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Abstract

Out-of-distribution (OOD) detection, which maps high-dimensional data into
a scalar OOD score, is critical for the reliable deployment of machine learning
models. A key challenge in recent research is how to effectively leverage
and aggregate token embeddings from language models to obtain the OOD
score. In this work, we propose AP-OOD, a novel OOD detection method
for natural language that goes beyond simple average-based aggregation by
exploiting token-level information. AP-OOD is a semi-supervised approach
that flexibly interpolates between unsupervised and supervised settings,
enabling the use of limited auxiliary outlier data. Empirically, AP-OOD
sets a new state of the art in OOD detection for text: in the unsupervised
setting, it reduces the FPR95 (false positive rate at 95% true positives) from
27.77% to 5.91% on XSUM summarization, and from 75.19% to 68.13% on
WMT15 En–Fr translation.

1 Introduction

Out-of-distribution (OOD) detection is essential for deploying machine learning models in
the real world. In practical settings many models encounter inputs that deviate from the
model’s training distribution. For example, a model trained to summarize news articles
might also receive a prompt with a cooking recipe. In such situations, models may assign
unwarranted confidence to their predictions, leading to erroneous outputs. The purpose
of OOD detection is to classify these inputs as OOD such that the system can then, for
instance, notify the user that the prediction is uncertain. Our contributions are as follows:

1. We propose AP-OOD, an OOD detection approach for natural language that leverages
token-level information to detect OOD sequences.

2. AP-OOD is a semi-supervised approach: It can be applied in unsupervised (i.e.,
when there exists no knowledge about OOD samples) and supervised settings (i.e.,
when some OOD data of interest is available to the practitioner), and smoothly
interpolates between the two.

3. We show that AP-OOD can improve OOD detection for natural language in summa-
rization and translation.

4. We provide a theoretical motivation for the suitability of AP-OOD for OOD detection
on tokenized data.

1.1 Background

Consider a language model trained to autoregressively generate target sequences
(y1, y2, . . . , yN ) given input sequences (x1, x2, . . . , xN ). The input sequences are
drawn i.i.d.: xi ∼ pID. We consider input sequences x ∈ X 1 that deviate considerably from
the data generation pID(x) that defines the “normality” of our data as OOD. Following Ruff
et al. (2021), an observed sequence is OOD if it is an element of the set

O := {x ∈ X | pID(x) < ϵ} where ϵ ≥ 0, (1)

1We use X :=
⋃

S≥1 V
S for the set of input sequences, and V := {v1, . . . , vV } is the vocabulary.
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Figure 1: Illustrative example for the failure of mean pooling. (Left) ID and OOD sequences
Zi ∈ R2×2, where each sequence contains a pair of token embeddings with two features each.
Token embeddings that belong to the same sequence are connected with lines. (Center)
The means of the ID and OOD sequences both cluster around the origin. (Right) A mean
pooling approach cannot discriminate between the ID and OOD sequences.

Figure 2: Illustrative example for the mechanism that AP-OOD uses to correctly discriminate
between ID and OOD (as opposed to the mean pooling approaches). The setting is the same
as in Figure 1. (Left) The loss landscape forms two basins at the locations of the ID token
embeddings. (Center) After training AP-OOD with a single weight vector w, the learned
w is located in one of the basins. (Right) AP-OOD achieves perfect discrimination between
the ID and OOD sequences.

and ϵ is a density threshold. In practice, it is common (e.g., Hendrycks & Gimpel, 2016;
Lee et al., 2018; Hofmann et al., 2024) to define a score s : Z → R that uses an encoder
ϕ : X → Z (where Z denotes an embedding space). Given s and ϕ, OOD detection can be
formulated as a binary classification task with the classes in-distribution (ID) and OOD:

B̂(x, γ) =

{
ID if s(ϕ(x)) ≥ γ
OOD if s(ϕ(x)) < γ

. (2)

The outlier score should — in the best case — preserve the density ranking, but it does not
have to fulfill all requirements of a probability density (proper normalization or nonnegativity).
For evaluation, the threshold γ is typically chosen such that 95% of ID samples from a
previously unseen validation set are correctly classified as ID. However, metrics like the area
under the receiver operating characteristic (AUROC) can be directly computed on s(ϕ(x))
without fixing γ, since the AUROC sweeps over all possible thresholds.

2 Method

AP-OOD is a semi-supervised method: It can be trained without access to outlier data
(unsupervised), and with access to outlier data (supervised), and can smoothly transition
between those two scenarios as more outlier data becomes available for training. In the
following, we first introduce AP-OOD in an unsupervised scenario (Section 2.1) and generalize
it to the supervised scenario (Section 2.2).

2
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Algorithm 1 AP-OOD

Require: (x1, . . . ,xN ), ϕe, ϕd, β, M , nsteps
1: for i = 1 to N do
2: Compute sequence embedding Zi using Zi ← ϕe(xi) or Zi ← ϕd(ϕe(xi)).
3: for step = 1 to nsteps do
4: Sample mini-batch {Zi}i∈B with batch indices B.
5: Form batch-local concatenation Z̃B ← ∥i∈B Zi.
6: Compute loss L ← 1

|B|
∑

i∈B d
2(Zi, Z̃B)−

∑M
j=1 log(||wj ||22).

7: Compute gradients of L w.r.t. (w1, . . . ,wM ) and perform a gradient update
8: Form the concatenation of sequence representations Z̃ ← (Z1 ∥ · · · ∥ZN )

9: s(Z)←
∑M

j=1−d2j (Z, Z̃) + log
(
||wj ||22

)
.

10: return s(·)

2.1 Unsupervised OOD Detection

Background Ren et al. (2023) propose to detect OOD inputs using token embeddings
obtained from a Transformer encoder–decoder model trained on the language modeling
task. Given an input sequence x ∈ X , they obtain a sequence of token embeddings
Z = (z1, . . . ,zS) ∈ RD×S . They compare obtaining embeddings E from the encoder
ϕenc : X → Z2 and generating a sequence of embeddings G using the decoder ϕdec : Z → Z:

E := ϕenc(x) G := ϕdec(E). (3)

For clarity, we write Z for a sequence of token embeddings, whether produced by the encoder
or the decoder, and we call Z the sequence representation of x. To obtain a single vector
z̄ ∈ RD, Ren et al. (2023) perform mean pooling:

z̄ :=
1

S

S∑
s=1

zs. (4)

Then, they propose to measure whether z̄ is OOD by first fitting a Gaussian distribution
N (µ,Σ), µ ∈ RD, Σ ∈ RD×D to the per-sequence mean embeddings computed from the
training corpus, and then computing the squared Mahalanobis distance between z̄ and µ:

d2Maha(z̄,µ) := (z̄ − µ)TΣ−1(z̄ − µ) and sMaha(z̄) := − d2Maha(z̄,µ). (5)

Averaging hides anomaly. The key limitation of the approach described above is the
use of the mean of the token embeddings Z: Averaging the entire sequence into the mean z̄
discards the token-level structure that would otherwise be informative for detecting whether
a sequence is OOD. Figure 1 shows a toy example of this failure mode: The ID and OOD
sequences are indistinguishable using their means, and therefore, the Mahalanobis distance
with mean pooling fails to discriminate between them.

Mahalanobis decomposition. To address this limitation, we begin by expressing the
Mahalanobis distance as a directional decomposition:

d2Maha(z̄,µ) =

D∑
j=1

(
wT

j z̄ − wT
j µ
)2
, (6)

The weight vectors wj ∈ RD form a basis of RD and determine Σ−1 via Σ−1 =
∑D

j=1 wjw
T
j .

One possibility to map a given Σ−1 to weight vectors wj is to select the directions of the
wj as the unit-norm eigenvectors of Σ−1, and to select the squared norms of the wj as their
corresponding eigenvalues (see Appendix A.2).

2We use Z :=
⋃

S≥1 R
D×S for all finite-length sequences of D-dimensional token embeddings.
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Beyond mean pooling. To overcome the limitations of mean pooling, we generalize
Equation (6) by using attention pooling (Bahdanau, 2014; Ramsauer et al., 2021):

AttPoolβ(Z,w) := Zsoftmax(β ZTw) and z̄ := AttPoolβ(Z,w). (7)

where β is the inverse temperature, and w is a learnable query. AP-OOD also uses attention
for the corpus-wide pooling: Given the sequence representations (Z1, . . . ,ZN ) from a
corpus (x1, . . . ,xN ) with Zi := ϕenc(xi), we define Z̃ as the concatenation of all sequence
representations: Z̃ := (Z1 ∥ · · · ∥ ZN ). AP-OOD estimates µ := AttPoolβ(Z̃,w). Given
the z̄ and µ from the attention pooling, AP-OOD estimates d2(Z, Z̃), the squared distance
between a sequence representation Z and the concatenation Z̃ analogous to Equation (6):

d2(Z, Z̃) :=

M∑
j=1

(
wT

j Zsoftmax(β ZTwj)−wT
j Z̃softmax(β Z̃Twj)

)2
=

M∑
j=1

d2j (Z, Z̃). (8)

We refer to M as the number of heads. In general, M does not need to equal the embedding
dimension D. We show in Appendix A.3 that, when β = 0 and M = D, Equation (8)
reduces to the Mahalanobis distance (Equations (5) and (6)). In Appendix A.1, we show
that smin(Z) = minj −d2j (Z, Z̃) + log(||wj ||22) is a score function as defined in Equation (2).
Our score arises naturally as the upper bound

s(Z) :=

M∑
j=1

−d2j (Z, Z̃) + log(||wj ||22). (9)

In Appendix B.6, we empirically compare the min-based score smin(Z) to its upper-bound
variant s(Z) and find that s(Z) yields stronger OOD discrimination. The choice of this
score naturally leads to the loss function of AP-OOD:

L(w1, . . . ,wM ) :=
1

N

N∑
i=1

d2(Zi, Z̃) −
M∑
j=1

log
(
||wj ||22

)
. (10)

Multiple queries per head. We now extend AP-OOD and use multiple queries per head.
We use a set of stacked queries Wj = (wj1, . . . ,wjT ) ∈ RD×T per head. For simplicity, we
consider a single head with the queries W for now. We begin by extending the softmax
notation from Ramsauer et al. (2021) to matrix-valued arguments. Given a matrix A ∈ RS×T

softmax(βA)st :=
exp(βast)∑S

s′=1

∑T
t′=1 exp(βas′t′)

. (11)

In other words, the softmax normalizes over the rows and columns of A. Next, we extend
the attention pooling process from Equation (7) with the matrix-valued softmax: AP-
OOD transforms the sequence representation Z ∈ RD×S with S tokens to a new sequence
representation Z̄ = ZP ∈ RD×T with T tokens. The updated attention pooling process is

AttPoolβ(Z,W ) := Zsoftmax(β ZTW ) and Z̄ := AttPoolβ(Z,W ). (12)

Finally, AP-OOD uses W ∈ RD×T to transform the Z̄ ∈ RD×T to a real number with
the Frobenius inner product ⟨W , Z̄⟩F = vec(W )T vec(Z̄) = Tr(W T Z̄). To summarize, the
extended squared distance is

d2(Z, Z̃) :=

M∑
j=1

(
Tr(W T

j Zsoftmax(β ZTWj)) − Tr(W T
j Z̃softmax(β Z̃TWj))

)2
. (13)

Finally, the regularizing term is − log(||W ||2F) (where || · ||2F denotes the squared Frobenius
norm). To summarize, the extended loss is

L(W1, . . . ,WM ) :=
1

N

N∑
i=1

d2(Zi, Z̃) −
M∑
j=1

log
(
||Wj ||2F

)
. (14)
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2.2 Supervised OOD Detection

Background. Supplying an OOD detector with information about the distribution of the
OOD examples at training time can improve the ID–OOD decision boundary (Hendrycks
et al., 2018). In practice, it is hard to find OOD data for training that is fully indicative of
the OOD distribution seen during inference. Outlier exposure (OE; Hendrycks et al., 2018)
therefore uses a large and diverse auxiliary outlier set (AUX; e.g., C4 for text data) as a
stand-in for the OOD case. However, it is not always possible to crawl such large and diverse
AUX data sets. For example, consider a translation task with a less widely spoken source
language. In such a case, one might have to resort to a smaller AUX data set. Therefore, it
is desirable that an OOD detector scales gracefully with the degree of auxiliary supervision,
adapting to the available number of AUX examples (Ruff et al., 2019; Liznerski et al., 2022).

Utilizing AUX data. To adapt AP-OOD to the supervised setting, we follow Ruff et al.
(2019) and Liznerski et al. (2022): AP-OOD punishes large squared distances d2(Z, Z̃)
for ID samples Z and encourages large squared distances for AUX samples Z. For-
mally, AP-OOD minimizes the binary cross-entropy loss with the classes ID and AUX
with p(y = ID|Z) = exp(−d2(Z, Z̃)). Given N ID examples (Z1, . . . ,ZN ), and N ′ AUX
examples (ZN+1, . . . ,ZN+N ′), AP-OOD minimizes the supervised loss

LSUP :=
1

N +N ′

N∑
i=1

d2(Zi, Z̃) − λ
1

N +N ′

N+N ′∑
i=N+1

log(1− exp(−d2(Zi, Z̃))), (15)

where λ ≥ 0. If λ = 0, LSUP equals the unsupervised loss L without the regularizing term.

3 Experiments

Toy experiment. We present a toy experiment illustrating the main intuitions behind
AP-OOD. Figure 1 demonstrates a simple failure mode of mean pooling approaches: First, we
generate ID and OOD token embeddings Zi ∈ R2×2. Each ID sequence representation consists
of one token sampled from N ((1, 1), σ2I) and one token sampled from N ((−1,−1), σ2I).
The OOD sequences contain two tokens sampled from N ((−1, 1), σ2I) and N ((1,−1), σ2I),
respectively. We set σ := 0.1. The left panel shows the generated sequences, where each
sequence consists of two dots (representing the two tokens) connected by a line. Because
the means of the ID and OOD sequences both cluster around the origin (central panel), the
Mahalanobis distance with mean pooling fails to discriminate between them (right panel).
Figure 2 shows how AP-OOD overcomes this limitation: We set M = 1 and T = 1 and
train AP-OOD as described in Section 2.1 on the ID data only, but we modify the pooling
mechanism from Equation (7): We replace the dot product similarity in the softmax with
the negative squared Euclidean distance, as it is known to work better in low-dimensional
spaces (we provide the formal definition for this modification in Appendix B.2). The left
panel of Figure 2 shows that the loss landscape of w forms two basins at the locations of the
ID tokens. The central panel shows that after training, w is located in one of the basins.
Finally, the right panel shows that AP-OOD perfectly discriminates ID and OOD.

Summarization. We follow Ren et al. (2023) and use a PEGASUSLARGE (Zhang et al.,
2020) fine-tuned on the ID data set XSUM (Narayan et al., 2018). We utilize the C4 training
split as the AUX data set. We measure the OOD detection performance on the data sets
CNN/Daily Mail (CNN/DM; news articles from CNN and Daily Mail; Hermann et al., 2015;
See et al., 2017), Newsroom (articles and summaries written by authors and editors from 38
news publications; Grusky et al., 2018), Reddit TIFU (posts and summaries from the online
discussion forum Reddit; Kim et al., 2018), and Samsum (summaries of casual dialogues;
Gliwa et al., 2019). The ForumSum data set used in the experiments of Ren et al. (2023)
has been retracted. Therefore, we do not use it in our experiments.

Translation. We train a Transformer (base) (Vaswani et al., 2017) on WMT15 En–Fr
(Bojar et al., 2015). The model trains for 100,000 steps using AdamW (Loshchilov & Hutter,
2017) with a cosine schedule (Loshchilov & Hutter, 2016), linear warmup, and a peak learning
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Table 1: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun et al., 2022),
Deep SVDD (Ruff et al., 2018), model perplexity (Ren et al., 2023), and entropy (Malinin &
Gales, 2020) on PEGASUSLARGE trained on XSUM as the ID data set. ↓ indicates “lower is
better” and ↑ “higher is better”. All values in %. We estimate standard deviations across
five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 69.00±0.27 86.37±0.19 98.64±0.07 99.77±0.01 88.45Mahalanobis FPR95 ↓ 92.19±0.08 64.48±0.71 2.45±0.34 0.17±0.02 39.82
AUROC ↑ 54.34±0.15 73.76±0.09 94.52±0.03 98.82±0.01 80.36KNN FPR95 ↓ 99.40±0.03 88.56±0.17 51.24±0.70 3.07±0.16 60.57
AUROC ↑ 75.86±1.00 91.20±0.21 99.73±0.05 99.57±0.04 91.59Deep SVDD FPR95 ↓ 73.70±2.35 36.46±1.12 0.26±0.09 0.67±0.17 27.77
AUROC ↑ 96.13±0.44 99.10±0.08 99.91±0.03 99.80±0.04 98.74AP-OOD (Ours) FPR95 ↓ 19.51±2.24 4.11±0.28 0.00±0.01 0.04±0.03 5.91

Output OOD

AUROC ↑ 42.20±0.14 53.99±0.31 83.38±0.15 78.53±0.31 64.52Perplexity FPR95 ↓ 77.71±0.17 79.07±0.57 45.56±0.40 46.96±0.20 62.32
AUROC ↑ 59.59±0.21 77.20±0.52 93.47±0.21 87.17±0.20 79.36Entropy FPR95 ↓ 79.04±0.75 64.24±1.21 30.19±1.34 50.47±1.64 55.98
AUROC ↑ 63.27±0.17 88.26±0.11 97.40±0.09 97.29±0.08 86.55Mahalanobis FPR95 ↓ 89.84±0.13 47.83±0.71 11.13±0.58 13.57±0.25 40.59
AUROC ↑ 74.37±0.13 86.96±0.08 95.85±0.06 97.33±0.03 88.63KNN FPR95 ↓ 73.36±0.20 53.44±0.58 15.78±0.27 10.29±0.22 38.22
AUROC ↑ 68.31±1.63 94.13±0.12 97.60±0.26 95.97±0.15 89.00Deep SVDD FPR95 ↓ 76.76±1.15 19.22±0.34 8.90±1.25 20.17±1.28 31.26
AUROC ↑ 93.37±0.54 92.62±0.67 98.04±0.28 98.30±0.11 95.59AP-OOD (Ours) FPR95 ↓ 23.12±1.97 29.91±2.93 6.34±1.56 6.83±0.64 16.55

rate of 5× 10−4. We set the batch size to 1024 and the context length to 512. Following
Ren et al. (2023), the AUX data set is ParaCrawl En–Fr, and the OOD data sets are
newstest2014 (nt2014), newsdiscussdev2015 (ndd2015), and newsdiscusstest2015 (ndt2015)
from WMT15 (Bojar et al., 2015), and the Law, Koran, Medical, IT, and Subtitles subsets
from OPUS (Tiedemann, 2012; Aulamo & Tiedemann, 2019).

Training. We extract 100,000 ID sequence representations (E or G) and use all extracted
representations for training AP-OOD in all experiments. We also extract AUX sequence
representations, and we vary the number of AUX sequences available from 0 (unsupervised)
to 10,000 (fully supervised). While training AP-OOD, the Transformer model remains frozen.
We use the Adam optimizer (Kingma & Ba, 2014) without weight decay, set the learning rate
to 0.01 and apply a cosine schedule (Loshchilov & Hutter, 2016). We train for 2,000 steps
with a batch size of 512. We select M and T such that the parameter count of AP-OOD
matches the parameter count of the Mahalanobis method (i.e., the size of Σ). For more
information on hyperparameter selection, we refer to Appendix B.3. During training, we
estimate µ using the sequences in a given mini-batch. When training is complete, we do an
additional pass over the corpus Z̃ and compute the final µ using attention pooling, which we
implement by iterating over mini-batches of Z̃. We describe this process in Appendix B.1.

Baselines. We compare AP-OOD to six unsupervised OOD detection methods: We apply
the embedding-based methods Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun
et al., 2022), and Deep SVDD (Ruff et al., 2018) to both the input and output sequence
representations (E and G, respectively), and we apply Perplexity (Ren et al., 2023) and
Entropy (Malinin & Gales, 2020) to the output of the decoder. We also compare AP-OOD
to three supervised OOD detection methods: binary logits (Ren et al., 2023), relative
Mahalanobis (Ren et al., 2023), and Deep SAD (Ruff et al., 2019). We evaluate the
discriminative power of the methods in our comparison using the false positive rate at 95%
true positives (FPR95) and AUROC.

Audio data. To demonstrate the effectiveness of AP-OOD on data modalities other than
text, we apply the method to the MIMII-DG audio data set (Dohi et al., 2022). The data
set comprises audio recordings of 15 different machines, ranging from 10 to 12 seconds in
length. The dataset contains 990 samples per machine. During preprocessing, the raw

6
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Figure 3: OOD detection performance on the input token embeddings of PEGASUSLARGE
trained on XSUM. We vary the number of AUX samples and compare AP-OOD, binary
logits (Ren et al., 2023), Deep SAD (Ruff et al., 2019), and relative Mahalanobis (Ren et al.,
2023). AP-OOD attains the highest AUROC independent of AUX sample count.

audio waveforms are converted into audio spectrograms. We train a Transformer (Vaswani
et al., 2017) to classify a subset of 7 machines. The remaining 8 machines are considered as
OOD. The architecture and training method for the network were adopted from Huang et al.
(2022). To adjust for the small data set size, we decrease the size of the architecture: We
increase the patch size to 32× 32 pixels, decrease the embedding dimension to 32, and utilize
only three attention blocks with four heads each. Consequently, the encoder of the network
produces 128 tokens with D = 32 features. We train AP-OOD on the encoder output in the
unsupervised setting using M = 128 and T = 8.

4 Results

Table 1 shows the results on unsupervised OOD detection on the text summarization task.
AP-OOD surpasses methods with mean pooling by a large margin for both input and output
settings for most OOD data sets. Most notably, the mean FPR95 on CNN/DM improves
from 73.70% for the best baseline Deep SVDD to 19.51% for AP-OOD. The table also
shows that the embedding-based methods (Mahalanobis, KNN, Deep SVDD, and AP-OOD)
perform better than the prediction-based baselines perplexity and entropy. Figure 4 shows
the results of AP-OOD in the semi-supervised setting: supplying AUX data to AP-OOD
improves the AUROC, and more AUX data results in a larger improvement. AP-OOD
attains the highest AUROC independent of AUX sample count. We include the results on
additional OOD data sets in the semi-supervised setting and results on fully supervised
OOD detection on the summarization task in Appendix B.4, and we present ablations on
AP-OOD on text summarization in Appendix B.7.

Table 2 shows the results on unsupervised OOD detection on the translation task. AP-OOD
gives the best average results for the input and output settings. It is noteworthy that in the
translation task, the prediction-based methods perform better, with the perplexity baseline
outperforming all embedding-based methods evaluated on the output token embeddings
except AP-OOD. We hypothesize that this discrepancy can be explained as follows: In
translation, ID uncertainty is typically low because the source sentence largely dictates what
must be generated — specific words, names, and inflections — so ID perplexities are small
and tightly clustered. In text summarization, ID uncertainty is higher because many different
summaries can be equally valid, with freedom in what to include and how to phrase it. This
raises and spreads ID perplexity and weakens ID–OOD separation when using perplexity.
We include results on fully supervised OOD detection for translation in Appendix B.5.

In the audio task, the network achieves an accuracy of 97.6% on the primary classification
task. Table 3 presents the results of the unsupervised OOD detection methods AP-OOD,
Mahalanobis (Lee et al., 2018), KNN (Sun et al., 2022), and Deep SVDD (Ruff et al., 2018).
The results show that AP-OOD improves the FPR95 metric from 57.11% (KNN) to 22.35%.
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Table 2: Unsupervised OOD detection performance on English-to-French translation. We
compare results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun
et al., 2022), Deep SVDD (Ruff et al., 2018), model perplexity (Ren et al., 2023), and
entropy (Malinin & Gales, 2020) on a Transformer (base) trained on WMT15 En–Fr as the
ID data set. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. We
estimate standard deviations across five independent dataset splits and training runs.

IT Koran Law Medical Subtitles ndd2015 ndt2015 nt2014 Mean

Input OOD

AUROC ↑ 93.94±0.01 66.82±0.29 49.39±0.30 78.50±0.41 89.61±0.09 65.87±0.01 66.44±0.01 51.53±0.01 70.26Mahalanobis FPR95 ↓ 31.29±0.29 93.46±0.27 91.26±0.50 63.13±0.77 59.60±0.48 87.01±0.14 89.09±0.10 97.13±0.10 76.50
AUROC ↑ 94.16±0.01 66.16±0.24 46.68±0.22 79.62±0.41 89.16±0.11 64.81±0.05 65.63±0.05 53.21±0.05 69.93KNN FPR95 ↓ 32.44±0.12 94.69±0.28 92.71±0.34 67.04±0.73 63.35±0.32 88.91±0.07 89.97±0.04 97.51±0.03 78.33
AUROC ↑ 92.53±0.15 64.12±0.81 51.56±1.21 77.40±0.52 87.64±0.37 63.30±0.40 63.58±0.31 49.31±0.31 68.68Deep SVDD FPR95 ↓ 39.37±0.94 95.24±0.28 92.80±0.29 66.17±0.71 65.53±1.33 89.87±0.22 90.91±0.27 98.07±0.19 79.74
AUROC ↑ 94.88±0.08 73.51±0.33 51.11±0.38 81.80±0.35 89.14±0.32 69.98±0.15 70.40±0.27 57.82±0.23 73.58AP-OOD (Ours) FPR95 ↓ 25.00±0.59 87.48±0.33 89.45±0.67 58.51±0.60 60.78±2.07 86.45±0.91 87.05±0.32 94.19±0.41 73.61

Output OOD

AUROC ↑ 94.06±0.00 77.05±0.20 45.18±0.38 75.41±0.42 92.38±0.08 75.32±0.02 75.81±0.02 61.74±0.02 74.62Perplexity FPR95 ↓ 35.36±0.01 90.54±0.35 90.14±0.34 69.17±0.60 50.11±0.58 83.94±0.04 85.47±0.00 96.80±0.00 75.19
AUROC ↑ 71.44±0.22 86.14±0.32 53.98±0.23 51.12±0.44 70.95±0.47 75.11±0.96 72.96±0.22 71.31±0.17 69.13Entropy FPR95 ↓ 71.19±0.95 56.19±1.91 93.94±0.37 90.27±0.64 74.56±1.23 76.28±2.13 77.65±1.54 85.71±1.32 78.23
AUROC ↑ 90.74±0.01 69.38±0.17 52.25±0.14 75.68±0.47 86.57±0.08 62.28±0.03 62.76±0.02 48.63±0.02 68.54Mahalanobis FPR95 ↓ 57.02±0.44 94.26±0.23 97.15±0.15 81.34±0.33 76.16±0.79 93.09±0.29 93.93±0.13 98.00±0.09 86.37
AUROC ↑ 95.35±0.04 71.55±0.17 57.40±0.14 78.53±0.58 87.06±0.12 67.16±0.12 67.90±0.13 58.38±0.10 72.92KNN FPR95 ↓ 27.61±0.31 94.13±0.11 93.82±0.32 65.10±0.58 72.73±0.43 91.33±0.08 91.88±0.10 96.79±0.05 79.17
AUROC ↑ 89.20±0.13 67.28±0.80 54.40±0.83 73.96±0.65 84.00±0.19 60.37±0.57 60.66±0.37 47.11±0.22 67.12Deep SVDD FPR95 ↓ 62.41±1.21 95.19±0.48 95.03±0.65 81.50±1.69 81.56±1.15 93.93±0.26 95.75±0.44 98.41±0.16 87.97
AUROC ↑ 96.28±0.11 80.70±0.50 53.07±0.68 80.84±0.87 93.88±0.36 80.64±0.57 81.39±0.56 68.12±0.65 79.36AP-OOD (Ours) FPR95 ↓ 21.20±0.65 82.49±1.29 87.38±0.44 63.67±1.03 40.27±3.02 77.14±1.68 78.39±1.29 94.50±0.40 68.13

Table 3: Unsupervised OOD detection performance on audio classification. We compare
results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun et al.,
2022), Deep SVDD (Ruff et al., 2018) trained on MIMII-DG (Dohi et al., 2022) as the ID
data set. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. We estimate
standard deviations across five independent training runs.

Mahalanobis KNN Deep SVDD AP-OOD (Ours)

AUROC ↑ 64.96±0.002 81.21±0.000 53.48±1.930 92.86±0.746

FPR95 ↓ 84.39±0.011 57.11±0.000 89.44±1.689 22.35±2.388

5 Related Work

OOD detection. Some authors (e.g., Bishop, 1994; Roth et al., 2022; Yang et al., 2022)
distinguish between anomalies, outliers, and novelties. These distinctions reflect different
goals within applications (Ruff et al., 2021). For example, when an anomaly is found, it will
usually be removed from the training pipeline. However, when a novelty is found, it should
be studied. We focus on detecting samples that are not part of the training distribution
and consider sample categorization as a downstream task. OOD detection methods can be
categorized into three groups: Post-hoc, training-time, and OE methods. A common and
straightforward approach for OOD detection is the post-hoc approach, where one employs
statistics obtained from a classifier. Perhaps the most well-known approach is the maximum
softmax probability (MSP; Hendrycks & Gimpel, 2016). A wide range of post-hoc OOD
detection approaches have been proposed to address the shortcomings of MSP (e.g., Lee
et al., 2018; Hendrycks et al., 2019a; Liu et al., 2020; Sun et al., 2021; 2022; Wang et al.,
2022; Zhang et al., 2023b; Djurisic et al., 2023; Liu et al., 2023; Xu et al., 2024; Guo et al.,
2025). A commonly used post-hoc method is the Mahalanobis distance (e.g., Lee et al.,
2018; Sehwag et al., 2021; Ren et al., 2023). Recently, Müller & Hein (2025) proposed feature
normalization to improve Mahalanobis-based OOD detection, and Guo et al. (2025) show
that the Mahalanobis distance benefits from dynamically adjusting the prior geometry in
response to new data. In contrast to post-hoc methods, training-time methods modify the
training process of the encoder (e.g., Hendrycks et al., 2019c; Tack et al., 2020; Sehwag
et al., 2021; Du et al., 2022; Hendrycks et al., 2022; Wei et al., 2022; Ming et al., 2023; Tao
et al., 2023; Lu et al., 2024). Finally, the group of OE methods incorporates AUX data in
the training process (e.g., Hendrycks et al., 2019b; Liu et al., 2020; Ming et al., 2022; Zhang
et al., 2023a; Wang et al., 2023; Zhu et al., 2023; Jiang et al., 2024; Hofmann et al., 2024).
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OOD detection and natural language. Most of the aforementioned OOD detection
approaches target vision tasks, and many of them require a classification model as the encoder
ϕ. Applying these vision-based OOD methods to text is not straightforward due to the
sequence-dependent nature of natural language (e.g., in autoregressive language generation).
OOD detection specifically tailored for natural language is still underexplored. Ren et al.
(2023) propose the log-model perplexity of a generated sequence y as a simple baseline
for OOD detection on autoregressive language modeling tasks: − 1

L

∑L
l=1 log pθ(yl|y<l,x).

However, they show experimentally that model perplexity is inherently limited. Because of
these shortcomings, Ren et al. (2023) propose embedding-based OOD detection methods for
text data. Relatively few other works have explored OOD detection for generative language
modeling. Notable applications include translation (e.g., Xiao et al., 2020; Malinin et al.,
2021; Ren et al., 2023), summarization (Ren et al., 2023), and mathematical reasoning (Wang
et al., 2024). A related field is hallucination detection (e.g., Malinin & Gales, 2020; Farquhar
et al., 2024; Du et al., 2024; Aichberger et al., 2025; Park et al., 2025). Unlike OOD detection
(which flags inputs outside the training distribution), the goal of hallucination detection is
to identify prompts a generative language model is unlikely to answer truthfully.

Multiple instance learning (MIL). MIL (Dietterich et al., 1997; Maron & Lozano-
Pérez, 1997; Andrews et al., 2002; Ilse et al., 2018) considers a classifier that maps a bag
Z = (z1, . . . ,zS) of instances zs to a bag-level label Y ∈ {0, 1}. MIL also assumes that
individual labels ys ∈ {0, 1} exist for the instances, which remain unknown during training.
By assumption, the bag-level label is positive once one of the instance-level labels is positive
(and negative if all are instance-level labels negative), i.e., Y := maxs ys. Recent MIL
methods use attention pooling (Ilse et al., 2018; Shao et al., 2021; Al Hajj et al., 2024) and
modern Hopfield networks (Widrich et al., 2020) to pool the features of the instances.

One-class classification (OCC). OCC (Schölkopf et al., 1999) is the problem of learning
a decision boundary separating the ID and OOD regions while having access to examples
from the ID data set only. One-Class SVM (Schölkopf et al., 2001) learns a maximum margin
hyperplane in the feature space that separates the ID data from the origin. Support Vector
Data Description (SVDD; Tax & Duin, 2004) learns a hypersphere which encapsulates the ID
data. Most closely related to AP-OOD is Deep SVDD (Ruff et al., 2018). Deep SVDD learns
an encoder ψ(·,W) : RD → RM by minimizing the volume of a data-enclosing hypersphere
in the output space. Ruff et al. (2019) propose Deep SAD, an extension of Deep SVDD that
makes use of AUX data during training. However, Liznerski et al. (2022) show that the
effectiveness of this extension degrades with increasing dimensionality.

6 Limitations

In this section, we would like to discuss two limitations that we found. First, the selection of
the AUX data is crucial, since it determines the shape of the ID–OOD decision boundary.
If the AUX distribution diverges from the OOD examples faced at inference, the induced
boundary may not be aligned with the task. Second, it remains unclear how reliably the
OOD detection performance on specific data sets can indicate the general ability to detect
OOD examples, as a large portion of plausible OOD inputs remains untested.

7 Conclusion

We introduce AP-OOD: an approach for OOD detection for natural language that can learn
in supervised and unsupervised settings. In contrast to previous methods, AP-OOD learns
how to pool token-level information without the explicit need for AUX data. Our experiments
show that when supplied with AUX data during training, the performance of AP-OOD
improves as more AUX data is provided. We compare AP-OOD to five unsupervised and
three supervised OOD detection methods. Overall, AP-OOD shows the best results.
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Reproducibility Statement

To ensure reproducibility, we provide the source code of our implementation of AP-OOD in the
unsupervised and supervised settings in the supplementary material. Detailed instructions on
running the source code and reproducing the experiments are provided in the file readme.md.
We provide information about data, the training process, and the hyperparameter selection
in Section 3 and Appendix B.3.
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A Theoretical Notes

A.1 OOD Score Investigation

In the following, we show that

min
j∈{1,...,S}

−d2j (ϕenc(x), Z̃) + log(||wj ||22) < 2 log(ϵ) + log(2π) =⇒ x ∈ O

whenever zj :=
wT

j

||wj ||2 z̄j is normally distributed with probability density function

ṗj(zj) :=
||wj ||2√

2π
exp

(
−1

2
(||wj ||2 zj − wT

j µj)
2

)
, (16)

weight vectors wj ∈ RD, encoder ϕenc : X → Z, Z =
⋃

S≥1 RD×S , Z ∈ Z, Z̃ ∈ Z, z̄j = Zpj ,
µj = Z̃p̃j , pj ∈ ∆S and p̃j ∈ ∆S′

with

∆S :=
{
(p1, . . . , pS) ∈ [0, 1]S |

S∑
i=1

pi = 1
}
.

Proof. Note that the ϕenc-pushforward density pϕenc
of pID satisfies

pϕenc
(Z) :=

∫
X
pID(x) δ(ϕenc(x) = Z) dpID(x) ≥ pID(x).

Analogously, we get p̄j(z̄j) ≥ pϕenc
(Z) for z̄j := Zpj and ṗj(zj) ≥ p̄j(z̄j) for zj :=

wT
j

||wj ||2 z̄j .

That is, for any j ∈ {1, . . . ,M}, we have that pID(x) ≤ pϕenc(Z) ≤ p̄j(z̄j) ≤ ṗj(zj). As a
consequence, for all j ∈ {1, . . . ,M} it holds that ṗj(zj) < ϵ =⇒ pID(x) < ϵ. Moreover, the
following equivalence holds:

ṗj(zj) < ϵ ⇐⇒
||wj ||2√

2π
exp

(
−1

2
(||wj ||2 zj − wT

j µj)
2

)
< ϵ ⇐⇒

||wj ||2√
2π

exp

(
−1

2
(wT

j z̄j − wT
j µj)

2

)
< ϵ ⇐⇒

− (wT
j z̄j − wT

j µj)
2 + log(||wj ||22) < 2 log(ϵ) + log(2π) (17)

As a consequence, we have that x ∈ O, if Equation (17) is satisfied for any j ∈ {1, . . . ,M}.

A.2 Mahalanobis Decomposition

We assume the D weight vectors wj are linearly independent. First, we start from the
decomposed term and show that the Mahalanobis distance is equivalent.

d2Maha(z̄,µ) =

D∑
j=1

(
wT

j z̄ − wT
j µ
)2

(18)

= (z̄ − µ)T

(
D∑
i=1

wjw
T
j

)
(z̄ − µ) (19)

= (z̄ − µ)TΣ−1(z̄ − µ). (20)

Because the weight vectors are linearly independent, Σ−1 has full rank. Next, we go in
the opposite direction and show that the eigenvectors V = (v1, . . . ,vD) and eigenvalues
D = diag(λ1, . . . , λD) of Σ can be used to select the corresponding wj .
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d2Maha(z̄,µ) = (z̄ − µ)TΣ−1(z̄ − µ) (21)

= (z̄ − µ)TV TD−1V (z̄ − µ) (22)

=
(√

D−1V z̄ −
√
D−1V µ

)T (√
D−1V z̄ −

√
D−1V µ

)
(23)

=

D∑
j=1

(wT
j z̄ − wT

j µ)
2, (24)

where wj =
√
λ−1
j vj , Σ = V TDV , and Σ−1 = V TD−1V .

A.3 AP-OOD Reduces to Mahalanobis Distance with Mean Pooling for β = 0

In this section, we show that as β = 0 and M = D, d2(Z, Z̃) reduces to the Mahalanobis
distance with mean pooling as used by Ren et al. (2023). To arrive at the result, we assume
uniform sequence lengths.

softmax(0 ·ZTw)s =
exp(0 · zT

s w)∑S
s′=1 exp(0 · zT

s′w)
=

1

S
, (25)

z̄ = AttPool0(Z,w) = Zsoftmax(0 ·ZTw) =
1

S

S∑
s=1

zs, (26)

µ = AttPool0(Z̃,w) = Z̃softmax(0 · Z̃Tw) =
1

SN

N∑
i=1

S∑
s=1

zis =
1

N

N∑
i=1

z̄i, (27)

where we use the concatenated sequence Z̃ = (Z1∥· · ·∥ZN ), and the sequence representations
Zi = ϕ(xi) = (zi1, . . . ,ziS) ∈ RD×S . The squared distance of AP-OOD reduces to

d2(Z, Z̃) =

M∑
j=1

(
wT

j Zsoftmax(β ZTwj) − wT
j Z̃softmax(β Z̃Twj)

)2
(28)

=

D∑
j=1

(wT
j z̄ − wT

j µ)
2 = d2Maha(z̄,µ). (29)

To show the relation with non-uniform sequence lengths, we modify the attention pooling as
follows:

AttPoolβ(Z,w) := Zsoftmax(β ZTw + log(s)) (30)

where s contains the sequence lengths S of the sequences (replicated for the individual
tokens). The corresponding vector s̃ for Z̃ consists of the sequence lengths Si replicated for
the individual tokens. The resulting z̄ and µ are:

softmax(0 ·ZTw + log(s))s =
exp(0 · zT

s w + log(S))∑S
s′=1 exp(0 · zT

s′w + log(S))
=

1

S
, (31)

z̄ = AttPool0(Z,w) = Zsoftmax(0 ·ZTw + log(s)) =
1

S

S∑
s=1

zs, (32)

µ = AttPool0(Z̃,w) = Z̃softmax(0 · Z̃Tw + log(s̃)) =
1

N

N∑
i=1

1

Si

S∑
s=1

zis =
1

N

N∑
i=1

z̄i.

(33)
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B Experiments

B.1 Attention Pooling over the Corpus

In this section, we describe the process of performing attention pooling over a long sequence
Z̃ that is too large to fit into memory. For this, we need the log-sum-exponential function.
We follow the notation from Ramsauer et al. (2021):

lse(β,a) = β−1 log

(
S∑

s=1

exp(βas)

)
(34)

Algorithm 2 Attention pooling over a long sequence

Require: Z̃ = (z̃1, . . . , z̃S) ∈ RD×S , β, w, B
1: E ← −∞
2: µ← 0
3: for s← 1 to S step B do
4: Load mini-batch B ← (z̃s, . . . , z̃s+B)
5: EB ← lse(β,BTw)
6: p← exp(β(BTw − EB))
7: µB ← Bp
8: pB ← σ(β(EB − E))
9: µ← pBµB + (1− pB)µ

10: E ← β−1 log (exp(βEB) + exp(βE))
return µ

B.2 Additional Details for the Toy Experiment

In the toy experiment in Figure 2, we modify the attention pooling process to use the negative
squared Euclidean distance instead of the dot product similarity because the Euclidean
distance is known to work better in low-dimensional spaces. Formally, the modified attention
pooling process is:

AttPoolβ(Z,w) :=

S∑
s=1

zs
exp(−β

2 ||zs − w||22)∑S
s′=1 exp(−

β
2 ||zs′ − w||22)

. (35)

B.3 Hyperparameter selection.

To find the values for β, M , and T in the unsupervised setting, we perform a grid search
using the values β ∈ { 1√

D
, 0.25, 0.5, 1, 2} and T ∈ {1, 4, 16}. We select M such that the total

number of parameters of AP-OOD equals the number of entries in Σ of the Mahalanobis
method, i.e., such that MT = D. We select the hyperparameter configuration by evaluating
each resulting model on OOD detection using a validation split of the AUX data set (in the
unsupervised setting, we use the AUX data set only for model selection, not for training the
model), and we select the model with the highest AUROC. In the supervised setting, we
follow the same procedure, and we additionally select λ ∈ {0.1, 1, 10}.

B.4 Additional Experiments on Text Summarization

In the fully supervised setting, we train all methods on the embeddings of 100,000 ID examples
and 10,000 AUX examples obtained from PEGASUSLARGE trained on text summarization
using the XSUM data set. Table 4 shows that AP-OOD substantially improves fully
supervised OOD detection results, improving the previously best mean FPR95 of 1.06%
(binary logits) to 0.28% in the input OOD setting. Figure 4 shows the results for the
semi-supervised setting when scaling the number of AUX examples on all OOD data sets for
text summarization. We evaluate relative Mahalanobis only for N ′ ≥ 1024, because Σ is not
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Figure 4: OOD detection performance on text summarization for all OOD data sets. We
vary the number of AUX examples and compare results from AP-OOD, binary logits (Ren
et al., 2023), relative Mahalanobis (Ren et al., 2023), and Deep SAD (Ruff et al., 2019).

Table 4: Supervised OOD detection performance on text summarization. We compare results
from AP-OOD, binary logits (Ren et al., 2023), relative Mahalanobis (Ren et al., 2023), and
Deep SAD (Ruff et al., 2019) on PEGASUSLARGE trained on XSUM as the ID data set. ↓
indicates “lower is better” and ↑ “higher is better”. All values in %. We estimate standard
deviations across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 99.43±0.11 99.52±0.06 100.00±0.00 99.99±0.00 99.73Binary logits FPR95 ↓ 2.32±0.59 1.93±0.17 0.00±0.00 0.01±0.01 1.06
AUROC ↑ 81.28±0.19 91.85±0.20 99.96±0.00 99.98±0.00 93.27Relative Mahalanobis FPR95 ↓ 62.92±0.34 28.22±0.43 0.00±0.01 0.01±0.01 22.79
AUROC ↑ 98.85±0.17 99.24±0.07 100.00±0.00 100.00±0.00 99.52Deep SAD FPR95 ↓ 3.69±0.81 2.38±0.16 0.00±0.00 0.00±0.00 1.52
AUROC ↑ 99.83±0.18 99.71±0.05 100.00±0.00 100.00±0.00 99.88AP-OOD (Ours) FPR95 ↓ 0.37±0.51 0.76±0.19 0.00±0.00 0.00±0.00 0.28

Output OOD

AUROC ↑ 98.67±0.26 99.49±0.03 99.99±0.01 99.94±0.02 99.52Binary logits FPR95 ↓ 5.01±0.97 1.77±0.07 0.00±0.00 0.09±0.04 1.72
AUROC ↑ 93.58±0.18 97.41±0.08 99.82±0.01 99.54±0.03 97.59Relative Mahalanobis FPR95 ↓ 24.32±0.33 8.54±0.23 0.04±0.01 1.00±0.09 8.47
AUROC ↑ 98.39±0.23 99.53±0.03 100.00±0.00 99.96±0.00 99.47Deep SAD FPR95 ↓ 6.00±0.75 1.66±0.14 0.00±0.00 0.07±0.03 1.93
AUROC ↑ 99.00±0.13 99.59±0.02 100.00±0.00 99.98±0.00 99.64AP-OOD (Ours) FPR95 ↓ 3.25±0.42 1.24±0.07 0.00±0.00 0.01±0.01 1.13

invertible when using fewer AUX examples. In contrast to Figure 3, Figure 4 also shows the
results for Reddit TIFU and Samsum. On these two data sets, all evaluated methods except
relative Mahalanobis achieve near-perfect OOD detection results for N ′ ≥ 8.
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Table 5: Supervised OOD detection performance on English-to-French translation. We
compare results from AP-OOD, binary logits, relative mahalanobis (Ren et al., 2023), and
Deep SAD (Ruff et al., 2019) on a base Transformer trained on WMT15 En–Fr as the ID
data set. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. We estimate
standard deviations across five independent dataset splits and training runs.

IT Koran Law Medical Subtitles ndd2015 ndt2015 nt2014 Mean

Input OOD

AUROC ↑ 93.60±0.34 95.17±0.05 54.29±0.33 70.47±0.67 90.53±0.46 89.91±0.15 89.80±0.16 85.65±0.06 83.68Binary logits FPR95 ↓ 28.58±1.19 34.91±0.75 97.16±0.06 82.27±0.64 41.03±0.96 60.64±0.41 57.56±0.58 75.78±0.44 59.74
AUROC ↑ 92.82±0.26 93.31±0.09 43.07±0.38 74.40±0.40 95.73±0.21 89.33±0.04 88.88±0.05 82.06±0.13 82.45Relative Mahalanobis FPR95 ↓ 19.27±0.44 53.50±0.68 94.27±0.24 67.63±0.66 13.38±0.28 59.06±0.43 61.49±0.37 83.24±0.14 56.48
AUROC ↑ 94.56±0.13 94.77±0.14 57.44±0.58 71.67±0.27 91.57±0.21 90.07±0.16 89.47±0.12 84.42±0.19 84.25Deep SAD FPR95 ↓ 28.31±0.62 40.77±1.35 97.10±0.13 83.74±0.28 41.15±1.24 61.54±0.81 62.11±0.82 79.33±0.65 61.76
AUROC ↑ 94.97±0.54 96.17±0.35 56.82±1.03 79.31±0.99 95.03±0.41 90.66±0.39 90.73±0.36 86.56±0.36 86.28AP-OOD (Ours) FPR95 ↓ 29.93±2.86 26.04±2.97 94.46±0.83 79.06±1.44 29.17±2.32 56.34±2.46 55.12±1.47 69.75±1.36 54.98

Output OOD

AUROC ↑ 95.15±0.06 95.64±0.17 58.96±0.79 74.70±0.37 92.79±0.22 90.32±0.19 90.21±0.16 85.73±0.12 85.44Binary logits FPR95 ↓ 27.58±0.44 30.49±1.89 96.36±0.28 82.09±0.61 39.08±1.07 57.36±0.95 57.65±0.68 75.34±0.41 58.24
AUROC ↑ 92.83±0.18 94.94±0.14 41.88±0.42 71.09±0.27 95.14±0.16 88.86±0.02 87.83±0.08 82.59±0.10 81.89Relative Mahalanobis FPR95 ↓ 28.72±0.40 36.30±1.18 95.54±0.29 80.88±0.20 20.42±0.57 67.39±0.52 67.80±0.48 85.74±0.20 60.35
AUROC ↑ 95.88±0.13 96.57±0.21 56.47±1.31 76.35±0.60 94.79±0.12 90.66±0.11 90.40±0.11 86.21±0.18 85.92Deep SAD FPR95 ↓ 23.73±0.47 21.38±1.75 95.86±0.38 82.47±0.52 30.23±0.82 58.14±1.45 57.37±1.64 75.73±0.23 55.61
AUROC ↑ 95.82±0.24 96.85±0.24 59.22±0.92 78.27±1.67 95.78±0.13 90.31±0.33 89.87±0.35 83.97±0.90 86.26AP-OOD (Ours) FPR95 ↓ 28.51±1.44 19.94±1.78 93.65±0.36 81.37±0.56 26.96±1.04 59.28±1.36 57.48±1.09 73.64±1.21 55.10

Table 6: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD when using s(Z) and smin(Z), on PEGASUSLARGE trained on XSUM
as the ID data set. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. We
estimate standard deviations across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 96.13±0.44 99.10±0.08 99.91±0.03 99.80±0.04 98.74
s(Z) FPR95 ↓ 19.51±2.24 4.11±0.28 0.00±0.01 0.04±0.03 5.91

AUROC ↑ 96.08±0.37 97.48±0.28 99.71±0.20 97.67±0.35 97.74
smin(Z) FPR95 ↓ 18.78±2.73 11.16±1.21 0.01±0.01 12.04±3.04 10.50

Output OOD

AUROC ↑ 93.37±0.54 92.62±0.67 98.04±0.28 98.30±0.11 95.59
s(Z) FPR95 ↓ 23.12±1.97 29.91±2.93 6.34±1.56 6.83±0.64 16.55

AUROC ↑ 93.82±1.56 88.30±3.45 95.94±2.25 90.13±4.31 92.05
smin(Z) FPR95 ↓ 26.60±5.53 38.26±3.73 18.49±9.01 36.71±12.40 30.02

B.5 Additional Experiments on Translation

In the fully supervised setting, we train all methods on the embeddings of 100,000 ID
embeddings and 100,000 AUX embeddings obtained from a base Transformer trained on
WMT15 En–Fr translation. Table 5 shows that AP-OOD improves supervised OOD detection
results w.r.t. the mean AUROC and FPR95 metrics.

B.6 OOD score comparison

We experimentally compare the min-based OOD score smin(Z) and its upper bound s(Z).
For training, we use the loss from Equation (10) in both settings. The results in Table 6
show that s(Z) achieves better OOD discrimination w.r.t. the mean AUROC and FPR95.
While smin(Z) roughly matches the OOD detection metrics of s(Z) on CNN/DM for both
input and output, smin(Z) lags behind s(Z) on the other OOD data sets.

B.7 Ablations

Beta sensitivity analysis. We evaluate AP-OOD when varying the hyperparameter β
on the summarization task. We select β from {0, 1/

√
D, 0.25, 0.5, 1, 2}, and we leave the
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Table 7: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when varying β. ↓ indicates
“lower is better” and ↑ “higher is better”. All values in %. We estimate standard deviations
across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 66.83±0.44 81.42±0.27 94.81±0.32 93.38±0.20 84.11
β = 0 FPR95 ↓ 97.17±0.10 76.31±0.35 41.12±3.42 19.96±0.84 58.64

AUROC ↑ 97.76±0.11 98.75±0.07 99.87±0.06 99.46±0.09 98.96
β = 0.25 FPR95 ↓ 11.07±0.74 4.75±0.41 0.00±0.00 0.02±0.02 3.96

AUROC ↑ 96.13±0.44 99.10±0.08 99.91±0.03 99.80±0.04 98.74
β = 0.5 FPR95 ↓ 19.51±2.24 4.11±0.28 0.00±0.01 0.04±0.03 5.91

AUROC ↑ 91.36±0.41 98.77±0.05 99.75±0.02 99.83±0.01 97.43
β = 1 FPR95 ↓ 38.78±4.50 4.94±0.23 0.02±0.02 0.00±0.00 10.94

AUROC ↑ 84.29±0.91 97.58±0.09 99.52±0.05 99.76±0.01 95.28
β = 2 FPR95 ↓ 63.31±4.63 9.14±0.46 0.12±0.07 0.05±0.03 18.16

AUROC ↑ 89.09±0.66 90.59±0.35 99.59±0.18 99.87±0.01 94.79
β = 1/

√
D FPR95 ↓ 53.96±3.30 47.50±1.83 0.17±0.18 0.04±0.02 25.42

Output OOD

AUROC ↑ 77.67±1.37 85.10±0.61 84.12±1.08 91.70±0.44 84.65
β = 0 FPR95 ↓ 82.07±1.30 69.32±1.65 57.30±1.73 29.37±1.73 59.52

AUROC ↑ 91.37±0.64 93.66±0.13 94.79±0.29 96.56±0.27 94.10
β = 0.25 FPR95 ↓ 43.03±1.71 34.70±0.32 38.38±3.27 18.61±2.44 33.68

AUROC ↑ 93.37±0.54 92.62±0.67 98.04±0.28 98.30±0.11 95.59
β = 0.5 FPR95 ↓ 23.12±1.97 29.91±2.93 6.34±1.56 6.83±0.64 16.55

AUROC ↑ 93.06±0.57 91.82±0.71 97.66±0.33 97.91±0.22 95.11
β = 1 FPR95 ↓ 24.04±1.95 32.04±2.97 9.29±1.71 8.82±1.42 18.55

AUROC ↑ 93.25±0.48 91.98±0.73 97.57±0.40 97.97±0.19 95.19
β = 2 FPR95 ↓ 23.69±1.94 31.23±3.09 10.06±2.44 8.37±1.30 18.34

AUROC ↑ 54.67±0.72 80.59±0.72 94.12±0.30 94.93±0.35 81.08
β = 1/

√
D FPR95 ↓ 92.40±0.21 65.83±1.03 30.04±1.15 27.20±1.94 53.87

settings for M and T unchanged (i.e., they are identical to the settings used in Table 1).
Table 7 shows that AP-OOD on text summarization is relatively insensitive to the selection
of β inside the range [0.25, 2] in the input and output settings.

Number of heads M and queries T . We ablate on the number of heads M and the
number of queries T of AP-OOD on the summarization task. For this ablation, we select
T ∈ {1, 2, 4, 8, 16, 32, 64, 128, 512, 1024} and we then select M such that the total number
of parameters of AP-OOD equals the number of entries in Σ of the Mahalanobis method,
i.e., such that MT = D. The results in Table 8 show that AP-OOD works best on the
summarization task for both input and output when M = 512 and T = 2. Although the
performance drops when decreasing M and increasing T , we find that AP-OOD is relatively
insensitive to the number of heads and queries.

Dot product and Euclidean distance. We compare using the dot product and the
negative squared Euclidean distance for the attention pooling in AP-OOD. For a formal
definition of attention pooling with the negative squared Euclidean distance, we refer to
Appendix B.2. Table 9 shows that using the dot product works substantially better. This
result aligns with the well-established observation that measuring similarity using the dot
product in high-dimensional spaces is more effective than using Euclidean distance.

C The Use of Large Language Models

When creating this paper, we utilized large language models (LLMs) to refine our writing,
to identify related work, and for research ideation. When refining the writing using LLMs,
we carefully review and verify LLM output to preserve sentence semantics. For related work,
we confirm the soundness of papers suggested by the LLM, and for research ideation, we
verify the factual accuracy of all statements.
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Table 8: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when varying M and T . ↓
indicates “lower is better” and ↑ “higher is better”. All values in %. We estimate standard
deviations across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 97.16±0.22 98.25±0.11 99.82±0.01 99.32±0.03 98.64
M = 1024 T = 1 FPR95 ↓ 14.72±0.83 7.54±0.62 0.00±0.00 0.64±0.11 5.72

AUROC ↑ 97.98±0.16 98.83±0.07 99.87±0.03 99.60±0.04 99.07
M = 512 T = 2 FPR95 ↓ 9.77±0.80 4.67±0.30 0.00±0.00 0.02±0.02 3.61

AUROC ↑ 97.76±0.11 98.75±0.07 99.87±0.06 99.46±0.09 98.96
M = 256 T = 4 FPR95 ↓ 11.07±0.74 4.75±0.41 0.00±0.00 0.02±0.02 3.96

AUROC ↑ 97.53±0.15 98.49±0.15 99.83±0.07 99.14±0.12 98.75
M = 128 T = 8 FPR95 ↓ 12.48±1.14 5.94±0.65 0.00±0.00 0.25±0.10 4.67

AUROC ↑ 97.10±0.09 98.14±0.16 99.84±0.07 98.81±0.16 98.47
M = 64 T = 16 FPR95 ↓ 14.30±0.77 7.87±0.86 0.00±0.00 0.99±0.50 5.79

AUROC ↑ 96.84±0.35 97.78±0.15 99.83±0.05 98.56±0.28 98.25
M = 32 T = 32 FPR95 ↓ 14.97±1.96 10.18±0.80 0.01±0.02 2.53±2.12 6.92

AUROC ↑ 96.23±0.45 97.35±0.24 99.73±0.11 98.12±0.24 97.86
M = 16 T = 64 FPR95 ↓ 16.65±1.99 12.55±1.15 0.09±0.20 5.69±1.87 8.75

AUROC ↑ 95.56±0.38 96.47±0.46 99.67±0.27 97.44±0.25 97.29
M = 8 T = 128 FPR95 ↓ 18.16±1.57 16.34±1.91 0.52±1.13 11.29±1.78 11.58

AUROC ↑ 94.58±0.67 94.75±0.52 99.27±0.86 95.24±0.25 95.96
M = 4 T = 256 FPR95 ↓ 20.10±2.32 21.71±2.30 2.01±4.09 24.58±1.83 17.10

AUROC ↑ 93.17±0.75 91.87±0.56 98.43±2.39 89.87±0.86 93.34
M = 2 T = 512 FPR95 ↓ 22.86±2.20 27.09±1.48 4.95±9.38 39.75±3.06 23.66

AUROC ↑ 90.90±1.20 88.10±0.83 96.68±5.76 81.41±1.06 89.27
M = 1 T = 1024 FPR95 ↓ 27.14±3.03 32.64±2.29 9.03±16.78 52.73±3.76 30.39

Output OOD

AUROC ↑ 92.47±0.48 94.17±0.30 98.36±0.22 97.77±0.14 95.69
M = 1024 T = 1 FPR95 ↓ 39.11±1.81 34.69±0.85 3.11±1.16 12.59±0.90 22.38

AUROC ↑ 93.79±0.25 95.85±0.18 99.02±0.20 98.96±0.06 96.90
M = 512 T = 2 FPR95 ↓ 32.45±1.29 20.10±0.67 0.95±0.66 2.77±0.54 14.07

AUROC ↑ 93.35±0.46 95.48±0.28 99.19±0.26 99.05±0.06 96.77
M = 256 T = 4 FPR95 ↓ 33.67±2.77 21.73±0.82 0.86±0.95 2.72±0.52 14.75

AUROC ↑ 93.24±0.34 95.27±0.37 99.21±0.41 98.99±0.04 96.68
M = 128 T = 8 FPR95 ↓ 32.84±1.75 23.40±1.53 0.99±1.56 3.26±0.42 15.12

AUROC ↑ 92.95±0.82 94.92±0.39 99.11±0.36 98.89±0.14 96.47
M = 64 T = 16 FPR95 ↓ 34.08±4.22 25.53±1.87 1.48±1.63 4.10±0.70 16.30

AUROC ↑ 92.54±0.61 94.11±0.47 98.67±0.73 98.63±0.41 95.99
M = 32 T = 32 FPR95 ↓ 37.21±3.76 29.56±2.71 4.68±4.39 6.11±2.55 19.39

AUROC ↑ 91.26±1.17 92.62±1.40 97.99±2.33 98.58±0.84 95.11
M = 16 T = 64 FPR95 ↓ 41.96±4.43 35.78±5.78 8.75±13.44 6.19±4.88 23.17

AUROC ↑ 90.94±1.97 91.99±1.88 97.10±2.54 98.28±0.80 94.58
M = 8 T = 128 FPR95 ↓ 41.24±8.00 36.42±7.58 13.13±13.35 7.58±3.85 24.59

AUROC ↑ 89.62±1.80 90.35±2.64 95.91±3.26 97.73±0.96 93.40
M = 4 T = 256 FPR95 ↓ 47.52±9.04 41.77±12.21 18.53±16.24 10.02±4.76 29.46

AUROC ↑ 87.82±2.50 88.06±1.29 94.00±3.38 96.91±1.26 91.70
M = 2 T = 512 FPR95 ↓ 52.18±9.71 50.66±5.51 28.44±17.40 13.98±6.18 36.31

AUROC ↑ 86.45±1.86 86.95±1.79 93.43±2.35 96.10±1.59 90.73
M = 1 T = 1024 FPR95 ↓ 50.92±8.94 49.61±6.70 29.61±8.37 14.82±3.62 36.24

Table 9: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when using the dot product and
the Euclidean similarity. ↓ indicates “lower is better” and ↑ “higher is better”. All values in
%. We estimate standard deviations across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 97.76±0.11 98.75±0.07 99.87±0.06 99.46±0.09 98.96Dot product FPR95 ↓ 11.07±0.74 4.75±0.41 0.00±0.00 0.02±0.02 3.96
AUROC ↑ 74.22±0.65 84.43±0.23 97.06±0.41 98.30±0.23 88.50Euclidean FPR95 ↓ 90.20±0.37 74.08±1.04 15.27±5.30 7.17±1.94 46.68

Output OOD

AUROC ↑ 93.37±0.54 92.62±0.65 98.04±0.29 98.30±0.11 95.58Dot product FPR95 ↓ 23.12±1.98 29.93±2.89 6.36±1.60 6.83±0.64 16.56
AUROC ↑ 87.67±0.74 88.17±1.80 96.50±0.57 91.28±1.79 90.90Euclidean FPR95 ↓ 65.62±3.90 66.04±4.38 22.34±5.36 53.89±7.80 51.97
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