2CAN mainly
targets high-level semantic features and overlooks low-frequency perceptual style shifts in the visual
modality. These seemingly irrelevant variations can disrupt multimodal fusion and hinder cross-
modal interaction. To address this, we propose a model-agnostic, plug-and-play alignment strategy
that aligns visual styles at the input level. By shifting the alignment perspective to the perceptual
layer, our method facilitates more stable multimodal fusion and cross-domain generalization.

Phase-guided Perceptual Alignment
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Figure 2: Overview of proposed PGPA in the MSM2DA framework. PGPA selectively replaces the
low-frequency amplitude of source images with that from the target domain in the Fourier space,
preserving semantic structures while reducing style discrepancy. The aligned images and other
modalities are then fed into a multi-source multi-modal adaptation framework consisting of four
modules: CMCFA, CDCFA and CDAFA for feature-level alignment, and UACR for label space-
level alignment.

3 METHOD

3.1 PROBLEM STATEMENT

Multi-source Multi-modal Domain Adaptation is considered under the covariate shift assumption.
Let S = {Si}fil denote N labeled source domains, and let 7 denote the target domain, which
contains only unlabeled samples. Each source domain S; consists of examples drawn from a joint
distribution p(si)(xl,xz, ..., Zn,Yy) over M modalities and the label space ), with input space
Xy X - - x X)y. Although all domains share the same input and output spaces, their joint distributions
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differ, and there may also be a distributional gap among different source domains. Our goal is to
learn a multi-modal classifier f : &7 X - --x Xy — ) that can generalize to the target domain using
only labeled data from the source domains.

3.2 PHASE-GUIDED PERCEPTUAL ALIGNMENT

In multi-source multi-modal domain adaptation tasks, each source domain may involve multiple
modalities. For a given modality, its perceptual characteristics and representational forms often vary
across different domains, leading to inconsistent behaviors during domain transfer. This issue is
especially pronounced in the visual modality, as cross-domain discrepancies in image style, illumi-
nation, and background textures often emerge as key bottlenecks that hinder transfer performance.
While these low-level perceptual variations do not alter the semantic content of an image, they can
still disrupt the early stages of representation learning. To better understand and mitigate their im-
pact, we consider the frequency-domain perspective. From this point of view, these domain-induced
differences are primarily encoded in the low-frequency components of the image spectrum, cor-
responding to global attributes such as tone, brightness, and background layout. In contrast, the
high-frequency components tend to preserve fine-grained structures like edges and textures, which
are more semantically informative.

Motivated by the above observation, we target the low-frequency statistical discrepancies in the
visual modality by proposing a Phase-guided Perceptual Alignment (PGPA) method. PGPA modi-
fies the low-frequency amplitude spectrum of source images to match that of target images, while
retaining the high-frequency structure that carries semantic information. This operation reduces
perceptual mismatches across domains without altering semantic content, thereby enhancing visual
consistency during domain adaptation. Given that such low-level perceptual variations are unique to
the visual modality, we apply frequency-domain alignment exclusively to the image modality, while
leaving the remaining modalities unchanged. Formally, given source and target image modalities
zgl), 2 € REXWXC "we compute Fourier transforms JF for a single-channel image z as:

H—-1W-1 N,

FEW )= 33 alhw) -2 ) m

h=0 w=0
The Fourier transform F consists of an amplitude F4(z) and a phase Fp(z), which capture fre-
quency magnitude and structural information, respectively.

To selectively replace domain-specific style statistics while preserving semantic structure, we intro-
duce a low-frequency mask Mg (h,w) € {0, 1}, which is applied to the amplitude spectrum. Specif-
ically, the mask takes the value 1 within a centered rectangular region of size (28H) x (26W), and
0 elsewhere. Formally, the low-frequency mask is defined as follow:

Mg (h,w) = 1(hw)e[-BH:BH, —BW:BW]; )
where 8 € (0,1) controls the proportion of low-frequency components to be transferred. The
transformed source image Egl) is then constructed by blending the low-frequency amplitude from

a randomly sampled target image z; with the original source amplitude outside the masked region,
while retaining the source phase:

20 = F 1 (M- Fa(z) + (1= Mp) - Fa(:), Fo(:")) )
zgi) visually resembles the target domain in style while preserving its semantic content. We inde-
pendently process each source domain to obtain an aligned set as follow:

S={(0") |40 ~ 81, 2~ T} *)

The final training set is obtained by merging all adapted source domains S = Ufil S;. Then S and
T are fed into a multi-modal domain adaptation framework. It is important to note that PGPA is
independent of downstream network architectures, and can be used as a standalone input-level per-
ceptual alignment strategy for the image modality. Its primary objective is to mitigate low-frequency
perceptual discrepancies across domains. By preserving semantic content while harmonizing per-
ceptual styles, PGPA improves cross-domain visual consistency and facilitates more effective feature
extraction and multi-modal fusion.
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3.3 MULTI-SOURCE MULTI-MODAL CONTRASTIVE ADVERSARIAL NETWORK

Cross-modal Contrastive Feature Alignment (CMCFA). CMCFA reduces representational
gaps between different modalities within a single source domain. For modalities » and v, let X, and
X, denote batches of original features, and X, and X denote their augmented versions. The base
contrastive loss between modalities v and v is defined as:

’ U 1!
eHoT + eIOT +€I oT +€]1 oT

Lénera = - 1 -log (5)

1T . (eI.TT 4T LT 61’~T’T) 1
where I = X,,,I' = X/, T = X,,, T" = X/; o denotes the Hadamard product. To avoid forced
alignment of mismatched modalities, CMCFA estimate modality matching using KL-divergence

between predictions of modality-specific classifiers. For classifiers F), and F), for modalities u and
v, the mismatch variance is:

Var"? = KL (Fy, (X,|04), Fy(X0]0,)) ©

where a larger Var*? indicates lower matching. The final CMCFA loss aggregates all modality pairs
as follow:
@)

Levera = E Z (Lemera - exp{—Var*’} + Var”)

u,v

Cross-domain Contrastive Feature Alignment (CDCFA). CDCFA aligns modality-specific fea-
tures across source domains using Maximum Mean Discrepancy (MMD) |Gretton et al.| (2000) to
measure distribution differences. The cross-domain contrastive loss for modality w 1s defined as:

Mgy Mgy
ﬁgDCFA = Z Z < n sz 1—517[;2 ) (8)
s1Mso

81,82 I51,152 i=1 j=1

where s1,s82 € Dom, Dom = {Si,...,Sn} or includes T if pseudo-labels are used; ns,,ns,
denote the batch sizes of domains s; and sq, respectively; I7 € X2 U X3 represents features of
the i-th sample in domain s; and k is a kernel function. For computational efficiency, we adopt
a linear kernel k(x,y) = x"y. The overall CDCFA loss is computed across all M modalities as

M
Lepera =2 =1 Lépora-

Cross-domain Adversarial Feature Alignment (CDAFA). CDAFA aligns domains globally in
the fused multi-modal feature space by using domain discriminators to separate features from differ-
ent domains, while encouraging the extractor to produce domain-invariant representations. We use
MLB Kim et al.| (2016)) to implement the multi-modal projection f,,,, : X1 X -+ X Xpr = X
which fuses modality-specific features into a shared space. To achieve global domain alignment
in the fused multi-modal feature space, CDAFA introduces a set of domain discriminators D;;,
each responsible for distinguishing fused features from domain pair (s;, s. ) Given fused features
fi € X, and predicted logits g?,, a class-conditional projection G(f?,, gm) is applied using
MultiLinearMap [Long et al.| (2018)). To mitigate overconfidence caused by noisy multi-modal rep-
resentations, CDAFA further adopt environment label smoothing|Zhang et al.|(2023)) with soft prob-
abilities. The CDAFA loss is formalized as follows:

Leonia = 3 (Bug s, Wil 08 [0+ Dig (G Finr 1)
©)
+E,; ., Wi log [1 - a = Dyy(G(f, )] )

n

where o = 0.8 is the smoothing factor. Weights are determined by the entropy of predicted logits
as:

(s, +1s,) w0}

Z:': +Zn 1U)

w)! =1+exp{—gi loggi}, Wy = (10)

where k is a sample in domain s € {s;, sj}, and ng,;, ns; denote the batch sizes of domains s; and
s;, respectively.
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Uncertainty-aware Classifier Refinement (UACR). UACR progressively improves the target do-
main classifier via pseudo-labeling and uncertainty modeling. Specifically, to enable self-learning,
a preliminary model is first trained by aligning only the source domains. It then generates target
pseudo-labels, which are filtered using uncertainty and confidence from multiple classifiers to re-
duce noise. For a target sample feature f?, the uncertainty score measures inter-head disagreement

among N source-specific classifiers F, Cﬁs, and is defined as Syncer = exp(—Vary,), where Var,,, is the

average pairwise KL divergence, formalized as follows:

Vi =30 S (B [KL (R0, A, )]

i=1 j=it1 amn
+E [KL (FL.(7'10,), Fis(110))]) -

Prediction confidence is measured by the aggregated score, obtained by averaging outputs from all
N classification heads as follows:

o T Fa10:) 12

cls N

Pseudo-labels are filtered by the score = Sypcer séls, which integrates uncertainty and confidence.
Top-ranked samples from each class are selected for reliable self-training.

Objective Function.We adopt the standard cross-entropy (CE) loss as classification task loss Ly,:
Luask = ZCE 0 (fom(X16)), ) + ZCE (X10,),v), (13)

where X = {Xi,..., X} denotes multi-modal features of samples = € SUT, and y is the
corresponding label or pseudo-label. MCC Jin et al.[(2020) is introduced for label-space alignment
as Lpce = MCC(sty,). The overall objective function is formalized as follows:

Lyvacan = 01 - Lomcra + B1 - Lepcra + 7 - (Lomara + Lmee) + Liask- (14)

where a1, 51, and y are hyperparameters used to balance the different loss terms.

3.4 THEORETICAL ANALYSIS OF PGPA

Theorem 1 Let H be the hypothesis space. Given multiple source domains S = {S;}}¥, and target
domain 7, the expected error on the target domain R (h) for hypothesis h € H can be bounded
by:

N
1
Vh e H, Ry(h <—ZRS §ZdHAH(Si,T)+C (15)

=1

where Rg, (h) is the expected source error on the i-th source domains, dy a3 (Rs,, T) is the HAH-
divergence between the i-th source and the target, and C' is the shared expected loss term. In con-
ventional MSDA, C'is often assumed to be negligibly small and disregarded by methods. However,
in the MSM2DA setting, C' becomes critical and cannot be ignored due to two key factors. First,
different source domains exhibit distinct joint distributions in modalities and labels. This diversity
increases the risk of semantic misalignment between source and target domains. Second, in multi-
modal learning, the heterogeneity of data distributions across domains affects cross-modal fusion,
resulting in poor feature representations.

Definition 1 C is defined as:

N
C = min ; Rs.(h, fs.) + Rr(h, f1), (16)
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Let fs and f7 represent the true labeling functions for the source and target domains, respectively.
According to the result in [Ben-David et al|(2010), for any pair of labeling functions fs, from the
source domain and f7 from the target domain, the following inequality holds:

R(fs,, fr) < R(fs., 1) + R(fsyr fr) + -+ Rlfsx f1) (a7
Then, we have:
N
C =min ; Rs(h, fs,) + Rr(h, fr)
N N N
éhmeiqr{lZRs(hJsi) + Y Ry(h, fs,) + Y _ Rr(fs,, fr) (18)
1;1 1;1 1;1 N
< }gﬁZRS(h’ fs:) + ZRT(h, fs;) + Z Rr(fsi f+) + Z Rr(fr, f+).
=t =1 i=1 i=1

where f5- is the pseudo-labeling function. The first two terms measure the disagreement between h
and fs,, which can be minimized by learning / on labeled source data. The third term Ry (fs,, f+)
reflects the discrepancy between i-th source and pseudo-label functions, and Ry (f7, fj-) is the
discrepancy between the true and pseudo-labeling functions in the target domain.

Reducing Domain Divergence. PGPA directly contributes to reducing the HA7H-divergence
dyaw (Si, T). By aligning the low-frequency amplitude of the source data with that of the target do-
main, PGPA effectively narrows the distribution shift between domains, thereby directly optimizing
the domain discrepancy term in the error bound.

Reducing Label Function Discrepancy. PGPA reduces the discrepancy R (fs,, f+) by aligning
source domain semantic structures with target domain perceptual style. The domain-invariant visual
inputs enables the feature representations to be learned in a shared space, better regularizing f5 to
match the source function fs, and minimizing their discrepancy. Besides, the visual consistency
further facilitates cross-modal alignment, reinforcing the consistency between fs, and fs-.

Standard Method Detail Avg. —AVA (—A) —PCCD (—»P) —RPCD (=R)
Acc P R Fl1 Acc P R F1 Acc P R Fl
Source-only Single-best - 663 680 69.1 666 663 647 653 644 641 662 689 686 66.2
Combined - 66.7 705 743 719 70.1 66.1 674 660 654 635 723 680 62.7
CDANLong et al.|(2018] CDAN+ELS 71,1 733 769 747 730 684 69.7 683 677 716 707 708 70.7
MCQJin et al.[(20207 CDAN+MCC+ELS 726 760 766 766 760 692 707 69.1 686 727 727 734 725
SDATRangwani et al.[(2022) CDAN+SDAT+ELS 709 779 719 781 779 682 69.0 682 679 665 674 668 662
ELSZhang et al.[(2023} CDAN+MCC+SDAT+ELS  70.8 77.1 77.6 776 77.1 687 689 687 686 666 702 694 66.5
Single-best DA Text-only 726 753 765 76.1 753 693 715 694 68.6 731 737 744 731
XxMUDAJaritz et al. (2020} Image-only 544 542 604 502 356 505 635 508 356 586 293 500 369
Fusion 721 740 771 725 723 695 71.8 697 69.1 727 730 73.6 726
Text-only 71.8 765 768 769 765 669 703 67.1 656 721 71.6 70.1 704
DsCML|Peng et al. (2021 Image-only 545 537 513 505 427 512 521 503 365 586 293 500 369
Fusion 71.1 770 772 773 770 665 698 667 653 69.7 69.5 669 67.1
CDANLong et al. {2018} CDAN+ELS 69.3 757 763 762 757 675 68.1 675 672 648 660 663 064.8
MCCln et al. (2020} CDAN+MCC+ELS 71.9 773 717 767 769 678 689 677 672 707 73.1 730 707
SDATRangwan et al.|(2022) CDAN+SDAT+ELS 694 760 715 769 760 685 688 684 683 636 659 658 63.6
ELSZhang et al.|[{2023} CDAN+MCC+SDAT+ELS  70.7 704 735 717 70.0 688 693 689 687 730 753 753 730
Source-combined DA Text-only 672 712 765 765 706 675 692 674 668 628 61.8 620 61.9
XMUDAJaritz et al. (2020} Image-only 539 540 470 499 355 503 252 500 335 573 542 534 524
Fusion 677 729 761 742 726 674 69.1 673 666 628 619 62.1 620
Text-only 66.7 719 762 734 715 673 683 672 668 60.8 708 657 59.6
DsCMIPeng et al.|(2021} Image-only 523 546 542 512 424 505 584 508 363 518 537 533 509
Fusion 66.5 724 765 739 720 677 685 674 670 594 707 646 578
MDANZhao et al.[{2018] - 69.8 729 758 741 726 685 685 685 684 681 729 714 68.0
MSDA M3SDA|Peng et al.[(2019} - 69.8 749 773 760 747 680 695 679 673 665 653 646 64.8
T-SVDNet|L1 et al. (2021} - 70.7 753 769 762 753 682 684 682 682 687 737 720 68.6
MSMZDA M2CAN[Zhao et al 2025]  — 747 799 798 800 799 698 698 698 698 745 747 754 744
Ours - 758 811 814 815 811 705 705 705 705 758 767 773 758
A +1.1 +1.2 +1.6 +1.5 +1.2 +0.7 +0.7 +0.7 +0.7 +1.3 +20 +1.9 +14
Table 1: Comparison with state-of-the-art methods on ResNet50+BERT for aesthetics assessment.

The best results are highlighted in bold, and the second-best results are underlined. Our method
achieves the highest average performance, demonstrating superior cross-domain generalization. The
numbers in red indicate the improvement relative to the baseline performance.
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Standard Method Detail Avg. —TumEmo (-TE) —T4SA (—-T) —Yelp (=Y)
Acc P R Fl1 Acc P R Fl1 Acc P R Fl1
Source-onl Single-best - 58.0 573 594 573 570 611 61.6 61.1 567 555 373 555 446
h t Combined - 56.6 564 58.1 564 563 583 59.8 583 583 550 526 550 483
CDANLong et al.|(2018) CDAN+ELS 627 609 604 609 605 685 749 685 689 587 575 587 568
MCCn et al. (2020 CDAN+MCC+ELS 619 61.6 604 616 60.1 672 677 672 674 569 568 569 56.7
SDAlRangwan et al. (2022}  CDAN+SDAT+ELS 627 59.6 605 596 600 685 68.6 685 679 599 599 599 598
ELSZhang et al.|(2023] CDAN+MCC+SDAT+ELS  62.3 57.5 60.0 57.5 574 741 747 741 739 553 551 553 54.6
Single-best DA Text-only 583 578 581 578 573 602 589 602 544 569 543 569 485
xMUDATaritz et al.|(2020] Image-only 349 338 419 338 203 358 357 358 356 350 360 350 260
Fusion 588 579 582 579 578 619 612 619 584 565 550 565 49.1
Text-only 61.6 595 59.8 595 588 69.1 744 69.1 693 561 389 56.1 453
DsCMLPeng et al.|(2021] Image-only 36.4 373 372 373 346 339 339 339 338 379 380 379 369
Fusion 62.0 602 60.5 602 595 69.6 758 69.6 700 56.1 39.0 56.1 453
CDANLong et al.[(2018] CDAN+ELS 589 579 574 579 576 630 687 630 620 558 551 558 55.1
MCCJin et al. (2020} CDAN+MCC+ELS 627 573 567 573 556 751 781 751 753 557 553 557 555
SDATlRangwani et al. (2022}  CDAN+SDAT+ELS 622 579 570 579 569 698 706 69.8 699 589 60.0 589 592
ELSZhang et al.[(2023] CDAN+MCC+SDAT+ELS  67.9 623 628 623 623 834 836 834 835 579 577 579 572
Source-combined DA Text-only 59.6 59.1 595 59.1 589 641 643 641 591 557 51.6 557 450
xMUDA aritz et al.|(2020] Image-only 36.8 340 375 340 265 397 39.6 397 393 368 398 368 286
Fusion 595 574 584 574 576 643 645 643 595 567 533 567 481
Text-only 588 583 58.1 583 576 627 640 627 611 555 49.1 555 459
DsCMLPeng et al.|(2021] Image-only 379 407 41.0 407 402 369 368 369 366 361 363 361 359
Fusion 589 587 588 587 581 630 646 630 625 551 483 551 436
MDANZhao et al. [(2018] - 588 59.1 60.1 59.1 592 619 678 619 622 555 531 555 528
MSDA M?3SDA|Peng et al.|(2019) - 60.4 58.0 567 580 569 67.1 699 67.1 67.1 561 547 56.1 53.6
T-SVDNet|L1 et al. (2021} - 59.1 582 59.1 582 580 615 637 615 539 577 548 577 539
MSM2DA M2CAN|Zhao et al.|2025) - 699 638 632 638 634 847 848 847 847 612 614 612 610
Ours - 715 643 638 643 640 864 865 864 864 639 640 639 64.0
A +1.6 +0.5 +0.6 +0.5 +0.6 +1.7 +1.7 +1.7 +1.7 +27 426 +2.7 +3.0

Table 2: Comparison with state-of-the-art methods for sentiment assessment. The best results are
highlighted in bold, and the second-best results are underlined. Our method consistently outperforms
others, demonstrating improved sentiment adaptation across domains. The numbers in red indicate
the improvement relative to the baseline performance.

4 EXPERIMENTS

4.1 DATASETS

Following prior work |Zhao et al.| (2025)), we evaluate our method using two groups of datasets,
covering aesthetics assessment and sentiment analysis respectively. Each dataset is treated as an
individual domain due to differences in data distribution. For aesthetics assessment, we use AVA
Zhou et al.| (2016), PCCD |Chang et al.| (2017)), and RPCD [Vera Nieto et al.| (2022)). For AVA,
we label images with an average rating above 5.5 as high-quality and the rest as low-quality. For
PCCD, images with a mean score above 8.0 are labeled as high-quality, while others are labeled
as low-quality. For RPCD, following |Vera Nieto et al.| (2022), we retain only samples where both
models [Liu et al.| (2019); |[Loureiro et al.| (2022)) yield identical predictions. To ensure a fair com-
parison across domains, we randomly sample 3,388 images for training and 847 for testing from
each dataset. For sentiment analysis, we adopt TumEmo |Yang et al.|(2020), T4SA [Vadicamo et al.
(2017), and Yelp|Iruong & Lauw|(2019). For TumEmo, emotions are grouped into negative (Angry,
Bored, Fear, Sad), neutral (Calm), and positive (Love, Happy). For T4SA, Twitter posters are anno-
tated as negative, neutral, or positive based on content. For Yelp, ratings of 1-2 are labeled negative,
3 as neutral, and 4-5 as positive. To maintain domain balance, we uniformly sample 15,000 training
and 1,500 testing examples from each sentiment dataset. In this work, we select one domain as the
target and using the remaining domains as sources for MSMZ2DA task. This results in six adaptation
scenarios: AVA (—A), PCCD (—P), and RPCD (—R) for aesthetics-related domains, and TumEmo
(—=TE), TASA (—T), and Yelp (—Y) for sentiment-related domains.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

We compare our method with four types of baselines, including source-only models, single-source
domain adaptation (DA) methods, and multi-source DA methods. Source-only and single-source
DA methods are both evaluated under two training settings: single-best, where models are trained
on each individual source domain, and source-combined, where models are trained on all source
domains jointly. Multi-source DA methods aim to leverage multiple labeled source domains for
better generalization to the target domain. We evaluate model performance using five key metrics,
including average accuracy across domains (Avg.), domain-specific accuracy (Acc), precision (P),
recall (R), and Fl-score (F1). All metrics are computed using macro-averaging to ensure fair and
balanced evaluation across classes.
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As shown in Tables[I]and Figure [2] our method significantly outperforms the baseline methods on
both aesthetic and sentiment assessment tasks, achieving consistent improvements across all met-
rics on their respective three target domains. In terms of average accuracy across domains metirc,
our approach achieves gains of 1.1% and 1.6% on the two tasks, respectively, demonstrating strong
generalization capability and robustness to imbalanced data. The results confirm that the proposed
perceptual alignment strategy effectively enhances cross-modal adaptation and prediction perfor-
mance under domain shift.

4.3 ABLATION STUDY

Effect of Beta on Macro Accuracy
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(a) Effect of Beta on Macro Accuracy (b) Texture Features of w/o PGPA (b) Texture Features of w/ PGPA

Figure 3: (a) The effect of the parameter 5 on performance, and (b)(c) t-SNE visualizations of text
feature distributions for the ablated model (w/o PGPA) and the full model (w/ PGPA), respectively.

Effect of 5. As presented in Table [3| (a), we show the effect of various choices of S along with
the macro accuracy of our method on the AVA dataset. We varied the beta parameter to assess its
effect on macro accuracy. Results show the model is sensitive to 3. Specifically, performance shows
instability at low [ values (0.01-0.05),shows an upward trend and reaches the best peak between
0.05-0.12, and declines beyond this range. These results identify 0.05-0.12 as the optimal J range
for maximizing classification performance, while too small or large values cause degradation.

Effect on other modality. To evaluate the impact of PGPA on other modality, we compare text
representations under w/o PGPA and w/ PGPA settings. Specifically, we extract the output features
from the text feature extracor on the target domain and apply t-SNE under same configurations. As
shown in Figure [3|(b), in the w/o PGPA setting, text features exhibit a ring-shaped mixed distribu-
tion, where the two classes are interleaved with blurred boundaries, leading to weak discriminability.
In contrast, w/ PGPA clearly separates the text features into two independent clusters, as shown in
Figure [3(c), leading to larger inter-class margins and simpler decision boundaries. These findings
indicate that applying PGPA to the visual modality significantly enhances the discriminability of text
features in the target domain. This improvement may stem from the domain-invariant visual repre-
sentations constructed by PGPA, which serve as a stable anchor during multimodal interactions and
indirectly facilitate the correction of textual feature shifts in the target domain.

5 CONCLUSION

In this paper, we propose Phase-Guided Perceptual Alignment (PGPA) to address the low-frequency
perceptual discrepancy of the visual modality across multiple domains in Multi-source Multi-modal
Domain Adaptation (MSM?DA). PGPA aligns source images to the target domain by replacing their
low-frequency amplitude with that of randomly sampled target images in the Fourier domain, while
retaining source-phase information. The modified spectrum is then transformed back to the spatial
domain, yielding aligned images that preserve semantic structure and reduce perceptual style dis-
crepancy. By performing pixel-level alignment prior to feature extraction, PGPA provides a more
stable foundation for subsequent cross-modal fusion and domain adaptation. It is training-free,
architecture-independent, and can be seamlessly integrated into existing MSM2?DA frameworks. Ex-
perimental results on aesthetic assessment and sentiment analysis tasks demonstrate that our method
consistently outperforms state-of-the-art approaches, underscoring the importance of perceptual-
level alignment in complex cross-domain scenarios.



Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. We present PGPA, a framework for multi-source
multi-modal domain adaptation, evaluated on publicly available benchmark datasets. These datasets
contain no personally identifiable or sensitive information, ensuring no risks to privacy or security.
Our research advances energy-efficient multi-source multi-modal domain adaptation with potential
benefits for scientific and technological applications. All experimental protocols are transparently
documented, with fair comparisons to prior work. The contributions are intended solely for research,
supporting Al development.
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APPENDIX

A IMPLEMENTATION DETAILS.

We use a ResNet-50 pre-trained on ImageNet for visual feature extraction and a 12-layer bert-base-
uncased BERT model for textual encoding. All classifiers, modality heads, and discriminators are
implemented as fully connected layers. Training follows a two-stage strategy. A one-epoch warm-
up phase first trains on source domain data only. This is followed by a nine-epoch main phase where
filtered target samples with pseudo-labels are gradually incorporated for joint domain alignment.
Loss weights are set to 0.5 for domain alignment, 0.2 for modality alignment, and 0.05 for classifi-
cation. The pseudo-label update rate is fixed at 3. All experiments are implemented in PyTorch and
conducted on a single NVIDIA RTX 3090 GPU. We use the Adam optimizer with a batch size of 8.
The learning rate is set to 2e-5 for feature extractors and 5e-4 for other modules.

B EXAMPLE OF SAMPLE CLASSIFICATION.
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Figure 4: Example results on the aesthetic assessment and sentiment assessment tasks. For each
example, predictions from top to bottom are generated by Source-only, MDAN, M2CAN, Ours, and
the Ground Truth, respectively.
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were only used to improve the clarity, grammar, and fluency of the
manuscript. They were not involved in the development of research ideas, experimental design, data
analysis, or any other aspect of the scientific content.
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