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Abstract

In long-term time series forecasting (LTSF) tasks, an increasing number of
works have acknowledged that discrete time series originate from continuous
dynamic systems and have attempted to model their underlying dynamics. Rec-
ognizing the chaotic nature of real-world data, our model, Attraos, incorporates
chaos theory into LTSF, perceiving real-world time series as low-dimensional
observations from unknown high-dimensional chaotic dynamical systems. Un-
der the concept of attractor invariance, Attraos utilizes non-parametric Phase
Space Reconstruction embedding along with a novel multi-resolution dynamic
memory unit to memorize historical dynamical structures, and evolves by a
frequency-enhanced local evolution strategy. Detailed theoretical analysis and
abundant empirical evidence consistently show that Attraos outperforms var-
ious LTSF methods on mainstream LTSF datasets and chaotic datasets with
only one-twelfth of the parameters compared to PatchTST. Code is available
at https://github.com/CityMind-Lab/NeurIPS24-Attraos.

1 Introduction

In the intricate dance of time, time series unfold. Emerged from continuous dynamical systems [36,
11, 39] in the physical world, these series are meticulously collected at specific sampling frequencies.
Like musical notes in a composition, they harmonize, revealing patterns that resonate through the
symphony of temporal evolution. In this realm, Long-term Time Series Forecasting (LTSF) stands
as one of the enduring focal points within the machine learning community, achieving widespread
recognition in real-world applications, such as weather forecasting, financial risk assessment, and
traffic prediction [28, 22, 30, 27, 18].

Building on the success of various deep LTSF models [49, 54, 52, 50, 29, 22], which primarily
leverage neural networks to learn temporal dependencies from discretely sampled data. Currently,
researchers [46, 32] have been investigating the application of Koopman theory [48, 25] in recovering
continuous dynamical systems, which applies linear evolution operators to analyze dynamical system
characteristics in a sufficiently high-dimensional Koopman function space. Nevertheless, the existence
of Koopman space relies on the deterministic system, posing challenges given the chaotic nature of
real-world time series data, evidenced through the Maximal Lyapunov Exponent in Appendix E.2.

In this paper, inspired by chaos theory [8], we revisit LSTF tasks from a chaos perspective: Linear
or complex nonlinear dynamical systems exhibit stable patterns in their trajectories after sufficient
evolution, known as attractors. As illustrated in Figure 1(a), attractors can be classified into four
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Figure 1: (a): Classical chaotic systems with noise. (b): dynamical system structure of real-world datasets. (c):
Different types of Attractors. See more figures in Appendix E.1.

types: Fixed Point, indicating stable, invariant systems; Limited cycle, representing periodic behavior;
Limited Toroidal, exhibiting quasi-periodic behavior with non-intersecting rings in a 2D plane,
reflecting temporal distribution shifts; and Strange Attractor, characterized by nonlinear behavior and
complex, non-topological shapes. Supported by chaos theory, we can transcend the limitations of
deterministic dynamical systems to construct generalized dynamical system models. Figure 1(b-c)
showcases various classical chaotic dynamical systems and the dynamical trajectories of real-world
LTSF datasets using the phase space reconstruction method [9]. Notably, the dynamical system
trajectories in these LTSF datasets exhibit fixed structures akin to those in typical chaotic systems.

Given this chaos perspective, we consider real-world time series as stemming from an unidentified
high-dimensional underlying chaotic system, broadly encompassing nonlinear behaviors beyond
periodicity. Our focus centers on recovering continuous chaotic dynamical systems from discretely
sampled data for LTSF tasks, with the goal of predicting future time steps through the lens of attractor
invariance. Specifically, this problem can be decomposed into two key questions: (i) how to model
the underlying continuous chaotic dynamical system based on discretely sampled time series data;
(ii) how to enhance forecasting performance by utilizing the attractors within the system.

In this context, Attraos emerges with the goal of capturing the underlying order within the seeming
chaos via attractors. For tackling the first question, we employ a non-parametric phase space recon-
struction method to recover the temporal dynamics and propose a Multi-resolution Dynamic Memory
Unit (MDMU) to memorize the structural dynamics within historical sampled data. Specifically, as
polynomials have been proven to be universal approximators for dynamical systems [4], MDMU ex-
pands upon the work of the State Space Model (SSM) [12, 10, 18] to different orthogonal polynomial
subspaces. This allows for memorizing diverse dynamical structures that encompass various attractor
patterns, while theoretically minimizing the boundary of attractor evolution error.

To address the second question, we devise a frequency-enhanced local evolution strategy, which
is built upon the recognition that attractor differences are amplified in the frequency domain, as
observed in the field of neuroscience [5, 14, 6]. Concretely, for dynamical system components that
belong to the same attractor, we apply a consistent evolution operator to derive their future states in
the frequency domain. Our contributions can be summarized as follows:

• A Chaos Lens on LTSF. We incorporate chaos theory into LTSF tasks by leveraging the concept
of attractor invariance, leading to a principal way to model the underlying continuous dynamics

• Efficient Dynamic Modeling. Our model Attraos employs a non-parametric embedding to
obtain high-dimensional dynamical representations, leverages MDMU to capture the multi-scale
dynamical structure, and performs the evolution in the frequency domain. Remarkably, Attraos
achieves this with only about one-twelfth the parameter count of PatchTST. Furthermore, we utilize
the Blelloch scan algorithm [3] to enable efficient computation of the MDMU.

• Empirical Evidence. Various experiments validate the superior performance of Attraos. Besides
Leveraging the properties of chaotic dynamical systems, we explore their extended applications in
LTSF tasks, focusing on chaotic evolution, modulation, representation, and reconstruction.
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2 Preliminary

Attractor in Chaos Theory. In chaos theory, the interaction of three or more variables exhibiting
periodic behavior gives rise to a complex dynamical system characterized by chaos. According to
Takens’s theorem [43, 34], assuming an ideal dynamical system F : M → M that “lives” on attractor
A in manifold space M which locally CN (N-times differentiable), time series data {zi} ∈ R can be
interpreted as the observation of it by an unknown observation function h. To explore the properties
of the unknown ideal dynamical system, we can employ the phase space reconstruction (PSR) method
to establish an approximation K : Rm → Rm which lives in differential homomorphism attractor Ã
in the Euclidean space with suitable dimension m [9]. The whole process is illustrated in Equation
(1), where {zi}, {ui} are the sampled data from two dynamical systems. Strictly speaking, in our
paper, the chaotic attractor structure Ã = {Ãi} we focused on is in phase space Rm. To facilitate
understanding, we further provide a visual example of the Lorenz96 system in Appendix E.3.

In the forecasting stage, the local prediction method emerges as a prominent one: ui+1 = K(i)(ui),
where the local evolution K(i) can be either linear or nonlinear neural network [45, 2, 40], with the
parameter being shared among the points in the neighborhood of ui or belong to the same local
attractor. Considering the universal approximation capabilities of polynomials for dynamical systems,
we leverage the polynomial to describe the chaotic dynamical structures.

ai ∈ A ⊂ M F7−→ ai+1 ∈ A ⊂ M
↓h ↓h

zi ∈ R zi+1 ∈ R
↓PSR ↓PSR

ui ∈ Ã ⊂ Rm K7−→ ui+1 ∈ Ã ⊂ Rm

(1)
x′(t) = Ax(t) +Bu(t) (2a)
x(t) = (K ∗ u)(t) (2b)

K(t) = etAB (2c)

Polynomial Projection with Measure Window. We only consider the first part of the SSM (2a),
which is a parameterized map that transforms the input u(t) into an N -dimensional latent space.
According to Hippo [11], it is mathematically equivalent to: given an input u(s), a set of orthogonal
polynomial basis ϕn(t, s) that

∫ t

−∞ ϕm(t, s)ϕn(t, s)ds = δm,n, and an inner product probability
measure µ(t, s). This enables us to project the input u(s) onto the polynomial basis along time
dimension (3), and we can combine ϕn(t, s)ω(t, s) as a kernel Kn(t, s) (4). When ω(t, s) is defined
in a time window I[t, t+ θ], it represents approximating the input over each window θ.

⟨u, ϕn⟩µ =

∫ t

−∞
u(s)ϕn(t, s)ω(t, s)ds (3) xn(t) =

∫
u(s)Kn(t, s)I(t, s)ds (4)

When the basis and measure are solely dependent on time t, it can be expressed in a convolution form
(2b). In this paper, we will utilize this property to project the dynamical trajectories {un} in phase
space onto the polynomial spectral domain with kernel etAB (2c) for characterization.

3 Theoretical Analysis & Methods

The overall structure of Attraos is illustrated in Figure 2. In this section, we provide a comprehensive
description of its components, including the Phase Space Reconstruction embedding, the Multi-
Resolution Dynamic Memory Unit (MDMU), and the frequency-enhanced local evolution, as well as
the efficient computational methods employed.

3.1 Phase Space Reconstruction

According to chaos theory, the initial step involves constructing a topologically equivalent dynamical
structure through the PSR. The preferred embedding method is typically the Coordinate Delay
Reconstruction [34], which does not rely on any prior knowledge of the underlying dynamical system.
By utilizing the discretely sampled data {zi} and incorporating two hyper-parameters, namely,
embedding dimension m and time delay τ , a high-dimensional dynamical trajectory {ui} in phase
space can be constructed by Eq. (5).

ui = (zi−(m−1)τ , zi−(m−2)τ , · · · , zi) (5) Kpatch = Unfold (K, p, p) (6)
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Figure 2: Overall architecture of Attraos. Initially, the PSR technique is employed to restore the underlying
dynamical structures from historical data {zi}. Subsequently, the dynamical system trajectory is fed into MDMU,
projected onto polynomial space GN

θ using a time window θ and polynomial order N . Gradually, a hierarchical
projection is performed to obtain more macroscopic memories of the dynamical system structure. Finally, local
evolution operator K(i) in the frequency domain is employed to obtain future state, thereby for the prediction.

For multivariate time series data with C variables, we have observed considerable variations in
the Lyapunov exponents of each variable, hence a channel-independent strategy [33] is employed
to construct a unified dynamical system K ⊂ Rm. To accelerate model convergence and reduce
complexity, we apply non-overlapping patching to obtain Kpatch (6). We denote the number of
patches as L, using u ∈ RB×L×D to represent the tensor used for computing, where D = mp. The
determination of m and τ is achieved by applying the CC method [23] as shown in Appendix C.1.

Remark 3.1. This represents the pioneering non-parametric embedding in LTSF, effectively reducing
the model parameters in the embedding and output projection process (m is typically single-digit).

Remark 3.2. In a large body of dynamical literature [44, 41, 20, 25], local linear approximation
serves as an effective method for modeling dynamical systems, providing a basis for the effectiveness
of the patching operations in this paper.

3.2 Dynamical Representation by MDMU

Proposition 1. A = diag{−1,−1, . . . } is a rough approximation of normal Hippo-LegT [11] matrix,
which utilizes polynomial projection under a finite measure window (Lebesgue measure).

Remark 3.3. All proofs in this section can be found in Appendix B.

Adhere to Mamba [10], we generate B and measure window θ by linear layer, and propose a novel
parameterized method (Proposition 1) for A to instantiate Eq. (2a):

A = BroadcastD(diag{−1,−1, . . . }), B = LinearB(u), ∆/θ = softplus(Linear∆(u)),
(7)

where A ∈ RD×N represents the dynamical characteristics of the system’s forward evolution in
the polynomial space. Due to its diagonal nature, its representational capacity is comparable to
RD×N×N ; Matrix B ∈ RB×L×N controls the process of projecting u onto the polynomial domain
like a gate mechanism; The learnable approximation window ∆ ∈ RB×L×D, similar to an attention
mechanism, enables adaptive focus on specific dynamical structures (attractors).

Remark 3.4. In the Hippo theory, the measure window is denoted by θ, while in SSMs [10, 12], the
discrete step size is represented by ∆. These two terms can be considered approximately equivalent.

As shown in Figure 3(a), in practical computations, we need to discretize Eq. (2a) to fit the discrete
dynamical trajectories. We apply zero-order hold (ZOH) discretization [11] to matrix A, while
opting for a combination of Forward Euler discretization for B (instead of the commonly used
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Figure 3: (a) Discretization of continuous polynomial approximation for sequence data. g represents the optimal
polynomial constructed from polynomial bases. (b) MDMU projects the dynamical structure onto different
orthogonal subspaces G and S. (c) Sequential computation for Eq. (2a) in O(L) time complexity. (d) Blelloch
tree scanning for Eq. (2a) in O(logL) by storing intermediate results.

B = (∆A)−1(exp(∆A)− I) ·∆B in SSMs), resulting in a more concise representation:

(ZOH) : A = exp(∆A), (Forward Euler) : B = ∆B. (8)

Next, we can project the dynamical trajectory u onto the polynomial domain using the discretized
kernel to obtain dynamical representation x ∈ RB×L×D×N (9). This process can be achieved with
O(L) complexity by employing sequential computation (Figure 3(c)) or by utilizing the Blelloch
scan (Figure 3(d)) to store intermediate results with O(logL) complexity.

K =
(
B,AB, . . . ,A

L−1
B
)
, x = u ∗K. (9)

Up to this point, the construction of the underlying continuous dynamical system K and its application
to discretely sampled data zn have been established. However, in this scenario, we are still limited to
a single representation of the dynamical structures with measure window θ. The strange attractors,
on the other hand, are often composed of multiple fundamental topological structures. Therefore, we
require a multi-scale hierarchical representation of dynamical structures to capture their complexity.

To address this, as illustrated in Figure 3(b), we progressively increase the length of the window θ by
powers of 2. The region previously approximated by gθ1 ∈ GN

θ (left half) and gθ2 ∈ GN
θ (right half)

will now be approximated by g2θ ∈ GN
2θ.

Since the piecewise polynomial function space can be defined as the following form:

Gk
(r) =

{
g | deg(g) < k, x ∈ (2−rl, 2−r(l + 1))

0, otherwise
, (10)

with polynomial order k ∈ N, piecewise scale r ∈ Z+ ∪ {0}, and piecewise internal index l ∈
{0, 1, ..., 2r − 1}, it is evident that dim(Gk

(r)) = 2rk, implying that Gk
θ possesses a superior function

capacity compared to Gk
2θ. All functions in Gk

2θ are encompassed within the domain of Gk
θ . Moreover,

since Gk
θ and Gk

2θ can be represented as space spanned by basis functions {ϕθi (x)} and {ϕ2θi (x)},
any function including the basis function within the Gk

2θ space can be precisely expressed as a linear
combination of basis functions from the Gk

θ space with a proper tilted measure µ2θ:

ϕ2θi (x) =

k−1∑
j=0

Hθ1
ij ϕ

θ
i (x)x∈[θ1] +

k−1∑
j=0

Hθ2
ij ϕ

θ
i (x)x∈[θ2], (11)
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The projection coefficients on these two spaces can be mutually transformed using the linear projection
matrix H and its inverse matrix H† based on the odd or even positions along the L dimension in x.

x2θ = Hθ1xθ1 +Hθ2xθ2 , x2θ ∈ RB×L/2×D×N (12)

Remark 3.5. Although ∆ is akin to an attention mechanism leads to different measure windows,
ie., θ1 ̸= θ2, it still maintains the linear projection property for up and down projection:Gθ1 ,Gθ2 ↔
Gθ1+θ2 . In our illustration, we have used a unified measure window for simplicity.
Theorem 2. (Approximation Error Bound) Function f : [0, 1] ∈ R is k times continuously
differentiable, the piecewise polynomial g ∈ GN

r approximates f with mean error bounded as:

∥f − g∥ ≤ 2−rN 2

4NN !
sup

x∈[0,1]

∣∣∣f (N)(x)
∣∣∣ .

Iteratively repeating this process enables us to model the dynamical structure from a more macroscopic
perspective. Theorem 2 indicates that under this approach, the polynomial projection error has
convergence of order N . Hyper-parameter analysis can be found in Figure 5.
Remark 3.6. When the weight function is uniformly equal across the dynamical structure, Hθ1 and
Hθ2 are shared in each projection level as the projection matrix for the left and right interval.

Theorem 3. The mean attractor evolution error
∥∥∥K ◦ Ã − Ã

∥∥∥ of evolution operator K = {K(i)} is

bounded by ∥K ◦ Ã− Ã∥(N − 1)E (−β∇i + 1), with the number of random patterns N ≥ √
pcd−1

4
stored in the system by interaction paradigm E in an ideal spherical retrieval paradigm.

Based on this hierarchical projection, we additionally want to uphold the constancy of attractor
patterns throughout the evolution, which is equivalent to minimizing attractor evolution errors.
According to Theorem 3, it is imperative to ensure the separation between attractors, denoted as
∇i := minj,j ̸=i

(
ÃT

i Ãi − ÃT
i Ãj

)
, is sufficiently large. While there is an intersection between the

GN
θ and GN

2θ spaces, which limits the attainment of a sufficiently large ∇. To address this issue, we
define an orthogonal complement space as GN

θ = SN
θ

⊕
GN
2θ, to establish a series of orthogonal

function spaces {SN
θ ,SN

2θ, ...,SN
2Lθ,G

N
2Lθ}. We can extend Eq. (12) as:

x2θ = Hθ1xθ1 +Hθ2xθ2 , s2θ = Gθ1xθ1 +Gθ2xθ2 , (13)

xθ1 = H†θ1x2θ +G†θ1s2θt , xθ2 = H†θ2x2θ +G†θ2s2θt . (14)

Theorem 4 states that the coarsest-grained G space, along with a series of orthogonal complement S
spaces, can approximate any given dynamical system structure with finite error bounds in Theorem 2.
Theorem 4. (Completeness in L2 space) The orthonormal system BN = {ϕj : j = 1, . . . , N} ∪
{ψrl

j : j = 1, . . . , N ; r = 0, 1, 2, . . . ; l = 0, . . . , 2r − 1} spans L2[0, 1].

Remark 3.7. H,G,H†,G† ∈ RN×N are obtained by applying Gaussian Quadrature to Legendre
polynomials [13]. The gradients of these matrices are subsequently utilized for adaptive optimization.

The hierarchical projection can be implemented explicitly using iterative display or can be efficiently
computed through an implicit implementation proposed in the following Section 3.3.

3.3 System Evolution by Attractors

Following chaos theory, we employ a local evolution method xi+1 = K(i)(xn) to forecast future
state. Given dynamics representations s/x, the subsequent step involves partitioning the attractor and
utilizing the operator Ki belonging to Ai for system evolution. We present three evolution strategies:

• Direct Evolution: We employ each representation xt/st ∈ RD×N as the feature to partition
adjacent points in the dynamical system trajectory into the same attractor using the K-means
method. Subsequently, we evolve these points using a local operator K(i).

• Frequency-enhanced Evolution: Inspired by neuroscience [6], where attractor structures are
amplified in the frequency domain, we first obtain the frequency domain representation of the
dynamical structure through Fourier transformation. Considering the dominant modes as attractors,
we employ K(i) to drive the system’s evolution in the frequency domain.
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• Hopfield Evolution: Hopfield networks [16] are designed specifically for attractor memory retrieval
(see Appendix A.2). In our approach, we utilize a modern version [38] of the Hopfield network for
the evolution of dynamical systems, employing cross-attention operations. We treat the trainable
attractor library as the Key and Value, while different scales of dynamical structure representations
{sθ, s2θ, ..., s2Lθ, x2

Lθ} serve as the Query, enabling sequence-to-sequence evolution.

Our experimental results in Table 4 demonstrate that the frequency-enhanced evolution strategy
outperforms others comprehensively, and we introduce two implementation approaches:

Explicit Evolution. Initially, the finest dynamical representation xθ is obtained using K, and
then expanded to multiple scales sθ, s2θ, ..., s2

Lθ, x2
Lθ. By applying the Fourier Transform, we

select M low-frequency components as the primary modes. Each mode undergoes linear evolution
K(i) =Wi ∈ CN×N , followed by back projection to the original scale.

Implicit Evolution. However, explicit evolution methods inevitably increase the time complexity.
To address this issue, inspired by the Blelloch algorithm and hierarchical projection, which both
utilize tree-like computational graphs, we propose an implicit evolution method.

A Blelloch scan [3, 42] (Figure 3(d)) defines a binary operator qi•qj := (qj,a⊙qi,a, qj,a⊗qi,b+qj,b)
used to compute the linear recurrence xk = Axk−1 +Buk. We take L = 4 as an example:

Up sweep for even position
r2 = c1 • c2 =

(
A,Bu1

)
•
(
A,Bu2

)
=

(
A

2
,ABu1 + Bu2

)
q4 = c3 • c4 =

(
A,Bu3

)
•
(
A,Bu4

)
=

(
A

2
,ABu3 + Bu4

)
r4 = r2 • q4 =

(
A

2
,ABu1 + Bu2

)
•
(
A

2
,ABu3 + Bu4

)
=

(
A

4
,A

3
Bu1 + A

2
Bu2 + ABu3 + Bu4

)
.

Down sweep for odd position
r1 = r0 • c1 = (I, 0) •

(
A,Bu1

)
=

(
A,Bu1

)
r3 = r2 • c3 =

(
A

2
,ABu1 + Bu2

)
•
(
A,Bu3

)
=

(
A

3
,A

2
Bu1 + ABu2 + Bu3

)
x1, x2, x3, x4 = r1[R], r2[R], r3[R], r4[R].

The process commences by computing the values of variable x at even positions through an upward
sweep. Subsequently, these even position values are employed during a downward sweep to calculate
the values at odd positions. The corresponding value of x resides in the right node of r. Thus, we can
modify the binary operator as qi • qj := (qj,a ⊙ qi,a, Hi ⊗ (qj,a ⊗ qi,b + qj,b)), thereby implicitly
integrating hierarchical projection into the scanning operation. This leads to the scales of xi:

scale(xi) =


0 if i = 0

scale(xi−1) + 1 if i is odd
log2(i) if i is even and a power of 2
1 if i is even and not a power of 2

We simplify the original Hθ1/θ2 ,Gθ1/θ2 ,H†θ1/θ2 ,G†θ1/θ2 with just H ∈ RB×L×N , which is
generated directly through a linear layer, and omit the reconstruction process. This approach directly
sparsifies the kernels eAtB in different subspaces and using the linear layer to generate hierarchical
space projection matrix. Afterwards, we learn the evolution using the data x in the frequency domain.

H = LinearH(u), Wout = LinearWout
(u). (15)

In this paper, we utilize this indirect and efficient hierarchical projection as the default setting.
Ultimately, Attraos projects from the polynomial spectral space back to the phase space by employing
another gating projection Wout ∈ RB×L×N×1 (15) to x ∈ RB×L×D×N , and derives the prediction
results using an observation function parameterized by Wh ∈ RLD×H (flattening the patches).

4 Experiments

In this section, we commence by conducting a comprehensive performance comparison of Attraos
against other state-of-the-art models in seven mainstream LTSF datasets along with two typical
chaotic datasets, namely Lorenz96-3d and Air-Convection, followed by ablation experiments per-
taining to model architectures. Furthermore, leveraging the properties of chaotic dynamical systems,
we explore their extended applications, including experiments on chaotic evolution, representation,
reconstruction, and modulation (Appendix E). Finally, we provide the complexity analysis and robust-
ness analysis. For detailed information regarding baseline models, dataset descriptions, experimental
settings, and hyper-parameter analysis, please refer to Appendix D.
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Table 1: Average results of long-term forecasting with an input length of 96 and prediction horizons of {96, 192,
336, 720}. The best performance is in Red, and the second best is in Blue. Full results are in Appendix E.5.

Model Attraos Mamba4TS S-Mamba RWKV-TS GPT-TS Koopa InvTrm PatchTST DLinear
(Ours) (Time Emb.) [47]) [17] [55] [32] [31] [33] [52]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.423 0.420 0.444 0.438 0.459 0.453 0.454 0.446 0.457 0.450 0.450 0.443 0.463 0.454 0.434 0.435 0.462 0.458

ETTh2 0.372 0.399 0.386 0.410 0.381 0.407 0.375 0.402 0.389 0.414 0.397 0.417 0.383 0.407 0.380 0.406 0.564 0.520

ETTm1 0.382 0.391 0.396 0.406 0.399 0.407 0.391 0.403 0.396 0.401 0.395 0.403 0.407 0.412 0.403 0.398 0.403 0.406

ETTm2 0.280 0.324 0.299 0.343 0.289 0.333 0.285 0.330 0.294 0.339 0.281 0.326 0.291 0.335 0.283 0.329 0.345 0.396

Exchange 0.349 0.395 0.364 0.405 0.364 0.407 0.406 0.439 0.371 0.409 0.390 0.424 0.366 0.416 0.383 0.416 0.346 0.416

Crypto 0.187 0.157 0.193 0.162 0.198 0.163 0.190 0.159 0.196 0.164 0.199 0.165 0.196 0.164 0.192 0.161 0.201 0.176

Weather 0.246 0.271 0.258 0.280 0.252 0.277 0.256 0.280 0.279 0.279 0.247 0.273 0.260 0.280 0.258 0.280 0.267 0.319

Table 2: Prediction results on the artificial (Lorenz96-3d) and real-world chaotic datasets (Air-convection) with
various forecasting lengths. Red/Blue denotes the best/second performance.

Model Attraos Mamba4TS S-Mamba RWKV-TS Koopa InvTrm PatchTST DLinear
(Ours) (Time Emb.) [47]) [17] [32] [31] [33] [52]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

L
or

en
z9

6-
3d 96 0.844 0.684 0.892 0.721 0.925 0.744 0.894 0.722 0.891 0.736 0.963 0.786 0.929 0.756 0.881 0.750

192 0.835 0.662 0.910 0.748 0.917 0.761 0.894 0.744 0.881 0.752 0.944 0.811 0.899 0.714 0.910 0.753
336 0.837 0.681 0.943 0.772 0.968 0.788 0.982 0.823 0.914 0.753 0.997 0.841 0.922 0.787 0.893 0.737
720 0.872 0.739 0.996 0.814 1.135 0.940 1.058 0.921 0.989 0.801 1.129 0.955 0.971 0.828 0.927 0.806

AVG 0.847 0.692 0.935 0.764 0.986 0.808 0.957 0.803 0.919 0.761 1.008 0.848 0.930 0.771 0.903 0.762

A
ir

96 0.437 0.303 0.451 0.314 0.468 0.329 0.447 0.308 0.443 0.307 0.470 0.337 0.465 0.331 0.441 0.325
192 0.455 0.321 0.472 0.331 0.481 0.340 0.467 0.328 0.451 0.329 0.485 0.349 0.477 0.341 0.460 0.338
336 0.456 0.334 0.468 0.342 0.485 0.351 0.461 0.339 0.468 0.342 0.499 0.363 0.484 0.353 0.461 0.341
720 0.466 0.355 0.492 0.379 0.501 0.386 0.482 0.367 0.488 0.369 0.516 0.401 0.504 0.392 0.474 0.359

AVG 0.454 0.328 0.471 0.342 0.484 0.352 0.464 0.336 0.463 0.337 0.493 0.363 0.483 0.354 0.459 0.341

4.1 Overall Performance

Mainstream LTSF Datasets. As depicted in Table 1, we can observe that: (a) Attraos consistently
exhibits the best performance, closely followed by RWKV-TS and Koopa, which underscores the
crucial role of modeling temporal dynamics in LTSF tasks. (b) The models based on state space
models (Mamba4TS, S-Mamba) generally outperform the Transformer-based models (PatchTST,
InvTrm), indicating the potential superiority of state space models as fundamental frameworks for
temporal modeling. (c) The performance of the GPT-TS model, which relies on a pre-trained large
language model, is relatively average, suggesting the inherent challenge in directly capturing the
dynamics of temporal data using such models. A promising avenue for future research lies in
training a dynamical foundational model from scratch on large-scale physical datasets or leveraging
pre-training to obtain an attractor tokenizer that is better suited for inputs to the large language model.

Chaotic Datasets. Table 2 presents the results on both artificial and real-world chaotic datasets.
It can be observed that: (a) Attraos exhibits superior performance on both datasets, thanks to the
utilization of the PSR and MDMU modules, which effectively capture the multi-scale attractor
structures. (b) In Lorenz96 dataset, where there is a prior knowledge about the phase space dimension,
Attraos outperforms other models by a significant margin. This highlights the importance of PSR
in recovering the complete temporal dynamics. (c) Apart from Attraos, the linear model (DLinear)
demonstrate the best predictive results due to their robustness. Conversely, deep learning models
based on transformers exhibit weaker performance and fail to model chaotic dynamics effectively.

4.2 Further Analysis

Ablation Studies. Next, we turn off each module of Attraos to assess their individual effects. As
shown in Table 3, we observe consistent performance decline of Attraos when deleting each module:
(a) The removal of Phase Space Reconstruction exhibits the most severe performance degradation,
indicating that the process of reconstructing the dynamical structure through PSR forms the foundation
for Attraos’ efficient capture of attractor structures. (b) Multi-scale hierarchical projection effectively
captures the complex topological structure of the singular attractor, leading to improved performance.
However, overfitting may occur in certain prediction lengths. (c) Time-varying B and Wout acts as a
gating attention mechanism, allowing for a more focused emphasis on dynamical structure segments
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Table 3: Results of ablation study. “w/o" denotes without. PSR: Phase Space Reconstruction; MS: Multi-scale
hierarchical projection; TV: Time-varying B and Wout; SPA: Specially initialized A ; FE: Frequency Evolution.
Red/Blue denotes the performance improvement/decline.

Model Attraos w/o PSR w/o MS w/o TV w/o SPA w/o FE

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h2

96 0.292 0.348 0.301 0.357 0.299 0.353 0.299 0.354 0.294 0.351 0.297 0.352
192 0.374 0.386 0.389 0.405 0.384 0.393 0.381 0.395 0.373 0.384 0.378 0.388
336 0.420 0.432 0.427 0.438 0.426 0.436 0.424 0.430 0.425 0.436 0.427 0.435
720 0.418 0.431 0.431 0.450 0.425 0.437 0.416 0.427 0.421 0.433 0.427 0.437

AVG 0.376 0.399 0.387 0.413 0.380 0.405 0.380 0.402 0.478 0.401 0.382 0.403

W
ea

th
er

96 0.159 0.206 0.171 0.215 0.163 0.210 0.167 0.214 0.162 0.209 0.164 0.211
192 0.212 0.249 0.266 0.263 0.218 0.253 0.222 0.270 0.215 0.249 0.216 0.253
336 0.265 0.288 0.282 0.304 0.271 0.295 0.277 0.297 0.263 0.288 0.270 0.294
720 0.347 0.340 0.358 0.351 0.346 0.338 0.355 0.346 0.347 0.342 0.355 0.356

AVG 0.246 0.271 0.259 0.283 0.250 0.274 0.255 0.282 0.247 0.272 0.251 0.279

Table 4: Results of various chaotic evolution strategies. Red/Blue denotes the best/second performance.

SSMs Implicit Fre Explicit Fre Direct-Linear Direct-CNN Hopfield-16modes Hopfield-64modes

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.370 0.388 0.376 0.392 0.388 0.404 0.395 0.410 0.384 0.405 0.389 0.407
192 0.416 0.418 0.419 0.423 0.441 0.439 0.444 0.437 0.430 0.446 0.427 0.442
336 0.458 0.432 0.465 0.439 0.488 0.460 0.482 0.456 0.480 0.482 0.485 0.489
720 0.447 0.442 0.454 0.448 0.511 0.508 0.510 0.512 0.494 0.491 0.502 0.500

AVG 0.423 0.420 0.429 0.426 0.457 0.453 0.458 0.454 0.447 0.456 0.426 0.460

E
T

T
m

2

96 0.172 0.254 0.175 0.258 0.187 0.266 0.191 0.269 0.181 0.260 0.182 0.263
192 0.242 0.301 0.247 0.308 0.264 0.331 0.265 0.334 0.255 0.312 0.259 0.314
336 0.303 0.340 0.310 0.349 0.325 0.359 0.319 0.354 0.315 0.347 0.312 0.344
720 0.401 0.399 0.407 0.405 0.424 0.419 0.421 0.422 0.420 0.426 0.417 0.422

AVG 0.280 0.324 0.285 0.330 0.300 0.344 0.297 0.345 0.293 0.336 0.293 0.336

that potentially contain attractor structures, thereby enhancing performance. (d) The initialization
method proposed for A matrix demonstrates marginal yet consistent improvements, underscoring
the importance of prior inductive bias for machine learning models. (e) Frequency domain evolution
methods significantly reduce temporal noise information and amplify attractor structures. We will
further analyze the importance of frequency domain evolution in subsequent analysis.

Chaotic Evolution Strategy. We further compare various dynamical system evolution strategies
mentioned in Section 3.3. From Table 4, it is evident that the frequency-enhanced evolution strategy
outperforms the others. Moreover, our proposed efficient implicit evolution method can adaptively
explore multi-scale dynamical structure information, avoiding redundant cyclic computations and
mitigating overfitting. (b) An inherent characteristic of time series data is significant noise, making
it challenging to capture the underlying dynamical structures in the time domain. Direct evolution
strategies, whether linear or non-linear neural network-based, do not yield satisfactory results.
Moreover, according to the theorem 2 in FiLM [53], the recursion computation for dynamic projection
further accumulates noise information. (c) Applying Hopfield networks in the time domain also
proves to be unsatisfactory, and even adding more patterns (Key and Value) can have adverse effects.
A potential solution is to apply Hopfield networks in the frequency domain instead.

Complexity Analysis. As depicted in Figure 4, we present a comprehensive visual analysis
comparing Attraos with various baseline models in terms of their average performance on the ETTh1
dataset. The x-axis represents the training time, the y-axis represents the test loss, and the circle radius
corresponds to the model parameters. In this analysis, we substituted GPT-TS with FiLM due to its
limited relevance to this specific evaluation. The results clearly demonstrate that Attraos surpasses
other models in both time and space complexity, maintaining a significant advantage. Notably, when
compared to the PatchTST model with a hidden dimension of 256 (2.4M parameters), Attraos (0.2M
parameters) possesses only one-twelfth of its parameter count.

Robustness Analysis. We add a 0.1 * N (0, 1) Gaussian noise to the training dataset to test the
robustness of Attraos. As shown in Table 5, it can be observed that Attraos exhibits strong robustness
against noisy data, and increasing the level of noise can even lead to further performance improvement.
This is attributed to the frequency domain evolution strategy, where we retain only the dominant
modes as attractor structures, effectively removing the noise information. Furthermore, an interesting
phenomenon has been observed in our experiments: as noise is introduced, the model’s convergence
speed increases. This discovery warrants further exploration in future studies.
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Figure 4: Complexity analysis.

Model Attraos Attrao-noise

Metric MSE MAE MSE MAE

E
T

T
h1

96 0.370 0.388 0.360 0.390
192 0.416 0.418 0.413 0.415
336 0.458 0.432 0.455 0.430
720 0.447 0.442 0.451 0.444

AVG 0.423 0.420 0.422 0.420

E
T

T
m

2

96 0.172 0.254 0.170 0.251
192 0.242 0.301 0.238 0.297
336 0.303 0.340 0.305 0.339
720 0.401 0.399 0.398 0.392

AVG 0.280 0.324 0.278 0.320

Table 5: Robustness analysis with additional noise. Red/Blue
denotes the performance improvement/decline.

Chaotic Reconstruction. As illustrated in the left of Figure 5, we visualize the phase space
forecasting results of Attraos on the Lorenz96 system. It can be observed that: Although some minor
details may be missing due to the sparsity introduced by the frequency domain evolution, Attraos
successfully reconstructs the chaotic dynamic structure of Lorenz96. Moreover, modeling time series
based on the dynamics structure of the phase space can be viewed as a form of data augmentation,
e.g., two-dimensional time figuring [50] or seasonal decomposition [54].

Chaotic Representation & Hyper-parameter Analysis. In the right of Figure 5, we validated
the impact of polynomial dimensions on the model performance. Noteworthy observations include:
As noted in substantial literature on SSMs, a polynomial dimension of 256 is generally required to
approximate input time series signals with sufficient accuracy. However, we found that the patch
operation effectively reduces this threshold in a linear fashion. For instance, in the ETT dataset with
a phase space dimension of 4, the required polynomial dimension drops to 256/4 = 64 dimensions.

Figure 5: Left: Chaotic Reconstruction for Lorenz96 system with 720 forecasting step. Right: Hyper-parameter
analysis w.r.t. polynomial orders for different model variants w.r.t. patching operation in ETTm2 dataset.

Discussion. Recently, across various fields of machine learning, an increasing number of works
have focused on the underlying physical properties hidden within real-world observational data
[20, 21, 26, 51]. By leveraging physical priors, these models achieve significant improvements in
generalization, accuracy, and interpretability. We hope Attraos introduces a fresh perspective to the
LTSF community and encourages the emergence of physics-guided time series analysis models.

5 Conclusion and Future Work

LTSF tasks have long been a focal point of research in the machine-learning community. However,
mainstream deep learning models currently overlook the crucial aspect that time series data is derived
from discretely sampling underlying continuous dynamical systems. Inspired by chaotic theory,
our model, Attraos, considers time series as generated by a generalized chaotic dynamical system.
By leveraging the invariance of attractors, Attraos enhances predictive performance and provides
empirical and theoretical explanations. In the future, we will verify our proposed Attraos on large-
scale chaotic datasets and utilize the implicit neural representations for the phase space coordinates,
enabling a trainable embedding process to address the instability of PSR techniques.
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A Technical Background

A.1 Takens Theorem

Takens’ theorem, introduced by Floris Takens in 1981, provides a framework for reconstructing
the dynamics of a chaotic system based on a series of observations. The theorem establishes
conditions under which the state space of a dynamical system can be reconstructed from time-delay
measurements of a single observable. The reconstructed system retains properties that are invariant
under smooth transformations, known as diffeomorphisms.

In the context of discrete-time dynamical systems, Takens’ theorem is commonly applied. Consider
a dynamical system whose state space is a v-dimensional manifold M, with the evolution of the
system governed by a smooth map

F : M → M.

Assume there exists a strange attractor A ⊂ M with a box-counting dimension dA. According
to Whitney’s embedding theorem [37], the attractor A can be embedded into an m-dimensional
Euclidean space if

m > 2dA.

This implies that there is a diffeomorphism φ mapping the attractor A into RN , such that the Jacobian
matrix of φ is of full rank. In the delay embedding process, the embedding function is constructed
using an observation function. This observation function h : M → R needs to be twice continuously
differentiable and must assign a real number to each point on the attractor A, ensuring that it is
typical, meaning its derivative is of full rank without exhibiting any special symmetries.

The delay embedding theorem states that the mapping

φT (x) =
(
h(x), h(F(x)), . . . , h

(
Fk−1(x)

))
constitutes an embedding of the strange attractor A into RN .

Now, consider a d-dimensional state vector xt, which evolves according to an unknown but determin-
istic and continuous dynamic process. Suppose a one-dimensional observable y exists, which is a
smooth function of x and is coupled to all the components of x. At any given time, we can observe
not only the current measurement y(t) but also measurements from past times separated by a lag
τ : yt+τ , yt+2τ , and so on. Using m such lags results in an m-dimensional vector. As the number
of lags increases, the motion in the reconstructed space becomes more predictable, and in the limit
as m → ∞, the dynamics could become deterministic. In reality, the deterministic nature of the
dynamics is achieved at a finite dimension, with the reconstructed dynamics being equivalent to the
original system’s dynamics, related by a smooth, invertible change of coordinates (a diffeomorphism).
The theorem specifically asserts that deterministic behavior emerges once the dimension reaches
2d+ 1, with the minimal embedding dimension often being lower.

A.2 Hopfield Network

A.2.1 Classical Hopfield Network

A Hopfield network is a form of recurrent artificial neural network with binary neurons. It is
characterized by:

• Binary neurons with states +1 or -1.
• Symmetric weight matrix with zero diagonal (no self-connections).
• Energy function that is minimized at stable states.
• Asynchronous update of neuron states.

Dynamics

The state of each neuron is updated according to:

si(t+ 1) = sign

∑
j

wijsj(t)

 (16)
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Where si(t+ 1) is the state of neuron i at time t+ 1, wij is the weight between neurons i and j, and
sj(t) is the state of neuron j at time t.

The energy of the network is defined as:

E = −1

2

∑
i,j

wijsisj (17)

Memory Storage and Retrieval

Memories are stored in the network by adjusting the weights to minimize the network energy, often
using the Hebbian learning rule. The network can retrieve memory from a noisy or incomplete
version by converging to a stored state. The memory capacity of a Hopfield network depends on
several factors, with the most significant one being the number of neurons in the network. John
Hopfield proposed a rule in his original paper to estimate the memory capacity, stating that the
network can effectively store approximately 0.15N independent memories, where N represents the
number of neurons in the network. This means that for a network containing 100 neurons, it can store
approximately 15 patterns.

A.2.2 Modern Hopfield Network

In order to integrate Hopfield networks into deep learning architectures, The Modern Hopfield
Network allows for continuous state updating. It proposes a new energy function based on the
associative memory model [7] and proposes a new update rule that can be proven to converge to
stationary points of the energy (local minima or saddle points). Specifically, the new Energy function
is:

E = − lse
(
β,XT ξ

)
+

1

2
ξT ξ + β−1 logN +

1

2
M2, (18)

with lse(log − sum− exp) interaction function:

lse(β,x) = β−1 log

(
N∑
i=1

exp (βxi)

)
(19)

Sering 0E2M2. Using p = softmax
(
βXT ξ

)
, The novel update rule is:

ξnew = f(ξ) = Xp = X softmax
(
βXT ξ

)
. (20)

The new update rule can be viewed as the attention in Transformers. Firstly, N stored (key) patterns
yi and S state (query) patterns ri that are mapped to the Hopfield space of dimension dk. Then
set xi = W T

Kyi, ξi = W T
Q ri, and multiply the result of the update rule with WV . The matrices

Y = (y1, . . . ,yN )
T and R = (r1, . . . , rS)

T combine the yi and ri as row vectors. By defining
the matrices XT = K = Y WK ,Ξ

T = Q = RWQ, and V = Y WKWV = XTWV , where
WK ∈ Rdy×dk ,WQ ∈ Rdr×dk ,WV ∈ Rdk×dv , β = 1/

√
dk and softmax ∈ RN is changed to a

row vector, the update rule multiplied by WV is:

Z = softmax
(
1/
√
dkQKT

)
V = softmax

(
βRWQW T

KY T
)
Y WKWV .

In the Hopfield Evolution strategy of Attraos, The Query is settled as the dynamic structures and the
Key/Value is settled as trainable vectors.

A.3 Orthogonal Polynomials

Note: In this section, we have selectively extracted key content from the appendix of Hippo [11]
that is pertinent to our work, for the convenience of the reader. We take Legendre polynomials as an
example.

Under the usual definition of the canonical Legendre polynomial Pn, they are orthogonal with respect
to the measure ωleg = 1[−1,1] :

2n+ 1

2

∫ 1

−1

Pn(x)Pm(x)dx = δnm
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Also, they satisfy
Pn(1) = 1

Pn(−1) = (−1)n.

With respect to the measure 1
θ I[t− θ, t], the normalized orthogonal polynomials are

(2n+ 1)1/2Pn

(
2
x− t

θ
+ 1

)
In general, the orthonormal basis for any uniform measure consists of (2n + 1)

1
2 times the corre-

sponding linearly shifted version of Pn.

Derivatives of Legendre polynomials We note the following recurrence relations on Legendre
polynomials:

(2n+ 1)Pn = P ′
n+1 − P ′

n−1

P ′
n+1 = (n+ 1)Pn + xP ′

n

The first equation yields

P ′
n+1 = (2n+ 1)Pn + (2n− 3)Pn−2 + . . . ,

where the sum stops at P0 or P1. These equations directly imply

P ′
n = (2n− 1)Pn−1 + (2n− 5)Pn−3 + . . .

and
(x+ 1)P ′

n(x) = P ′
n+1 + P ′

n − (n+ 1)Pn

= nPn + (2n− 1)Pn−1 + (2n− 3)Pn−2 + . . .

To sum up, The Legendre polynomials are in closed-recursive form.

B Proof

Proposition 5. [18] A = diag{−1,−1, . . . } is a rough approximation of shifted Hippo-LegT [11]
matrix.

Proof. Hippo 3 provides a mathematical framework for deriving the AB matrix for polynomial
projection. The mainstream SSMs [10] typically initialize matrix A = diag{−1,−2,−3,−4, . . . },
representing the negative real diagonal elements of the normalized Hippo-LegS matrix (21). Since
the LegS matrix is a mathematical approximation of exponentially decaying Legendre polynomials,
initializing A = diag{−1,−2,−3,−4, . . . } can be seen as a rough approximation of exponential
decay. Similarly, for the normalized Hippo-LegT matrix (22), which approximates a uniform measure,
we can consider A = diag{−1,−1, . . . } as a rough approximation of a finite window of Legendre
polynomials, which better for non-stationary time series as well [19]. The use of negative values for
the elements is to ensure gradient stability during training.

A
(N)
nk = −


(n+ 1

2
)1/2(k + 1

2
)1/2 n > k

1
2

n = k

(n+ 1
2
)1/2(k + 1

2
)1/2 n < k

A = A(N) − rank(1), A(D) := eig(A(N))

(Normal / DPLR form of HiPPO-LegS)
(21)

A
(N)
nk = −


(2n+ 1)

1
2 (2k + 1)

1
2 n < k, k odd

0 else

(2n+ 1)
1
2 (2k + 1)

1
2 n > k, n odd

A = A(N) − rank(2), A(D) := eig(A(N))

(Normal / DPLR form of HiPPO-LegT)
(22)

Theorem 6. (Approximation Error Bound) Suppose that the function f : [0, 1] ∈ R is k times
continuously differentiable, the piecewise polynomial g approximates f with mean error bounded as
follows:

∥f − g∥ ≤ 2−rk 2

4Nk!
sup

x∈[0,1]

∣∣∣f (k)(x)∣∣∣ .
17



Proof. Similar to [1], we divide the interval [0, 1] into subintervals on which g is a polynomial; the
restriction of g to one such subinterval Ir,l is the polynomial of degree less than k that approximates
f with minimum mean error. Also, the optimal g can be regarded as the orthonormal projection
QN

r f onto GN
(r). We then use the maximum error estimate for the polynomial, which interpolates f

at Chebyshev nodes of order k on Ir,l. We define Ir,l = [2−rl, 2−r(l + 1)] for l = 0, 1, . . . , 2r − 1,
and obtain ∥∥QN

r f − f
∥∥2 =

∫ 1

0

[(
QN

r f
)
(x)− f(x)

]2
dx

=
∑
l

∫
Ir,l

[(
QN

r f
)
(x)− f(x)

]2
dx

≤
∑
l

∫
Ir,l

[(
CN

r,lf
)
(x)− f(x)

]2
dx

≤
∑
l

∫
Ir,l

(
21−rk

4Nk!
sup
x∈Ir,l

∣∣∣f (k)(x)∣∣∣)2

dx

≤

(
21−rk

4Nk!
sup

x∈[0,1]

∣∣∣f (k)(x)∣∣∣)2

and by taking square roots we have bound (7). Here CN
r,lf denotes the polynomial of degree k which

agrees with f at the Chebyshev nodes of order k on Ir,l, and we have used the well-known maximum
error bound for Chebyshev interpolation.

The error of the approximation QN
r f of f therefore decays like 2−rk and, since SN

r has a basis of 2rk
elements, we have convergence of order k. For the generalization to m dimensions in the dynamic
structure modeling, a similar argument shows that the rate of convergence is of order k/m.

Theorem 7. (Evolution Error Bound) By Jacobian value, the mean attractor evolution error∥∥∥K ◦ Ã − Ã
∥∥∥ of evolution operator K = {K(i)} is bounded by∥∥∥K ◦ Ã − Ã

∥∥∥ (N − 1)E (−β∇i + 1)

with the number of random patterns N ≥ √
pcd−1

4 stored in the system by interaction paradigm E in
an ideal spherical retrieval paradigm.

Proof. Due to the numerous assumptions and extensive lemmas involved in the proof of this theorem,
we will provide a brief exposition of its main ideas. For a detailed proof, please refer to [38].

Firstly, the theorem defines the matching between patterns as:

Definition 1. (Pattern match). Assuming that around every pattern xi a sphere Si is given. We say
xi is matched with ξ if there is a single fixed point x∗

i ∈ Si to which all points ξ ∈ Si converge.

As shown in Theorem 3 in [38], according to the upper branch of the Lambert W function [35], we
can obtain the number of random patterns stored in a system is N ≥ √

pcd−1
4 .

In our paper, we define the pattern1 as the Attractor Ã in phase space, pattern2 as the future state
evaluated by operator K, noted as K ◦ Ã. From Lemma A4 in [38], when the radius of the pattern
matching sphere is M , we can describe the evolution process by jacobian value and get the matching
error as: ∥∥∥K ◦ Ã − Ã

∥∥∥ 2ϵM
where in the Equation (179) of [38]:

ϵ = (N − 1) exp
(
−β
(
∇i − 2max

{∥∥∥K ◦ Ã − Ã
∥∥∥ ,∥∥∥Ã∗

i − Ãi

∥∥∥}M)) .
The Equation (404) of [38] says

∥∥∥Ã∗
i − Ãi

∥∥∥ 1
2βM and

∥∥∥K ◦ Ã − Ã
∥∥∥ 1

2βM , so we can get:

ϵe(N − 1)M exp (−β∇i) .
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In our paper, we replace the exponential interaction function with an unknown function E(·) to finally
get the version in Theorem 3.

Theorem 8. (Completeness in L2 space) The orthonormal systemBk = {ϕj : j = 1, . . . , k}∪{ψrl
j :

j = 1, . . . , k; r = 0, 1, 2, . . . ; l = 0, . . . , 2r − 1} spans L2[0, 1].

Proof. We define the space GN to be the union of the GN
(r), given by the formula:

GN =

∞⋃
r=0

GN
r (23)

and observe that GN = L2[0, 1]. In particular, GN contains the Haar basis for L2[0, 1], consisting of
functions piecewise constant on each of the subintervals (2−rl, 2−r(l + 1)). Here the closure GN is
defined with respect to the L2-norm,

∥f∥ = ⟨f, f⟩1/2

where the inner product ⟨f, g⟩ is defined by the formula

⟨f, g⟩ =
∫ 1

0

f(x)g(x)dx.

Also, we have:

GN
r = GN

0 ⊕ SN
0 ⊕ SN

1 ⊕ · · · ⊕ SN
r−1 (24)

and

SN
r = linear span {ψl

j,r : ψl
j,r(x) = 2r/2ψj (2

rx− l) , j = 1, . . . , k;n = 0, . . . , 2r − 1} . (25)

We let {ϕ1, . . . , ϕk} denote an orthonormal basis for GN
0 ; in view of Equation 23, 24, and 25, the

orthonormal system

Bk =
{ϕj : j = 1, . . . , k}

∪
{
hlj,r : j = 1, . . . , k; r = 0, 1, 2, . . . ; l = 0, . . . , 2r − 1}

spans L2[0, 1].

Now we construct a basis for L2(R) by defining, for r ∈ Z, the space G̃N
r by the formula G̃N

r = {f :
the restriction of f to the interval (2−rn, 2−r(n+ 1)) is a polynomial of degree less than k, for
n ∈ Z } and observing that the space G̃N

r+1\G̃N
r is spanned by the orthonormal set{

ψl
j,r : ψl

j,r(x) = 2r/2ψj (2
rx− l) , j = 1, . . . , k; l ∈ Z

}
.

Thus L2(R), which is contained in
⋃

r G̃N
r , has an orthonormal basis{

ψn
j,m : j = 1, . . . , k; r, l ∈ Z

}

C Model Details

C.1 Phase Space Reconstruction

Phase space reconstruction is a crucial technique in the analysis of dynamical systems, particularly in
the study of time series data. This method transforms a one-dimensional time series into a multidimen-
sional phase space, revealing the underlying dynamics of the system. The cross-correlation mutual
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information (CC mutual information) method is a statistical tool used to analyze the dependencies
between two different time series. We provide a detailed mathematical description of these methods.

Phase space reconstruction involves transforming a single-variable time series into a multidimensional
space to unveil the dynamics of the system that generated the data. The technique is based on Takens’
Embedding Theorem.

Takens’ Embedding Theorem

Takens’ Embedding Theorem allows the reconstruction of a dynamical system’s phase space from a
sequence of observations. The theorem states that under generic conditions, a map:

F : Rn → Rm (26)

can be constructed, where n is the dimension of the original phase space, and m is the embedding
dimension, typically m <= 2n+ 1 is sufficient to recover dynamics.

Time Delay Embedding

The most common approach for phase space reconstruction is the time delay embedding method.
Given a time series {x(t)}, the reconstructed phase space is:

X(t) = [x(t), x(t+ τ), x(t+ 2τ), ..., x(t+ (m− 1)τ)] (27)

where τ is the time delay, and m is the embedding dimension. In the context of coordinate delay
reconstruction in a complete scenario, it involves a parameter called time window, which selectively
uses discrete one-dimensional data for phase space reconstruction. In order to maximize the preser-
vation of time series information, the time window parameter is typically set to 1. As a result, this
process is reversible, meaning that the original data can be reconstructed without loss of information.

The CC mutual information method is used to analyze the dependencies between two time series. It
is a measure of the amount of information obtained about one time series through the other.

Mutual Information

Mutual information I(X;Y ) between two random variables X and Y is defined as:

I(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(28)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y) are the
marginal probability distribution functions.

Cross-Correlation Mutual Information

For time series analysis, the mutual information is extended to account for the time-lagged relation-
ships:

I(X;Y, τ) =
∑

x∈X,y∈Y

p(x, y(τ)) log
p(x, y(τ))

p(x)p(y(τ))
(29)

where τ is the time lag, and y(τ) represents the time series Y shifted by τ .

Determining Time Delay (τ )

Time delay (τ ) is an interval used in reconstructing the phase space of a time series. The right choice
of τ is essential for revealing the dynamic properties of the system.

Calculating Mutual Information

For a given time series {xt}, calculate the mutual information between the time series and its
time-shifted version for different delays τ :

I(τ) =
∑

p(xt, xt+τ ) log

(
p(xt, xt+τ )

p(xt)p(xt+τ )

)
(30)
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where p(xt, xt+τ ) is the joint probability distribution, and p(xt) and p(xt+τ ) are the marginal
probability distributions.

Selecting Time Delay

Plot the mutual information I(τ) against τ . Choose the τ at the first local minimum of this plot. This
represents the delay where the series’ points provide maximal mutual information.

Determining Embedding Dimension (m)

Embedding dimension (m) is the dimension of the reconstructed phase space. The correct m ensures
that trajectories in the phase space do not intersect each other.

Calculating False Nearest Neighbors

For each dimension m, calculate the false nearest neighbors (FNN) F (m), which reflects the com-
plexity of the trajectories reconstructed in m-dimensional space:

F (m) =

(
1

N −m+ 1

N−m+1∑
i=1

logCi(m, r)

)
(31)

where Ci(m, r) is the count of points within a distance r from point i in m-dimensional space, and
N is the length of the time series.

Identifying the Saturation Point

As m increases, F (m) typically increases and reaches a saturation point. Choose the smallest m for
which F (m) does not significantly increase, indicating that increasing the dimension does not reveal
more information about the dynamics.

D Experiments Details

D.1 Datasets

Our experiments are carried out on Five real-world datasets and two chaos datasets as described
below:

• ETT2 dataset are procured from two electricity substations over two years. They provide a summary
of load and oil temperature data across seven variables. For ETTm1 and ETTm2, the "m" signifies
that data was recorded every 15 minutes, yielding 69,680 time steps. ETTh1 and ETTh2 represent
the hourly equivalents of ETTm1 and ETTm2, each containing 17,420 time steps.

• Exchange3 dataset details the daily foreign exchange rates of eight countries, including Australia,
British, Canada, Switzerland, China, Japan, New Zealand, and Singapore from 1990 to 2016.

• Weather4 dataset is a meteorological collection featuring 21 variates, gathered in the United States
over a four-year span.

• Lorenz96 dataset is an artificial dataset. We simulate the data of 30,000 time steps with an initial
dimension of 40d according to the Lorenz96 equation and map to 3D by a randomly initialized
Linear network to simulate the realistic chaotic time series generated from an unknown underlying
chaotic system. More details are in Appendix E.3.

• Crypots comprises historical transaction data for various cryptocurrencies, including Bit-
coin and Ethereum. We select samples with Asset_ID set to 0, and remove the col-
umn Count. We download the data from https://www.kaggle.com/competitions/
g-research-crypto-forecasting/data?select=supplemental_train.csv.

• Air Convection5 dataset is obtained by scraping the data from NOAA, and it includes the data
for the entire year of 2023. The dataset consists of 20 variables, including air humidity, pressure,
convection characteristics, and others. The data was sampled at intervals of 15 minutes and
averaged over the course of the entire year.

2https://github.com/zhouhaoyi/ETDataset
3https://github.com/laiguokun/multivariate-time-series-data
4https://www.bgc-jena.mpg.de/wetter
5https://www.psl.noaa.gov/
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• Lorenz96-3d: See Appendix E.3.

D.2 Baselines

Our baseline models include: Mamba4TS: Mamba4TS is a novel SSM architecture tailored for
TSF tasks, featuring a parallel scan (https://github.com/alxndrTL/mamba.py/tree/main). Additionally,
this model adopts a patching operation with both patch length and stride set to 16. We use the
recommended configuration as our experimental settings with a batch size of 32, and the learning
rate is 0.0001.

S-Mamba [47]: S-Mamba utilizes a linear tokenization of variates and a bidirectional Mamba layer
to efficiently capture inter-variate correlations and temporal dependencies. This approach underscores
its potential as a scalable alternative to Transformer technologies in TSF. We download the source
code from: https://github.com/wzhwzhwzh0921/S-D-Mamba and adopt the recommended setting as
its experimental configuration.

RWKV-TS [17]: RWKV-TS is an innovative RNN-based architecture for TSF that offers linear time
and memory efficiency. We download the source code from: https://github.com/howard-hou/RWKV-
TS. We follow the recommended settings as experimental configuration.

Koopa [32]: Koopa is a novel forecasting model that tackles non-stationary time series using
Koopman theory to differentiate time-variant dynamics. It features a Fourier Filter and Koopman
Predictors within a stackable block architecture, optimizing hierarchical dynamics learning. We
download the source code from: https://github.com/thuml/Koopa. We set the lookback window to
fixed values of {96, 192, 336, 720} instead of twice the output length as in the original experimental
settings.

iTransformer [31]: iTransformer modifies traditional Transformer models for time series forecasting
by inverting dimensions and applying attention and feed-forward networks across variate tokens. We
download the source code from: https://github.com/thuml/iTransformer. We follow the recommended
settings as experimental configuration.

PatchTST [33]: PatchTST introduces a novel design for Transformer-based models tailored to time
series forecasting. It incorporates two essential components: patching and channel-independent
structure. We obtain the source code from: https://github.com/PatchTST. This code serves as our
baseline for long-term forecasting, and we follow the recommended settings for our experiments.

LTSF-Linear [52]: In LTSF-Linear family, DLinear decomposes raw data into trend and seasonal
components and NLinear is just a single linear models to capture temporal relationships between input
and output sequences. We obtain the source code from: https://github.com/cure-lab/LTSF-Linear,
using it as our long-term forecasting baseline and adhering to recommended settings for experimental
configuration.

GPT4TS [55]: This study explores the application of pre-trained language models to time series
analysis tasks, demonstrating that the Frozen Pretrained Transformer (FPT), without modifications
to its core architecture, achieves state-of-the-art results across various tasks. We download the
source code from: https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All. We follow the
recommended settings as experimental configuration.

D.3 Experiments Setting

All experiments are conducted on the NVIDIA RTX3090-24G and A6000-48G GPUs. The Adam
optimizer is chosen. A grid search is performed to determine the optimal hyperparameters, including
the learning rate from {0.0001, 0.0005, 0.001}, model layer from {1, 2} (typically 1), polynomial
order from {32, 64, 256}, patch length from {8, 16}, projection level based on logL and no more
than 3, primary modes is 16, and the input length is 96. Due to the sensitivity of the CC method to
numerical calculations, we take the average result from three iterations of the calculation.
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Figure 6: Dynamic structures of real-world data

E Supplemental Experiments

E.1 Dynamic Structures of Real-world Data

As shown in Figure 6, we present the phase space structures of various real-time series. Please note
that due to our visualization limitations in three dimensions, the shapes of many attractors for these
time series are manifested in higher dimensions. We can only display slices of the attractors in the
first three dimensions.

E.2 The Chaotic Nature of Datasets

Lyaponuv Exponent

Lyapunov exponents are a set of quantities that characterize the rate of separation of infinitesimally
close trajectories in a dynamical system. They play a crucial role in understanding the stability and
chaotic behavior of the system [24]. The formal definition of the Lyapunov exponent for a trajectory
of a dynamical system is given by:

λ = lim
t→∞

1

t
ln

(
∥δXi(t)∥
∥δXi(0)∥

)
, (32)

where δX(t) is the deviation vector at time t, and λ is the Lyapunov exponent. The set of Lyapunov
exponents for a system provides a spectrum, indicating the behavior of trajectories in each dimension
of the system’s phase space.

When the direction of the initial separation vector is different, the separation rate is also different.
Thus, the spectrum of Lyapunov exponents exists, which have the same number of dimensions as the
phase space. The largest of these is often referred to as the Maximal Lyapunov exponent (MLE). We
reconstruct dimension m according to different phase spaces to get the maximum Lyapunov index. A
positive MLE is often considered an indicator of chaotic behavior in the system, while a negative
value indicates convergence, implying stability in the system’s behavior.

As shown in Table 6, we calculate the maximum Lyapunov exponent for all mainstream LTSF
datasets. Surprisingly, we find that their MLEs are all positive, indicating the presence of chaos to
varying degrees in these datasets. This directly supports the motivation proposed by Attraos. Among
them, the weather dataset exhibits the strongest chaotic behavior. Note that the existence of at least
one positive Lyapunov exponent is sufficient to determine the presence of chaos. For example, the
classical Lorenz63 system has three Lyapunov exponents with values negative, zero, and positive
respectively.

Remark E.1. For multivariate time series, we take the average.

Table 6: Maximal Lyapunov Exponents for Various Datasets in Multivariate Long-Term Forecasting
Dataset ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather Electricity Traffic

MLE 0.064437 0.059833 0.071673 0.082791 0.039670 0.242649 0.014613 0.189311
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E.3 Simulation for Lorenz96 (Case Study)

Lorenz63 System

The Lorenz63 system, introduced by Edward Lorenz in 1963, is a simplified mathematical model for
atmospheric convection. The model is a system of three ordinary differential equations now known
as the Lorenz equations:

dx

dt
= σ(y − x), (33)

dy

dt
= x(ρ− z)− y, (34)

dz

dt
= xy − βz. (35)

Here, x, y, and z make up the state of the system. The parameters σ, ρ, and β represent the Prandtl
number, Rayleigh number, and certain physical dimensions of the layer, respectively. Lorenz derived
these equations to model the way air moves around in the atmosphere. This model is famous for
exhibiting chaotic behavior for certain parameter values and initial conditions.

Lorenz96 System

The Lorenz96 system is a mathematical model that was introduced by Edward N. Lorenz in 1996 as
an extension of the original Lorenz model. It is commonly used to study chaotic dynamics in systems
with multiple interacting variables.

The Lorenz96 system consists of a set of ordinary differential equations that describe the time
evolution of a set of variables. In its simplest form, the system is defined as follows:

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F

Here, xi represents the state variable at position i, and F is a forcing term that controls the overall
behavior of the system. The nonlinear term (xi+1 − xi−2)xi−1 captures the interactions between
neighboring variables, leading to the emergence of chaotic behavior. The Lorenz96 system exhibits a
range of fascinating phenomena, including intermittent chaos, phase transitions, and the presence of
multiple stable and unstable regimes. Its dynamics have been extensively studied to gain insights into
the behavior of complex systems and to explore the limits of predictability.

Figure 7: Simulation for Lorenz96

To simulate time series generated from an unknown chaotic system, we first construct a 40-
dimensional Lorenz96 system to represent the underlying chaotic system. We then use a randomly
initialized linear neural network to simulate the observation function h. Through h, we map the
Lorenz96-40d system, which resides in the manifold space, to a 3-dimensional Euclidean space to
obtain a multivariate time series dataset with three variables. As shown in the middle of Figure 7,
in the observation domain, the dynamical system structure of Lorenz96-40d is difficult to discern
specific shapes, so we need to reconstruct it to 40 dimensions using the Phase Space Reconstruction
(PSR) technique to study its dynamic characteristics in a topologically equivalent structure. It is
worth noting that on the right side of Figure 7, we visualize the last variable of the system and find
striking similarities with real-world time series, even exhibiting some periodic behaviors. This further
supports our hypothesis that real-world time series are generated by underlying chaotic systems.
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E.4 Chaotic Modulation

Figure 8: Performance comparison about teaching forcing, measured by MSE. Left: Lorenzo96 dataset. Right:
Weather dataset.

In LTSF tasks, it is commonly observed that predictive performance deteriorates as the length of
the forecasting window increases. This phenomenon bears a striking resemblance to the inherent
challenge in long-term predictions of chaotic dynamical systems, which are highly sensitive to
initial conditions. Recent studies [15] in the field of chaotic dynamical systems have highlighted
that, to address the issue of gradient divergence caused by positive maximal Lyapunov exponents
indicative of chaos, the implementation of teaching forcing as a method to incrementally constrain the
trajectory of the dynamical system presents a straightforward yet effective framework. To enhance
Hippo-RNN, we have implemented the following modifications: z̃t := (1 − α)zt + αzt, zt =
Fθ (z̃t−1) , with 0 ≤ α ≤ 1, where we intervene the evolution state z by utilizing the ground truth
hidden state z. As shown in Figure 8, this modification leads to notable improvements in both
mainstream LTSF datasets and real-world chaotic datasets. However, the autoregressive nature of the
teaching forcing methods introduces additional computational overhead and may potentially reduce
its generalization capabilities, which presents a challenge for integrating it into sequence-mapping
models.

E.5 Full Results

As shown in Table 7, we showcase the full experiment results for all mainstream LTSF datasets.
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Table 7: Multivariate long-term series forecasting results in mainstream datasets with input length is 96 and
prediction horizons are {96, 192, 336, 720}. The best model is in boldface, and the second best is underlined.
The bottom part introduces the variable Kernel for multivariate variables.

Model Attraos Mamba4TS S-Mamba RWKV-TS GPT4TS Koopa InvTrm PatchTST DLinear
(Ours) (Temporal Emb.) (Channel Emb.[47]) [17] [55] [32] [31] [33] [52]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.370 0.388 0.386 0.400 0.388 0.407 0.383 0.401 0.398 0.424 0.385 0.408 0.393 0.409 0.375 0.396 0.396 0.410
192 0.416 0.418 0.426 0.430 0.443 0.439 0.441 0.431 0.441 0.436 0.441 0.431 0.448 0.442 0.429 0.426 0.449 0.444
336 0.458 0.432 0.484 0.451 0.492 0.467 0.493 0.465 0.492 0.466 0.474 0.454 0.491 0.465 0.461 0.448 0.487 0.465
720 0.447 0.442 0.481 0.472 0.511 0.499 0.501 0.487 0.487 0.483 0.501 0.480 0.518 0.501 0.469 0.471 0.515 0.512

AVG 0.423 0.420 0.444 0.438 0.459 0.453 0.454 0.446 0.457 0.450 0.450 0.443 0.463 0.454 0.434 0.435 0.462 0.458

E
T

T
h2

96 0.292 0.348 0.297 0.347 0.296 0.347 0.290 0.342 0.312 0.360 0.317 0.359 0.302 0.351 0.295 0.344 0.353 0.405
192 0.374 0.386 0.392 0.409 0.377 0.398 0.372 0.393 0.387 0.405 0.375 0.399 0.379 0.399 0.375 0.399 0.482 0.479
336 0.420 0.432 0.424 0.436 0.425 0.435 0.417 0.431 0.424 0.437 0.436 0.446 0.423 0.432 0.420 0.429 0.588 0.539
720 0.418 0.431 0.431 0.448 0.427 0.446 0.421 0.442 0.433 0.453 0.460 0.463 0.429 0.447 0.431 0.451 0.833 0.658

AVG 0.376 0.399 0.386 0.410 0.381 0.407 0.375 0.402 0.389 0.414 0.397 0.417 0.383 0.407 0.380 0.406 0.564 0.520
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: Attraos, considers time series as generated by a generalized chaotic dynamic
system. By leveraging the invariance of attractors, Attraos enhances time series prediction
performance and provides empirical and theoretical explainations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: In Section 5, we discuss the limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes] .
Justification: All the proofs in this paper can be found in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We have open-sourced our code in https://anonymous.4open.science/
r/Attraos-40C2/ and provided detailed experimental settings in Appendix D to facilitate
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: We have open-sourced our code and experimental settings in https://
anonymous.4open.science/r/Attraos-40C2/ to facilitate reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We have provided detailed experimental settings in Appendix D to facilitate
reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: In time series forecasting (TSF) tasks, it is common not to provide error bars
but instead directly calculate the average by conducting multiple experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We provide experiment setting in Appendix D and complexity analysis in
Section 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: We follow the NeurIPS Code of Ethics in this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Justification: In Conclusion, we state that our goal is to offer the machine-learning commu-
nity a fresh perspective and inspire further research on the essence of time series dynamics.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The datasets chosen in this paper are commonly used benchmark datasets for
time series forecasting tasks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: Yes, we have.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: This paper follows CC 4.0, and the code is in an anonymized URL.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

32

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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