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Abstract

Out-of-distribution (OOD) detection, which maps high-dimensional data into
a scalar OOD score, is critical for the reliable deployment of machine learning
models. A key challenge in recent research is how to effectively leverage
and aggregate token embeddings from language models to obtain the OOD
score. In this work, we propose AP-OOD, a novel OOD detection method
for natural language that goes beyond simple average-based aggregation by
exploiting token-level information. AP-OOD is a semi-supervised approach
that flexibly interpolates between unsupervised and supervised settings,
enabling the use of limited auxiliary outlier data. Empirically, AP-OOD
sets a new state of the art in OOD detection for text: in the unsupervised
setting, it reduces the FPR95 (false positive rate at 95% true positives) from
27.77% to 5.91% on XSUM summarization, and from 75.19% to 68.13% on
WMT15 En–Fr translation.

1 Introduction

Out-of-distribution (OOD) detection is essential for deploying machine learning models in
the real world. In practical settings many models encounter inputs that deviate from the
model’s training distribution. For example, a model trained to summarize news articles
might also receive a prompt with a cooking recipe. In such situations, models may assign
unwarranted confidence to their predictions, leading to erroneous outputs and hallucination.
A hallucination is a state in which the model generates output that is nonsensical or
unfaithful to the prompt (Farquhar et al., 2024). For example, Ren et al. (2023) observe that
a common failure case in abstractive summarization is for the model to output “All images
are copyrighted” when prompted to summarize news articles from a publisher (CNN) that
differs from what it was trained on (BBC). Many authors attribute hallucination to model
uncertainty (e.g., Farquhar et al., 2024; Aichberger et al., 2025), which decomposes into
aleatoric uncertainty (resulting from noise in the data) and epistemic uncertainty (resulting
from a lack of training data). OOD prompts exhibit high epistemic uncertainty (Ren et al.,
2023). The purpose of OOD detection is to classify these inputs as OOD such that the
system can then, for instance, notify the user that no output can be generated. Many
existing post-hoc OOD detection methods (e.g., Huang et al., 2021; Sun & Li, 2022; Wang
et al., 2022) assume a classifier as the base model. In contrast, in language modeling, the
base model is typically an autoregressive generative model without an explicit classification
head. This necessitates the development of OOD detection methods specifically tailored for
language modeling, and we believe that the OOD detection community can benefit from
generative language modeling as an additional benchmark. Our contributions are as follows:

1. We propose AP-OOD, an OOD detection approach for natural language that leverages
token-level information to detect OOD sequences.

2. AP-OOD is a semi-supervised approach: It can be applied in unsupervised (i.e.,
when there exists no knowledge about OOD samples) and supervised settings (i.e.,
when some OOD data of interest is available to the practitioner), and smoothly
interpolates between the two.

3. We show that AP-OOD can improve OOD detection for natural language in summa-
rization and translation.

1
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Figure 1: Illustrative example for the failure of mean pooling. (Left) ID and OOD sequences
Zi ∈ R2×2, where each sequence contains a pair of token embeddings with two features each.
Token embeddings that belong to the same sequence are connected with lines. (Center)
The means of the ID and OOD sequences both cluster around the origin. (Right) A mean
pooling approach cannot discriminate between the ID and OOD sequences.

Figure 2: Illustrative example for the mechanism that AP-OOD uses to correctly discriminate
between ID and OOD (as opposed to the mean pooling approaches). The setting is the same
as in Figure 1. (Left) The loss landscape forms two basins at the locations of the ID token
embeddings. (Center) After training AP-OOD with a single weight vector w, the learned
w is located in one of the basins. (Right) AP-OOD achieves perfect discrimination between
the ID and OOD sequences.

4. We provide a theoretical motivation for the suitability of AP-OOD for OOD detection
on tokenized data.

1.1 Background

Consider a language model trained that given input sequences (x1, x2, . . . , xN ) with
xi ∈ X 1 autoregressively generates target sequences (y1, y2, . . . , yN ) with yi ∈ X . The
input sequences are drawn i.i.d.: xi ∼ pID. We consider input sequences x ∈ X that deviate
considerably from the data generation pID(x) that defines the “normality” of our data as
OOD. Following Ruff et al. (2021), an observed sequence is OOD if it is an element of the set

O := {x ∈ X | pID(x) < ϵ} where ϵ ≥ 0, (1)

and ϵ ∈ R is a density threshold. In practice, it is common (e.g., Hendrycks & Gimpel, 2016;
Lee et al., 2018; Hofmann et al., 2024) to define a score s : Z → R that uses an encoder
ϕ : X → Z (where Z denotes an embedding space). Given s and ϕ, OOD detection can be
formulated as a binary classification task with the classes in-distribution (ID) and OOD:

B̂(x, γ) =

{
ID if s(ϕ(x)) ≥ γ
OOD if s(ϕ(x)) < γ

. (2)

The outlier score should — in the best case — preserve the density ranking, but it does not
have to fulfill all requirements of a probability density (proper normalization or nonnegativity).

1We use X :=
⋃

S≥1 V
S for the set of input sequences, and V := {v1, . . . , vV } is the vocabulary.
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For evaluation, the threshold γ ∈ R is typically chosen such that 95% of ID samples from a
previously unseen validation set are correctly classified as ID. However, metrics like the area
under the receiver operating characteristic (AUROC) can be directly computed on s(ϕ(x))
without fixing γ, since the AUROC sweeps over all possible thresholds.

2 Method

AP-OOD is a semi-supervised method: It can be trained without access to outlier data
(unsupervised), and with access to outlier data (supervised), and can smoothly transition
between those two scenarios as more outlier data becomes available for training. In the
following, we first introduce AP-OOD in an unsupervised scenario (Section 2.1) and generalize
it to the supervised scenario (Section 2.2).

2.1 Unsupervised OOD Detection

Background Ren et al. (2023) propose to detect OOD inputs using token embeddings
obtained from a transformer encoder–decoder model (Vaswani et al., 2017b) trained on
the language modeling task. Given an input sequence x, they obtain a sequence of token
embeddings. They compare obtaining embeddings E ∈ Z2 from the encoder ϕenc : X → Z
and generating a sequence of embeddings G ∈ Z using the decoder ϕdec : Z → Z:

E := ϕenc(x) G := ϕdec(E). (3)

For clarity, we write Z ∈ Z for a sequence of token embeddings, whether produced by the
encoder or the decoder, and we call Z the sequence representation of x. To obtain a single
vector z̄ ∈ RD, Ren et al. (2023) perform mean pooling:

z̄ :=
1

S

S∑
s=1

zs. (4)

Then, they propose to measure whether z̄ is OOD by first fitting a Gaussian distribution
N (µ,Σ), µ ∈ RD, Σ ∈ RD×D to the per-sequence mean embeddings computed from the
training corpus, and then computing the squared Mahalanobis distance between z̄ and µ:

d2Maha(z̄,µ) := (z̄ − µ)TΣ−1(z̄ − µ) and sMaha(z̄) := − d2Maha(z̄,µ). (5)

Averaging hides anomalies. The key limitation of the approach described above is the
use of the mean of the token embeddings Z: Averaging the entire sequence into the mean z̄
discards the token-level structure that would otherwise be informative for detecting whether
a sequence is OOD. Figure 1 shows a toy example of this failure mode: The ID and OOD
sequences are indistinguishable using their means, and therefore, the Mahalanobis distance
with mean pooling fails to discriminate between them.

Mahalanobis decomposition. To address this limitation, we begin by expressing the
Mahalanobis distance as a directional decomposition:

d2Maha(z̄,µ) =

D∑
j=1

(
wT

j z̄ − wT
j µ
)2
, (6)

The weight vectors wj ∈ RD form a basis of RD and determine Σ−1 via Σ−1 =
∑D

j=1 wjw
T
j .

One possibility to map a given Σ−1 to weight vectors wj is to select the directions of the
wj as the unit-norm eigenvectors of Σ−1, and to select the squared norms of the wj as their
corresponding eigenvalues (see Appendix B.2).

2We use Z :=
⋃

S≥1 R
D×S for all finite-length sequences of D-dimensional token embeddings.
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Algorithm 1 AP-OOD

Require: (x1, . . . ,xN ), ϕenc, ϕdec, β, M , nsteps
1: for i = 1 to N do
2: Compute sequence embedding Zi using Zi ← ϕenc(xi) or Zi ← ϕdec(ϕenc(xi)).
3: for step = 1 to nsteps do
4: Randomly sample mini-batch indices B ⊂ {1, . . . , N}
5: Collect mini-batch {Zi}i∈B.
6: Form batch-local concatenation Z̃B ← ∥i∈B Zi.
7: Compute loss L ← 1

|B|
∑

i∈B d
2(Zi, Z̃B)−

∑M
j=1 log(||wj ||22).

8: Compute gradients of L w.r.t. (w1, . . . ,wM ) and perform a gradient update
9: Do mini-batch attention pooling to compute µj ← Z̃softmax(β Z̃Twj) (Appendix C.1)

10: s(Z)←
∑M

j=1−d2j (Z, Z̃) + log
(
||wj ||22

)
.

11: return s(·)

Beyond mean pooling. To overcome the limitations of mean pooling, we generalize
Equation (6) by using attention pooling (Bahdanau, 2014; Ramsauer et al., 2021):

AttPoolβ(Z,w) := Zsoftmax(β ZTw) and z̄ := AttPoolβ(Z,w). (7)

where β ∈ R≥0 is the inverse temperature, and w ∈ RD is a learnable query. AP-OOD also
uses attention for the corpus-wide pooling: Given the sequence representations (Z1, . . . ,ZN )

where Zi ∈ Z from a corpus (x1, . . . ,xN ) with Zi := ϕenc(xi), we define Z̃ ∈ Z as the
concatenation of all sequence representations: Z̃ := (Z1 ∥ · · · ∥ ZN ). AP-OOD estimates
µ := AttPoolβ(Z̃,w). Given the z̄ and µ from the attention pooling, AP-OOD estimates
d2(Z, Z̃), the squared distance between a sequence representation Z and the concatenation
Z̃ analogous to Equation (6):

d2(Z, Z̃) :=

M∑
j=1

(
wT

j Zsoftmax(β ZTwj)−wT
j Z̃softmax(β Z̃Twj)

)2
=

M∑
j=1

d2j (Z, Z̃). (8)

We refer to M ∈ N as the number of heads. In general, M does not need to equal the
embedding dimension D. We show in Appendix B.3 that, when β = 0 and M = D,
Equation (8) reduces to the Mahalanobis distance (Equations (5) and (6)). To the best
of our knowledge, AP-OOD is the first approach to integrate attention pooling into the
Mahalanobis distance via a learnable directional decomposition. In Appendix B.1, we show
that smin(Z) = minj −d2j (Z, Z̃) + log(||wj ||22) is a score function as defined in Equation (2).
Our score arises naturally as the upper bound

s(Z) :=

M∑
j=1

−d2j (Z, Z̃) + log(||wj ||22). (9)

In Appendix D.7, we empirically compare the min-based score smin(Z) to its upper-bound
variant s(Z) and find that s(Z) yields stronger OOD discrimination. The choice of this
score naturally leads to the loss function of AP-OOD:

L(w1, . . . ,wM ) :=
1

N

N∑
i=1

d2(Zi, Z̃) −
M∑
j=1

log
(
||wj ||22

)
. (10)

We provide the pseudocode for AP-OOD in Algorithm 1. Scaling to large data sets requires
efficient computation of µ = Z̃softmax(β Z̃Tw); the naive method loads the entire concate-
nated sequence Z̃ into memory, but we reduce the memory footprint by performing attention
pooling on mini-batches. We describe this procedure in Appendix C.1.

Multiple queries per head. We now extend AP-OOD and use multiple queries per head.
We use a set of stacked queries Wj = (wj1, . . . ,wjT ) ∈ RD×T per head. For simplicity, we
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consider a single head with the queries W ∈ RD×T for now. We begin by extending the
softmax notation from Ramsauer et al. (2021) to matrix-valued arguments. Given a matrix
A ∈ RS×T

softmax(βA)st :=
exp(βast)∑S

s′=1

∑T
t′=1 exp(βas′t′)

. (11)

In other words, the softmax normalizes over the rows and columns of A. Next, we extend
the attention pooling process from Equation (7) with the matrix-valued softmax: AP-
OOD transforms the sequence representation Z ∈ RD×S with S tokens to a new sequence
representation Z̄ ∈ RD×T with T tokens using Z̄ := ZP . The updated attention pooling
process is

AttPoolβ(Z,W ) := Zsoftmax(β ZTW ) and Z̄ := AttPoolβ(Z,W ). (12)

To the best of our knowledge, this work is the first to use a matrix-valued global softmax
to transform a sequence Z into another sequence Z̄. Finally, AP-OOD uses W ∈ RD×T to
transform the Z̄ ∈ RD×T to a real number with the Frobenius inner product ⟨W , Z̄⟩F =
vec(W )T vec(Z̄) = Tr(W T Z̄). To summarize, the extended squared distance is

d2(Z, Z̃) :=

M∑
j=1

(
Tr(W T

j Zsoftmax(β ZTWj)) − Tr(W T
j Z̃softmax(β Z̃TWj))

)2
. (13)

Finally, the regularizing term is − log(||W ||2F) (where || · ||2F denotes the squared Frobenius
norm). To summarize, the extended loss is

L(W1, . . . ,WM ) :=
1

N

N∑
i=1

d2(Zi, Z̃) −
M∑
j=1

log
(
||Wj ||2F

)
. (14)

We provide PyTorch-style pseudocode implementing Equation (14) in Appendix C.2.

2.2 Supervised OOD Detection

Background. Supplying an OOD detector with information about the distribution of the
OOD examples at training time can improve the ID–OOD decision boundary (Hendrycks
et al., 2018). In practice, it is hard to find OOD data for training that is fully indicative
of the OOD distribution seen during inference. Outlier exposure (OE; Hendrycks et al.,
2018) therefore uses a large and diverse auxiliary outlier set (AUX; e.g., C4 for text data)
as a stand-in for the OOD case. However, acquiring such large and diverse AUX datasets
is not always possible. For example, consider a translation task with a less widely spoken
source language. As another example, consider detecting defects in industrial machines using
recordings of their sounds (Nishida et al., 2024). Practitioners can collect a relatively large
amount of ID audio data from machines while they run without defects. However, it is
much harder to collect diverse AUX examples from defective machines because defects are
infrequent. In such a case, one might have to resort to a smaller AUX data set. Therefore,
an OOD detector should scale gracefully with the degree of auxiliary supervision, adapting
to the available number of AUX examples (e.g., Ruff et al., 2019; Liznerski et al., 2022;
Yoon et al., 2023; Ivanov et al., 2024; Qiao et al., 2024).

Utilizing AUX data. To adapt AP-OOD to the supervised setting, we follow Ruff et al.
(2019) and Liznerski et al. (2022): AP-OOD punishes large squared distances d2(Z, Z̃)
for ID samples Z and encourages large squared distances for AUX samples Z. For-
mally, AP-OOD minimizes the binary cross-entropy loss with the classes ID and AUX
with p(y = ID|Z) = exp(−d2(Z, Z̃)). Given N ID examples (Z1, . . . ,ZN ), and N ′ AUX
examples (ZN+1, . . . ,ZN+N ′), AP-OOD minimizes the supervised loss

LSUP :=
1

N +N ′

N∑
i=1

d2(Zi, Z̃) − λ
1

N +N ′

N+N ′∑
i=N+1

log(1− exp(−d2(Zi, Z̃))), (15)

where λ ∈ R≥0. If λ = 0, LSUP equals the unsupervised loss L without the regularizing term.
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Table 1: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun et al., 2022),
Deep SVDD (Ruff et al., 2018), model perplexity (Ren et al., 2023), and entropy (Malinin &
Gales, 2020) on PEGASUSLARGE trained on XSUM as the ID data set. ↓ indicates “lower is
better” and ↑ “higher is better”. All values in %. We estimate standard deviations across
five independent data set splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 69.00±0.27 86.37±0.19 98.64±0.07 99.77±0.01 88.45Mahalanobis FPR95 ↓ 92.19±0.08 64.48±0.71 2.45±0.34 0.17±0.02 39.82
AUROC ↑ 54.34±0.15 73.76±0.09 94.52±0.03 98.82±0.01 80.36KNN FPR95 ↓ 99.40±0.03 88.56±0.17 51.24±0.70 3.07±0.16 60.57
AUROC ↑ 75.86±1.00 91.20±0.21 99.73±0.05 99.57±0.04 91.59Deep SVDD FPR95 ↓ 73.70±2.35 36.46±1.12 0.26±0.09 0.67±0.17 27.77
AUROC ↑ 96.13±0.44 99.10±0.08 99.91±0.03 99.80±0.04 98.74AP-OOD (Ours) FPR95 ↓ 19.51±2.24 4.11±0.28 0.00±0.01 0.04±0.03 5.91

Output OOD

AUROC ↑ 42.20±0.14 53.99±0.31 83.38±0.15 78.53±0.31 64.52Perplexity FPR95 ↓ 77.71±0.17 79.07±0.57 45.56±0.40 46.96±0.20 62.32
AUROC ↑ 59.59±0.21 77.20±0.52 93.47±0.21 87.17±0.20 79.36Entropy FPR95 ↓ 79.04±0.75 64.24±1.21 30.19±1.34 50.47±1.64 55.98
AUROC ↑ 63.27±0.17 88.26±0.11 97.40±0.09 97.29±0.08 86.55Mahalanobis FPR95 ↓ 89.84±0.13 47.83±0.71 11.13±0.58 13.57±0.25 40.59
AUROC ↑ 74.37±0.13 86.96±0.08 95.85±0.06 97.33±0.03 88.63KNN FPR95 ↓ 73.36±0.20 53.44±0.58 15.78±0.27 10.29±0.22 38.22
AUROC ↑ 68.31±1.63 94.13±0.12 97.60±0.26 95.97±0.15 89.00Deep SVDD FPR95 ↓ 76.76±1.15 19.22±0.34 8.90±1.25 20.17±1.28 31.26
AUROC ↑ 93.37±0.54 92.62±0.67 98.04±0.28 98.30±0.11 95.59AP-OOD (Ours) FPR95 ↓ 23.12±1.97 29.91±2.93 6.34±1.56 6.83±0.64 16.55

3 Experiments

Toy experiment. We present a toy experiment illustrating the main intuitions behind
AP-OOD. Figure 1 demonstrates a simple failure mode of mean pooling approaches: First, we
generate ID and OOD token embeddings Zi ∈ R2×2. Each ID sequence representation consists
of one token sampled from N ((1, 1), σ2I) (where σ := 0.1) and one token sampled from
N ((−1,−1), σ2I). The OOD sequences contain two tokens sampled from N ((−1, 1), σ2I)
and N ((1,−1), σ2I), respectively. The left panel shows the generated sequences, where each
sequence consists of two dots (representing the two tokens) connected by a line. Because
the means of the ID and OOD sequences both cluster around the origin (central panel), the
Mahalanobis distance with mean pooling fails to discriminate between them (right panel).
Figure 2 shows how AP-OOD overcomes this limitation: We set M = 1 and T = 1 and
train AP-OOD as described in Section 2.1 on the ID data only, but we modify the pooling
mechanism from Equation (7): We replace the dot product similarity in the softmax with
the negative squared Euclidean distance, as it is known to work better in low-dimensional
spaces (we provide the formal definition for this modification in Appendix D.1). The left
panel of Figure 2 shows that the loss landscape of w forms two basins at the locations of the
ID tokens. The central panel shows that after training, w is located in one of the basins.
Finally, the right panel shows that AP-OOD perfectly discriminates ID and OOD.

Summarization. We follow Ren et al. (2023) and use a PEGASUSLARGE (Zhang et al.,
2020) fine-tuned on the ID data set XSUM (Narayan et al., 2018). We utilize the C4 training
split as the AUX data set. We measure the OOD detection performance on the data sets
CNN/Daily Mail (CNN/DM; news articles from CNN and Daily Mail; Hermann et al., 2015;
See et al., 2017), Newsroom (articles and summaries written by authors and editors from 38
news publications; Grusky et al., 2018), Reddit TIFU (posts and summaries from the online
discussion forum Reddit; Kim et al., 2018), and Samsum (summaries of casual dialogues;
Gliwa et al., 2019). The ForumSum data set used in the experiments of Ren et al. (2023)
has been retracted. Therefore, we do not use it in our experiments.

Translation. We train a Transformer (base) on WMT15 En–Fr (Bojar et al., 2015). The
model trains for 100,000 steps using AdamW (Loshchilov & Hutter, 2017) with a cosine
schedule (Loshchilov & Hutter, 2016), linear warmup, and a peak learning rate of 5× 10−4.
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Figure 3: OOD detection performance on the input token embeddings of PEGASUSLARGE
trained on XSUM. We vary the number of AUX samples and compare AP-OOD, binary
logits (Ren et al., 2023), Deep SAD (Ruff et al., 2019), and relative Mahalanobis (Ren et al.,
2023). AP-OOD attains the highest AUROC independent of AUX sample count.

We set the batch size to 1024 and the context length to 512. Following Ren et al. (2023),
the AUX data set is ParaCrawl En–Fr, and the OOD data sets are newstest2014 (nt2014),
newsdiscussdev2015 (ndd2015), and newsdiscusstest2015 (ndt2015) from WMT15 (Bojar
et al., 2015), and the Law, Koran, Medical, IT, and Subtitles subsets from OPUS (Tiedemann,
2012; Aulamo & Tiedemann, 2019).

Training. We extract 100,000 ID sequence representations (E or G) and use all extracted
representations for training AP-OOD in all experiments. We also extract AUX sequence
representations, and we vary the number of AUX sequences available from 0 (unsupervised)
to 10,000 (fully supervised). While training AP-OOD, the transformer model remains frozen.
We use the Adam optimizer (Kingma & Ba, 2014) without weight decay, set the learning rate
to 0.01, and apply a cosine schedule (Loshchilov & Hutter, 2016). We train for 2,000 steps
with a batch size of 512. We select M and T such that the parameter count of AP-OOD
matches the parameter count of the Mahalanobis method (i.e., the size of Σ). For more
information on hyperparameter selection, we refer to Appendix D.2. An additional scaling
experiment on input sequence representations of the summarization task investigates larger
parameter spaces: We train on the full XSUM data set (instead of the 100,000 ID sequence
representations used in the other experiments). We select the number of heads (M) from
the set {1, 16, 128, 1024}, the number of queries (T ) from the set {1, 4, 16}, and β from
{1/
√
D, 0.25, 0.5, 1, 2}. The largest configuration has a parameter count 16 times greater

than the Mahalanobis baseline.

Baselines. We compare AP-OOD to six unsupervised OOD detection methods: We apply
the embedding-based methods Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun
et al., 2022), and Deep SVDD (Ruff et al., 2018) to both the input and output sequence
representations (E and G, respectively), and we apply Perplexity (Ren et al., 2023) and
Entropy (Malinin & Gales, 2020) to the output of the decoder. We also compare AP-OOD
to three supervised OOD detection methods: binary logits (Ren et al., 2023), relative
Mahalanobis (Ren et al., 2023), and Deep SVDD (Ruff et al., 2019). We evaluate the
discriminative power of the methods in our comparison using the false positive rate at 95%
true positives (FPR95) and AUROC.

Audio data. To demonstrate the effectiveness of AP-OOD on data modalities other than
text, we apply the method to the MIMII-DG audio data set (Dohi et al., 2022). The data
set comprises audio recordings of 15 different machines, ranging from 10 to 12 seconds in
length. The dataset contains 990 samples per machine. During preprocessing, the raw audio
waveforms are converted into audio spectrograms. We train a transformer to classify a subset
of 7 machines. The remaining 8 machines are considered as OOD. The architecture and
training method for the network were adopted from Huang et al. (2022). To adjust for the
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(a) Mean AUROC (b) Best β

Figure 4: OOD detection performance on the input token embeddings of PEGASUSLARGE
trained on XSUM when scaling to large M and T . We vary M ∈ {1, 16, 128, 1024}, T ∈
{1, 4, 16}, and β ∈ {1/

√
D, 0.25, 0.5, 1, 2}. (Left) Mean AUROC in % for the best β at each

(M,T ) combination. (Right) The best β selected at each (M,T ) combination.

small data set size, we decrease the size of the architecture: We increase the patch size to
32 × 32 pixels, decrease the embedding dimension to 32, and utilize only three attention
blocks with four heads each. Consequently, the encoder of the network produces 128 tokens
with D = 32 features. We train AP-OOD on the encoder output in the unsupervised setting
using M = 128 and T = 8.

4 Results

Table 1 shows the results on unsupervised OOD detection on the text summarization task.
AP-OOD surpasses methods with mean pooling by a large margin for both input and output
settings for most OOD data sets. Most notably, the mean FPR95 on CNN/DM improves
from 73.70% for the best baseline Deep SVDD to 19.51% for AP-OOD. The table also
shows that the embedding-based methods (Mahalanobis, KNN, Deep SVDD, and AP-OOD)
perform better than the prediction-based baselines perplexity and entropy. Figure 3 shows
the results of AP-OOD in the semi-supervised setting: supplying AUX data to AP-OOD
improves the AUROC, and more AUX data results in a larger improvement. AP-OOD
attains the highest AUROC independent of AUX sample count. We include the results on
additional OOD data sets in the semi-supervised setting and results on fully supervised
OOD detection on the summarization task in Appendix D.3, and we present ablations on
AP-OOD on text summarization in Appendix D.8.

Figure 4 shows the results when scaling AP-OOD to larger parameter counts. As we increase
the number of heads (M) and queries (T ), we observe a steady increase in the mean AUROC
on the summarization task. The highest Mean AUROC of 99.40% is achieved by the largest
configuration tested (M = 1024, T = 16).

Table 2 shows the results on unsupervised OOD detection on the translation task. AP-OOD
gives the best average results for the input and output settings. It is noteworthy that in the
translation task, the prediction-based methods perform better, with the perplexity baseline
outperforming all embedding-based methods evaluated on the output token embeddings
except AP-OOD. We hypothesize that this discrepancy can be explained as follows: In
translation, ID uncertainty is typically low because the source sentence largely dictates
what must be generated — specific words, names, and inflections — so ID perplexities are
small and tightly clustered. In text summarization, ID uncertainty is higher because many
different summaries can be equally valid, with freedom in what to include and how to phrase
it. This raises and spreads ID perplexity and weakens ID–OOD separation when using
perplexity. We include results on fully supervised OOD detection for translation in Appendix
D.5. Furthermore, we verify the effectiveness of AP-OOD on the decoder-only language
modeling paradigm using Pythia-160M in Appendix D.6.
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Table 2: Unsupervised OOD detection performance on English-to-French translation. We
compare results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun
et al., 2022), Deep SVDD (Ruff et al., 2018), model perplexity (Ren et al., 2023), and
entropy (Malinin & Gales, 2020) on a Transformer (base) trained on WMT15 En–Fr as the
ID data set. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. We
estimate standard deviations across five independent data set splits and training runs.

IT Koran Law Medical Subtitles ndd2015 ndt2015 nt2014 Mean

Input OOD

AUROC ↑ 93.94±0.01 66.82±0.29 49.39±0.30 78.50±0.41 89.61±0.09 65.87±0.01 66.44±0.01 51.53±0.01 70.26Mahalanobis FPR95 ↓ 31.29±0.29 93.46±0.27 91.26±0.50 63.13±0.77 59.60±0.48 87.01±0.14 89.09±0.10 97.13±0.10 76.50
AUROC ↑ 94.16±0.01 66.16±0.24 46.68±0.22 79.62±0.41 89.16±0.11 64.81±0.05 65.63±0.05 53.21±0.05 69.93KNN FPR95 ↓ 32.44±0.12 94.69±0.28 92.71±0.34 67.04±0.73 63.35±0.32 88.91±0.07 89.97±0.04 97.51±0.03 78.33
AUROC ↑ 92.53±0.15 64.12±0.81 51.56±1.21 77.40±0.52 87.64±0.37 63.30±0.40 63.58±0.31 49.31±0.31 68.68Deep SVDD FPR95 ↓ 39.37±0.94 95.24±0.28 92.80±0.29 66.17±0.71 65.53±1.33 89.87±0.22 90.91±0.27 98.07±0.19 79.74
AUROC ↑ 94.88±0.08 73.51±0.33 51.11±0.38 81.80±0.35 89.14±0.32 69.98±0.15 70.40±0.27 57.82±0.23 73.58AP-OOD (Ours) FPR95 ↓ 25.00±0.59 87.48±0.33 89.45±0.67 58.51±0.60 60.78±2.07 86.45±0.91 87.05±0.32 94.19±0.41 73.61

Output OOD

AUROC ↑ 94.06±0.00 77.05±0.20 45.18±0.38 75.41±0.42 92.38±0.08 75.32±0.02 75.81±0.02 61.74±0.02 74.62Perplexity FPR95 ↓ 35.36±0.01 90.54±0.35 90.14±0.34 69.17±0.60 50.11±0.58 83.94±0.04 85.47±0.00 96.80±0.00 75.19
AUROC ↑ 71.44±0.22 86.14±0.32 53.98±0.23 51.12±0.44 70.95±0.47 75.11±0.96 72.96±0.22 71.31±0.17 69.13Entropy FPR95 ↓ 71.19±0.95 56.19±1.91 93.94±0.37 90.27±0.64 74.56±1.23 76.28±2.13 77.65±1.54 85.71±1.32 78.23
AUROC ↑ 90.74±0.01 69.38±0.17 52.25±0.14 75.68±0.47 86.57±0.08 62.28±0.03 62.76±0.02 48.63±0.02 68.54Mahalanobis FPR95 ↓ 57.02±0.44 94.26±0.23 97.15±0.15 81.34±0.33 76.16±0.79 93.09±0.29 93.93±0.13 98.00±0.09 86.37
AUROC ↑ 95.35±0.04 71.55±0.17 57.40±0.14 78.53±0.58 87.06±0.12 67.16±0.12 67.90±0.13 58.38±0.10 72.92KNN FPR95 ↓ 27.61±0.31 94.13±0.11 93.82±0.32 65.10±0.58 72.73±0.43 91.33±0.08 91.88±0.10 96.79±0.05 79.17
AUROC ↑ 89.20±0.13 67.28±0.80 54.40±0.83 73.96±0.65 84.00±0.19 60.37±0.57 60.66±0.37 47.11±0.22 67.12Deep SVDD FPR95 ↓ 62.41±1.21 95.19±0.48 95.03±0.65 81.50±1.69 81.56±1.15 93.93±0.26 95.75±0.44 98.41±0.16 87.97
AUROC ↑ 96.28±0.11 80.70±0.50 53.07±0.68 80.84±0.87 93.88±0.36 80.64±0.57 81.39±0.56 68.12±0.65 79.36AP-OOD (Ours) FPR95 ↓ 21.20±0.65 82.49±1.29 87.38±0.44 63.67±1.03 40.27±3.02 77.14±1.68 78.39±1.29 94.50±0.40 68.13

Table 3: Unsupervised OOD detection performance on audio classification. We compare
results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun et al.,
2022), Deep SVDD (Ruff et al., 2018), MSP (Hendrycks & Gimpel, 2016), and EBO (Liu
et al., 2020b) trained on MIMII-DG (Dohi et al., 2022) as the ID data set. ↓ indicates “lower
is better” and ↑ “higher is better”. All values in %. We estimate standard deviations across
five independent training runs.

Mahalanobis KNN Deep SVDD MSP EBO AP-OOD (Ours)

AUROC ↑ 64.96±0.002 81.21±0.000 53.48±1.930 88.05±0.000 90.75±0.000 92.86±0.746

FPR95 ↓ 84.39±0.011 57.11±0.000 89.44±1.689 36.43±0.000 61.86±0.000 22.35±2.388

In the audio task, the network achieves an accuracy of 97.6% on the primary classification
task. Table 3 presents the results of the unsupervised OOD detection methods AP-OOD,
Mahalanobis (Lee et al., 2018), KNN (Sun et al., 2022), and Deep SVDD (Ruff et al.,
2018). Additionally, we compare AP-OOD to 2 methods for classifiers, Maximum Softmax
Probability (MSP; Hendrycks & Gimpel, 2016) and Energy-based OOD Detection (EBO;
Liu et al., 2020b). In contrast to the other methods, MSP and EBO do not apply to
transformer tokens, making them unsuitable for summarization and translation tasks. The
results show that AP-OOD improves the FPR95 metric from 36.43% (MSP) to 22.35%.

We evaluate the runtime performance of AP-OOD by measuring the inference time of
single batches on the summarization task. We find that while AP-OOD is slower than
the Mahalanobis baseline, it is still substantially faster than a forward pass through the
transformer encoder. Because AP-OOD rejects a larger portion of OOD examples, the
avoided generation time can effectively offset the AP-OOD’s computational overhead relative
to the baseline. For more details on the runtime behavior, we refer to Appendix D.9.

5 Related Work

OOD detection. Some authors (e.g., Bishop, 1994; Roth et al., 2022; Yang et al., 2022)
distinguish between anomalies, outliers, and novelties. These distinctions reflect different
goals within applications (Ruff et al., 2021). For example, when an anomaly is found, it will
usually be removed from the training pipeline. However, when a novelty is found, it should
be studied. We focus on detecting samples that are not part of the training distribution
and consider sample categorization as a downstream task. OOD detection methods can be
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categorized into three groups: Post-hoc, training-time, and OE methods. In the post-hoc
approach, one employs statistics obtained from a classifier. Perhaps the most well-known
approach is the maximum softmax probability (MSP; Hendrycks & Gimpel, 2016). A wide
range of post-hoc OOD detection approaches have been proposed to address the shortcomings
of MSP (e.g., Lee et al., 2018; Hendrycks et al., 2019a; Liu et al., 2020a; Sun et al., 2021;
2022; Wang et al., 2022; Zhang et al., 2023b; Djurisic et al., 2023; Liu et al., 2023; Xu et al.,
2024; Guo et al., 2025). A commonly used post-hoc method is the Mahalanobis distance
(e.g., Lee et al., 2018; Sehwag et al., 2021; Ren et al., 2023). Recently, Müller & Hein (2025)
proposed feature normalization to improve Mahalanobis-based OOD detection, and Guo et al.
(2025) show that the Mahalanobis distance benefits from dynamically adjusting the prior
geometry in response to new data. In contrast to post-hoc methods, training-time methods
modify the training process of the encoder (e.g., Hendrycks et al., 2019c; Sehwag et al.,
2021; Du et al., 2022; Hendrycks et al., 2022; Ming et al., 2023; Tao et al., 2023; Lu et al.,
2024). Finally, the group of OE methods incorporates AUX data in the training process
(e.g., Hendrycks et al., 2019b; Liu et al., 2020a; Ming et al., 2022; Zhang et al., 2023a; Wang
et al., 2023; Zhu et al., 2023; Jiang et al., 2024; Hofmann et al., 2024).

OOD detection and natural language. Most of the aforementioned OOD detection
approaches target vision tasks, and many of them require a classification model as the encoder
ϕ. Applying these vision-based OOD methods to text is not straightforward due to the
sequence-dependent nature of natural language (e.g., in autoregressive language generation).
OOD detection specifically tailored for natural language is still underexplored. Ren et al.
(2023) propose the log-model perplexity of a generated sequence y as a simple baseline
for OOD detection on autoregressive language modeling tasks: − 1

L

∑L
l=1 log pθ(yl|y<l,x).

However, they show experimentally that model perplexity is inherently limited. Because of
these shortcomings, Ren et al. (2023) propose embedding-based OOD detection methods for
text data. Relatively few other works have explored OOD detection for generative language
modeling. Notable applications include translation (e.g., Xiao et al., 2020; Malinin et al.,
2021; Ren et al., 2023), summarization (Ren et al., 2023), and mathematical reasoning (Wang
et al., 2024). A related field is hallucination detection (e.g., Malinin & Gales, 2020; Farquhar
et al., 2024; Du et al., 2024; Aichberger et al., 2025; Park et al., 2025). Unlike OOD detection
(which flags inputs outside the training distribution), the goal of hallucination detection is
to identify prompts a generative language model is unlikely to answer truthfully.

6 Limitations & Future Work

We would like to discuss two limitations that we found. First, the selection of the AUX
data is crucial, since it determines the shape of the ID–OOD decision boundary. If the AUX
distribution diverges from the OOD examples faced at inference, the induced boundary may
not be aligned with the task. Second, it remains unclear how reliably the OOD detection
performance on specific data sets can indicate the general ability to detect OOD examples, as
a large portion of plausible OOD inputs remains untested. An interesting avenue for future
work is to apply OOD detection methods to large language models (LLMs; e.g., Abdin
et al., 2024; Dubey et al., 2024; Yang et al., 2025). While we demonstrate the applicability of
AP-OOD on the decoder-only language modeling paradigm of LLMs (Appendix D.6), further
challenges include proprietary training data, finding OOD data for training and evaluation
given the breadth of the ID data, and the ambiguity of pID arising from complex training
pipelines involving multiple phases (e.g., Wei et al., 2022; Ouyang et al., 2022).

7 Conclusion

We introduce AP-OOD: an approach for OOD detection for natural language that can learn
in supervised and unsupervised settings. In contrast to previous methods, AP-OOD learns
how to pool token-level information without the explicit need for AUX data. Our experiments
show that when supplied with AUX data during training, the performance of AP-OOD
improves as more AUX data is provided. We compare AP-OOD to five unsupervised and
three supervised OOD detection methods. Overall, AP-OOD shows the best results.
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Reproducibility Statement

To ensure reproducibility, we provide the source code of our implementation of AP-OOD in the
unsupervised and supervised settings in the supplementary material. Detailed instructions on
running the source code and reproducing the experiments are provided in the file readme.md.
We provide information about data, the training process, and the hyperparameter selection
in Section 3 and Appendix D.2.
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A Related Work

Continuous modern Hopfield networks. Modern Hopfield networks (MHNs) are
energy-based associative memory networks. They advance conventional Hopfield networks
(Hopfield, 1984) by introducing continuous queries and states and a new energy function.
MHNs have exponential storage capacity, while retrieval is possible with a one-step update
(Ramsauer et al., 2021). The update rule of MHNs coincides with attention as it is used in
the Transformer (Vaswani et al., 2017a). Examples for successful applications of MHNs are
Widrich et al. (2020a); Fürst et al. (2022); Sanchez-Fernandez et al. (2022); Paischer et al.
(2022); Schäfl et al. (2022); Schimunek et al. (2023); Auer et al. (2023) and Hofmann et al.
(2024).

Multiple instance learning (MIL). MIL (Dietterich et al., 1997; Maron & Lozano-
Pérez, 1997; Andrews et al., 2002; Ilse et al., 2018) considers a classifier that maps a bag
Z = (z1, . . . ,zS) of instances zs to a bag-level label Y ∈ {0, 1}. MIL also assumes that
individual labels ys ∈ {0, 1} exist for the instances, which remain unknown during training.
By assumption, the bag-level label is positive once one of the instance-level labels is positive
(and negative if all are instance-level labels negative), i.e., Y := maxs ys. Recent MIL
methods use attention pooling (Ilse et al., 2018; Shao et al., 2021; Al Hajj et al., 2024) and
modern Hopfield networks (Widrich et al., 2020b) to pool the features of the instances.

One-class classification (OCC). OCC (Schölkopf et al., 1999) is the problem of learning
a decision boundary separating the ID and OOD regions while having access to examples
from the ID data set only. One-Class SVM (Schölkopf et al., 2001) learns a maximum margin
hyperplane in the feature space that separates the ID data from the origin. Support Vector
Data Description (SVDD; Tax & Duin, 2004) learns a hypersphere which encapsulates the ID
data. Most closely related to AP-OOD is Deep SVDD (Ruff et al., 2018). Deep SVDD learns
an encoder ψ(·,W) : RD → RM by minimizing the volume of a data-enclosing hypersphere
in the output space. Ruff et al. (2019) propose Deep SAD, an extension of Deep SVDD that
makes use of AUX data during training. However, Liznerski et al. (2022) show that the
effectiveness of this extension degrades with increasing dimensionality.
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B Theoretical Notes

B.1 OOD Score Investigation

In the following, we show that

min
j∈{1,...,M}

−d2j (ϕenc(x), Z̃) + log(||wj ||22) < 2 log(ϵ) + log(2π) =⇒ x ∈ O

whenever zj :=
wT

j

||wj ||2 z̄j is normally distributed with probability density function

ṗj(zj) :=
||wj ||2√

2π
exp

(
−1

2
(||wj ||2 zj − wT

j µj)
2

)
, (16)

weight vectors wj ∈ RD, encoder ϕenc : X → Z, Z =
⋃

S≥1 RD×S , Z ∈ Z, Z̃ ∈ Z, z̄j = Zpj ,
µj = Z̃p̃j , pj ∈ ∆S and p̃j ∈ ∆S′

with

∆S :=
{
(p1, . . . , pS) ∈ [0, 1]S |

S∑
i=1

pi = 1
}
.

Proof. Note that the ϕenc-pushforward density pϕenc
of pID satisfies

pϕenc
(Z) :=

∫
X
pID(x) δ(ϕenc(x) = Z) dpID(x) ≥ pID(x).

Analogously, we get p̄j(z̄j) ≥ pϕenc
(Z) for z̄j := Zpj and ṗj(zj) ≥ p̄j(z̄j) for zj :=

wT
j

||wj ||2 z̄j .

That is, for any j ∈ {1, . . . ,M}, we have that pID(x) ≤ pϕenc(Z) ≤ p̄j(z̄j) ≤ ṗj(zj). As a
consequence, for all j ∈ {1, . . . ,M} it holds that ṗj(zj) < ϵ =⇒ pID(x) < ϵ. Moreover, the
following equivalence holds:

ṗj(zj) < ϵ ⇐⇒
||wj ||2√

2π
exp

(
−1

2
(||wj ||2 zj − wT

j µj)
2

)
< ϵ ⇐⇒

||wj ||2√
2π

exp

(
−1

2
(wT

j z̄j − wT
j µj)

2

)
< ϵ ⇐⇒

− (wT
j z̄j − wT

j µj)
2 + log(||wj ||22) < 2 log(ϵ) + log(2π) (17)

As a consequence, we have that x ∈ O, if Equation (17) is satisfied for any j ∈ {1, . . . ,M}.

B.2 Mahalanobis Decomposition

We assume the D weight vectors wj are linearly independent. First, we start from the
directional decomposition and show the relation to the Mahalanobis distance.

d2Maha(z̄,µ) =

D∑
j=1

(
wT

j z̄ − wT
j µ
)2

(18)

= (z̄ − µ)T

(
D∑
i=1

wjw
T
j

)
(z̄ − µ) (19)

= (z̄ − µ)TΣ−1(z̄ − µ). (20)

Because the weight vectors are linearly independent, Σ−1 has full rank. Next, we go in
the opposite direction and show that the eigenvectors V = (v1, . . . ,vD) and eigenvalues
D = diag(λ1, . . . , λD) of a Σ can be used to define corresponding wj .
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d2Maha(z̄,µ) = (z̄ − µ)TΣ−1(z̄ − µ) (21)

= (z̄ − µ)TV TD−1V (z̄ − µ) (22)

=
(√

D−1V z̄ −
√
D−1V µ

)T (√
D−1V z̄ −

√
D−1V µ

)
(23)

=

D∑
j=1

(wT
j z̄ − wT

j µ)
2, (24)

where wj =
√
λ−1
j vj , Σ = V TDV , and Σ−1 = V TD−1V .

The relation between the Mahalanobis distance and the directional decomposition is as
follows:

1. Any linearly independent sequence w1, . . . ,wD induces a positive definite matrix Σ−1 :=∑D
j=1 wjw

⊤
j , and hence a Mahalanobis distance satisfying

D∑
j=1

(w⊤
j z̄ − w⊤

j µ)
2 = (z̄ − µ)⊤Σ−1(z̄ − µ). (25)

2. Conversely, any full-rank covariance matrix Σ admits a set of linearly independent vectors
w1, . . . ,wD such that Σ−1 =

∑D
j=1 wjw

⊤
j , and therefore Equation (25) holds.

Thus, our decomposition and the Mahalanobis form represent the same quadratic form; the
eigen-decomposition is only one possible choice of wj .

B.3 AP-OOD Reduces to Mahalanobis Distance with Mean Pooling for β = 0

In this section, we show that as β = 0 and M = D, d2(Z, Z̃) reduces to the Mahalanobis
distance with mean pooling as used by Ren et al. (2023). To arrive at the result, we assume
uniform sequence lengths.

softmax(0 ·ZTw)s =
exp(0 · zT

s w)∑S
s′=1 exp(0 · zT

s′w)
=

1

S
, (26)

z̄ = AttPool0(Z,w) = Zsoftmax(0 ·ZTw) =
1

S

S∑
s=1

zs, (27)

µ = AttPool0(Z̃,w) = Z̃softmax(0 · Z̃Tw) =
1

SN

N∑
i=1

S∑
s=1

zis =
1

N

N∑
i=1

z̄i, (28)

where we use the concatenated sequence Z̃ = (Z1∥· · ·∥ZN ), and the sequence representations
Zi = ϕ(xi) = (zi1, . . . ,ziS) ∈ RD×S . The squared distance of AP-OOD reduces to

d2(Z, Z̃) =

M∑
j=1

(
wT

j Zsoftmax(β ZTwj) − wT
j Z̃softmax(β Z̃Twj)

)2
(29)

=

D∑
j=1

(wT
j z̄ − wT

j µ)
2 = d2Maha(z̄,µ). (30)
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C Additional Algorithmic Details

C.1 Mini-Batch Attention Pooling

In this section, we describe the process of performing attention pooling over a long sequence
Z̃ that is too large to fit into memory by dividing Z̃ into smaller mini-batches of size
B ∈ N. For this, we need the log-sum-exponential (lse) function. We follow the notation
from Ramsauer et al. (2021):

lse(β,a) = β−1 log

(
S∑

s=1

exp(βas)

)
(31)

The following algorithm computes µ = Z̃softmax(β Z̃Tw) for β > 0:

Algorithm 2 Attention pooling over a long sequence

Require: Z̃ = (z̃1, . . . , z̃S) ∈ RD×S , inverse temperature β, weight vector w, batch size B
1: E ← −∞
2: µ← 0
3: for s← 1 to S step B do
4: Load mini-batch B ← (z̃s, . . . , z̃s+B)
5: EB ← lse(β,BTw)
6: p← exp(β(BTw − EB))
7: µB ← Bp
8: pB ← σ(β(EB − E))
9: µ← pBµB + (1− pB)µ

10: E ← β−1 log (exp(βEB) + exp(βE))
return µ

C.2 AP-OOD in PyTorch/Einops-like Pseudocode

We detail the loss computation for AP-OOD with multiple queries per head (Equation (14))
using PyTorch/Einops-style pseudocode. Assuming a uniform sequence length S, Algorithm
3 demonstrates the computation via attention pooling over the sequences Z. Alternatively,
Algorithm 4 presents a mathematically equivalent formulation that applies attention pooling
over the similarities WTZ.

C.3 On the Difference Between Heads and Queries

We find that heads are learnt largely independently from one another while queries are not,
which we experimentally verify as follows: We train AP-OOD using the SGD optimizer on
the summarization task using (i) 1 head and (ii) 2 heads, where the initialization of one
of the heads in (ii) is identical to the initialization of the head of (i). We find that after
training for 500 steps, the weight vectors associated with the heads with shared initialization
between (i) and (ii) remain identical. In contrast, when repeating this experiment by varying
the number of queries, the weight vectors associated with the queries differ after training.
Intuitively, adding additional heads will help the model discover more local minima in the
parameter space (similar to Lakshminarayanan et al., 2017), while adding queries increases
the capacity of each given head. The following observation supports this intuition: When
testing different hyperparameter combinations for AP-OOD, we found that a large number
of queries combined with a small number of heads leads to overfitting when training the
model on small ID data sets (e.g., 10,000 sequences): In this case, the average distance of the
ID training sequences is substantially smaller than the average distance of the ID validation
sequences.
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Algorithm 3 AP-OOD loss in PyTorch/Einops-like style using attention pooling over Z

1 def attention_pooling(Zs, Ws):
2 # Zs[N S D] - mini-batch of N sequences with length S
3 # Ws[M T D] - weights of model with M heads and T queries
4

5 # pairwise similarities between tokens and weights
6 similarities = einsum(Zs, Ws, 'N S D, M T D -> N M S T')
7

8 # softmax over query- and sequence dimensions
9 probs = similarities.softmax(dim=(-2, -1)) #[N M S T]

10

11 # pooling to form new sequences
12 Z_bars = einsum(Zs, probs, 'N S D, N M S T ->N M T D')
13

14 return Z_bars
15

16 def loss(Zs, Ws):
17 # Zs[N S D] - mini-batch of N sequences with length S
18 # Ws[M T D] - weights of model with M heads and T queries
19

20 # attention pooling over individual sequence
21 Z_bars = attention_pooling(Zs, Ws) #[N M T D]
22

23 # attention pooling over all sequences
24 Z_tilde = Zs.flatten(0, 1).unsqueeze(0) #[1, N*S, D]
25 mus = attention_pooling(Z_tilde, Ws) #[1 M T D]
26

27 # squared distance per head
28 heads_Z = einsum(Z_bars, Ws, 'N M T D, M T D -> N M')
29 heads_mu = einsum(mus, Ws, '1 M T D, M T D -> 1 M')
30 ds_squared = (heads_Z - heads_mu)**2 #[N M]
31

32 # regularized and loss
33 regularizer = torch.log((Ws * Ws).sum(1, 2)) #[M]
34 losses = torch.sum(ds_squared - regularizer, dim=1) #[N]
35 loss = torch.mean(losses)
36

37 return loss

D Experiments

D.1 Additional Details for the Toy Experiment

In the toy experiment in Figure 2, we modify the attention pooling process to use the negative
squared Euclidean distance instead of the dot product similarity because the Euclidean
distance is known to work better in low-dimensional spaces. Formally, the modified attention
pooling process is:

AttPoolβ(Z,w) :=

S∑
s=1

zs
exp(−β

2 ||zs − w||22)∑S
s′=1 exp(−

β
2 ||zs′ − w||22)

. (32)

D.2 Hyperparameter Selection

To find the values for β, M , and T in the unsupervised setting, we perform a grid search
using the values β ∈ { 1√

D
, 0.25, 0.5, 1, 2} and T ∈ {1, 4, 16}. We select M such that the total

number of parameters of AP-OOD equals the number of entries in Σ of the Mahalanobis
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Algorithm 4 AP-OOD loss in PyTorch/Einops-like style using attention pooling over W TZ

1 def attention_pooling(Zs, Ws):
2 # Zs[N S D] - mini-batch of N sequences with length S
3 # Ws[M T D] - weights of model with M heads and T queries
4

5 # pairwise similarities between tokens and weights
6 similarities = einsum(Zs, Ws, 'N S D, M T D -> N M S T')
7

8 # softmax over query- and sequence dimensions
9 probs = similarities.softmax(dim=(-2, -1)) #[N M S T]

10

11 # pooling over similarities
12 pooled = einsum(similarities, probs 'N M S T, N M S T -> N M')
13

14 return pooled
15

16 def loss(Zs, Ws):
17 # Zs[N S D] - mini-batch of N sequences with length S
18 # Ws[M T D] - weights of model with M heads and T queries
19

20 # attention pooling over individual sequence
21 heads_Z = attention_pooling(Zs, Ws) #[N M]
22

23 # attention pooling over all sequences
24 Z_tilde = Zs.flatten(0, 1).unsqueeze(0) #[1, N*S, D]
25 heads_mus = attention_pooling(Z_tilde, Ws) #[1 M]
26

27 # squared distance per head
28 ds_squared = (heads_Z - heads_mu)**2 #[N M]
29

30 # regularizer and loss
31 regularizer = torch.log((Ws * Ws).sum(1, 2)) #[M]
32 losses = torch.sum(ds_squared - regularizer, dim=1) #[N]
33 loss = torch.mean(losses)
34

35 return loss

method, i.e., such that MT = D. We select the hyperparameter configuration by evaluating
each resulting model on OOD detection using a validation split of the AUX data set (in the
unsupervised setting, we use the AUX data set only for model selection, not for training the
model), and we select the model with the highest AUROC. In the supervised setting, we
follow the same procedure, and we additionally select λ ∈ {0.1, 1, 10}.

D.3 Supervised Experiments on Text Summarization

In the fully supervised setting, we train all methods on the embeddings of 100,000 ID examples
and 10,000 AUX examples obtained from PEGASUSLARGE trained on text summarization
using the XSUM data set. Table 4 shows that AP-OOD substantially improves fully
supervised OOD detection results, improving the previously best mean FPR95 of 1.06%
(binary logits) to 0.28% in the input OOD setting. Figure 5 shows the results for the
semi-supervised setting when scaling the number of AUX examples on all OOD data sets for
text summarization. We evaluate relative Mahalanobis only for N ′ ≥ 1024, because Σ is not
invertible when using fewer AUX examples. In contrast to Figure 3, Figure 5 also shows the
results for Reddit TIFU and Samsum. On these two data sets, all evaluated methods except
relative Mahalanobis achieve near-perfect OOD detection results for N ′ ≥ 8.
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Figure 5: OOD detection performance on text summarization for all OOD data sets. We
vary the number of AUX examples and compare results from AP-OOD, binary logits (Ren
et al., 2023), relative Mahalanobis (Ren et al., 2023), and Deep SAD (Ruff et al., 2019).

Table 4: Supervised OOD detection performance on text summarization. We compare results
from AP-OOD, binary logits (Ren et al., 2023), relative Mahalanobis (Ren et al., 2023), and
Deep SAD (Ruff et al., 2019) on PEGASUSLARGE trained on XSUM as the ID data set. ↓
indicates “lower is better” and ↑ “higher is better”. All values in %. We estimate standard
deviations across five independent data set splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 99.43±0.11 99.52±0.06 100.00±0.00 99.99±0.00 99.73Binary logits FPR95 ↓ 2.32±0.59 1.93±0.17 0.00±0.00 0.01±0.01 1.06
AUROC ↑ 81.28±0.19 91.85±0.20 99.96±0.00 99.98±0.00 93.27Relative Mahalanobis FPR95 ↓ 62.92±0.34 28.22±0.43 0.00±0.01 0.01±0.01 22.79
AUROC ↑ 98.85±0.17 99.24±0.07 100.00±0.00 100.00±0.00 99.52Deep SAD FPR95 ↓ 3.69±0.81 2.38±0.16 0.00±0.00 0.00±0.00 1.52
AUROC ↑ 99.83±0.18 99.71±0.05 100.00±0.00 100.00±0.00 99.88AP-OOD (Ours) FPR95 ↓ 0.37±0.51 0.76±0.19 0.00±0.00 0.00±0.00 0.28

Output OOD

AUROC ↑ 98.67±0.26 99.49±0.03 99.99±0.01 99.94±0.02 99.52Binary logits FPR95 ↓ 5.01±0.97 1.77±0.07 0.00±0.00 0.09±0.04 1.72
AUROC ↑ 93.58±0.18 97.41±0.08 99.82±0.01 99.54±0.03 97.59Relative Mahalanobis FPR95 ↓ 24.32±0.33 8.54±0.23 0.04±0.01 1.00±0.09 8.47
AUROC ↑ 98.39±0.23 99.53±0.03 100.00±0.00 99.96±0.00 99.47Deep SAD FPR95 ↓ 6.00±0.75 1.66±0.14 0.00±0.00 0.07±0.03 1.93
AUROC ↑ 99.00±0.13 99.59±0.02 100.00±0.00 99.98±0.00 99.64AP-OOD (Ours) FPR95 ↓ 3.25±0.42 1.24±0.07 0.00±0.00 0.01±0.01 1.13

D.4 Visualizing AP-OOD’s Attention Maps on the Summarization Task

We analyze how the attention pooling process of AP-OOD allocates weight to individual
tokens. We randomly select one sample from each of the four OOD data sets in the
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Positive Negative

(a) CNN/DM

Positive Negative

(b) Newsroom

Positive Negative

(c) Reddit

Positive Negative

(d) Samsum

Figure 6: AP-OOD’s attention weights on randomly selected output sequences from OOD
data sets on text summarization. For each sequence, we visualize the heads j with the highest
deviation in the positive and negative direction of the dj(Z) before applying the square.

summarization benchmark. We then investigate the attention weights of a trained AP-OOD
model over the generated output sequence. For each sample, we select the two heads with the
largest deviations in the positive and in the negative directions before applying the square in
the score function of AP-OOD. Figure 6 visualizes the token-wise attention scores of the
selected heads. When manually examining the generated output sequences, we find it hard
to attribute the “OODness” of individual sequences to a single token or to a small set of
tokens. Therefore, it is difficult to interpret the attention scores for the individual heads.
However, the results indicate that the different heads exhibit distinct attention patterns.
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Table 5: Supervised OOD detection performance on English-to-French translation. We
compare results from AP-OOD, binary logits, relative mahalanobis (Ren et al., 2023), and
Deep SAD (Ruff et al., 2019) on a Transformer (base) trained on WMT15 En–Fr as the ID
data set. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. We estimate
standard deviations across five independent data set splits and training runs.

IT Koran Law Medical Subtitles ndd2015 ndt2015 nt2014 Mean

Input OOD

AUROC ↑ 93.60±0.34 95.17±0.05 54.29±0.33 70.47±0.67 90.53±0.46 89.91±0.15 89.80±0.16 85.65±0.06 83.68Binary logits FPR95 ↓ 28.58±1.19 34.91±0.75 97.16±0.06 82.27±0.64 41.03±0.96 60.64±0.41 57.56±0.58 75.78±0.44 59.74
AUROC ↑ 92.82±0.26 93.31±0.09 43.07±0.38 74.40±0.40 95.73±0.21 89.33±0.04 88.88±0.05 82.06±0.13 82.45Relative Mahalanobis FPR95 ↓ 19.27±0.44 53.50±0.68 94.27±0.24 67.63±0.66 13.38±0.28 59.06±0.43 61.49±0.37 83.24±0.14 56.48
AUROC ↑ 94.56±0.13 94.77±0.14 57.44±0.58 71.67±0.27 91.57±0.21 90.07±0.16 89.47±0.12 84.42±0.19 84.25Deep SAD FPR95 ↓ 28.31±0.62 40.77±1.35 97.10±0.13 83.74±0.28 41.15±1.24 61.54±0.81 62.11±0.82 79.33±0.65 61.76
AUROC ↑ 94.97±0.54 96.17±0.35 56.82±1.03 79.31±0.99 95.03±0.41 90.66±0.39 90.73±0.36 86.56±0.36 86.28AP-OOD (Ours) FPR95 ↓ 29.93±2.86 26.04±2.97 94.46±0.83 79.06±1.44 29.17±2.32 56.34±2.46 55.12±1.47 69.75±1.36 54.98

Output OOD

AUROC ↑ 95.15±0.06 95.64±0.17 58.96±0.79 74.70±0.37 92.79±0.22 90.32±0.19 90.21±0.16 85.73±0.12 85.44Binary logits FPR95 ↓ 27.58±0.44 30.49±1.89 96.36±0.28 82.09±0.61 39.08±1.07 57.36±0.95 57.65±0.68 75.34±0.41 58.24
AUROC ↑ 92.83±0.18 94.94±0.14 41.88±0.42 71.09±0.27 95.14±0.16 88.86±0.02 87.83±0.08 82.59±0.10 81.89Relative Mahalanobis FPR95 ↓ 28.72±0.40 36.30±1.18 95.54±0.29 80.88±0.20 20.42±0.57 67.39±0.52 67.80±0.48 85.74±0.20 60.35
AUROC ↑ 95.88±0.13 96.57±0.21 56.47±1.31 76.35±0.60 94.79±0.12 90.66±0.11 90.40±0.11 86.21±0.18 85.92Deep SAD FPR95 ↓ 23.73±0.47 21.38±1.75 95.86±0.38 82.47±0.52 30.23±0.82 58.14±1.45 57.37±1.64 75.73±0.23 55.61
AUROC ↑ 95.82±0.24 96.85±0.24 59.22±0.92 78.27±1.67 95.78±0.13 90.31±0.33 89.87±0.35 83.97±0.90 86.26AP-OOD (Ours) FPR95 ↓ 28.51±1.44 19.94±1.78 93.65±0.36 81.37±0.56 26.96±1.04 59.28±1.36 57.48±1.09 73.64±1.21 55.10

D.5 Supervised Experiments on Translation

In the fully supervised setting, we train all methods on the embeddings of 100,000 ID
embeddings and 100,000 AUX embeddings obtained from a Transformer (base) trained
on WMT15 En–Fr translation. Table 5 shows that AP-OOD improves supervised OOD
detection results w.r.t. the mean AUROC and mean FPR95 metrics.

D.6 Experiments on Decoder-Only Language Modeling

To verify the effectiveness of AP-OOD on the decoder-only language modeling paradigm used
by LLMs, we conduct experiments on Pythia-160M (Biderman et al., 2023), a decoder-only
language model trained on the Pile (Gao et al., 2020). We evaluate the discriminative
power of AP-OOD trained in an unsupervised fashion on the 4Chan and Twitter subsets
of Paloma (Magnusson et al., 2024), the EDGAR annual reports corpus (annual reports of
public companies between 1993–2020; Loukas et al., 2021), Long-COVID related articles
(Langnickel et al., 2022), and the MIMIC-III clinical corpus (Goldberger et al., 2000). In
the decoder-only setting, we directly use the encoded representations of the input sequences
and do not generate output sequences. Table 6 shows that AP-OOD improves unsupervised
OOD detection w.r.t. the mean AUROC and mean FPR95 metrics.

D.7 OOD Score Comparison

We experimentally compare the min-based OOD score smin(Z) and its upper bound s(Z).
For training, we use the loss from Equation (10) in both settings. The results in Table 7
show that s(Z) achieves better OOD discrimination w.r.t. the mean AUROC and FPR95.
While smin(Z) roughly matches the OOD detection metrics of s(Z) on CNN/DM for both
input and output, smin(Z) lags behind s(Z) on the other OOD data sets.

D.8 Ablations

Beta sensitivity analysis. We evaluate AP-OOD when varying the hyperparameter β
on the summarization task. We select β from {0, 1/

√
D, 0.25, 0.5, 1, 2}, and we leave the

settings for M and T unchanged (i.e., they are identical to the settings used in Table 1).
Table 8 shows that AP-OOD on text summarization is relatively insensitive to the selection
of β inside the range [0.25, 2] in the input and output settings.
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Table 6: Unsupervised OOD detection performance on large-scale language modeling. We
compare results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun
et al., 2022), DeepSVDD (Ruff et al., 2018), and model perplexity (Ren et al., 2023) on
Pythia-160M trained on the Pile as the ID data set. ↓ indicates “lower is better” and ↑
“higher is better”. All values in %. Standard deviations are estimated across five independent
training runs.

4Chan Reports Covid Clinical Twitter Mean

Input OOD

AUROC ↑ 65.05 48.32 89.51 85.86 99.22 77.59Perplexity FPR95 ↓ 72.66 86.91 68.60 65.22 2.85 59.25
AUROC ↑ 35.27 54.72 75.50 75.67 97.86 67.81Mahalanobis FPR95 ↓ 92.93 87.77 98.07 90.79 10.91 76.09
AUROC ↑ 39.31 59.41 70.62 75.56 81.50 65.28KNN FPR95 ↓ 98.85 93.26 99.03 95.85 61.12 89.62
AUROC ↑ 55.59 64.06 72.54 73.44 81.08 69.34Deep SVDD FPR95 ↓ 88.15 88.94 99.52 96.35 76.72 89.93
AUROC ↑ 87.97 68.09 91.79 86.44 99.08 86.67AP-OOD (Ours) FPR95 ↓ 88.34 91.47 40.34 57.38 1.52 55.81

Table 7: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD when using s(Z) and smin(Z), on PEGASUSLARGE trained on XSUM
as the ID data set. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. We
estimate standard deviations across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 96.13±0.44 99.10±0.08 99.91±0.03 99.80±0.04 98.74
s(Z) FPR95 ↓ 19.51±2.24 4.11±0.28 0.00±0.01 0.04±0.03 5.91

AUROC ↑ 96.08±0.37 97.48±0.28 99.71±0.20 97.67±0.35 97.74
smin(Z) FPR95 ↓ 18.78±2.73 11.16±1.21 0.01±0.01 12.04±3.04 10.50

Output OOD

AUROC ↑ 93.37±0.54 92.62±0.67 98.04±0.28 98.30±0.11 95.59
s(Z) FPR95 ↓ 23.12±1.97 29.91±2.93 6.34±1.56 6.83±0.64 16.55

AUROC ↑ 93.82±1.56 88.30±3.45 95.94±2.25 90.13±4.31 92.05
smin(Z) FPR95 ↓ 26.60±5.53 38.26±3.73 18.49±9.01 36.71±12.40 30.02

Number of heads M and queries T . We ablate on the number of heads M and the
number of queries T of AP-OOD on the summarization task. For this ablation, we select
T ∈ {1, 2, 4, 8, 16, 32, 64, 128, 512, 1024} and we then select M such that the total number
of parameters of AP-OOD equals the number of entries in Σ of the Mahalanobis method,
i.e., such that MT = D. The results in Table 9 show that AP-OOD works best on the
summarization task for both input and output when M = 512 and T = 2. Although the
performance drops when decreasing M and increasing T , we find that AP-OOD is relatively
insensitive to the number of heads and queries.

Dot product and Euclidean distance. We compare using the dot product and the
negative squared Euclidean distance for the attention pooling in AP-OOD. For a formal
definition of attention pooling with the negative squared Euclidean distance, we refer to
Appendix D.1. Table 10 shows that using the dot product works substantially better. This
result aligns with the well-established observation that measuring similarity using the dot
product in high-dimensional spaces is more effective than using Euclidean distance.

D.9 Performance Measurements

We analyze the inference time of AP-OOD in comparison to the transformer backbone
and other OOD detection methods. To avoid bottlenecks during data loading, we measure
inference times on single batches and report the mean and standard deviation across 10
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Table 8: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when varying β. ↓ indicates
“lower is better” and ↑ “higher is better”. All values in %. We estimate standard deviations
across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 66.83±0.44 81.42±0.27 94.81±0.32 93.38±0.20 84.11
β = 0 FPR95 ↓ 97.17±0.10 76.31±0.35 41.12±3.42 19.96±0.84 58.64

AUROC ↑ 97.76±0.11 98.75±0.07 99.87±0.06 99.46±0.09 98.96
β = 0.25 FPR95 ↓ 11.07±0.74 4.75±0.41 0.00±0.00 0.02±0.02 3.96

AUROC ↑ 96.13±0.44 99.10±0.08 99.91±0.03 99.80±0.04 98.74
β = 0.5 FPR95 ↓ 19.51±2.24 4.11±0.28 0.00±0.01 0.04±0.03 5.91

AUROC ↑ 91.36±0.41 98.77±0.05 99.75±0.02 99.83±0.01 97.43
β = 1 FPR95 ↓ 38.78±4.50 4.94±0.23 0.02±0.02 0.00±0.00 10.94

AUROC ↑ 84.29±0.91 97.58±0.09 99.52±0.05 99.76±0.01 95.28
β = 2 FPR95 ↓ 63.31±4.63 9.14±0.46 0.12±0.07 0.05±0.03 18.16

AUROC ↑ 89.09±0.66 90.59±0.35 99.59±0.18 99.87±0.01 94.79
β = 1/

√
D FPR95 ↓ 53.96±3.30 47.50±1.83 0.17±0.18 0.04±0.02 25.42

Output OOD

AUROC ↑ 77.67±1.37 85.10±0.61 84.12±1.08 91.70±0.44 84.65
β = 0 FPR95 ↓ 82.07±1.30 69.32±1.65 57.30±1.73 29.37±1.73 59.52

AUROC ↑ 91.37±0.64 93.66±0.13 94.79±0.29 96.56±0.27 94.10
β = 0.25 FPR95 ↓ 43.03±1.71 34.70±0.32 38.38±3.27 18.61±2.44 33.68

AUROC ↑ 93.37±0.54 92.62±0.67 98.04±0.28 98.30±0.11 95.59
β = 0.5 FPR95 ↓ 23.12±1.97 29.91±2.93 6.34±1.56 6.83±0.64 16.55

AUROC ↑ 93.06±0.57 91.82±0.71 97.66±0.33 97.91±0.22 95.11
β = 1 FPR95 ↓ 24.04±1.95 32.04±2.97 9.29±1.71 8.82±1.42 18.55

AUROC ↑ 93.25±0.48 91.98±0.73 97.57±0.40 97.97±0.19 95.19
β = 2 FPR95 ↓ 23.69±1.94 31.23±3.09 10.06±2.44 8.37±1.30 18.34

AUROC ↑ 54.67±0.72 80.59±0.72 94.12±0.30 94.93±0.35 81.08
β = 1/

√
D FPR95 ↓ 92.40±0.21 65.83±1.03 30.04±1.15 27.20±1.94 53.87
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Figure 7: Comparing AP-OOD and the Mahalanobis method relative to the encoder inference
time. The bars show the mean over ten batches.

batches. Our measurements only start after a warm-up phase of 5 batches. If not stated
otherwise, the measurements were performed with a batch size of 32 and context length of
512 tokens. All measurements were performed on a single NVIDIA A100-40GB GPU.

Figure 8 compares the inference time of various OOD detection methods for different batch
sizes. As expected AP-OOD has a strong linear relation to the batch size and is significantly
slower than the reference models.

Although AP-OOD is slower than other methods like the Mahalanobis method, Figure 7
illustrates that it still takes less than 20% of the combined inference time of the PEGASUS
encoder and OOD detection method. We argue that the higher OOD detection rate mitigates
the addition of overhead of AP-OOD since it allows skipping the substantially longer
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Table 9: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when varying M and T . ↓
indicates “lower is better” and ↑ “higher is better”. All values in %. We estimate standard
deviations across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 97.16±0.22 98.25±0.11 99.82±0.01 99.32±0.03 98.64
M = 1024 T = 1 FPR95 ↓ 14.72±0.83 7.54±0.62 0.00±0.00 0.64±0.11 5.72

AUROC ↑ 97.98±0.16 98.83±0.07 99.87±0.03 99.60±0.04 99.07
M = 512 T = 2 FPR95 ↓ 9.77±0.80 4.67±0.30 0.00±0.00 0.02±0.02 3.61

AUROC ↑ 97.76±0.11 98.75±0.07 99.87±0.06 99.46±0.09 98.96
M = 256 T = 4 FPR95 ↓ 11.07±0.74 4.75±0.41 0.00±0.00 0.02±0.02 3.96

AUROC ↑ 97.53±0.15 98.49±0.15 99.83±0.07 99.14±0.12 98.75
M = 128 T = 8 FPR95 ↓ 12.48±1.14 5.94±0.65 0.00±0.00 0.25±0.10 4.67

AUROC ↑ 97.10±0.09 98.14±0.16 99.84±0.07 98.81±0.16 98.47
M = 64 T = 16 FPR95 ↓ 14.30±0.77 7.87±0.86 0.00±0.00 0.99±0.50 5.79

AUROC ↑ 96.84±0.35 97.78±0.15 99.83±0.05 98.56±0.28 98.25
M = 32 T = 32 FPR95 ↓ 14.97±1.96 10.18±0.80 0.01±0.02 2.53±2.12 6.92

AUROC ↑ 96.23±0.45 97.35±0.24 99.73±0.11 98.12±0.24 97.86
M = 16 T = 64 FPR95 ↓ 16.65±1.99 12.55±1.15 0.09±0.20 5.69±1.87 8.75

AUROC ↑ 95.56±0.38 96.47±0.46 99.67±0.27 97.44±0.25 97.29
M = 8 T = 128 FPR95 ↓ 18.16±1.57 16.34±1.91 0.52±1.13 11.29±1.78 11.58

AUROC ↑ 94.58±0.67 94.75±0.52 99.27±0.86 95.24±0.25 95.96
M = 4 T = 256 FPR95 ↓ 20.10±2.32 21.71±2.30 2.01±4.09 24.58±1.83 17.10

AUROC ↑ 93.17±0.75 91.87±0.56 98.43±2.39 89.87±0.86 93.34
M = 2 T = 512 FPR95 ↓ 22.86±2.20 27.09±1.48 4.95±9.38 39.75±3.06 23.66

AUROC ↑ 90.90±1.20 88.10±0.83 96.68±5.76 81.41±1.06 89.27
M = 1 T = 1024 FPR95 ↓ 27.14±3.03 32.64±2.29 9.03±16.78 52.73±3.76 30.39

Output OOD

AUROC ↑ 92.47±0.48 94.17±0.30 98.36±0.22 97.77±0.14 95.69
M = 1024 T = 1 FPR95 ↓ 39.11±1.81 34.69±0.85 3.11±1.16 12.59±0.90 22.38

AUROC ↑ 93.79±0.25 95.85±0.18 99.02±0.20 98.96±0.06 96.90
M = 512 T = 2 FPR95 ↓ 32.45±1.29 20.10±0.67 0.95±0.66 2.77±0.54 14.07

AUROC ↑ 93.35±0.46 95.48±0.28 99.19±0.26 99.05±0.06 96.77
M = 256 T = 4 FPR95 ↓ 33.67±2.77 21.73±0.82 0.86±0.95 2.72±0.52 14.75

AUROC ↑ 93.24±0.34 95.27±0.37 99.21±0.41 98.99±0.04 96.68
M = 128 T = 8 FPR95 ↓ 32.84±1.75 23.40±1.53 0.99±1.56 3.26±0.42 15.12

AUROC ↑ 92.95±0.82 94.92±0.39 99.11±0.36 98.89±0.14 96.47
M = 64 T = 16 FPR95 ↓ 34.08±4.22 25.53±1.87 1.48±1.63 4.10±0.70 16.30

AUROC ↑ 92.54±0.61 94.11±0.47 98.67±0.73 98.63±0.41 95.99
M = 32 T = 32 FPR95 ↓ 37.21±3.76 29.56±2.71 4.68±4.39 6.11±2.55 19.39

AUROC ↑ 91.26±1.17 92.62±1.40 97.99±2.33 98.58±0.84 95.11
M = 16 T = 64 FPR95 ↓ 41.96±4.43 35.78±5.78 8.75±13.44 6.19±4.88 23.17

AUROC ↑ 90.94±1.97 91.99±1.88 97.10±2.54 98.28±0.80 94.58
M = 8 T = 128 FPR95 ↓ 41.24±8.00 36.42±7.58 13.13±13.35 7.58±3.85 24.59

AUROC ↑ 89.62±1.80 90.35±2.64 95.91±3.26 97.73±0.96 93.40
M = 4 T = 256 FPR95 ↓ 47.52±9.04 41.77±12.21 18.53±16.24 10.02±4.76 29.46

AUROC ↑ 87.82±2.50 88.06±1.29 94.00±3.38 96.91±1.26 91.70
M = 2 T = 512 FPR95 ↓ 52.18±9.71 50.66±5.51 28.44±17.40 13.98±6.18 36.31

AUROC ↑ 86.45±1.86 86.95±1.79 93.43±2.35 96.10±1.59 90.73
M = 1 T = 1024 FPR95 ↓ 50.92±8.94 49.61±6.70 29.61±8.37 14.82±3.62 36.24

generation time more often (see Table 11). The degree to which the overhead of AP-OOD is
mitigated by skipping the decoder depends on the rate of detected OOD samples in future
applications.

The heatmap in Figure 9 shows the inference time of AP-OOD for different selections of
the hyperparameter number of heads M and number of queries T . While for small values
of both parameters the inference time is constant, for larger parameters the inference time
increases linearly with both parameters.

The inference time of the decoder of the transformer depends on the length of the longest
output sequence of a batch. To obtain consistent measurements, we forced the decoder
to always produce the same sequence length. Figure 10 illustrates the inference times of
the PEGASUS transformer model. The plots of the first row cover the performance of
the PEGASUS encoder only, while the second row shows the combined inference time of
the encoder and decoder. In the left column, the plots indicate that the model inference
time increases linearly with the batch size. Further, it is shown that the encoder takes
about 10% of the overall inference time. The right column shows the inference times for
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Table 10: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when using the dot product and
the Euclidean similarity. ↓ indicates “lower is better” and ↑ “higher is better”. All values in
%. We estimate standard deviations across five independent dataset splits and training runs.

CNN/DM Newsroom Reddit Samsum Mean

Input OOD

AUROC ↑ 97.76±0.11 98.75±0.07 99.87±0.06 99.46±0.09 98.96Dot product FPR95 ↓ 11.07±0.74 4.75±0.41 0.00±0.00 0.02±0.02 3.96
AUROC ↑ 74.22±0.65 84.43±0.23 97.06±0.41 98.30±0.23 88.50Euclidean FPR95 ↓ 90.20±0.37 74.08±1.04 15.27±5.30 7.17±1.94 46.68

Output OOD

AUROC ↑ 93.37±0.54 92.62±0.65 98.04±0.29 98.30±0.11 95.58Dot product FPR95 ↓ 23.12±1.98 29.93±2.89 6.36±1.60 6.83±0.64 16.56
AUROC ↑ 87.67±0.74 88.17±1.80 96.50±0.57 91.28±1.79 90.90Euclidean FPR95 ↓ 65.62±3.90 66.04±4.38 22.34±5.36 53.89±7.80 51.97

Table 11: Inference times of OOD methods and PEGASUS transformer for a batch size
of 32 samples, number of heads M = 256, number of queries T = 4, and a context length
of S = 512 tokens. All values in milliseconds ms. We estimate the mean and standard
deviation over ten batches.

AP-OOD Mahalanobis PEGASUS Encoder PEGASUS Generation

6.58±0.095 0.52±0.146 28.43±2.513 34940.34±65.842

an increasing number of context tokens. The inference time of the transformer encoder and
decoder increases quadratically with the context length.

E The Use of Large Language Models

When creating this paper, we utilized large language models (LLMs) to refine our writing,
to identify related work, and for research ideation. When refining the writing using LLMs,
we carefully review and verify LLM output to preserve sentence semantics. For related work,
we confirm the soundness of papers suggested by the LLM, and for research ideation, we
verify the factual accuracy of all statements.
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Figure 8: Comparison of various OOD detection methods for increasing batch sizes. We
estimate the mean and standard deviation over ten batches.
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Figure 9: Inference times for AP-OOD over different numbers of heads M and queries T .
We estimate the mean over ten batches.
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Figure 10: Inference times for the PEGASUS model for various batch sizes (left) and various
numbers of input tokens (right). The top row illustrates the Encoder’s performance, while
the bottom row shows the combined performance of the Encoder and Decoder. We estimate
the mean and standard deviation over ten batches.
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