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ABSTRACT

Out-of-distribution (OOD) detection, which maps high-dimensional data into
a scalar OOD score, is critical for the reliable deployment of machine learning
models. A key challenge in recent research is how to effectively leverage
and aggregate token embeddings from language models to obtain the OOD
score. In this work, we propose AP-OOD, a novel OOD detection method
for natural language that goes beyond simple average-based aggregation by
exploiting token-level information. AP-OOD is a semi-supervised approach
that flexibly interpolates between unsupervised and supervised settings,
enabling the use of limited auxiliary outlier data. Empirically, AP-OOD
sets a new state of the art in OOD detection for text: in the unsupervised
setting, it reduces the FPR95 (false positive rate at 95% true positives) from
27.77% to 5.91% on XSUM summarization, and from 75.19% to 68.13% on
WMT15 En—Fr translation.

1 INTRODUCTION

Out-of-distribution (OOD) detection is essential for deploying machine learning models in
the real world. In practical settings many models encounter inputs that deviate from the
model’s training distribution. For example, a model trained to summarize news articles
might also receive a prompt with a cooking recipe. In such situations, models may assign
unwarranted confidence to their predictions, leading to erroneous outputs. The purpose
of OOD detection is to classify these inputs as OOD such that the system can then, for
instance, notify the user that the prediction is uncertain. Our contributions are as follows:

1. We propose AP-OOD, an OOD detection approach for natural language that leverages
token-level information to detect OOD sequences.

2. AP-OOD is a semi-supervised approach: It can be applied in unsupervised (i.e.,
when there exists no knowledge about OOD samples) and supervised settings (i.e.,
when some OOD data of interest is available to the practitioner), and smoothly
interpolates between the two.

3. We show that AP-OOD can improve OOD detection for natural language in summa-
rization and translation.

4. We provide a theoretical motivation for the suitability of AP-OOD for OOD detection
on tokenized data.

1.1 BACKGROUND

Consider a language model trained to autoregressively generate target sequences
(y1, y2, ..., yn) given input sequences (1, T2, ..., xn). The input sequences are
drawn i.i.d.: x; ~ pip. We consider input sequences & € X' that deviate considerably from
the data generation pip () that defines the “normality” of our data as OOD. Following Ruff
et al. (2021), an observed sequence is OOD if it is an element of the set

0 = {x € X | pip(x) < ¢} where € >0, (1)

"We use X := Ug>1 VS for the set of input sequences, and V := {vy, ..., vy} is the vocabulary.
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Figure 1: Illustrative example for the failure of mean pooling. (Left) ID and OOD sequences
Z; € R?*2 where each sequence contains a pair of token embeddings with two features each.
Token embeddings that belong to the same sequence are connected with lines. (Center)
The means of the ID and OOD sequences both cluster around the origin. (Right) A mean
pooling approach cannot discriminate between the ID and OOD sequences.
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Figure 2: Hlustrative example for the mechanism that AP-OOD uses to correctly discriminate
between ID and OOD (as opposed to the mean pooling approaches). The setting is the same
as in Figure 1. (Left) The loss landscape forms two basins at the locations of the ID token
embeddings. (Center) After training AP-OOD with a single weight vector w, the learned
w is located in one of the basins. (Right) AP-OOD achieves perfect discrimination between
the ID and OOD sequences.

and e is a density threshold. In practice, it is common (e.g., Hendrycks & Gimpel, 2016;
Lee et al., 2018; Hofmann et al., 2024) to define a score s : Z — R that uses an encoder
¢ : X — Z (where Z denotes an embedding space). Given s and ¢, OOD detection can be
formulated as a binary classification task with the classes in-distribution (ID) and OOD:

. [IDifs(é(@) >y
Bl=,7) = {OOD if s(p(z)) <7 @)

The outlier score should — in the best case — preserve the density ranking, but it does not
have to fulfill all requirements of a probability density (proper normalization or nonnegativity).
For evaluation, the threshold v is typically chosen such that 95% of ID samples from a
previously unseen validation set are correctly classified as ID. However, metrics like the area
under the receiver operating characteristic (AUROC) can be directly computed on s(¢(x))
without fixing -, since the AUROC sweeps over all possible thresholds.

2 METHOD

AP-OOD is a semi-supervised method: It can be trained without access to outlier data
(unsupervised), and with access to outlier data (supervised), and can smoothly transition
between those two scenarios as more outlier data becomes available for training. In the
following, we first introduce AP-OOD in an unsupervised scenario (Section 2.1) and generalize
it to the supervised scenario (Section 2.2).
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Algorithm 1 AP-OOD
Require: (x1,...,ZN), e, da, B, M, nsteps

1: fori=1to N do

2: Compute sequence embedding Z; using Z; + ¢(x;) or Z; + ¢q(de(x;)).

3: for step = 1 to nsteps do

4: Sample mini-batch {Z;};cp with batch indices B.

5: Form batch-local concatenation Zp < licn Zi-

6: Compute loss £ ﬁ Yiend®(Zi, Zp) — Z;\il log(||w;]|3).

7: Compute gradients of £ w.r.t. (wi,...,wys) and perform a gradient update
8: Form the concatenation of sequence representations Z < (Zi || --- || Zn)

9 8(2) « YN, ~d(Z, Z) +log (|[w;3)
10: return s(-)

2.1  UNSUPERVISED OOD DETECTION

Background Ren et al. (2023) propose to detect OOD inputs using token embeddings
obtained from a Transformer encoder—decoder model trained on the language modeling
task. Given an input sequence x € X, they obtain a sequence of token embeddings

Z = (z1,...,25) € RP*5  They compare obtaining embeddings E from the encoder
Genc : X — Z? and generating a sequence of embeddings G using the decoder ¢gec : Z — Z:
E = ¢onc(x) G = ¢gec(E). (3)

For clarity, we write Z for a sequence of token embeddings, whether produced by the encoder
or the decoder, and we call Z the sequence representation of . To obtain a single vector
z € RP, Ren et al. (2023) perform mean pooling:

1 S
z = ggzs. (4)

Then, they propose to measure whether z is OOD by first fitting a Gaussian distribution
N(p,2), p € RP, 3 € RP*P to the per-sequence mean embeddings computed from the
training corpus, and then computing the squared Mahalanobis distance between z and p:

di/Iaha(27lJ’) = (2 - N‘)Tz_l(z - H) and SMaha(z) = dl%ﬁaha('é?“)' (5)

Averaging hides anomaly. The key limitation of the approach described above is the
use of the mean of the token embeddings Z: Averaging the entire sequence into the mean 2z
discards the token-level structure that would otherwise be informative for detecting whether
a sequence is OOD. Figure 1 shows a toy example of this failure mode: The ID and OOD
sequences are indistinguishable using their means, and therefore, the Mahalanobis distance
with mean pooling fails to discriminate between them.

Mahalanobis decomposition. To address this limitation, we begin by expressing the
Mahalanobis distance as a directional decomposition:

D
Braa(zp) = > (wlz— wlp)’, (6)
j=1

The weight vectors w; € RP form a basis of RP and determine X! via 7! = ijzl ij;fr.

One possibility to map a given X! to weight vectors w; is to select the directions of the
w; as the unit-norm eigenvectors of -1, and to select the squared norms of the w; as their
corresponding eigenvalues (see Appendix A.2).

*We use Z :=J g>1 RP>*S for all finite-length sequences of D-dimensional token embeddings.
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Beyond mean pooling. To overcome the limitations of mean pooling, we generalize
Equation (6) by using attention pooling (Bahdanau, 2014; Ramsauer et al., 2021):

AttPools(Z,w) = Zsoftmax(8 ZTw) and z := AttPools(Z,w). (7)

where (3 is the inverse temperature, and w is a learnable query. AP-OOD also uses attention
for the corpus-wide pooling: Given the sequence representations (Zi,...,Zy) from a

corpus (x1,...,&y) With Z; := ¢enc(;), we define Z as the concatenation of all sequence

representations: Z := (Z1 | --- || Zn). AP-OOD estimates p := AttPoolg(Z,w). Given

the z and p from the attention pooling, AP-OOD estimates d(Z, Z), the squared distance

between a sequence representation Z and the concatenation Z analogous to Equation (6):
M , M

d*(Z,Z) := Z (w;‘FZsoftmaX(ﬁ ZTw;) - wasoftmaX(ﬁ ZT'wj)) = Z cl?(Z7 Z). (8)
Jj=1 j=1

We refer to M as the number of heads. In general, M does not need to equal the embedding

dimension D. We show in Appendix A.3 that, when 8 = 0 and M = D, Equation (8)
reduces to the Mahalanobis distance (Equations (5) and (6)). In Appendix A.1, we show

that smin(Z) = min; —d2(Z, Z) + log(||w;]||3) is a score function as defined in Equation (2).
Our score arises naturalfy as the upper bound

M
s(2) =) ~di(Z,Z) + log(|lwlf3). 9)

j=1

In Appendix B.6, we empirically compare the min-based score sy;in(Z) to its upper-bound
variant s(Z) and find that s(Z) yields stronger OOD discrimination. The choice of this
score naturally leads to the loss function of AP-OOD:

N M
1 .
L(wy,...,wy) = i E d(Z,Z) — g log (||w;|[3) - (10)
i=1 j=1

Multiple queries per head. We now extend AP-OOD and use multiple queries per head.
We use a set of stacked queries W, = (wj1,...,w;7) € RP*T per head. For simplicity, we
consider a single head with the queries W for now. We begin by extending the softmax
notation from Ramsauer et al. (2021) to matrix-valued arguments. Given a matrix A € RS*T

eXp(ﬂast)
5 T . (11)
25/:1 Ztlzl exp(ﬂas’t’)
In other words, the softmax normalizes over the rows and columns of A. Next, we extend
the attention pooling process from Equation (7) with the matrix-valued softmax: AP-

OOD transforms the sequence representation Z € RP %S with S tokens to a new sequence
representation Z = ZP € RP*T with T tokens. The updated attention pooling process is

AttPoolg(Z, W) := Zsoftmax(3 ZTW) and Z := AttPoolg(Z,W).  (12)

softmax(8A)g 1=

Finally, AP-OOD uses W € RP*T to transform the Z € RP*T to a real number with
the Frobenius inner product (W, Z)r = vec(W)T vec(Z) = Tr(WT Z). To summarize, the
extended squared distance is
. M . N 2
(2,2) =Y. (Tr(WjTZsoftmax(B Z™W;)) — Te(W] Zsoftmax(8 ZTWj))) . (13)
j=1

Finally, the regularizing term is — log(||W||%) (where || - ||% denotes the squared Frobenius
norm). To summarize, the extended loss is

N M
1 -
LWy,...,Wy) = NE d*(Z;,2) — § log (|[W;][3) - (14)
i=1 j=1
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2.2 SUPERVISED OOD DETECTION

Background. Supplying an OOD detector with information about the distribution of the
OOD examples at training time can improve the ID-OOD decision boundary (Hendrycks
et al., 2018). In practice, it is hard to find OOD data for training that is fully indicative of
the OOD distribution seen during inference. Outlier exposure (OE; Hendrycks et al., 2018)
therefore uses a large and diverse auxiliary outlier set (AUX; e.g., C4 for text data) as a
stand-in for the OOD case. However, it is not always possible to crawl such large and diverse
AUX data sets. For example, consider a translation task with a less widely spoken source
language. In such a case, one might have to resort to a smaller AUX data set. Therefore, it
is desirable that an OOD detector scales gracefully with the degree of auxiliary supervision,
adapting to the available number of AUX examples (Ruff et al., 2019; Liznerski et al., 2022).

Utilizing AUX data. To adapt AP-OOD to the supervised setting, we follow Ruff et al.
(2019) and Liznerski et al. (2022): AP-OOD punishes large squared distances d*(Z, Z)
for ID samples Z and encourages large squared distances for AUX samples Z. For-
mally, AP-OOD minimizes the binary cross-entropy loss with the classes ID and AUX

with p(y =1ID|Z) = exp(—dZ(Z,Z)). Given N ID examples (Z1,...,Zy), and N’ AUX

examples (Zn 41, .., Zn+n'), AP-OOD minimizes the supervised loss
1 N N+N'
= A (Zi,Z) — X\ —— log(1 — exp(—d*(Z;, Z 1
Lsup NN ; (Zi,Z) NN i:;d og(l —exp(—d~(Z;, Z))), (15)

where A > 0. If A =0, Lgyp equals the unsupervised loss £ without the regularizing term.

3 EXPERIMENTS

Toy experiment. We present a toy experiment illustrating the main intuitions behind
AP-OOD. Figure 1 demonstrates a simple failure mode of mean pooling approaches: First, we
generate ID and OOD token embeddings Z; € R2*2. Each ID sequence representation consists
of one token sampled from N'((1,1), 02I) and one token sampled from N'((—1,—1), o2I).
The OOD sequences contain two tokens sampled from N'((—1,1), ¢2I) and N'((1,—1), o2I),
respectively. We set o := 0.1. The left panel shows the generated sequences, where each
sequence consists of two dots (representing the two tokens) connected by a line. Because
the means of the ID and OOD sequences both cluster around the origin (central panel), the
Mahalanobis distance with mean pooling fails to discriminate between them (right panel).
Figure 2 shows how AP-OOD overcomes this limitation: We set M = 1 and T' = 1 and
train AP-OOD as described in Section 2.1 on the ID data only, but we modify the pooling
mechanism from Equation (7): We replace the dot product similarity in the softmax with
the negative squared Euclidean distance, as it is known to work better in low-dimensional
spaces (we provide the formal definition for this modification in Appendix B.2). The left
panel of Figure 2 shows that the loss landscape of w forms two basins at the locations of the
ID tokens. The central panel shows that after training, w is located in one of the basins.
Finally, the right panel shows that AP-OOD perfectly discriminates ID and OOD.

Summarization. We follow Ren et al. (2023) and use a PEGASUSparcgr (Zhang et al.,
2020) fine-tuned on the ID data set XSUM (Narayan et al., 2018). We utilize the C4 training
split as the AUX data set. We measure the OOD detection performance on the data sets
CNN/Daily Mail (CNN/DM; news articles from CNN and Daily Mail; Hermann et al., 2015;
See et al., 2017), Newsroom (articles and summaries written by authors and editors from 38
news publications; Grusky et al., 2018), Reddit TIFU (posts and summaries from the online
discussion forum Reddit; Kim et al., 2018), and Samsum (summaries of casual dialogues;
Gliwa et al., 2019). The ForumSum data set used in the experiments of Ren et al. (2023)
has been retracted. Therefore, we do not use it in our experiments.

Translation. We train a Transformer (base) (Vaswani et al., 2017) on WMT15 En-Fr
(Bojar et al., 2015). The model trains for 100,000 steps using AdamW (Loshchilov & Hutter,
2017) with a cosine schedule (Loshchilov & Hutter, 2016), linear warmup, and a peak learning
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Table 1: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun et al., 2022),
Deep SVDD (Ruff et al., 2018), model perplexity (Ren et al., 2023), and entropy (Malinin &
Gales, 2020) on PEGASUS ARrgE trained on XSUM as the ID data set. | indicates “lower is
better” and 1 “higher is better”. All values in %. We estimate standard deviations across
five independent dataset splits and training runs.

CNN/DM  Newsroom  Reddit Samsum Mean

Input OOD
Mahalanobis AUROC 1 69.00%027  86.37+0-19  98,64+00T 99 774001 gg.45
anatanobis FPRO5 |  92.19%0:08  44g*0-71 45034 17002 3989

AUROC t  54.34%015  73.76+0.09 94 52%0.03 98 g9+0.01 g0 36
FPR95 | 99.40%003 8856017  51.24*0.70 3 7+0.16 60.57
AUROC 1 75.86t100  91.20%9-21  99.73+0-05 99 57+0-04 91 59
FPR95 |  73.70%23%  36.46%112  (.2610-%9 0.67+0-17 27.77
AUROC 1+ 96.13%044 99.10%008 99 91+0.03 99 80+004 9874
FPR95 |  19.51%224 411#028  ,00+001  0.04%003 591

Output OOD
AUROC 1 42.20%01%  53.99+031 g3 38+0.15 78 53+0.31 (4 59

KNN

Deep SVDD

AP-OOD (Ours)

] FPRO5 | 77.71%017 79072057 4556040 4696020 62,32
. AUROC 1 59.59%021  77.20%052 93 47+0-21  g7.17+020 79 36
Entropy FPRO5 | 79.04%075  64.24%121 3019413 50474164 5598

AUROC 1 63.27%017  g8.26+011  97.40%0:09  97.99+0.08  gg 55
FPRO5 |  89.84%013  47.83+0.71 1] 13+0-58  1357+0.25 40 59
AUROC 1 74.37%013  86.96+008  95.85%0-06 97 33+0.03  gg 63
FPR95 |  73.36%020  53.44*058 1578027  1029+0.22 3892
AUROC 1 68.31%1:63 9413012 97,60%0-26  95.97+0-15 89,00
FPR95 |  76.76t%15  19.22+0:34 g go+!l-%5 20.17+128  31.26

Mahalanobis

KNN

Deep SVDD

AUROC t+ 93.37%054  92,62+067 98 04+0-28 98.30+011 9559
FPR95 |  23.12+197 20.91%29  §34+1.56  ¢.83+064 16,55

AP-OOD (Ours)

rate of 5 x 1074, We set the batch size to 1024 and the context length to 512. Following
Ren et al. (2023), the AUX data set is ParaCrawl En-Fr, and the OOD data sets are
newstest2014 (nt2014), newsdiscussdev2015 (ndd2015), and newsdiscusstest2015 (ndt2015)
from WMT15 (Bojar et al., 2015), and the Law, Koran, Medical, IT, and Subtitles subsets
from OPUS (Tiedemann, 2012; Aulamo & Tiedemann, 2019).

Training. We extract 100,000 ID sequence representations (E or G) and use all extracted
representations for training AP-OOD in all experiments. We also extract AUX sequence
representations, and we vary the number of AUX sequences available from 0 (unsupervised)
to 10,000 (fully supervised). While training AP-OOD, the Transformer model remains frozen.
We use the Adam optimizer (Kingma & Ba, 2014) without weight decay, set the learning rate
to 0.01 and apply a cosine schedule (Loshchilov & Hutter, 2016). We train for 2,000 steps
with a batch size of 512. We select M and T such that the parameter count of AP-OOD
matches the parameter count of the Mahalanobis method (i.e., the size of ¥). For more
information on hyperparameter selection, we refer to Appendix B.3. During training, we
estimate p using the sequences in a given mini-batch. When training is complete, we do an
additional pass over the corpus Z and compute the final g using attention pooling, which we
implement by iterating over mini-batches of Z. We describe this process in Appendix B.1.

Baselines. We compare AP-OOD to six unsupervised OOD detection methods: We apply
the embedding-based methods Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun
et al., 2022), and Deep SVDD (Rufl et al., 2018) to both the input and output sequence
representations (E and G, respectively), and we apply Perplexity (Ren et al., 2023) and
Entropy (Malinin & Gales, 2020) to the output of the decoder. We also compare AP-OOD
to three supervised OOD detection methods: binary logits (Ren et al., 2023), relative
Mahalanobis (Ren et al., 2023), and Deep SAD (Ruff et al., 2019). We evaluate the
discriminative power of the methods in our comparison using the false positive rate at 95%
true positives (FPR95) and AUROC.

Audio data. To demonstrate the effectiveness of AP-OOD on data modalities other than
text, we apply the method to the MIMII-DG audio data set (Dohi et al., 2022). The data
set comprises audio recordings of 15 different machines, ranging from 10 to 12 seconds in
length. The dataset contains 990 samples per machine. During preprocessing, the raw
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Figure 3: OOD detection performance on the input token embeddings of PEGASUSLArRGE
trained on XSUM. We vary the number of AUX samples and compare AP-OOD, binary
logits (Ren et al., 2023), Deep SAD (Ruff et al., 2019), and relative Mahalanobis (Ren et al.,
2023). AP-OOD attains the highest AUROC independent of AUX sample count.

audio waveforms are converted into audio spectrograms. We train a Transformer (Vaswani
et al., 2017) to classify a subset of 7 machines. The remaining 8 machines are considered as
OOD. The architecture and training method for the network were adopted from Huang et al.
(2022). To adjust for the small data set size, we decrease the size of the architecture: We
increase the patch size to 32 x 32 pixels, decrease the embedding dimension to 32, and utilize
only three attention blocks with four heads each. Consequently, the encoder of the network
produces 128 tokens with D = 32 features. We train AP-OOD on the encoder output in the
unsupervised setting using M = 128 and T = 8.

4 RESULTS

Table 1 shows the results on unsupervised OOD detection on the text summarization task.
AP-OOD surpasses methods with mean pooling by a large margin for both input and output
settings for most OOD data sets. Most notably, the mean FPR95 on CNN /DM improves
from 73.70% for the best baseline Deep SVDD to 19.51% for AP-OOD. The table also
shows that the embedding-based methods (Mahalanobis, KNN, Deep SVDD, and AP-OOD)
perform better than the prediction-based baselines perplexity and entropy. Figure 4 shows
the results of AP-OOD in the semi-supervised setting: supplying AUX data to AP-OOD
improves the AUROC, and more AUX data results in a larger improvement. AP-OOD
attains the highest AUROC independent of AUX sample count. We include the results on
additional OOD data sets in the semi-supervised setting and results on fully supervised
OOD detection on the summarization task in Appendix B.4, and we present ablations on
AP-OOD on text summarization in Appendix B.7.

Table 2 shows the results on unsupervised OOD detection on the translation task. AP-OOD
gives the best average results for the input and output settings. It is noteworthy that in the
translation task, the prediction-based methods perform better, with the perplexity baseline
outperforming all embedding-based methods evaluated on the output token embeddings
except AP-OOD. We hypothesize that this discrepancy can be explained as follows: In
translation, ID uncertainty is typically low because the source sentence largely dictates what
must be generated — specific words, names, and inflections — so ID perplexities are small
and tightly clustered. In text summarization, ID uncertainty is higher because many different
summaries can be equally valid, with freedom in what to include and how to phrase it. This
raises and spreads ID perplexity and weakens ID-OOD separation when using perplexity.
We include results on fully supervised OOD detection for translation in Appendix B.5.

In the audio task, the network achieves an accuracy of 97.6% on the primary classification
task. Table 3 presents the results of the unsupervised OOD detection methods AP-OOD,
Mahalanobis (Lee et al., 2018), KNN (Sun et al., 2022), and Deep SVDD (Ruff et al., 2018).
The results show that AP-OOD improves the FPR95 metric from 57.11% (KNN) to 22.35%.
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Table 2: Unsupervised OOD detection performance on English-to-French translation. We
compare results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun
et al., 2022), Deep SVDD (Ruff et al., 2018), model perplexity (Ren et al., 2023), and
entropy (Malinin & Gales, 2020) on a Transformer (base) trained on WMT15 En-Fr as the
ID data set. | indicates “lower is better” and 1 “higher is better”. All values in %. We
estimate standard deviations across five independent dataset splits and training runs.

1T Koran Law Medical Subtitles ndd2015 ndt2015 nt2014 Mean
Input OOD
AUROC 1 93.94F001  66.82+029 49 39+030 78 5)+0-41 89 1+0.09 5 87+001  66.44+001 51 534001 70 96

Wiplirllvrolo FPRO5 |  31.20%029 93465027 01964050 3135077 59.60%048 g7.01%014 89 09010  97.13%0-10 7650
KNN AUROC 1 94.16X001  66.16=0-24 46.68*0-?2 79.62%0-41 89.16=011 64.8120-05 5 63£0.05 53 91005 69 93

FPRO5 | 32.44%012 94694028 92 71#034 7044073 3355032 gg1+0.07 g9 97004 g7 5140.03  7g 33
Deep SVDD AUROC T 92(53:&0.15 64‘121“'81 51A56i1'21 77A40;H!.52 87.6410.37 63301!].40 63‘5810’31 49“31:&().31 ()8()8

FPR95 |  39.37E094  95.24%028 92 80*029 66 17+0-71  6553E133 89 87022 9(.91£027 98 07019 7974
AUROC 1 94.88%0-08 73514033 51 114038 g1 go+035 g9 14032 69 98+0-15 70 40+027 57.82+023 7358
FPR95 |  25.00%059 87.48+%0:33 89 45+067 58 51+060 () 784207 g6 454091 87054032 94.19+041 7361

Output OOD
AUROC 1 94.06F0-00  77,055020  4518+038 75414042 g9 3g+0.08 75 39+£0.02 75 87£002 g7 744002 7462

AP-OOD (Ours)

Bemplexity FPR95 |  35.36X001  90.54%0-35  90.14%034 69174060 50, 11F058 g3 94+0.04 g5 47000  96g0E0.00 7519
Entrony AUROC 1 71444022 86.14%0:32  53,085023 51 19044 70955047 75112096 7996022 71.31%017  69.13
Py FPR95 | 71.19%09%  56.19+1:91 03.94+037 90 27+061 74 56+123  76.28%213 77654154 85714132 78923

' . AUROC 1 90.74F001  69.38%0.17 52 95+0.14 75 6g+0.47  gg 57£0.08 g9 9g+£0.03 g9 76£002 48 63+0-02 (g 54
Mahalanobis FPRO5 |  57.02£044  94.96%023 9715015 g1 344033  7616£0.79 93094029 93 93+0.13 98 00+0-09  §6.37
KNN AUROC 1 95.35%004  7155%017 5740014 78,53%058  g7,06+012  67.16*0-12  67.90%0-18  58.38*0-10 72,92
FPR95 |  27.61F031 94,1301 93.89+032 5 10+0-58 79 73£0.43 g 33+£0.08 9] gg£0.10  9g79+0-05 79 17

Deep SVDD AUROC 1 89.20X013  §7.28%080 54 40+083  7396+0-65  8400¥019  0.37E057  60.66%037  47.11%0922  67.12

FPR95 | 62.41F121  95.19+045  9503+0.65 g1 504169 g1 565115 93.93+026  g575+044 98 41+016  g7.97
AUROC 1+ 96.28+0-11 80, 70£0-50 53 ,07+068  g8(.84+087 93 88+0-36 80 64+0-57 81.39+056 8124065 7936

AP-OOD (Ours) FPR95 |  21.20%065 8249+129  g7.38+044 g3 g7+1.03 40 27302 7714168 78 39%129 94 504040 68,13

Table 3: Unsupervised OOD detection performance on audio classification. We compare
results from AP-OOD, Mahalanobis (Lee et al., 2018; Ren et al., 2023), KNN (Sun et al.,
2022), Deep SVDD (Ruff et al., 2018) trained on MIMII-DG (Dohi et al., 2022) as the ID
data set. | indicates “lower is better” and 1 “higher is better”. All values in %. We estimate
standard deviations across five independent training runs.

Mahalanobis KNN Deep SVDD  AP-OOD (Ours)

AUROC 1 64.9650:002 g1 2120000 53 431030  gg gg0.746
FPR95 | 84.39+0-011 57.11%0:000 g9 44+1.689 22.35+2:388

5 RELATED WORK

OOD detection. Some authors (e.g., Bishop, 1994; Roth et al., 2022; Yang et al., 2022)
distinguish between anomalies, outliers, and novelties. These distinctions reflect different
goals within applications (Ruff et al., 2021). For example, when an anomaly is found, it will
usually be removed from the training pipeline. However, when a novelty is found, it should
be studied. We focus on detecting samples that are not part of the training distribution
and consider sample categorization as a downstream task. OOD detection methods can be
categorized into three groups: Post-hoc, training-time, and OE methods. A common and
straightforward approach for OOD detection is the post-hoc approach, where one employs
statistics obtained from a classifier. Perhaps the most well-known approach is the maximum
softmax probability (MSP; Hendrycks & Gimpel, 2016). A wide range of post-hoc OOD
detection approaches have been proposed to address the shortcomings of MSP (e.g., Lee
et al., 2018; Hendrycks et al., 2019a; Liu et al., 2020; Sun et al., 2021; 2022; Wang et al.,
2022; Zhang et al., 2023b; Djurisic et al., 2023; Liu et al., 2023; Xu et al., 2024; Guo et al.,
2025). A commonly used post-hoc method is the Mahalanobis distance (e.g., Lee et al.,
2018; Sehwag et al., 2021; Ren et al., 2023). Recently, Miiller & Hein (2025) proposed feature
normalization to improve Mahalanobis-based OOD detection, and Guo et al. (2025) show
that the Mahalanobis distance benefits from dynamically adjusting the prior geometry in
response to new data. In contrast to post-hoc methods, training-time methods modify the
training process of the encoder (e.g., Hendrycks et al., 2019¢; Tack et al., 2020; Sehwag
et al., 2021; Du et al., 2022; Hendrycks et al., 2022; Wei et al., 2022; Ming et al., 2023; Tao
et al., 2023; Lu et al., 2024). Finally, the group of OE methods incorporates AUX data in
the training process (e.g., Hendrycks et al., 2019b; Liu et al., 2020; Ming et al., 2022; Zhang
et al., 2023a; Wang et al., 2023; Zhu et al., 2023; Jiang et al., 2024; Hofmann et al., 2024).
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OOD detection and natural language. Most of the aforementioned OOD detection
approaches target vision tasks, and many of them require a classification model as the encoder
¢. Applying these vision-based OOD methods to text is not straightforward due to the
sequence-dependent nature of natural language (e.g., in autoregressive language generation).
OOD detection specifically tailored for natural language is still underexplored. Ren et al.
(2023) propose the log-model perplexity of a generated sequence y as a simple baseline

for OOD detection on autoregressive language modeling tasks: — + ZzL:1 log pe (yi|y<i, x)-
However, they show experimentally that model perplexity is inherently limited. Because of
these shortcomings, Ren et al. (2023) propose embedding-based OOD detection methods for
text data. Relatively few other works have explored OOD detection for generative language
modeling. Notable applications include translation (e.g., Xiao et al., 2020; Malinin et al.,
2021; Ren et al., 2023), summarization (Ren et al., 2023), and mathematical reasoning (Wang
et al., 2024). A related field is hallucination detection (e.g., Malinin & Gales, 2020; Farquhar
et al., 2024; Du et al., 2024; Aichberger et al., 2025; Park et al., 2025). Unlike OOD detection
(which flags inputs outside the training distribution), the goal of hallucination detection is
to identify prompts a generative language model is unlikely to answer truthfully.

Multiple instance learning (MIL). MIL (Dietterich et al., 1997; Maron & Lozano-
Pérez, 1997; Andrews et al., 2002; Ilse et al., 2018) considers a classifier that maps a bag
Z = (z1,...,2g) of instances z, to a bag-level label Y € {0,1}. MIL also assumes that
individual labels ys € {0, 1} exist for the instances, which remain unknown during training.
By assumption, the bag-level label is positive once one of the instance-level labels is positive
(and negative if all are instance-level labels negative), i.e., Y := maxsys. Recent MIL
methods use attention pooling (Ilse et al., 2018; Shao et al., 2021; Al Hajj et al., 2024) and
modern Hopfield networks (Widrich et al., 2020) to pool the features of the instances.

One-class classification (OCC). OCC (Scholkopf et al., 1999) is the problem of learning
a decision boundary separating the ID and OOD regions while having access to examples
from the ID data set only. One-Class SVM (Scholkopf et al., 2001) learns a maximum margin
hyperplane in the feature space that separates the ID data from the origin. Support Vector
Data Description (SVDD; Tax & Duin, 2004) learns a hypersphere which encapsulates the ID
data. Most closely related to AP-OOD is Deep SVDD (Ruff et al., 2018). Deep SVDD learns
an encoder ¥(-, W) : RP? — RM by minimizing the volume of a data-enclosing hypersphere
in the output space. Ruff et al. (2019) propose Deep SAD, an extension of Deep SVDD that
makes use of AUX data during training. However, Liznerski et al. (2022) show that the
effectiveness of this extension degrades with increasing dimensionality.

6 LIMITATIONS

In this section, we would like to discuss two limitations that we found. First, the selection of
the AUX data is crucial, since it determines the shape of the ID-OOD decision boundary.
If the AUX distribution diverges from the OOD examples faced at inference, the induced
boundary may not be aligned with the task. Second, it remains unclear how reliably the
OOD detection performance on specific data sets can indicate the general ability to detect
OOD examples, as a large portion of plausible OOD inputs remains untested.

7 CONCLUSION

We introduce AP-OOD: an approach for OOD detection for natural language that can learn
in supervised and unsupervised settings. In contrast to previous methods, AP-OOD learns
how to pool token-level information without the explicit need for AUX data. Our experiments
show that when supplied with AUX data during training, the performance of AP-OOD
improves as more AUX data is provided. We compare AP-OOD to five unsupervised and
three supervised OOD detection methods. Overall, AP-OOD shows the best results.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the source code of our implementation of AP-OOD in the
unsupervised and supervised settings in the supplementary material. Detailed instructions on
running the source code and reproducing the experiments are provided in the file readme . md.
We provide information about data, the training process, and the hyperparameter selection
in Section 3 and Appendix B.3.
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A  THEORETICAL NOTES

A.1 OOD SCORE INVESTIGATION

In the following, we show that

oin —d3 (fenc(@), Z) +log(||w;[3) < 2log(e) + log(2m) — x€O
JE1L,...,

T
whenever z; 1= H;Uﬁij is normally distributed with probability density function
J

, [|w;ll2 1

pi(25) = ﬁ exp | =5 ([[wjll2 2 — w; py)? ), (16)
weight vectors w; € R”, encoder ¢ene : X — Z, Z = Ug>y RP*S Z e 2, Z e Z, z; = Zpj,
n; = Zﬁ] , Pj € A% and P; € AS" with

S
AS = {(pl,...,ps) € [O,I]S | Zpizl}.

Proof. Note that the ¢enc-pushforward density py,,. of pip satisfies

Doene (£) = /XPID(CC) (penc(x) = Z)dpip () > pip(x).

T

Analogously, we get ﬁj(zj) > p¢enC(Z) for 2]‘ = Zp] and pj(Z]) > P (Zj) for Zj = H;Uﬁij.

That is, for any j € {1,..., M}, we have that pip(x) < ps,..(Z)
consequence, for all j € {1,..., M} it holds that p;(z;) <e = pr
following equivalence holds:

Pj
< pi(2)) < pj(z). Asa
p(x) < €. Moreover, the

pi(z;) < € =
wi;ll2
Pl o (5wl =5~ wiug?) < e =
will2 1 _
H\/# exp (—(wj Z; w; uj)2> < € S
— (wjz; — wip;)? + log(|lw;l3) < 2log(e) + log(2m) (17)

As a consequence, we have that € O, if Equation (17) is satisfied for any j € {1,...,M}. O

A.2 MAHALANOBIS DECOMPOSITION

We assume the D weight vectors w; are linearly independent. First, we start from the
decomposed term and show that the Mahalanobis distance is equivalent.

D
Rrana(2:) = 3 (w]z — wip)” (1)
" D
=(z -’ (ijij> (2 —p) (19)
=z - wW's Yz —p). (20)

Because the weight vectors are linearly independent, £~! has full rank. Next, we go in
the opposite direction and show that the eigenvectors V' = (vq,...,vp) and eigenvalues
D = diag(A1,...,Ap) of 3 can be used to select the corresponding w;.
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Rpana(Z:1) = (2 — w)'=71(z —p) (21)
=(z - w'VTD'V(z —p) (22)
- (VD vz - \/Dflvu)T(\/Dflvz - \/D*qu) (23)
D
= (ijZ - iju)Q, (24)

j=1

where w; = (/A 'v;, £ = VDV, and 7' = VID V.

A.3 AP-OOD REDUCES TO MAHALANOBIS DISTANCE WITH MEAN POOLING FOR /3 =0

In this section, we show that as 8 = 0 and M = D, d?(Z, Z) reduces to the Mahalanobis
distance with mean pooling as used by Ren et al. (2023). To arrive at the result, we assume
uniform sequence lengths.

T
. 1
softmax(0 - ZTw), = Sexp(O W) = =, (25)
>o_exp(0- zLw) S
S
_ T 1
z = AttPooly(Z,w) = Zsoftmax(0-Z* w) = g Z Zs, (26)
s=1
i i i ] NS L
pu = AttPooly(Z,w) = Zsoftmax(0- ZTw) = N ; SZ:; zis = ; zi, (27)
where we use the concatenated sequence Z = (Zi|---||Zx), and the sequence representations

Z; = ¢(x;) = (zi1, . . ., zis) € RP*. The squared distance of AP-OOD reduces to

. M N . 2
d*(Z,Z) = ('w]TZsoftmax(ﬂ ZTw;) — wJTZsoftmax(ﬂ Zij)) (28)
j=1
D
= STz — wlp)? = Az ). (29)

<.
Il
-

To show the relation with non-uniform sequence lengths, we modify the attention pooling as
follows:

AttPools(Z,w) := Zsoftmax(8 ZTw 4 log(s)) (30)

where s contains the sequence lengths S of the sequences (replicated for the individual

tokens). The corresponding vector § for Z consists of the sequence lengths S; replicated for
the individual tokens. The resulting z and p are:
0-zl'w +log(S 1
softmax(0 - ZTw + log(s))s = Sexp( = w + log(5)) = —, (31)
> exp(0- zhw + log(9)) S

1
Z = AttPooly(Z,w) = Zsoftmax(0- ZTw + log(s)) = gz,zs, (32)
s=1
~ ~ . 1o 1 1
1 = AttPooly(Z,w) = Zsoftmax(0- ZTw + log(8)) = Nizzlgi;zis = N;Zi.

(33)
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B EXPERIMENTS

B.1 ATTENTION POOLING OVER THE CORPUS

In this section, we describe the process of performing attention pooling over a long sequence
Z that is too large to fit into memory. For this, we need the log-sum-exponential function.
We follow the notation from Ramsauer et al. (2021):

S
lse(8,a) = B 'log (Zexp(ﬂas)> (34)

Algorithm 2 Attention pooling over a long sequence

Require: Z = (2y,...,%5) € RP*S 3 w, B
1: B+ —0
2: u+0
3: for s < 1 to S step B do
Load mini-batch B + (Z,...,Zs+B)
Ep + 1se(8, BTw)
p « exp(B(BTw — Ep))
up < Bp
pp « o(3(Ep — )
u < pppp + (1 —pp)p

E < B7llog (exp(BER) + exp(BE))
return p

B.2 ADDITIONAL DETAILS FOR THE TOY EXPERIMENT

In the toy experiment in Figure 2, we modify the attention pooling process to use the negative
squared Euclidean distance instead of the dot product similarity because the Euclidean
distance is known to work better in low-dimensional spaces. Formally, the modified attention
pooling process is:

AttPoolg(Z, w) =

S B _ 2
S, (Sl — wll) 5)

5 .
= i ep(—5llze — wlB)
B.3 HYPERPARAMETER SELECTION.

To find the values for 5, M, and T in the unsupervised setting, we perform a grid search
using the values 8 € {\%,0.25,0.5, 1,2} and T € {1,4,16}. We select M such that the total

number of parameters of AP-OOD equals the number of entries in 3 of the Mahalanobis
method, i.e., such that MT = D. We select the hyperparameter configuration by evaluating
each resulting model on OOD detection using a validation split of the AUX data set (in the
unsupervised setting, we use the AUX data set only for model selection, not for training the
model), and we select the model with the highest AUROC. In the supervised setting, we
follow the same procedure, and we additionally select A € {0.1,1,10}.

B.4 ADDITIONAL EXPERIMENTS ON TEXT SUMMARIZATION

In the fully supervised setting, we train all methods on the embeddings of 100,000 ID examples
and 10,000 AUX examples obtained from PEGASUS| aArgE trained on text summarization
using the XSUM data set. Table 4 shows that AP-OOD substantially improves fully
supervised OOD detection results, improving the previously best mean FPR95 of 1.06%
(binary logits) to 0.28% in the input OOD setting. Figure 4 shows the results for the
semi-supervised setting when scaling the number of AUX examples on all OOD data sets for
text summarization. We evaluate relative Mahalanobis only for N’ > 1024, because X is not
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Figure 4: OOD detection performance on text summarization for all OOD data sets. We
vary the number of AUX examples and compare results from AP-OOD, binary logits (Ren
et al., 2023), relative Mahalanobis (Ren et al., 2023), and Deep SAD (Ruff et al., 2019).

Table 4: Supervised OOD detection performance on text summarization. We compare results
from AP-OOD, binary logits (Ren et al., 2023), relative Mahalanobis (Ren et al., 2023), and
Deep SAD (Ruff et al., 2019) on PEGASUSparGE trained on XSUM as the ID data set. |
indicates “lower is better” and 1 “higher is better”. All values in %. We estimate standard
deviations across five independent dataset splits and training runs.

CNN/DM  Newsroom  Reddit Samsum Mean
Input OOD
Binary logits AUROC 1 99.43*0-11  99,52%006  1(0,00+0-00  99.99+0-00 99.73
inary fogits FPR95 |  2.32%099  1.93¥017 0 00*0-00 0.01+001 1.06
Relative Mahalanobis UROC T 81.28%0-19 91,8500 99 g6+0-00 99.98+0-00 93.27
clative Mahalanobls — pppos | 62.924034 98994043 () g+0-01 0.01%0-01 22.79
Do KA AUROC 1 98.85%017  99.24+007  100,00%0%0  100.00%0%° 9952
eep FPR95 |  3.69%081  93g%016 000 (000 |59
) AUROC 1 99.83+018 9971005 100,000 100.00+%-%° 99.88
AP-OOD (Ours) FPR95 |  0.37£051  076+019  (0*0.00 0.00%0-00 0.28
Output OOD
Bi T AUROC 1+ 98.67F026  99.49+003 99 gg+0.01 09.94+0.02 99.52
inary logits FPR95 |  5.01F097 177007 ( 0*0-00 0.09%0-04 1.72
Relative Mahalanobis UROC 1 93.580:18 9741008 g9 go+0.01 09.54+0:03 97.59
clatlve Malalanobls  ppros | 24.324033  g54#0238 (4001 1.00£0-09 8.47
) AUROC T 98.39%023  99.534003  100,00%090  99.96%0%0 99 47
Eap FPR95 |  6.008075  1.66=011  0.00%000 07003 1.93
AUROC 1t 99.00%°13  99.59+002  100.00t000 99 98+0-00 9964
AP-00D (Ours) FPR95 LT 3.25%042 1 24%007  ( *0.00 0.01%0-01 1.13

invertible when using fewer AUX examples. In contrast to Figure 3, Figure 4 also shows the
results for Reddit TIFU and Samsum. On these two data sets, all evaluated methods except
relative Mahalanobis achieve near-perfect OOD detection results for N’ > 8.
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Table 5: Supervised OOD detection performance on English-to-French translation. We
compare results from AP-OOD, binary logits, relative mahalanobis (Ren et al., 2023), and
Deep SAD (Ruff et al., 2019) on a base Transformer trained on WMT15 En—Fr as the ID
data set. | indicates “lower is better” and 1 “higher is better”. All values in %. We estimate
standard deviations across five independent dataset splits and training runs.

1T Koran Law Medical Subtitles ndd2015 ndt2015 nt2014 Mean
Input OOD

AUROC 1 93.60%0-3% 95174005 54294033 70 47+0-67 9 53+046 g9 91+0.15 g9 g0+0-16 g5 65006 8368
FPRY95 l 28.58*1'“’ 34.911(].75 97.16i0'06 82.271().(&4 41.031().916 60.()'4i0'41 57.5()'i0"-'& 75.78i“'44 59.74
AUROC 1 92.82%0-26  9331+0.09 43 7£038 7440040 95 73+0.21 g9 33+0.04  gg g8 82,0613 82.45
FPR95 |  19.27%044 5350%068 g4 27+024 g7 34066 13384028 59 6+043  (1.49+0-37  83.94%0.14 5648
AUROC 1 94.56%0-13  94.77£014  57.44F058 71 g7%0-27 ] 57021 90,07%016 g9 47%0-12 84 49019 8495

Binary logits

Relative Mahalanobis

Deep SAD FPRY5 | 98.31%0-62 4077135 07.100-13 83.74%0-28 4115124 61.54%0-81 62.11%0-82 79.33%0.65 61.76

AP-0OD (Ouss) AUROC 1 94.97+0-34  96,17+0-35  56.89+1.03 79314099 g5 3+0-4L 90 66+0-3° 90.73+0-36  86.56+0-3¢ 86.28

AP- urs FPRO5 | 29.93%286  26.04%297 0446705 79,0614 20177232  56.34%246 5512147 69 754136 5498
Output OOD

AUROC 1 9515006 95 64+0-17 58 96079 74.70+0-37 99 79+0-22  9(,39+0.19 90 9]#016 g5 73+0.12 g5 44
FPRY5 | 27.58%04 3049180 96364028  82,09+0-61 39 08*+107  57.36095 57657008 7534041 5894
AUROC 1 92.83%0-18 9494014 4] 8g*042 71 (9*0-27 95 14*016  ggg+0.02  g7,83+0.08 g9 5010 g 89
FPR95 | 28.72%040  36.30%118 05544029  80.88%020 20.42%057 7.39%052  67.80048  85.74F020  60.35
AUROC 1 95.88%013 96574021 56 47+131 76352060 g4 79+0.12 90 ,66+0-11 90.40+011 86.21+018 g5.92
FPR95 | 23.73%047 2] 38%175 0586038 g9 47+0.52 30 93+082 58 14%145 57 37+164 75732023 55 6]
AUROC 1 95.82%024  06.85+024 59 22+0.92 78 27+1.67 g5 7g+0.18 () 31+0.35 g9 g7+0.35 g3 974090 86 26
FPR95 | 28.51F14  19.94%1.78 93,65%036 g1.37%0-56  9596F1.04  59.98%136  57.48%1.09  7364*121 5510

Binary logits

Relative Mahalanobis

Deep SAD

AP-OOD (Ours)

Table 6: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD when using s(Z) and $min(Z), on PEGASUSp ArgE trained on XSUM
as the ID data set. | indicates “lower is better” and 1 “higher is better”. All values in %. We
estimate standard deviations across five independent dataset splits and training runs.

CNN/DM  Newsroom  Reddit Samsum Mean
Input OOD

AUROC 1 96.13%044 99 .10+0-08 99 91+0.03 99 80+004 9874
FPR95 |  19.51%224  411+028 0, 00*001  (.04%003 501

. (z) AUROC? 96.08%F0-37  97.48+0-28 99 71£020 97 7035 9774
$min(Z) FPR95 |  18.78*273 11.16*121  ,01%0-01 12.04%3:04  10.50

Output OOD

AUROC 1 93.37%05¢  92,62+067 98 04+0-28 98 30+011 9559
FPR95 |  23.12*+197 2991+293 ¢34+1.56 ¢g83+064 1655
(7 AUROC 1 93.82+1:56  gg 30%345  9594+2.25 90 .13+431 9205
swin(Z) FpRo5 | 26.60457  38.26%%73  13.49%90  36.71+1240 3002

s(Z)

s(Z)

B.5 ADDITIONAL EXPERIMENTS ON TRANSLATION

In the fully supervised setting, we train all methods on the embeddings of 100,000 1D
embeddings and 100,000 AUX embeddings obtained from a base Transformer trained on
WMT15 En—Fr translation. Table 5 shows that AP-OOD improves supervised OOD detection
results w.r.t. the mean AUROC and FPR95 metrics.

B.6 OOD SCORE COMPARISON

We experimentally compare the min-based OOD score sy (Z) and its upper bound s(Z).
For training, we use the loss from Equation (10) in both settings. The results in Table 6
show that s(Z) achieves better OOD discrimination w.r.t. the mean AUROC and FPR95.
While $pyin(Z) roughly matches the OOD detection metrics of s(Z) on CNN/DM for both
input and output, smin(Z) lags behind s(Z) on the other OOD data sets.

B.7 ABLATIONS

Beta sensitivity analysis. We evaluate AP-OOD when varying the hyperparameter 3
on the summarization task. We select 8 from {0,1/v/D,0.25,0.5,1,2}, and we leave the
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Table 7: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when varying 5. | indicates
“lower is better” and 1 “higher is better”. All values in %. We estimate standard deviations
across five independent dataset splits and training runs.

CNN/DM Newsroom  Reddit Samsum Mean
Input OOD
AUROC 1 66.83%044  81.42%027 94 81#032 93 384020 g4 1]

R —

B=0 FPR95 |  97.17F010 7631035  4]12#342 19 96+084 5864
5= 025 AUROC 1 97.76=011  9875+0.07 99 87+0-06 99 46+0-09 98 96
- FPR95 |  11.07¥074 4.75+0-41 0.00%0:00  (,02+0.02 3.96

. AUROC 1 96.13%044  99.10%098 99.91+0-03 99 80+0-04 9874
=0k FPR95 |  19.51%224  411%028  00+001 0.04%0:03 5.91
51 AUROC 1 91.365041 9877005 9 75+0.02 99 83+0-01 g7 43
P FPR95 |  38.78%450  494%023 (2002 00000 1094
5=2 AUROC 1 84.29%091  97.58+0:09 99 5240.05 99 76+0-01 9598

FPR95 |  63.31%463  9.14+0.46 ONR=C 0.05%0:03 18.16
8- 1/VD AUROC 1 89.09%066  90.50+035 99 50+0-18 g9 g7+0.01 94 79
p=1/ FPR95 | 53.96%330  47.50%1:83 (. 17+0:18 0.04+0-:02 25.42

Output OOD
5=0 AUROC 1 77.67%137 8510061 84.12%108 917004 8465
- FPR95 |  82.07%130  69.32%1:65  5730%L73 99 37+L.78 5959
8- 025 AUROC 1 91.37+064  93.66+0-13 94791029 9656027 94,10
‘ : FPR95 |  43.03F171  34.70%032  38.38%327  1861+24  33.68
5=05 AUROC 1 93.37+054 99 62+0-67  98.04*+028 98.30+011 9559

FPR95 |  23.12*197 2991+293 ¢34+156 83064 1655
51 AUROC 1 93.06%0°7  91.82*071  97,66+033  97.91+0-22 9511

- FPR95 | 24.04%195  3204%297 9 99+1.71 8.82%142 18.55
—a AUROC 1 93.25%048 91 9g*0.73 g7 574040 g7 974019 95 19
p= FPR95 |  23.69%194 3193309 1006244 g 37+1.30 18.34

_1)yp AUROCT 54.67E0-72 80.59E0T2  94.19%030 94.93£035 8108
=1 FPRO5 | 92.40%921  65.83F1:03 30,0415 27.20%194  53.87

settings for M and T unchanged (i.e., they are identical to the settings used in Table 1).
Table 7 shows that AP-OOD on text summarization is relatively insensitive to the selection
of § inside the range [0.25,2] in the input and output settings.

Number of heads M and queries T. We ablate on the number of heads M and the
number of queries T" of AP-OOD on the summarization task. For this ablation, we select
T €{1,2,4,8,16,32,64,128,512,1024} and we then select M such that the total number
of parameters of AP-OOD equals the number of entries in 3 of the Mahalanobis method,
i.e., such that MT = D. The results in Table 8 show that AP-OOD works best on the
summarization task for both input and output when M = 512 and T' = 2. Although the
performance drops when decreasing M and increasing 7', we find that AP-OOD is relatively
insensitive to the number of heads and queries.

Dot product and Euclidean distance. We compare using the dot product and the
negative squared Euclidean distance for the attention pooling in AP-OOD. For a formal
definition of attention pooling with the negative squared Euclidean distance, we refer to
Appendix B.2. Table 9 shows that using the dot product works substantially better. This
result aligns with the well-established observation that measuring similarity using the dot
product in high-dimensional spaces is more effective than using Euclidean distance.

C THE USE OF LARGE LANGUAGE MODELS

When creating this paper, we utilized large language models (LLMs) to refine our writing,
to identify related work, and for research ideation. When refining the writing using LLMs,
we carefully review and verify LLM output to preserve sentence semantics. For related work,
we confirm the soundness of papers suggested by the LLM, and for research ideation, we
verify the factual accuracy of all statements.
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Table 8: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when varying M and T. |
indicates “lower is better” and 1 “higher is better”. All values in %. We estimate standard
deviations across five independent dataset splits and training runs.

CNN/DM  Newsroom  Reddit Samsum Mean
Input OOD

AUROC 1 97.16%922 9825011 99 goF0-01 99 39%0.03 98 G4
FPR95 | 14.72%083  754+062 0.00%0-00  (),64+0-11 5.72
AUROC 1 97.98+016 98 83+0.07 99 g7+0-03 99 60+0-04 99.07
FPR95 |  9.77%080  4¢7+030  ,00%000  (02%002 361
AUROC 1t 97.76*011  98.75%0-07 99 87+0-06 99 46+0-09  98.96
FPR95 | 11.07X0.74 4.75F041 0.00%0-00 0.02%0-02 3.96
AUROC 1 97.53%0-15  98.49+0-15 99 83+0-07 99 144012 9875
FPR95 | 12.48F114  5.94+0:65 0.00*000  (,25+0.10 4.67
AUROC 1 97.10%0:09  98.14+0-16 99 84+0-07  9g g1 +0-16 98 47
FPR95 |  14.30%077  7.87+0-86 0.00%0-00 0.99%0:50 5.79
AUROC 1 96.84%0935  97.78+0.15 99 83+0.05 98 56+0-28  9g 95
FPR95 | 14.97+1.96  10.18%080  (,01%0.02 2.53+2:12 6.92
AUROC 1 96.23%045 97358024 99 73+0-11 98 19+0.24 97,86
FPR95 |  16.65%199  12.55%115  (,09+0-20 5.69%187 8.75
AUROC 1 95.56%0-38  96.47+0-46 99 67+0-2T  97.44%0-25  97.29
FPR95 |  18.16%157  16.34*191  (.52%113 11.20%178 1158
AUROC 1 94.58%0:67 94 75+0-52 99 974086 95 94+0.25 95 96
FPR95 | 20.10%232  21.71#230  201+409 24.58+18 17,10
AUROC 1 93.17+075  91.87+0-56 98 43+2:39 g9 874086 93 34
FPRO5 | 22.86%220  27,09%148  4.95%9:38 39.75%306 23,66
AUROC 1 90.90%120  88.10%0-83  96.68*>76  81.41*+1.06 8927
FPR95 |  27.14%3:05 32644229 93+16.78 593734376 30 39

Output OOD

AUROC 1 9247048 94174030 98 36+0-22 97774014 9569
FPR95 |  39.11%181  34,69%085  311*1.16 12.59%0-90 2238
AUROC 1 93.79%0-25 95.85+0.18 g9 24020 98 96+0.06 96,90
FPR95 |  32.45T129 2010067 (,95+0:66 2.77%0-54 14.07
AUROC 1 93.35%0:46  9548+0-28 99194026 99 05+0-06  96.77
FPR95 |  33.67+277  21.73%082  (.86*09  272%052 1475
AUROC 1 93.24%034  95.27+037 99 21+041 98 99+0.04 96,68
FPRO5 | 32.84*170  2340+193  (.99+1:56 3.26+0-42 15.12
AUROC 1 92.95%082 94, 92%039 99 11036 98 8g+0-14 9647
FPR95 |  34.08%422  2553+1.87 ] 4g+1.63 4.10%070 16.30
AUROC 1 92.54*%0-61  94.11#047 98 67+0-73  98,63+041 9599
FPRO5 |  37.21%376  2956+271 4 68%439 6.11%2:55 19.39
AUROC 1 91.26%117  92.6241:40  97,9942:33 98 584084 9517
FPR95 | 41.96%4%3 3578578  g7p+lddd g 1g+4.88 23.17
AUROC 1 90.94%1:97  91.99+1:8%5  97.10+254 98284080 9458
FPR95 | 41.24%800  36.42%758 13 13+13.35 7 58438 24.59
AUROC 1 89.62F180  90.35+264  9591+326  97.73+0.96 93 40
FPRO5 | 47.52%9:00 41 77+12.21 18 5341624 1 02+476 99 46
AUROC 1 87.82F250  88.06%129  94.00%33%  96.91F126  91.70
FPR95 | 521871 50.66%%51  28.44+1740 13 98+6.18 36 3]
AUROC 1 86.45F186  86.95+179 93 43%+235  96,10F1:59  90.73
FPR95 | 50.92%891 4961670  2961+837  14.82%362 3624

M=1024 T=1

M=256 T =4

M=128 T =8

M=64 T=16

M=32 T=232

M=16 T =64

M=8 T=128

M=4 T =256

M=2 T=512

M=1 T=1024

M=1024 T=1

M=512 T=2

M=256 T=4

M=128 T =8

M =64 T =16

M=32 T=32

M=16 T =64

M=8 T=128

M=4 T =256

M=2 T=0512

M=1 T=1024

Table 9: Unsupervised OOD detection performance on text summarization. We compare
results from AP-OOD trained on XSUM as the ID data set when using the dot product and
the Euclidean similarity. | indicates “lower is better” and 1 “higher is better”. All values in
%. We estimate standard deviations across five independent dataset splits and training runs.

CNN/DM  Newsroom  Reddit Samsum Mean
Input OOD

AUROC 1 97.76%011 98.75%0.07 99 87+0.06 99 461009 98 96
FPR95 |  11.07%074 475041 00000  ,02+002 396

AUROC 1 74.22%0-65  84.43+023  97,06+0-41  98.30*0-23  88.50
FPRO5 | 90.20£0-37  74,08%1.04  15927%5:30 7 17+1.94 46.68

Output OOD

AUROC 1 93.37%054 9262065 98041029 9830%011 9558
FPR95 |  23.12%198 2993+289 ¢ 361160 g3+0.64 1656
AUROC 1 87.67+07  88.17+180  96.50+0-57  91.28*17  90.90
FPR95 | 65.62F390  66.04%438  22.34+5:36 53 89+780 5] 97

Dot product

Euclidean

Dot product

Euclidean
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