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Abstract

Although state-of-the-art object detection methods have shown compelling perfor-1

mance, models often are not robust to adversarial attacks and out-of-distribution2

data. We introduce a new dataset, Natural Adversarial Objects (NAO), to evaluate3

the robustness of object detection models. NAO contains 7,936 images and 13,6044

objects that are unmodified, but cause state-of-the-art detection models to misclas-5

sify with high confidence. The mean average precision (mAP) of EfficientDet-D76

drops 68.3% when evaluated on NAO compared to the standard MSCOCO valida-7

tion set. We investigate why examples in NAO are difficult to detect and classify.8

Experiments of shuffling image patches reveal that models are overly sensitive to9

local texture. Additionally, using integrated gradients and background replacement,10

we find that the detection model is reliant on pixel information within the bounding11

box, and insensitive to the background context when predicting class labels.12

1 Introduction13

It is no longer surprising to have machine learning vision models perform well on large scale14

training sets and also generalize on canonical test sets coming from the same distribution. However,15

generalization towards difficult, out-of-distribution samples still poses difficulty. Recht et al. [16]16

showed that model performance on canonical test sets is an overestimate of how they will perform17

on new data. Moreover, recent research on adversarial attacks has shown that deep neural networks18

are surprisingly vulnerable to artificially manipulated images, casting new doubt on the efficacy and19

security of such models.20

The vulnerability of neural networks to adversarial attacks that are deliberately generated to fool the21

system is unsurprising, and well studied. However, this type of attack represents a narrow threat22

model because it necessitates that the adversary has control over the raw input, or has access to23

the model weights. It is often overlooked that real-world, unmodified images can also be used24

adversarially to cause models to fail. These “natural" adversarial attacks represent a less restricted25

threat model, where an attacker can easily create black-box attacks without carefully constructing26

input perturbations [5], but only by using naturally occurring images that are easily obtainable. Such27

images are called natural adversarial examples [7]: unmodified, real-world images that cause modern28

image classification models to make egregious, high-confidence errors.29

In [7] natural adversarial examples are only constructed for image classification models. In this work,30

we seek to create an evaluation set analogous to [7], but instead targeted at object detection tasks. We31

name such a dataset Natural Adversarial Objects (NAO). The goal of NAO is to benchmark the worst32

case performance of state-of-the-art object detection models, while requiring that examples included33

in the benchmark are unmodified and naturally occurring in the real world.34
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Figure 1: Mean average precision (mAP) of various detection models evaluated on NAO and
MSCOCO val or test-dev set. All models show significant reduction in performance on NAO despite
their accuracy improvement in MSCOCO in recent years. NAO is a challenging test set for detection
models trained on MSCOCO and future work is required to close the performance gap.

Figure 2: Sample images from NAO where EfficientDet-D7 produces high confidence false positives
and egregious classification. Left: High confidence misclassified objects where the ground truth label
is in-distribution and among the MSCOCO object categories. Right: High confidence false positives
where the ground truth object is out-of-distribution (i.e. not part of MSCOCO object categories).
The misclassified objects and false positives are superficially similar to the predicted classes – for
example, the fin of the shark is visually similar to the airplane tail and the yellow petals of the flower
is similar to a bunch of bananas.

We present a method to identify natural adversarial objects using a combination of existing object35

detection models and human annotators. First, we compare the predictions from various off-the-shelf36

detection models against a dataset already annotated with ground truth bounding boxes. We consider37

images containing high confidence false positives and misclassified objects as candidates for NAO.38

Then, we use a human annotation pipeline to filter out mislabeled images and non-obvious objects39

(e.g. occluded or blurry objects). Finally, we re-annotate the images using the object categories of the40

Microsoft Common Objects in Context (MSCOCO) dataset [13].41

We perform extensive analyses to understand why objects in NAO are naturally adversarial. We42

visualize the embedding space common to MSCOCO, OpenImages, and NAO, and show that43

NAO images exist in the "blind spots" of the MSCOCO dataset. Next, by comparing integrated44

gradients [23] with predicted bounding boxes and replacing object backgrounds, we show that the45

detection model seldom makes use of object contexts. Lastly, by shuffling patches within the bounding46

box, we show that models relies on object subparts and texture to detect and classify the objects.47

NAO ground truth bounding box annotations are made available under CC-BY 4.0.48
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2 Related Work49

Natural Adversarial Examples Hendrycks et al. [7] construct two datasets, namely ImageNet-A50

and ImageNet-O, to measure the robustness of image classifiers against out of distribution examples.51

To construct these two datasets, they choose images on which a pretrained ResNet model failed to52

make a correct prediction. We adopt a similar approach for selecting adversarial examples but use53

an object detection model and take extra steps to ensure high quality annotations by using human54

annotators. Zhao et al. [27] develops a method to generate adversarial perturbation that lies on the55

data manifold where the pertubation is meaningful to the semantic of the images.56

Adversarial Examples Adversarial examples are inputs that are specifically designed to cause the57

target model to produce erroneous outputs. Arpit et al. [1] analyzed the capacity of neural networks58

to memorize training data, and found that models with a high degree of memorization are more59

vulnerable to adversarial examples. Jo and Bengio [9] have shown that convolutional neural networks60

tend to learn the statistical regularities in the training dataset, rather than the high level abstract61

concepts. Since adversarial examples are transferable between models that are trained on the same62

dataset, these different models may have learned the same statistics and therefore are vulnerable to63

similar adversarial attacks. Brendel and Bethge [3] show that small local image features are sufficient64

for deep learning model to achieve high accuracy. Geirhos et al. [4] show that ImageNet-trained65

CNNs are biased toward texture and created Stylized-ImageNet to reveal the severity of such bias.66

Similarly, Ilyas et al. [8] showed that adversarial examples are a byproduct of exploiting non-robust67

features that exist in a dataset. Non-robust features are derived from patterns in the data distribution68

that are highly predictive, yet brittle and incomprehensible to humans. Undoubtedly, the reasons69

behind the existence and pervasiveness of adversarial examples still remains an open research problem.70

Zhang and Wang [26] developed a method to improve the robustness of object detection model by71

identifying an asymmetric role of task losses.72

Model Interpretability While the interpretability of deep neural networks remains an open re-73

search question, there exist attribution methods that help explain the relationships between the input74

and output of such models. Sundararajan et al. [23] suggests that attribution methods should satisfy75

two axioms: sensitivity and implementation invariance, and proposes a new method, Integrated76

Gradient, to understand which parts of an image influence the prediction the most.77

Object Detection Architectures Detection models fall into two categories: one-stage78

([25], [18], [17]) and two-stage models ([20], [22]), differentiated by whether the model has a79

region pooling stage. Single-stage model are more computationally efficient, but usually less accurate80

than the 2-stage models. In this paper, we evaluate both single and two-stage models using the NAO81

dataset. Tan et al. [25] introduced EfficientDet, which uses EfficientNet [24] as backbone and uses82

BiFPN such that the model is more efficient while more accurate, achieving state-of-the-art results in83

MSCOCO at 54.4 on the val set.84

3 Creating Natural Adversarial Objects (NAO) Dataset85

3.1 Limitations of MSCOCO86

MSCOCO [13] is a common benchmark dataset for object detection models. It contains 118,28787

images in the training set, 5,000 images in the val set and 20,288 images in the test-dev set. MSCOCO88

contains 80 object categories consisting of common objects such as horse, clock, and car. The goal89

of MSCOCO is to introduce a large-scale dataset that contains objects in non-iconic or non-canonical90

views. The images in MSCOCO were originally sourced from Flickr, then filtered down in order to91

limit the scope of the benchmark to a set of 80 categories. These 80 categories were chosen from a92

list of the most commonplace visually identifiable objects. Still, this category list represents only93

a small subset of object categories in real life. For example, ’fish’ is not among the 80 categories,94

and as a result there are only a few photos taken underwater. This leads to a biased benchmark with95

limitations for generalizability and robustness. As a result, in this work, we ensure more diverse96

sourcing — choosing images from OpenImages v6 [11], a dataset with 600 object categories, in order97

to create a more representative dataset.98
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Statistics Top 3 Objects (Count)
# of Images # of Objects 1st 2nd 3rd

MSCOCO val 5,000 36,781 Person (11,004) Car (1,932) Chair (1,791)
MSCOCO test-dev 20,288 - - - -
NAO 7,936 13,604 Person (4,693) Cup (2,257) Car (752)

Table 1: Dataset statistics of MSCOCO val, test-dev and NAO.

3.2 Sourcing Images for NAO from OpenImages99

To create NAO, we first sourced images from the training set of OpenImages [11], a large, annotated100

image dataset containing approximately 1.9 million images and 15.8 million bounding boxes across101

600 object classes.102

One challenge of using OpenImages is that the bounding boxes are not exhaustively annotated. Each103

image is first annotated with positive and negative labels which indicate the presence or absence of104

an object in the image. Only objects belonging to the positive label categories are annotated with105

bounding boxes. As a result, some objects that belong to the OpenImages object categories are not106

labeled with a bounding box. For example, imagine both horse and pig are represented in the 600107

object classes. If an image contains a horse and a pig, and only the category of horse is included108

in preliminary round of positive labels, then the image would be labeled with a bounding box for109

the horse but not the pig. This non-exhaustive annotation approach makes it difficult to produce110

and compare precision and recall to other exhaustively annotated dataset such as MSCOCO. This111

is because false positives and false negatives can only be evaluated accurately if the ground truth112

bounding boxes are exhaustive.113

One other challenge that arises when sourcing images from OpenImages is that the object categories114

of OpenImages and MSCOCO are not the same. Therefore, after obtaining a set of natural adversarial115

images, we exhaustively annotate the images with all 80 MSCOCO object classes to facilitate116

straightforward comparison between NAO and the MSCOCO val and test sets.117

3.3 Candidate Generation118

To generate object candidates, we perform inference on OpenImages using an EfficientDet-D7119

model [25] pretrained on MSCOCO, which yields predicted object bounding boxes for each candidate120

image. Our goal is to find two types of errors: (i) hard false positives (i.e. false positives with high121

confidence) and (ii) egregiously misclassified objects. For a detection to be a hard false positive, we122

require the prediction to have no matching ground truth box with intersection over union (IoU) greater123

than 0.5, and class confidence score greater than 0.8. We define egregiously misclassified objects as124

predictions that have a matching ground truth bounding box with an IoU greater than 0.5, but have an125

incorrect classification with a confidence greater than 0.8. We do not consider false negatives with126

high confidence because we observe that these are commonplace especially in crowded scenes. There127

are 43,860 images containing at least one hard false positive or egregiously misclassified object.128

3.4 Annotation Process129

Our annotation process has two annotation stages: classification and bounding box annotation.130

Classification Stage In the classification stage, annotators identify whether the object described131

by the bounding box shown indeed belongs to the ground truth class as defined by the annotation132

in OpenImages or as predicted by the EfficientDet-D7. The purpose of this stage is to remove the133

possibility that the model prediction is "incorrect" due to the ground truth label being incorrect.134

In addition, we ask the annotators to confirm whether the object can be "obviously classified"135

according to the following criteria:136

1. Is the bounding box around the object correctly sized and positioned such that it is not too137

big or too small?138

2. Does the object appear blurry?139
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Figure 3: Left: Annotation interface for the first annotation stage (classification) where the annotator
confirms that the object belongs to the correct category, not occluded, not blurry and not a depiction.
Right: Annotation interface for second annotation stage (bounding box) where the annotators locate
and classify all objects in the images using the MSCOCO object categories.

3. Is the object occluded (i.e. are there other objects in front of this one)?140

4. Is the object a depiction of the correct class (such as a drawing or an image on a billboard)?141

We ask these additional questions to filter out ambiguous objects, such that a human can easily142

identify what class an object belongs to. After this filtering, 18.1% of the images (7,936) remain; each143

of the remaining images are confirmed to fulfill the 4 criteria, and represent true misclassifications by144

the model. In this first annotation stage (classification), 5 different annotators are asked to annotate145

the same image and we use their consensus to produce an aggregated response by majority vote.146

Bounding Box Stage In the second annotation stage (bounding box), annotators exhaustively147

identify and put boxes around all objects that belong to the MSCOCO object categories. We are148

unable to directly use the annotations from OpenImages because there is not a one-to-one mapping149

between the OpenImages and MSCOCO object categories, and because the bounding box annotations150

from OpenImages are not exhaustively annotated. However, the bounding box annotations from151

OpenImages are provided to the annotators as a starting point.152

These bounding box annotation tasks are completed by 2 sets of annotators. The first set of annotators153

complete the bulk of the task by placing bounding boxes around objects that belong to the MSCOCO154

object categories. The second set of annotators review the work of the first set of annotators,155

sometimes adding missing bounding boxes or editing the existing ones.156

To ensure the quality of the annotation is high, in both of these stages, the annotators have to pass157

multiple quizzes before they can start working tasks to ensure they understand the instructions well.158

If the annotator fails to maintain a good score, they are no longer eligible to continue to annotate159

the images. This process of vetting annotators is consistent with the methodology used to construct160

MSCOCO [13].161

When the annotators from the 2 different stages disagree, we tie break by choosing second annotator162

who is positioned as the reviewer.163

3.5 Evaluation Protocol164

The goal of NAO is to test the robustness of object detection models against edge cases and out-165

of-distribution images. We propose two main evaluation metrics: overall mAP and mAP without166

out-of-distribution objects. mAP without out-of-distribution objects evaluates against edge cases of167

object categories that the detection models are trained on, while the overall mAP evaluates robustness168

against out-of-distribution objects. For calculating mAP without out-of-distribution objects, any169

detection matched to an object not belong to the 80 MSCOCO object categories is not considered a170

false positive.171

NAO should be mainly used as a test set to evaluate detection models trained on MSCOCO. However,172

a split of train, validation and test set is also provided for robustness approaches that require training.173
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MSCOCO val MSCOCO test-dev NAO
Params mAP mAP mAP mAR mAP w/o OOD

Faster RCNN [19] 42M 21.2 21.5 17.4 48.9 28.2
RetinaNet-R50 [14] 34M 39.2 39.2 13.7 41.1 22.8
YOLOv3 [18] 62M - 33.0 12.1 30.4 19.6
Mask RCNN R50 [6] 44M 37.9 - 20.0 51.4 30.6
EfficientDet-D2 [25] 8.1M 43.5 43.9 16.1 46.1 28.6
EfficientDet-D4 [25] 21M 49.3 49.7 18.6 50.0 34.3
EfficientDet-D7 [25] 52M 53.4 53.7 17.0 46.3 30.6
YOLOv4-P7 [2] 28.7M 55.3 55.5 24.1 62.0 41.6
CBNetv2-HTC [12] 231M 58.2 58.6 25.1 61.5 43.2

Table 2: mAP of various detection models evaluated on MSCOCO val and test-dev set and NAO.
Accuracy of all models were significantly lower on NAO than on MSCOCO. There is a slight increase
in mAP when out-of-distribution (OOD) objects are excluded.

4 Results174

4.1 Evaluation of Detection Models175

Figure 1 and Table 2 show the mean average precision (mAP) of several state-of-the-art detection176

models evaluated on MSCOCO and NAO. Despite the fact that the images in NAO were chosen177

using an EfficientDet-D7 model, we observe that other object-detection architectures show a similar178

reduction in mAP when evaluated on NAO. Concretely, when using NAO the mAP of EfficientDet-D7179

is reduced by 68.3%, while Faster RCNN is reduced by 19.1% when compared to MSCOCO. Even180

though EfficientDet-D7 was developed more recently than Faster RCNN, the mAP on NAO is similar.181

This indicates that latest models are not more robust on NAO, despite their superior performance on182

MSCOCO evaluation sets. This in turn suggests that modeling improvements from recent years do183

not address the issue of high confidence misclassification in out-of-distribution samples.184

We also calculate the mAP without out-of-distribution objects. That is, if a detection matches a185

bounding box that does not belong the MSCOCO object categories, the detection is not counted as a186

false positive. We can see that, this exclusion improves mAPs on NAO, but overall, the results are187

still considerably worse than those from the MSCOCO val and test-dev set.188

4.2 Common Failure Modes189

In Figure 4, we visualize some failure modes of the detection models on NAO. In most of the190

misclassified objects, the predicted class is superficially similar to the ground truth class, but obviously191

different in terms of function. For example, clocks and coins are similar in shape (circular), texture192

(metallic in some cases) and both have characters near the perimeters. However, they are very193

different in function and in scale, such that any human can easily tell the difference between the194

two. Similarly, airplanes and sharks are similar in overall shape, color, and texture, but exist in rather195

different scenes.196

Another common failure mode is differentiating different animal species. For example, elephant and197

rhinoceros both have somewhat similar skin color and texture but they are very different in size and198

rhinoceros do not have the distinctive elephant trunk.199

4.3 Dataset Blind Spot200

As mentioned in Section 3.1, MSCOCO sourced images from Flickr search queries related to the201

80 object categories. This process can be seen as a biased sampling process of all captured photos,202

resulting in "blind spots" in MSCOCO. For example, because there is not any "fish" category, the203

frequency of photos taken underwater in MSCOCO is much lower than all captured photos. In this204

section, we investigate this sampling bias by comparing the image embeddings of BiT ResNet-50 [10]205

pretrained on ImageNet-21k [21] across the 3 datasets – OpenImages train, MSCOCO train and206

NAO. We consider OpenImages as a universal set for available images and with MSCOCO and NAO207

being a subset of the captured images. The image embedding is the output of the global average208
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Figure 4: Selected samples to showcase common failure modes.

Figure 5: BiT ResNet-50 embeddings projected by UMAP on OpenImages train, MSCOCO train

and NAO. NAO images are under-represented in MSCOCO.

pooling layer, resulting in a vector of size 2,048. We then use UMAP [15] to reduce the dimension to209

2 for visualization as shown in Figure 5.210

When comparing the embedding space of MSCOCO with OpenImages, we found that there are211

regions where the density is significantly lower in MSCOCO than in OpenImages. Some of these212

low-density regions are indicated by the black circles in Figure 5. When cross-referencing with the213

embedding space of NAO, we can see that these low-density regions of MSCOCO are in fact high-214

density in NAO, indicating that the examples in NAO are exploiting the under-represented regions215

that arise from MSCOCO’s biased sampling process. We visualize 3 of such low-density clusters216

and they each reveal a common failure mode (i.e. fish misclassified as bird, insects misclassified as217

umbrella and van misclassified as truck.)218

4.4 Background Cues219

Hendrycks et al. [7] suggest that classification models are vulnerable to natural adversarial examples220

because classifiers are trained to associate the entire image with an object class, resulting in frequently221

appearing background elements being associated with a class. Object detection models are different222

from image classifiers in that they receive additional supervision about the object position and size.223

We instead argue that the primary cause of detection models being vulnerable to NAO is their tendency224

to focus too much on the information within the predicted bounding boxes.225

In this section, we study the effect of object background on classification probabilities. Specifically,226

we quantify the change in probability of the detected object when its background is replaced. We use227

a MSCOCO-pretrained Mask-RCNN [6] with a ResNet 50 backbone to obtain instance segmentation228

masks on MSCOCO val and NAO. Then, we use the instance segmentation masks to retain only the229

most confident object and replace the rest of the image with a new background. There are 6 new230

backgrounds – underwater, beach, forest, road, mountain and sky – where Mask-RCNN detects no231

objects of probability higher than 0.1 from the backgrounds themselves. We measure the change232

of probability by matching the bounding box detected on the original image and the bounding box233
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Figure 6: Average change in probability of objects when the backgrounds are replaced. The orange
and blue dotted lines indicate average change in probabilities across all classes in MSCOCO and NAO.
The small change in probability indicates that the detection model did not make use of background to
classify the objects.

detected on the new image with the background replaced. We repeat this process for all images in234

NAO and MSCOCO val set and all 6 backgrounds.235

As show in Figure 6, in both NAO and MSCOCO, the change in probabilities is low, indicating that236

the model does not make use of the background when detecting the object. While this robustness237

against background change is favorable in most cases, this also shows that the model also does not238

account for unlikely combinations of background and foreground objects. For example, when the239

model misclassifies a shark as an airplane, the network could have noticed that the detected "airplane"240

is underwater and assigned a lower probability to the class airplane.241

4.5 Integrated Gradients Analysis242

We further try to understand the source of the egregious misclassifications by computing the integrated243

gradients [23] of the network classification head output with respect to the input image. We aim to244

find the proportion of integrated output within the bounding box to understand if the network makes245

use the context of the object for detection and classification.246

Specifically, we computed the gradients of the classification output of highest-scored bounding box247

with respect to the input image and measure the proportion of the sum of attribution inside the248

bounding box with respect to the total attribution. When there are multiple same-class objects to249

detect, we make sure to attribute each object separately. For example, when there are 2 people, we250

calculate the attribution of one person, ensuring the attribution of the other person is not counted251

towards the background. We used EfficientDet-D4 and randomly sampled 1000 images for this252

experiment. We found that for most classes, the majority of the attributions come from inside the253

bounding box.254

Both Figure 6 and Figure 7 suggest that the detection model do not make use of background enough255

and instead mainly focus on the information within the predicted bounding box.256

4.6 Patch Shuffling and Local Texture Bias257

Geirhos et al. [4] demonstrated that classification networks are biased towards recognizing texture258

instead of shape. Brendel and Bethge [3] showed that a classification network can still reach a high259

level of accuracy using just small patches extracted from images. In this work, we show that detection260

models also show strong local texture bias, making them susceptible to adversarial objects with261

similar object subparts but are of another object category. For each prediction from EfficientDet-D7262

on MSCOCO and NAO, we randomly sample a patch from within the bounding box and swap it263

with another patch from inside the bounding box. We swap these random patches 3 times such that264

object is barely recognizable by just the shape. We then match the detected bounding box from265

the shuffled images to the original bounding box with the highest overlap. We repeat this shuffling266

process independently 10 times and record the absolute change in probability of the detected object.267

Figure 8 shows that there is only a modest reduction in probability after the shuffles.268
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Figure 7: Proportion of attributed gradients within the bounding box by object category. In many
classes, the detection model seldom make use of the object surroundings for classification and
detection.

Figure 8: Mean absolute change in probability when patches inside the bounding box are swapped
randomly. The blue and orange dotted line represent the mean average change in probability across
all object categories for MSCOCO and NAO respectively. This confirms the texture bias hypothesis
because even if the shape of the objects are heavily distorted while the local texture is intact, the
network is still able to make the same prediction with similar confidence in most object categories.

5 Conclusion269

We introduce "Natural Adversarial Objects" (NAO), a challenging robustness evaluation dataset for270

detection models trained on MSCOCO. We evaluated seven state-of-the-art detection models from271

various families, and show that they consistently fail to perform accurately on NAO, comparing to272

MSCOCO val and test-dev set, including on both in-distribution and out-of-distribution objects. We273

explained the procedure of creating such a dataset which can be useful for creating similar datasets in274

the future.275

We expose that these naturally adversarial objects are difficult to classify correctly due to the "blind-276

spots" in the MSCOCO dataset. We also utilize integrated gradients, background replacement, and277

patch shuffling to demonstrate that detection models are overly sensitive to local texture but insensitive278

to background change, leading such models to be susceptible to natural adversarial objects. We hope279

NAO can facilitate further research about model robustness and handling out-of-distribution inputs.280
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