
Weak-to-Strong Generalization
under Distribution Shifts

Myeongho Jeon1,∗ Jan Sobotka1,∗ Suhwan Choi2,∗ Maria Brbić1,†
1EPFL 2Seoul National University

Abstract

As future superhuman models become increasingly complex, accurately supervis-
ing their behavior may exceed human capabilities. Recent works have demonstrated
that in such scenarios, weak models can effectively supervise strong models, a
phenomenon known as weak-to-strong generalization. However, we find that naive
weak-to-strong generalization fails under distribution shifts, often leading to worse
performance of the strong model than its weak supervisors. To address this, we pro-
pose RAVEN, a robust weak-to-strong generalization framework that dynamically
learns the optimal combinations of weak models in addition to parameters of the
strong model. We demonstrate the effectiveness of RAVEN on image classification,
text classification, and preference alignment tasks. RAVEN outperforms alternative
baselines by over 30% on out-of-distribution tasks while matching or surpassing
existing methods on in-distribution tasks. Moreover, our results show that RAVEN
assigns higher weights to more accurate weak models, demonstrating its ability to
automatically identify trustworthy supervision.

1 Introduction

Recent AI systems have reached near-human performance through extensive pre-training on large
datasets, followed by fine-tuning with human supervision. Techniques such as supervised fine-
tuning, reinforcement learning with human feedback (RLHF) [17, 61, 50], and direct preference
optimization (DPO) [43, 56] are key examples of effectively aligning models with human preferences.
A fundamental assumption in these methods is that the human supervision is of high quality. However,
when the data to be annotated is beyond human comprehension, providing reliable supervision
becomes challenging. For instance, in domains such as cosmology, healthcare, or biology, even
experts may struggle with accurate labeling. Furthermore, during the alignment phase with human
preferences, if a superhuman-level model generates highly complex outputs, humans may struggle to
fully understand them, making it challenging to provide effective feedback. This challenge is known
as weak supervision [10].

So, how can humans supervise a superhuman model that surpasses their own capabilities? To
mimic this future scenario, an analogous framework has been proposed in [10], where a weak model
simulates human supervision, while a strong model acts as a proxy for a potential superhuman
model. In this setup, weak supervision signals are utilized to train the strong model, aiming to
surpass the weak model’s performance and approach the performance achieved when trained with
ground-truth (GT) labels. Conceptually, this approach, termed weak-to-strong (W2S) generalization
[10], could lead toward developing superhuman models, as surpassing the performance of a weak
model in this context could eventually mean exceeding human capabilities. Moreover, such success
would be practical even before superhuman models emerge—for instance, aligning GPT-5 using only
GPT-4-level supervision could simplify model alignment today [10]. Recent works [10, 26, 45, 19]

∗Equal contribution
†Correspondence to: mbrbic@epfl.ch

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Weak-to-Strong Generalization

Source data

Fine-tuning data

Target data

Train

Weak
Supervision

Test

Strong model

Weak-to-Strong Generalization 
under Distribution Shifts

Source data
Train

Weak and
Misaligned
Supervision

Test

Weak model

Strong model

Fine-tuning data

Target data

Weak model

In-distribution Out-of-distribution

Train Train

Figure 1: An illustration of weak-to-strong generalization under distribution shifts. Left: The original
W2S generalization framework [10]. Right: Our extended framework that incorporates distribution
shift. In this scenario, the weak model is not only limited in understanding but also unfamiliar with
the fine-tuning distribution, making it less reliable for annotating data to supervise the strong model.

have shown that W2S generalization is indeed feasible, meaning that strong pre-trained models
naturally generalize beyond their weak supervisors.

However, humans may encounter data that is not only complex but also unfamiliar, making the
weak supervision even weaker. For example, a radiologist used to one type of imaging data may
misinterpret scans from a different machine or mislabel rare diseases outside their usual clinical
practice [8]. As a result, expert annotations can become even less reliable due to unfamiliarity with
the data. To simulate this, we consider a scenario in which the weak model is trained on data drawn
from a distribution that differs significantly from the strong model’s fine-tuning data, a setting we refer
to as weak and misaligned supervision (Figure 1). This raises the question: Is W2S generalization
still feasible under distribution shifts?

Following this question, we interestingly find that weak supervision becomes significantly less
effective in out-of-distribution (OOD) settings compared to in-distribution (InD) settings and, in
some cases, even not feasible, leading to the strong model performing worse than the weak model.
This is a nontrivial issue, as it suggests that unnoticed misaligned human perspectives can affect the
annotation process and potentially reduce performance. These findings motivate the need for a robust
W2S generalization framework that remains effective under distribution shifts.

Here, we propose Robust AdaptiVe wEightiNg (RAVEN)3, a robust W2S generalization framework
in which the strong model dynamically learns to combine the outputs from an ensemble of weak
annotators. Under distribution shift, weak models exhibit higher variance in performance compared
to the InD setting. RAVEN mitigates this by learning to assign higher weights to more reliable weak
models. Specifically, the supervision weights assigned to the weak models are updated iteratively and
jointly trained with the strong model’s parameters. This approach effectively handles high variance of
weak models by allowing the strong model to prioritize the most favorable weak model for the fine-
tuning data distribution. Additionally, to guide the strong model to learn how to choose the reliable
weak model in the early stages of training, RAVEN introduces easy-sample guided initialization,
which trains the strong model exclusively on samples where the weak models consistently provide
the same predictions.

We evaluate RAVEN on image classification, text classification, and preference alignment in text
generation tasks. RAVEN achieves a 55% improvement in image classification, a 57% improvement
in text classification, and a 33% improvement in preference alignment compared to the best alternative
baselines for each task. Remarkably, although the information about the performance of weak models
is unknown to the strong model, we observe that the strong model typically assigns the highest weight
to the best-performing weak model without any additional guidance.

3Project website with code: https://brbiclab.epfl.ch/projects/raven

2

https://brbiclab.epfl.ch/projects/raven


2 Problem statement

Weak-to-strong generalization. In W2S generalization setting [10], a strong (large) pretrained model
is fine-tuned using labels generated by a weak (small) model, denoted by fs and fw, respectively.
Given input space X and label space Y , the data is divided into source Psrc(X,Y ), fine-tuning
Ptuning(X,Y ), and target data Ptrg(X,Y ). The following procedure is then evaluated: (i) Generate
a weak supervisor: fw is trained on Psrc with ground-truth (GT) labels, denoted by fsrc

w . (ii) Train
a strong model with weak supervision: fs is trained on Ptuning using weak pseudo-labels generated
by fsrc

w , denoted by fpseudo
s . (iii) Train a strong model with GT as a ceiling: fs is trained on

Ptuning with GT, denoted by fgt
s . The performance gap recovered (PGR) on Ptrg is then calculated

as follows:

PGR :=
Acc(Ptrg; f

pseudo
s )−Acc(Ptrg; f

src
w )

Acc(Ptrg; f
gt
s )−Acc(Ptrg; fsrc

w )
, (1)

where Acc(A;B) denotes the accuracy of model B on data A. The goal of W2S generalization is to
achieve a PGR close to 1 by making the target model fpseudo

s approximate fgt
s , indicating that the

model reaches ground-truth-level performance even when trained with weak supervision. In [10], the
assumption is that Psrc, Ptuning , and Ptrg are drawn from the same underlying distribution.

Weak-to-strong generalization under distribution shifts. We extend the concept of W2S generaliza-
tion by considering distribution shifts between Psrc and Ptuning . We define distribution shift through
the generalization gap: ∆R(f) = Rtuning(f) − Rsrc(f), where R(f) = E(x,y)∼P [L(f(x), y)]
is the expected risk, f denotes the model, and L is the loss function. A large ∆R(f) indicates
substantial distribution shift from Psrc to Ptuning, which can make weak supervision misaligned4.
This conceptualizes the case where humans annotate difficult-to-understand and unfamiliar domains,
leading to weak and misaligned supervision. This could, for example, happen with medical data
that are both highly specialized and cross-institutional. In this setting, PGR, as defined in Eq. (1),
evaluates how effectively weak supervision under distribution shift can be leveraged to enhance the
capabilities of the strong model.

Observation. To evaluate the robustness of
naive W2S generalization under distribution
shifts, we analyze changes in PGR that happen
in OOD scenarios. Specifically, we introduce a
shift from IMAGENET to IMAGENET-C, treat-
ing 19 corruption types as distinct domains. For
comparison, we establish both InD and OOD
setups. In both cases, we use the IMAGENET
training set as Psrc, while the validation set
from IMAGENET serves as Ptuning and Ptrg

for the InD scenario, and IMAGENET-C serves
as Ptuning and Ptrg for the OOD scenario.
We find that OOD generalization rarely lever-
ages the strong model’s capabilities as much as
when no distribution shift is present (Figure 2).
Surprisingly, on 11 out of 19 IMAGENET-C cor-
ruption cases, the W2S generalization is even
infeasible, i.e., the W2S performance is worse
than that of the weak model. This shows the
need for an approach that achieves a robust W2S
generalization under distribution shifts.

10 0 10 20 30 40 50 60 70
PGR

No-shift
Saturate

Brightness
Elastic

Gaussian blur
Defocus blur

JPEG
Pixelate

Contrast
Spatter

Snow
Fog

Speckle noise
Motion blur

Gaussian noise
Shot noise

Impulse noise
Zoom blur

Frost
Glass blur

68.49
32.68
28.26

9.11
3.04
3.02
2.61
2.01
1.43

-0.09
-0.19
-0.42
-0.69
-1.10
-1.63
-1.70
-1.85
-2.16
-3.09
-8.39

Figure 2: Performance variation with distribution
shifts. The Cyan bar indicates positive PGR of InD,
gray represents positive PGR for OOD, and red de-
notes negative PGR. PGR is reported as a percent-
age. Detailed results can be found in Appendix B.

3 Preliminary

WeakS-to-strong generalization. Inspired by the concept that multiple experts can collectively
provide effective supervision even if each individual expert is insufficient on its own, weakS-to-strong
framework [19] utilizes multiple weak models for training. A straightforward approach to ensemble

4A more detailed formal definition of distribution shift is provided in Appendix A.

3



the weak models is to use a weighted sum to combine their predictions, followed by calculating the
loss:

Lensemble(ΘS,W) := LCE(fs(x),

M∑
i=1

w(i)fsrc
wi

(x)), (2)

where W := {w(i)}Mi=1 denotes pre-defined weights set in ensembling (e.g., the average) M weak
models and LCE denotes cross-entropy loss. fwi

denotes i-th weak model and ΘS represents the
parameters of the classifier in the strong model fs.

4 RAVEN: Robust adaptive weighting approach

In W2S generalization under distribution shift, the challenge is that weak models are trained on data
distributions that are different from the strong model’s fine-tuning data distribution, making them
even less reliable. Thus, leveraging an ensemble of weak models in Eq. (2) becomes an effective
strategy. However, compared to the InD setting, weak models have substantially higher performance
variance in OOD scenarios (Figure 3), and their effectiveness varies considerably across domains
(Appendix H.3). Similarly, in an analogous real-world scenario, some human annotators may adapt
better than others to unfamiliar domains. Consequently, it is crucial to identify more reliable weak
models within the ensemble. This motivates the need for a dynamic selection mechanism that selects
the most suitable weak model(s) for a given fine-tuning dataset Ptuning .

Motivated by this, we propose RAVEN, a robust W2S generalization framework that dynamically
learns how to combine different weak models. To improve ensemble performance in OOD settings,
RAVEN incorporates two key components: (i) adaptive weighting, and (ii) easy-sample guided
initialization.

OOD InD
30

40

50

60

Ac
cu

ra
cy

iWildCam

OOD InD
60

70

80

90

Camelyon17

OOD InD

24

27

30

33
fMoW

Figure 3: Across different datasets, we observe substantially higher performance variance in OOD
scenarios than in InD scenarios. The variance is computed using 20 weak models that were initialized
with different random seeds and trained on datasets from the WILDS benchmark [35].

Adaptive weighting. Among the weak models, some are more reliable than others. The key idea
in RAVEN is to prioritize these models’ predictions by assigning different weights to their weak
supervisions during the strong model’s training. We begin by training M weak models with different
random seeds, which represent human annotators with diverse backgrounds. This approach is
inspired by the findings of [40, 37], which demonstrate that training individual networks with random
initialization is often sufficient to achieve diversity in practice. In addition to achieving diversity via
different random seeds, we also explore using different architectures and data sources when training
weak models (Section 5.3). Leveraging these diverse weak models, we introduce adaptive weighting
loss for the W2S training:

Ladaptation(ΘS,ΘW) := LCE

(
fs(x),

M∑
i=1

θ(i)f src
wi
(x)

)
s.t.

M∑
i=1

θ(i) = 1, θ(i) ∈ ΘW. (3)

where ΘW := {θ(i)}Mi=1 represents the weights used to linearly combine the outputs of the weak
models. Importantly, the weak models themselves are fixed, while the ensembling weights {θ(i)}Mi=1
are fully trainable. At each step, these weights are adjusted, leading to a change in how the weak
models are utilized throughout training. With this objective, we train a linear classifier parameterized
by ΘS on top of the frozen pre-trained backbone of the strong model. The backbone generates robust
representations, serving as an effective anchor to train the linear classifier using the weak models.

4



Easy-sample guided initialization. To minimize the objective, the strong model may resort to
shortcutting by assigning excessive weight to the weak model most similar to its initial classifier.
This behavior is especially problematic during early training when the strong model’s classifier is
still under-optimized and performs poorly. To address this, we implement a warm-up strategy for the
strong model’s classifier using easy samples—those on which all the weak models agree, i.e., give the
same predictions. During this phase, the weights θ(i) ∈ ΘW are fixed to 1/M . Afterward, we enable
adaptive weighting across all samples, transitioning from Lensemble with easy samples to Ladaptation
for all the samples. The concept of initializing training with easy samples has proven effective for
learning with noisy labels [15]. This approach aligns with W2S generalization, as weak supervision
often involves noisy labels resulting from incorrect predictions.

Optimization procedure. After the easy-sample guided initialization, the loss for adaptive weighting
Ladaptation is optimized by alternating updates to ΘS and ΘW at each step, as follows:

Θ∗
S := argmin

ΘS

Ladaptation(ΘS,Θ
∗
W), Θ∗

W := argmin
ΘW

Ladaptation(Θ
∗
S,ΘW). (4)

This alternating optimization effectively balances the trade-off between optimizing the strong model
and leveraging weak models. The overall RAVEN training procedure is summarized in Algorithm 1.

Algorithm 1 Robust Adaptive Weighting (RAVEN)

Require: Fine-tuning dataset Dtuning , weak models {f src
wi
}Mi=1, pretrained strong backbone

Ensure: Trained linear classifier ΘS

1: Easy-sample guided initialization:
2: Identify Deasy = {x ∈ Dtuning | argmaxk f

src
wi

(x)[k] = argmaxk f
src
wj

(x)[k], ∀i, j}
3: Fix θ(i) = 1

M and define ΘW := {θ(i)}Mi=1, with
∑M

i=1 θ
(i) = 1

4: Warm up ΘS on Deasy by minimizing Lensemble (2)

5: Adaptive weighting on the full dataset:
6: while not converged do
7: Update weights: ΘW ← argminΘW

Ladaptation(ΘS ,ΘW ), x ∈ Dtuning (3)
8: Update strong model: ΘS ← argminΘS

Ladaptation(ΘS ,ΘW ), x ∈ Dtuning (3)
9: end while

10: return ΘS

Remark 1. We observe that, in most cases, the strong model assigns the highest weight maxi {θ(i)}Mi=1
to the best-performing weak model for Ptrg by the end of training, without requiring additional
guidance. This behavior enhances robustness, as weak models often exhibit significant variation in
OOD performance, and there is a strong positive correlation between weak and W2S performance.
This capability is particularly advantageous because it allows for the automatic identification and
utilization of the best weak model in terms of Ptrg, even when the GT labels for the target data are
unknown, and the best-performing weak model is therefore unclear. We provide a theoretical analysis
of this property of RAVEN in Appendix C, along with detailed quantitative results in Section 5.3,
Appendix H.4, and Appendix H.5.

5 Experiments

We evaluate RAVEN on image classification, text classification, and preference alignment in text
generation tasks. Classification training involves two stages: pre-training and fine-tuning. While
pre-training is performed in a self-supervised or unsupervised manner [14, 12, 55], fine-tuning
typically relies on human annotations. In our approach, we focus on fine-tuning by replacing human
annotations with predictions of weak models. For text generation tasks, pre-training, supervised fine-
tuning, and human preference alignment are the conventional learning phases for foundation models.
In this work, we specifically focus on alignment, substituting human feedback with preference
predictions from weak models.

5



5.1 Experimental setup

Image classification. For OOD setting, we use IWILDCAM [5], CAMELYON17 [39], and FMOW [18]
as benchmarks to evaluate our framework. In these datasets, the domain is defined by the location of
the camera, the hospital, and the time, respectively. For each dataset, the training set is used as the
source data Psrc, 70% of the OOD validation set is randomly selected as fine-tuning data Ptuning,
10% is reserved as the validation set for hyperparameter tuning, and the remaining 20% is designated
as the target data Ptrg. For the InD scenario, we adopt the same approach as [10], which utilized
IMAGENET. Consistent with the setup in [10], we use AlexNet as the weak model and DINO ViT8/B
as the strong model.

RAVEN is compared to several W2S approaches, including Naive weak-to-strong (Naive) [10], weakS-
to-strong with uniform weights (Ens) (Eq. (2)), Auxiliary confidence loss (Conf) [10], Bootstrapping
(Boots) [10], Vision superalignment (V-sup) [26], Bayesian weakS-to-strong (Bayes) [19], and
Co-supervised learning (Co-sup) [45]5.

Text classification. We employ AMAZON-WILDS [35], MEDMCQA [51], and MEDQA [31] to
evaluate RAVEN for text classification. AMAZON-WILDS, a sentiment analysis dataset, exhibits
both domain and subpopulation shifts. In this dataset, domains correspond to individual reviewers.
For the InD W2S scenario, the InD validation data is used in place of the OOD validation set. We
designate Llama-3.2-1B [24], Qwen2.5-0.5B [65] as the weak models and Llama-3.1-8B, Qwen2.5-
7B, Qwen2.5-14B as the strong models. For the medical benchmarks, we adopt MEDMCQA as the
source dataset and MEDQA as the fine-tuning and target datasets. These originate from different
examination systems from India and the U.S. 6, resulting in a natural domain shift between them.
For these medical benchmarks, we use Qwen-2.5-0.5B as a weak model and Meditron-7B and
Meditron-70B [16] as strong models.

Preference alignment. While Burns et al. [10] highlighted the importance of alignment in W2S,
their focus was solely on maximizing preference prediction accuracy rather than exploring alignment
itself. Cui et al. [19] investigated the alignment phase but limited their focus to slot filling tasks. In
contrast, we assess preference alignment in the context of text generation on HH-RLHF [4], OPENAI
SUMMARIZE FROM FEEDBACK[61], and HUMAN-LIKE DPO[11] datasets.

For HH-RLHF, we create a distribution shift by using Helpfulness samples for Psrc, randomly
sampled Harmlessness samples for Ptuning, and 1,000 Harmlessness samples for Ptrg; for InD
setting, we use only Harmlessness samples. In the second setup, we use OPENAI SUMMARIZE
FROM FEEDBACK as Psrc and HUMAN-LIKE DPO as Ptuning. To align the strong model with
Ptuning and the preference predictions of the weak models (i.e., feedback), we employ DPO [56].
To integrate RAVEN into alignment tasks, we propose a novel objective, DPO-R (Appendix E.2).
We use Qwen2.5-0.5B and Qwen2.5-7B as the weak and strong models, respectively. Following
Rafailov et al. [56], we use the GPT-4o win rate (WR) as our evaluation metric (Appendix E.4),
and compare RAVEN to Naive, Ens, and Bayes baselines (details in Appendix E). Conf and V-sup
baselines are not applicable due to the misalignment of outputs between the weak and strong models,
and Boots and Co-sup baselines are unsuitable due to task differences.

Experimental details. For each experiment, we perform a grid search to select the learning rate
(including its initial value and decay schedule) and the number of training iterations based on
validation loss. To determine the duration of the easy-sample guided initialization phase, we conduct
a grid search over {10%, 20%, 50%} of the total iterations. Additional implementation details for the
method and evaluation protocol are provided in the Appendix D.

5.2 Experimental results

Image classification. Results on the image classification task show that RAVEN consistently
outperforms all the baselines in the W2S generalization under distribution shift scenario (Table 1).
RAVEN significantly enhances robustness in the OOD setting, while also surpassing other baselines

5We adopt the domain generalization method outlined in Section 5.2 of [45] for robust W2S experiments,
rather than their original approach, as it is better suited to the robust W2S scenario. Further details can be found
in Appendix D.5.

6MEDMCQA from the All India Institute of Medical Sciences, and MEDQA from the U.S. National Medical
Board Examination.

6



Table 1: Image classification results. We report the average performance across 10 experiments,
with PGR calculated as described in Appendix D.6. Weak-to-Strong Generalization refers to using a
single weak model, whereas WeakS-to-Strong Generalization denotes ensemble-based methods. We
highlight the best score in red and the second-best score in bold. Model(3) refers to the use of three
weak models. For a fair comparison with Co-sup, which utilizes 7 weak models for IWILDCAM,
FMOW and IMAGENET, and 5 for CAMELYON17, we report the RAVEN(>3) performance achieved
using the same number of weak models as Co-sup. * indicates that the implementation code was
created by us. The standard deviations are reported in Appendix G.1.

Weak model Weak-to-Strong Generalization WeakS-to-Strong Generalization Strong model

AlexNet Naive Conf Boots V-sup Ens(3)* Bayes(3)* RAVEN(3) Co-sup(>3) RAVEN(>3) DINO ViT-B/8

Robust Weak-to-Strong Generalization (Out-of-distribution)

IWILDCAM
Accuracy 43.83 46.82 47.97 48.76 47.92 49.38 49.96 52.79 49.83 55.46 94.76

PGR - 4.21 6.52 8.08 6.40 9.73 10.90 16.25 10.03 22.14 -

CAMELYON17 Accuracy 66.90 67.83 68.90 70.84 67.85 72.18 68.74 73.67 70.00 73.45 97.93
PGR - 2.47 5.90 12.24 2.51 17.13 5.13 21.46 14.13 21.48 -

FMOW Accuracy 26.18 25.68 24.75 25.97 25.57 27.54 25.89 29.46 28.70 31.85 59.72
PGR - -1.26 -4.02 -0.38 -1.60 4.31 -0.67 10.06 13.24 14.06 -

Avg. Accuracy 45.64 46.78 47.21 48.53 47.11 49.70 47.78 51.54 49.51 53.23 81.20
PGR - 1.80 2.80 6.65 2.44 10.39 2.77 16.09 12.47 19.27 -

Weak-to-Strong Generalization (In-distribution)

IMAGENET
Accuracy 54.90 66.83 68.26 65.72 67.88 67.11 49.98 67.90 68.60 68.35 74.49

PGR - 60.97 68.12 55.39 65.87 62.02 -23.99 66.33 69.54 68.60 -

in InD W2S performance. Generally, ensemble-based methods outperform those relying on a single
weak model; nevertheless, RAVEN is far more effective than other ensemble-based approaches,
achieving 55% average improvement in PGR and 3.7% average improvement in accuracy over
the best alternative ensemble approach Ens. In contrast to other baselines that do not use domain
information, Co-sup utilizes domain information by training each weak model on a specific group
of domains. Despite that, RAVEN achieves a 54% improvement in PGR compared to Co-sup, even
without utilizing any domain knowledge.

Text classification. Experiments on the text classification tasks (Table 2) show that RAVEN consis-
tently outperforms all baselines. In the OOD setting, RAVEN achieves a 57% average improvement
in PGR and a 1.4% average improvement in accuracy compared to the best alternative baseline. In the
InD setting, RAVEN yields a 27% average improvement in PGR over the best baseline. We further
observe that Bayes [19], despite leveraging multiple weak models, underperforms in this context and
can even fall below the performance of individual weak models. Note that the OOD setting involves
more fine-tuning instances than the InD setting, which contributes to the higher PGR observed for
OOD tasks.

Table 2: Text classification results. We conduct experiments three times and report the average
performance on the OOD and InD settings. We highlight the best score in red and the second-best
score in bold. We use three weak models for all the WeakS-to-Strong Generalization methods. The
standard deviations are reported in Section G.2.

Weak model Weak-to-Strong Generalization WeakS-to-Strong Generalization Strong model

Naive Conf Boots V-sup Ens(3)* Bayes(3)* Co-sup(3) RAVEN(3)

AMAZON-WILDS (Out-of-distribution)

Llama-3.2-1B→ Llama-3.1-8B Accuracy 68.17 68.60 68.19 68.59 67.88 68.45 67.03 69.95 71.14 72.15
PGR – 10.88 0.50 10.63 -7.36 6.95 -28.70 44.77 74.56 –

Qwen2.5-0.5B→ Qwen2.5-7B Accuracy 66.34 67.69 67.12 67.79 67.26 67.64 64.44 67.60 70.15 70.78
PGR – 30.35 17.58 32.61 20.74 29.15 -43.01 28.32 85.88 –

Qwen2.5-0.5B→ Qwen2.5-14B Accuracy 66.34 70.97 70.82 70.00 70.20 70.52 59.07 70.98 71.34 75.66
PGR – 49.70 48.00 39.20 41.30 44.80 -78.00 49.80 53.60 –

MEDMCQA→ MEDQA (Out-of-distribution)

Qwen2.5-0.5B→Meditron-7B Accuracy 25.70 26.00 26.30 25.80 25.70 25.70 24.70 25.30 26.50 27.60
PGR – 17.90 30.50 5.30 1.60 -2.60 -52.60 -23.20 42.60 –

Qwen2.5-0.5B→Meditron-70B Accuracy 25.70 27.57 27.54 27.32 27.26 26.08 20.90 25.22 27.73 36.37
PGR – 17.50 17.20 15.20 14.60 3.60 -45.00 -4.50 19.00 –

AMAZON-WILDS (In-distribution)

Llama-3.2-1B→ Llama-3.1-8B Accuracy 69.74 70.23 70.02 70.06 70.02 70.33 66.29 69.97 70.44 71.33
PGR – 30.95 17.26 20.00 17.68 37.26 -217.89 14.32 44.00 –

Qwen2.5-0.5B→ Qwen2.5-7B Accuracy 67.71 68.61 68.18 68.32 68.10 68.50 63.23 68.56 68.94 69.42
PGR – 52.59 27.37 35.97 23.07 46.14 -262.76 50.05 71.95 –

7



Preference alignment. In the text gener-
ation preference alignment task, RAVEN
consistently achieves the best performance
across both InD and OOD settings. As
shown in Table 3, it surpasses the strongest
alternative baselines, achieving average im-
provements of 2.7% and 32.8% in the OOD
settings, and 1.2% and 25.6% in the InD
setting (WR and PGR, respectively). Note
again that the OOD setting involves three
times more fine-tuning instances than the
InD setting, resulting in higher performance.

Table 3: Preference alignment results.

Weak Naive Ens(3)* Bayes(3)* RAVEN(3) Strong

HELPFULNESS→ HARMLESSNESS (Out-of-distribution)

WR 59.82 61.38 62.73 61.41 64.04 66.98
PGR - 21.79 40.64 22.21 58.94 -

SUMMARIZATION→ HUMAN-LIKE (Out-of-distribution)

WR 57.50 67.86 68.09 68.18 70.37 83.00
PGR - 40.63 41.53 41.88 50.47 -

HARMLESSNESS→ HARMLESSNESS (In-distribution)

WR 59.82 61.49 61.43 62.83 63.60 66.98
PGR - 23.32 22.49 42.04 52.79 -

5.3 Further analysis

We conduct additional analyses of RAVEN on the image classification task within the robust W2S
scenario. Following the setup in Table 1, we conduct ten experiments and report their average unless
stated otherwise.

Ablation study. We conduct ablation studies to
evaluate the impact of ensembling, easy-sample-
guided initialization, and adaptive weighting in-
troduced in RAVEN. We incrementally incorpo-
rate each component and evaluate performance.
As shown in Table 4, all components effectively
contribute to RAVEN’s performance, validating
our design choices and their individual impor-
tance.

Table 4: Ablation study. The values represent the
averages across all datasets. Detailed per-dataset
results are available in Appendix H.6.

Ensemble ✓ ✓ ✓ ✓
Easy-sample guided init. ✓ ✓
Adaptive weighting ✓ ✓

Accuracy 46.78 49.76 50.51 51.37 51.97
PGR 1.80 10.39 10.67 14.28 16.09

Training scheduling. RAVEN first trains only the ΘS parameters on easy samples using Lensemble,
and then updates both ΘS and the ensembling weights ΘW on the entire dataset using Ladaptation. We
further explore how different strategies for using easy samples and for applying static vs. adaptive
weighting affect performance. As shown in Table 5, our strategy of easy-sample guided initialization
with adaptive weighting achieves the best performance, confirming the effectiveness of our approach.
We suggest that applying static weights to easy samples during the early stages discourages the strong
model from relying on shortcuts. These shortcuts occur when the strong model learns a weak signal
combination that simply mimics its own initial suboptimal predictions, an easy way to minimize the
cross-entropy loss without genuine learning. The detailed results for each dataset are provided in
Table 13 in Appendix H.1.

Table 5: Sample and weight scheduling. All is a naive ensemble model, Easy trains solely on
easy samples, and Easy-All begins with easy samples before incorporating all samples with static
weighting. Easy-All+AW uses adaptive weighting from the start without initial static weighting.

Metric All Easy Easy-All Easy-All+AW RAVEN

Accuracy 49.76 50.10 50.51 50.86 51.97
PGR 10.39 11.13 10.67 12.85 16.09

Increased weak model diversity. To enhance the diversity of weak models, we conduct additional
experiments using (i) different weak model architectures and (ii) different data sources for training
the weak models. For different architectures, we use AlexNet, ResNet18, and SqueezeNet, as weak
models to supervise the strong model DINO ViT-B/8. Although these models are trained on the
same data source, their architectural differences result in learning diverse features. For different data
sources, we follow the setup in Liu and Alahi [45], which constructs distinct data splits based on
sub-domains. Specifically, we train seven AlexNet models on different “camera location” domains
for IWILDCAM, five AlexNet models on different “hospital” domains for CAMELYON17, and seven
AlexNet models on different “time” domains for FMOW. As shown in Table 6, RAVEN achieves an
81% PGR improvement in the setting with different architectures and a 24% PGR improvement in

8



Table 6: Performance comparison across different weak model configurations. Reported values are
averaged over all datasets, with detailed results for each dataset provided in Appendix H.2.

Weak model Weak-to-Strong Generalization WeakS-to-Strong Generalization Strong model

Naive Conf Boots V-sup Ens Bayes Co-sup RAVEN DINO ViT-B/8

Different Architectures of Weak Models

Accuracy 42.04 42.80 41.18 44.21 41.87 43.40 44.23 42.45 46.03 84.43
PGR - 1.78 -1.72 3.15 -0.26 3.28 5.33 -0.31 9.65 -

Different Data Sources for Training Weak Models

Accuracy 47.40 46.34 46.92 47.33 46.46 49.40 50.13 47.43 51.17 84.63
PGR - -2.08 -0.50 0.93 -1.75 5.46 7.76 1.05 10.49 -

the setting with different data sources, compared to the best alternative baseline Bayes. These results
confirm that RAVEN is effective at weak-to-strong generalization with weak models of both low and
substantial diversity.

How do the weights ΘW evolve over iterations? One would expect that the performance of a weak
model evaluated on the test set of the strong model (Ptrg) correlates with its W2S performance.
Consequently, it would be desirable for RAVEN to assign higher weights to weak models with
better Ptrg performance. To investigate this, we begin by examining the correlation between the
performance of weak models on Ptrg and their W2S performance and indeed observe high correlation,
highlighting the importance of selecting the optimal weak model (Figure 4 Left).

We next aim to understand whether the weights ΘW that the strong model assigns to weak models in
RAVEN agree well with the actual Ptrg performance of the weak models. Notably, we find that the
strong model predominantly assigns the highest weight to the best-performing weak model for Ptrg ,
despite not having access to information about the weak models’ performance as evaluated against
GT (Figure 4 Right). This indicates that the strong model can identify high-quality annotations from
multiple annotators without any guidance, which is a remarkable feat. Additional graphs with more
weak models and classifier initializations can be found in Appendix H.4 and Appendix H.5.

xx

Figure 4: Left: Correlation between weak model accuracy Acc(Ptrg; f
src
w ) and its W2S accuracy

Acc(Ptrg; f
pseudo
s ). Right: The weights ΘW assigned to weak models across two runs of RAVEN.

1 3 5 10 15 20
Number of Models

46
48
50
52
54
56

Ac
cu

ra
cy

 (%
)

Figure 5: Effect of the number of weak models.

Number of weak models M . We further analyze
the performance across varying numbers of weak
models. As the number of weak models increases,
we observe that the performance of RAVEN im-
proves (Figure 5). However, the gains gradually
diminish after including a large number of weak
models, indicating a saturation effect.

9



Other results. In addition to the results above, further experiments are provided in the Appendix,
supporting our choices and assumptions on the proposed framework. Specifically, we present analysis
of: RAVEN’s performance on IMAGENET-C (Appendix B), performance across weight configurations
(Appendix H.8), comparison between the best weak model and adaptive weighting (Appendix H.7),
exploration of strong model’s identification of the best weak model (Appendix H.10), scaling analysis
using diverse (weak, strong) model pairs (Appendix H.11), and qualitative preference-alignment
results (Appendix H.12).

6 Related work

Weak-to-strong (W2S) generalization. W2S generalization framework was first introduced in
[10]. In this work, the authors evaluated various strategies beyond naive generalization, includ-
ing confidence loss, bootstrapping, and unsupervised fine-tuning, to enhance performance. They
demonstrated the feasibility of developing superhuman models, a finding that was further supported
by subsequent studies [67, 64]. Theoretical insights behind this observation were investigated in
[13, 38, 28, 60, 23, 66]. To enhance W2S generalization performance, [26] extended the concept
of confidence loss introduced in [10], developing adaptive confidence loss, which dynamically
adjusts the balance between learning from weak model confidence. Multiple weak models have
been employed using the AdaBoost technique [1], within the framework of hierarchical mixtures
of experts [45], and in estimating Bayesian-based confidence loss [19]. Sang et al. [57] leveraged
debates among multiple models to enhance strong models. Within this ensemble framework, we
propose a method for identifying reliable weak supervision, which proves especially effective in our
novel scenario involving distribution shifts.

Scalable oversight. Scalable oversight [3, 6, 42] aims to enhance human supervision in novel and
challenging environments. To this end, models can be used to evaluate other models [29, 58, 33, 32] or
to decompose complex problems into simpler subproblems [41, 44]. By contrast, W2S generalization
explores how to effectively leverage unreliable human supervision itself to train models that can
ultimately surpass human performance.

Learning under distribution shift. A trained model often performs poorly when it faces query data
whose distribution is significantly different from the training data [36, 62, 21, 49]. Learning under
distribution shifts aims to make the model robust in this scenario. This challenge has been observed
across domains such as healthcare, autonomous driving, and facial recognition, where models fail
to generalize across hospitals, lighting conditions, or demographic subgroups due to distribution
mismatches [35, 53, 2, 20, 9]. A range of methods has been proposed to address this issue, and their
effectiveness is actively evaluated through diverse benchmarks [25, 63, 30].

In the context of existing literature, our novel scenario can be viewed as an intersection of weak-to-
strong generalization and learning under distribution shift.

7 Concluding remarks

Limitations. The weak models used in RAVEN differ only in their random seeds. It is unclear whether
this alone can fully capture the diversity of human annotators, particularly in fields where domain
expertise is crucial. Another aspect that calls for further investigation is the choice of adaptive weights
(Appendix H.8). While we found that model-wise weights outperform the (model, sample)-wise
variant, the former is inherently a subset of the latter (where model-wise weights are the same across
all samples). Future work could explore ways to address the optimization challenges of (model,
sample)-wise weighting, potentially leading to an even stronger RAVEN variant.

Conclusion. We extend the concept of W2S generalization by explicitly modeling distribution shifts
between the source and fine-tuning datasets. We demonstrate that naive W2S generalization often
becomes intractable in such scenarios, and conventional approaches fail to adequately address this
issue, falling short of robustness requirements. To address this challenge, we present RAVEN, a
novel framework that enables robust W2S generalization.

Acknowledgments. We would like to thank Artyom Gadetsky, Fabian Gröger, Maxim Kodryan,
Ramon Vinas Torné, Shuo Wen, Siba Smarak Panigrahi, and Yulun Jiang for their valuable discussions

10



regarding our work. We gratefully acknowledge the support of the Swiss National Science Foundation
(SNSF) starting grant TMSGI2_226252/1, SNSF grant IC00I0_231922, the Swiss AI Initiative and
the CIFAR Multiscale Human Catalyst. Myeongho Jeon was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [RS-2024-00337693].
Suhwan Choi was supported by 1) the Starting growth Technological R&D Program (RS-2024-
00506994) funded by the Ministry of SMEs and Startups (MSS, Korea), 2) Culture, Sports and
Tourism R&D Program (RS-2024-00399433) through the Korea Creative Content Agency grant
funded by the Ministry of Culture, Sports and Tourism in 2024, 3) Artificial intelligence industrial
convergence cluster development project funded by the Ministry of Science and ICT (MSIT, Korea) &
Gwangju Metropolitan City, and 4) Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT) [NO.RS-2021-II211343, Artificial
Intelligence Graduate School Program (Seoul National University)]. Jan Sobotka was supported by
the Bakala Foundation during his studies at EPFL.

References
[1] Aakriti Agrawal, Mucong Ding, Zora Che, Chenghao Deng, Anirudh Satheesh, John Langford,

and Furong Huang. EnsemW2S: Can an Ensemble of LLMs be Leveraged to Obtain a Stronger
LLM? In Advances in Neural Information Processing Systems, Safe Generative AI Workshop,
2024.

[2] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and
Anh Nguyen. Strike (with) a Pose: Neural Networks are Easily Fooled by Strange Poses of
Familiar Objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

[3] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete Problems in AI Safety. arXiv preprint arXiv:1606.06565, 2016.

[4] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath,
Jackson Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine
Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin
Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning
from human feedback. Computing Research Repository, 2022.

[5] Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh Birodkar. The iWildCam 2021 Compe-
tition Dataset. arXiv preprint arXiv:2105.03494, 2021.

[6] Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė
Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring Progress on Scalable
Oversight for Large Language Models. arXiv preprint arXiv:2211.03540, 2022.

[7] Ralph Allan Bradley and Milton E. Terry. Rank Analysis of Incomplete Block Designs: I. The
Method of Paired Comparisons. Biometrika, 39, 1952.

[8] Adrian Brady, Risteárd Ó Laoide, Peter McCarthy, and Ronan McDermott. Discrepancy and
Error in Radiology: Concepts, Causes and Consequences. The Ulster Medical Journal, 81(1),
2012.

[9] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in Com-
mercial Gender Classification. In Conference on Fairness, Accountability and Transparency,
2018.

[10] Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschen-
brenner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeffrey
Wu. Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision. In
International Conference on Machine Learning, 2024.

[11] Ethem Yağız Çalık and Talha Rüzgar Akkuş. Enhancing Human-Like Responses in Large
Language Models. arXiv preprint arXiv:2501.05032, 2025.

[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging Properties in Self-Supervised Vision Transformers. In International
Conference on Computer Vision, 2021.

11



[13] Moses Charikar, Chirag Pabbaraju, and Kirankumar Shiragur. Quantifying the Gain in Weak-to-
Strong Generalization. In Advances in Neural Information Processing Systems, 2024.

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework
for Contrastive Learning of Visual Representations. In International Conference on Machine
Learning, 2020.

[15] Xinlei Chen and Abhinav Gupta. Webly Supervised Learning of Convolutional Networks. In
International Conference on Computer Vision, 2015.

[16] Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, et al.
MEDITRON-70B: Scaling Medical Pretraining for Large Language Models. arXiv preprint
arXiv:2311.16079, 2023.

[17] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep Reinforcement Learning from Human Preferences. In Advances in Neural Information
Processing Systems, 2017.

[18] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional Map of the
World. In Conference on Computer Vision and Pattern Recognition, 2018.

[19] Ziyun Cui, Ziyang Zhang, Wen Wu, Guangzhi Sun, and Chao Zhang. Bayesian WeakS-
to-Strong from Text Classification to Generation. In International Conference on Learning
Representations, 2025.

[20] Dengxin Dai and Luc Van Gool. Dark Model Adaptation: Semantic Image Segmentation from
Daytime to Nighttime. In International Conference on Intelligent Transportation Systems, 2018.

[21] Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal
Misgeneralization in Deep Reinforcement Learning. In International Conference on Machine
Learning, 2022.

[22] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF Workflow: From Reward Modeling to Online
RLHF. Transactions on Machine Learning Research, 2024.

[23] Yijun Dong, Yicheng Li, Yunai Li, Jason D Lee, and Qi Lei. Discrepancies are Virtue: Weak-to-
Strong Generalization through Lens of Intrinsic Dimension. In International Conference on
Machine Learning, 2025.

[24] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 Herd
of Models. arXiv preprint arXiv:2407.21783, 2024.

[25] Ishaan Gulrajani and David Lopez-Paz. In Search of Lost Domain Generalization. In Interna-
tional Conference on Learning Representations, 2021.

[26] Jianyuan Guo, Hanting Chen, Chengcheng Wang, Kai Han, Chang Xu, and Yunhe Wang. Vision
Superalignment: Weak-to-Strong Generalization for Vision Foundation Models. arXiv preprint
arXiv:2402.03749, 2024.

[27] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models.
In International Conference on Learning Representations, 2022.

[28] Muhammed Emrullah Ildiz, Halil Alperen Gozeten, Ege Onur Taga, Marco Mondelli, and Samet
Oymak. High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization
and Scaling Laws. In International Conference on Learning Representations, 2025.

[29] Geoffrey Irving, Paul Christiano, and Dario Amodei. AI Safety via Debate. arXiv preprint
arXiv:1805.00899, 2018.

[30] Myeongho Jeon, Suhwan Choi, Hyoje Lee, and Teresa Yeo. An Analysis of Model Robustness
across Concurrent Distribution Shifts. Transactions on Machine Learning Research, 2025.

[31] Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
Disease Does this Patient Have? a Large-Scale Open Domain Question Answering Dataset
from Medical Exams. Applied Sciences, 11(14), 2021.

12



[32] Zachary Kenton, Noah Siegel, János Kramár, Jonah Brown-Cohen, Samuel Albanie, Jannis
Bulian, Rishabh Agarwal, David Lindner, Yunhao Tang, Noah Goodman, et al. On Scalable
Oversight with Weak LLMs Judging Strong LLMs. Advances in Neural Information Processing
Systems, 2024.

[33] Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan,
Edward Grefenstette, Samuel R Bowman, Tim Rocktäschel, and Ethan Perez. Debating with
More Persuasive LLMs Leads to More Truthful Answers. In International Conference on
Machine Learning, 2024.

[34] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations, 2015.

[35] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds:
A Benchmark of in-the-Wild Distribution Shifts. In International Conference on Machine
Learning, 2021.

[36] David Krueger, Tegan Maharaj, and Jan Leike. Hidden Incentives for Auto-Induced Distribu-
tional Shift. arXiv preprint arXiv:2009.09153, 2020.

[37] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable
Predictive Uncertainty Estimation Using Deep Ensembles. In Advances in Neural Information
Processing Systems, 2017.

[38] Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. Theoretical Analysis of Weak-to-
Strong Generalization. In Advances in Neural Information Processing Systems, 2024.

[39] Byungjae Lee and Kyunghyun Paeng. A Robust and Effective Approach Towards Accurate
Metastasis Detection and pN-stage Classification in Breast Cancer. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, 2018.

[40] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why
M Heads are Better than One: Training a Diverse Ensemble of Deep Networks. arXiv preprint
arXiv:1511.06314, 2015.

[41] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
Agent Alignment via Reward Modeling: a Research Direction. arXiv preprint arXiv:1811.07871,
2018.

[42] Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou.
Trustworthy AI: From Principles to Practices. ACM Computing Surveys, 55(9), 2023.

[43] Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng Yang, Benyou
Wang, Lingpeng Kong, and Qi Liu. VLFeedback: A Large-Scale AI Feedback Dataset for
Large Vision-Language Models Alignment. In Conference on Empirical Methods in Natural
Language Processing, 2024.

[44] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step. In
International Conference on Learning Representations, 2023.

[45] Yuejiang Liu and Alexandre Alahi. Co-Supervised Learning: Improving Weak-to-Strong
Generalization with Hierarchical Mixture of Experts. arXiv preprint arXiv:2402.15505, 2024.

[46] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In
International Conference on Learning Representations, 2017.

[47] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International
Conference on Learning Representations, 2019.

[48] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is Being Transferred in Transfer
Learning? In Advances in Neural Information Processing Systems, 2020.

[49] Richard Ngo, Lawrence Chan, and Sören Mindermann. The Alignment Problem from a Deep
Learning Perspective. In International Conference on Learning Representations, 2024.

[50] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training Language Models
to Follow Instructions with Human Feedback. In Advances in Neural Information Processing
Systems, 2022.

13



[51] Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. MedMCQA: A Large-
Scale Multi-Subject Multi-Choice Dataset for Medical Domain Question Answering. In Confer-
ence on Health, Inference, and Learning, 2022.

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information Processing
Systems, 2019.

[53] Christian S Perone, Pedro Ballester, Rodrigo C Barros, and Julien Cohen-Adad. Unsupervised
Domain Adaptation for Medical Imaging Segmentation with Self-Ensembling. NeuroImage,
194, 2019.

[54] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. Failing Loudly: An Empirical
Study of Methods for Detecting Dataset Shift. In Advances in Neural Information Processing
Systems, 2019.

[55] Alec Radford. Improving Language Understanding by Generative Pre-Training, 2018.
[56] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and

Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward
Model. In Advances in Neural Information Processing Systems, 2024.

[57] Jitao Sang, Yuhang Wang, Jing Zhang, Yanxu Zhu, Chao Kong, Junhong Ye, Shuyu Wei, and
Jinlin Xiao. Improving Weak-to-Strong Generalization with Scalable Oversight and Ensemble
Learning. arXiv preprint arXiv:2402.00667, 2024.

[58] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and
Jan Leike. Self-Critiquing Models for Assisting Human Evaluators. Computing Research
Repository, 2022.

[59] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential Deep Learning to Quantify
Classification Uncertainty. In Advances in Neural Information Processing Systems, 2018.

[60] Changho Shin, John Cooper, and Frederic Sala. Weak-to-Strong Generalization Through the
Data-Centric Lens. In International Conference on Learning Representations, 2025.

[61] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to Summarize with Human Feedback.
In Advances in Neural Information Processing Systems, 2020.

[62] Sunil Thulasidasan, Sushil Thapa, Sayera Dhaubhadel, Gopinath Chennupati, Tanmoy Bhat-
tacharya, and Jeff Bilmes. An Effective Baseline for Robustness to Distributional Shift. In
International Conference on Machine Learning and Applications, 2021.

[63] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishna-
murthy Dj Dvijotham, and Ali Taylan Cemgil. A Fine-Grained Analysis on Distribution Shift.
In International Conference on Learning Representations, 2022.

[64] David Xing Wu and Anant Sahai. Provable Weak-to-Strong Generalization via Benign Overfit-
ting. In International Conference on Learning Representations, 2025.

[65] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 Technical Report. arXiv preprint
arXiv:2412.15115, 2024.

[66] Wei Yao, Wenkai Yang, Ziqiao Wang, Yankai Lin, and Yong Liu. Understanding the Capabilities
and Limitations of Weak-to-Strong Generalization. Computing Research Repository, 2025.

[67] Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin Edelman, Milind Tambe,
Sham Kakade, and Eran Malach. Transcendence: Generative Models Can Outperform the
Experts That Train Them. In Advances in Neural Information Processing Systems, 2024.

[68] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models. In
Annual Meeting of the Association for Computational Linguistics, 2024.

14



A Definition of distribution shift

To define distribution shift between some two distributions Psrc and Ptuning, we use the generalization
gap: ∆R(f) = Rtuning(f) − Rsrc(f), where R(f) = E(x,y)∼P [L(f(x), y)] is the expected risk, f
denotes the classifier, and L is the loss function (e.g., cross-entropy). A large ∆R(f) indicates that
the model struggles to generalize from distribution Psrc to distribution Ptuning, showing the presence
of a significant distribution shift.

Another way to quantify distribution shift is through a divergence metric D(Psrc, Ptuning), where D
can be any suitable measure such as Maximum Mean Discrepancy (following [54]), KL-divergence, or
optimal transport. When D(Psrc, Ptuning) ≤ ϵ and ϵ ∈ R+ is small enough, we regard the distributions
as approximately aligned, i.e., Psrc ≈ Ptuning. Conversely, we say that Psrc ̸≈ Ptuning and consider
the shift to be significant—potentially misleading the model’s performance at inference—when
D(Psrc, Ptuning) > ϵ.

B Motivating experiment

Without fine-tuning. For image classification tasks, Burns et al. [10] used an IMAGENET-pretrained
AlexNet as the weak model without additional training. To replicate their setup, we compute the
mean and standard deviation of the pre-trained AlexNet’s performance over five random splits of the
IMAGENET validation set into Ptuning and Ptrg, and over five random splits of the IMAGENET-C
dataset into Ptuning and Ptrg . The results of this experiment are provided in Table 7 and, combined
with the setup described below, shown in Figure 2.

With fine-tuning. A more common practice, however, is to evaluate models trained with different
random seeds while keeping the dataset fixed. We also adopt this approach, examining how PGR
changes under distribution shifts when using five different weak models. Specifically, using different
random seeds, we reinitialize the classification head of the IMAGENET-pretrained AlexNet and train it
for 20 epochs. This approach is particularly relevant in the weakS-to-strong generalization framework
(ensemble-based methods), where multiple distinct weak models are required. Using these fine-tuned
models, we compare RAVEN to naive W2S generalization on the IMAGENET-C dataset. As shown in
Table 8, despite severe synthetic domain shifts, the performance of RAVEN exceeds that of the weak
model (human in the future) in most cases, outperforming the naive W2S generalization method. For
this experiment, we use the same AlexNet weak models as reported in Table 1, and designate DINO
ResNet50 as the strong model.

Finally, the results for the naive W2S generalization method shown in Figure 2 are the average over
these two setups, effectively balancing clarity of presentation, adherence to previous work [10], and
common practices used in the field.

15



Table 7: Result of Motivating Experiment: without fine-tuning of weak models. For the weak and
strong models, we report the accuracy, while for the W2S fine-tuning (AlexNet→ DINO ResNet50),
we present the PGR. The values represent the mean and standard deviation over five runs.

Corruption Type AlexNet DINO ResNet50 AlexNet → DINO ResNet50 (PGR)

No-shift 56.26 ± 0.56 64.00 ± 0.39 74.01 ± 5.67

Saturate 45.72 ± 0.43 59.68 ± 0.43 44.43 ± 1.83

Brightness 42.70 ± 0.37 58.62 ± 0.69 39.59 ± 1.02

Elastic 40.18 ± 0.28 52.64 ± 0.36 19.56 ± 2.34

JPEG 37.66 ± 0.25 53.00 ± 0.79 9.63 ± 2.38

Gaussian Blur 13.64 ± 0.17 41.24 ± 0.56 5.87 ± 1.18

Pixelate 29.06 ± 0.42 49.44 ± 0.47 5.50 ± 0.66

Defocus Blur 11.54 ± 0.15 39.32 ± 0.71 5.48 ± 0.80

Spatter 23.08 ± 0.30 48.30 ± 0.30 3.00 ± 0.76

Contrast 9.18 ± 0.25 52.04 ± 0.41 2.66 ± 0.63

Fog 13.86 ± 0.36 47.34 ± 0.34 1.91 ± 0.28

Motion Blur 16.00 ± 0.39 38.76 ± 0.19 1.57 ± 1.92

Snow 12.52 ± 0.25 39.54 ± 0.44 1.56 ± 1.37

Zoom Blur 19.22 ± 0.65 39.94 ± 0.45 1.04 ± 1.79

Speckle Noise 8.58 ± 0.08 41.94 ± 0.27 −0.24 ± 0.54

Gaussian Noise 5.06 ± 0.17 40.06 ± 0.37 −1.03 ± 0.67

Shot Noise 5.22 ± 0.16 39.64 ± 0.38 −1.45 ± 0.46

Frost 10.68 ± 0.13 36.90 ± 0.37 −1.69 ± 1.11

Impulse Noise 4.18 ± 0.19 37.12 ± 0.27 −1.76 ± 0.58

Glass Blur 10.68 ± 0.13 30.92 ± 0.41 −9.00 ± 0.80

16



Table 8: Performance comparison on IMAGENET-C for the Motivating Experiment: with fine-tuning
of weak models. We conduct five experiments and report the results as the mean and standard
deviation. Negative PGRs are highlighted in red.

Corruption Metric AlexNet Naive RAVEN Dino ResNet50

Saturate Accuracy 44.34 ± 0.44 47.66 ± 0.51 49.23 ± 0.40 60.06 ± 0.39

PGR - 20.94 ± 1.09 31.22 ± 1.42 -

Brightness Accuracy 40.64 ± 0.36 43.72 ± 0.50 45.67 ± 0.06 58.90 ± 0.50

PGR - 16.93 ± 0.74 27.63 ± 0.62 -

Elastic Accuracy 38.02 ± 0.49 37.82 ± 0.38 38.83 ± 0.06 52.90 ± 0.70

PGR - −1.34 ± 0.78 5.07 ± 2.07 -

JPEG Accuracy 35.74 ± 0.48 35.02 ± 0.35 36.27 ± 0.06 53.16 ± 0.79

PGR - −4.42 ± 0.36 2.94 ± 0.96 -

Gaussian blur Accuracy 10.86 ± 0.32 10.92 ± 0.42 11.57 ± 0.35 41.84 ± 0.35

PGR - 0.22 ± 0.57 2.40 ± 0.88 -

Pixelate Accuracy 26.46 ± 0.43 26.12 ± 0.70 27.47 ± 0.47 49.72 ± 0.46

PGR - −1.48 ± 0.55 4.54 ± 1.38 -

Defocus blur Accuracy 9.22 ± 0.27 9.32 ± 0.34 9.67 ± 0.49 40.16 ± 0.50

PGR - 0.57 ± 0.34 1.62 ± 1.30 -

Spatter Accuracy 22.74 ± 0.45 21.90 ± 0.47 22.97 ± 0.38 48.90 ± 0.46

PGR - −3.18 ± 0.26 0.72 ± 1.14 -

Contrast Accuracy 8.40 ± 0.19 8.46 ± 0.21 8.97 ± 0.06 52.40 ± 0.47

PGR - 0.20 ± 0.12 1.34 ± 0.24 -

Fog Accuracy 13.92 ± 0.48 14.04 ± 0.55 14.17 ± 0.06 47.64 ± 0.62

PGR - −2.75 ± 0.34 0.33 ± 0.06 -

Motion blur Accuracy 13.04 ± 0.21 12.06 ± 0.21 13.10 ± 0.10 39.18 ± 0.48

PGR - −3.78 ± 0.30 0.34 ± 0.60 -

Snow Accuracy 12.08 ± 0.22 11.58 ± 0.16 12.27 ± 0.29 40.34 ± 0.38

PGR - −1.93 ± 0.26 0.55 ± 0.95 -

Zoom blur Accuracy 16.02 ± 0.35 14.66 ± 0.28 16.30 ± 0.39 40.64 ± 0.46

PGR - −5.36 ± 0.42 1.30 ± 1.56 -

Speckle noise Accuracy 8.12 ± 0.36 7.70 ± 0.37 8.20 ± 0.17 42.88 ± 0.36

PGR - −1.15 ± 0.25 0.10 ± 0.25 -

Gaussian noise Accuracy 4.68 ± 0.26 3.90 ± 0.23 4.90 ± 0.10 40.10 ± 0.00

PGR - −2.23 ± 0.15 0.38 ± 0.16 -

Shot noise Accuracy 4.76 ± 0.26 4.12 ± 0.16 5.03 ± 0.06 40.10 ± 0.00

PGR - −1.95 ± 0.14 0.54 ± 0.14 -

Frost Accuracy 10.50 ± 0.41 9.28 ± 0.66 9.90 ± 0.35 36.88 ± 0.42

PGR - −4.27 ± 0.42 −1.36 ± 0.21 -

Impulse noise Accuracy 4.00 ± 0.20 3.40 ± 0.07 4.23 ± 0.06 38.28 ± 0.38

PGR - −1.95 ± 0.10 0.49 ± 0.34 -

Glass blur Accuracy 9.56 ± 0.36 7.82 ± 0.33 8.27 ± 0.25 31.80 ± 0.35

PGR - −7.78 ± 0.17 −5.79 ± 0.61 -

17



C Theoretical analysis of how RAVEN operates

To understand why RAVEN often identifies the most suitable weak model for the target data distribu-
tion, we begin with the following assumption.

Assumption 1. The ensemble of weak models tends to make predictions similar to those of the
best-performing weak model:

arg max
k∈{1,...,C}

f∑(x)[k] ≈ argmax
k

f∗(x)[k], (5)

where

f∑(x) :=

M∑
i=1

f src
wi
(x),

and f∗(x) denotes the best-performing weak model. While the ensemble prediction is often close to
that of the best model, we assume that f∗ is more accurate and confident.

Let fs denote the strong model, and define the adaptation loss as:

Ladaptation(ΘS ,ΘW ) := LCE

(
fs(x),

M∑
i=1

θ(i)f src
wi
(x)

)
s.t.

M∑
i=1

θ(i) = 1, θ(i) ∈ ΘW . (6)

This loss is optimized by alternating the following two steps:

Step 1. Optimize ΘS with ΘW fixed.

When the weights are uniform (i.e., θ(i) = 1
M ), the strong model learns to mimic the average behavior

of weak models:

fs(x) ≈
1

M

M∑
i=1

f src
wi
(x). (7)

Step 2. Optimize ΘW with ΘS fixed.

We can rewrite the objective as:

LCE(ΘW ) =

M∑
i=1

θ(i)Ci, (8)

where

Ci := −Ex∼D

[
C∑

k=1

f src
wi
(x)[k] log fs(x)[k]

]
. (9)

Assumption 2. Each weak model is highly confident in predicting a single class:
f src
wi
(x) = (ϵ, . . . , 1− ϵ, . . . , ϵ), ϵ≪ 1, (10)

with the largest value 1− ϵ at index

k̂i := argmax
k

f src
wi
(x)[k].

Then,
C∑

k=1

f src
wi
(x)[k] log fs(x)[k] ≈ log fs(x)[k̂i], (11)

and the objective simplifies to:

Ci ≈ −Ex∼D

[
log fs(x)[k̂i]

]
. (12)

By Assumption 1 and Eq. (3), we infer that the best weak model f∗(x) most closely matches the
predictions of fs(x) and therefore receives the highest weight—consistent with empirical findings.
Notably, this conclusion still holds even when only the best weak model satisfies Assumption 2,
since the best weak model yields the smallest Ci. As a result, RAVEN naturally prioritizes the weak
models that generalize well to the target distribution.

Through this iterative optimization, the strong model fs becomes increasingly aligned with the best
weak model and further improves by leveraging this implicit supervision.

18



D Experimental details

D.1 Adaptive weighting

We initialize the adaptive weights θ(i) ∈ ΘW uniformly, i.e., θ(i) = 1
M for i ∈ {1, . . .M}. After

the easy-sample guided initialization phase, during which θ(i) are fixed and only the strong model
parameters ΘS are trained, we start optimizing the adaptive weights as well. More specifically, for
each minibatch of the fine-tuning data, we first generate and combine soft labels from the M weak
models using the latest ΘW (Eq. 3). Then, using these pseudo labels, we calculate gradients of
Ladaptation(ΘS,ΘW) with respect to ΘS and ΘW, and perform a single update step of both using the
Adam optimizer [34] and SGD, respectively. After each update of ΘW, we clip and normalize the
adaptive weights to sum up to 1 as:

θ(i)new =
max(θ(i), ϵ)∑M
j=1 max(θ(j), ϵ)

, (13)

where ϵ = 10−6. θ(i)new are then set as θ(i) for the next minibatch of the fine-tuning process.

For text classification, we derive the weak supervision ysoft(x) (i.e., pseudo-label) by computing a
weighted sum of weak model logits yaw using adaptive weights, followed by a softmax operation for
stabilization:

y
(c)
soft(x) =

exp
(
y
(c)
aw (x)

)∑K
k=1 exp

(
y
(k)
aw (x)

) , (14)

where yaw(x) =

M∑
i=1

θ(i)fsrc
wi

(x). (15)

Above, fsrc
wi

(x) represents the logits of the i-th weak model trained on source data, K is the number
of label classes, and c denotes a specific class label. Consequently, ysoft(x) serves as the weak
supervision.

All hyperparameters, including those of the baselines, are found using a grid search based on the
validation loss. The hyperparameter search includes the number of fine-tuning epochs, the learning
rate, and the method-specific hyperparameters (e.g., the learning rate of the adaptive weights and
the length of the easy-sample guided initialization phase). Building on the publicly available code
from Burns et al. [10], we use the cosine annealing schedule [46] while optimizing the strong
model parameters ΘS, but keep the learning rate of the adaptive weights ΘW fixed. We perform a
hyperparameter search in the range shown in Table 9.

Table 9: Hyperparameter configurations for RAVEN.

Task Learning rate for ΘS Learning rate for ΘW Easy-sample guided period Epoch

Image Classification {1e-6, 1e-5, 1e-4, 1e-3} {1e-6, 1e-5, 1e-4, 1e-3} {10%, 20%, 50%} {30, 50, 80, 100}
Text Classification {1e-6, 1e-5, 1e-4} {1e-5, 1e-4, 1e-3} {20%, 50%} {10, 20}
Preference Alignment {1e-6, 5e-6, 1e-5, 5e-5} {1e-5, 1e-4, 1e-3} {20%, 50%} {2}

D.2 Weak models for ensemble-based methods

The weak models used in ensemble-based methods are trained using different seeds and hyperparam-
eters found through a search over the number of epochs, learning rate, and weight decay. For image
classification experiments, we train weak models with the Adam optimizer [34], the cross-entropy
loss function, early stopping, and multiplicative (factor 0.96) and the cosine learning rate schedule for
IWILDCAM and FMOW, respectively. For CAMELYON17 and IMAGENET, we employ SGD with
a momentum of 0.9 and a fixed learning rate. Our selection of optimizers and hyperparameters is
based on the original work introducing the WILDS benchmark datasets [35], with adjustments that
we found to improve the performance of our specific model architectures.

19



With this setup, all weak models achieve around the same InD validation accuracy on their respective
datasets (±2%). Since the W2S fine-tuning step of the IMAGENET experiments employs its validation
dataset, we use 10% of the IMAGENET training set as the validation set for weak model training.
Importantly, in the case of IMAGENET, we start from a pre-trained AlexNet model loaded from the
PyTorch library [52] with a randomly reinitialized classification head to achieve diversity among the
weak models (same setup as for Table 8).

For text classification, we train weak models using the Adam optimizer [34], the cross-entropy loss
function, and cosine learning rate schedule. We initialize with pre-trained weak language models
(Qwen2.5-0.5B7/Llama-3.2-1B8) from Hugging Face. In the AMAZON-WILDS OOD setting, because
the OOD validation and test sets are OOD with respect to each other, we only use the OOD validation
set, splitting it into fine-tuning (70%), test (20%), and validation (10%) subsets. For the InD setting,
we use the original AMAZON-WILDS InD validation and test sets.

For reward modeling, we train weak models using AdamW [47] optimizer and cosine learning rate
schedule. The source data is split into training (90%) and validation (10%) subsets. For further details
on reward modeling, please refer to Section E.1.

We report the final hyperparameter values for training the weak models in Table 10.

Table 10: Hyperparameter configurations for training the weak models.

Learning rate Weight decay Epochs

Image Classification

IWILDCAM 3e-5 8e-2 60
CAMELYON17 1e-3 1e-2 30
FMOW 8e-4 5e-3 150
IMAGENET 3e-4 8e-5 20

Text Classification

AMAZON-WILDS 1e-5 0 10

Preference Alignment

HH-RLHF 1e-6 1e-3 5

To balance the statistical power of repeated W2S experiments and computational costs, we reuse the
weak models in the ensembles. More specifically, for each experiment k ∈ {1, . . . , 10}, we use the
pretrained weak models k, k + 1, k + 2 for the Ens(3), Bayes(3) and RAVEN(3) methods reported in
Table 1 and Table 2. The same idea is applied for RAVEN(>3) and our analysis of the number of
weak models in Figure 5.

D.3 Baselines for image and text classification

We use the original implementation of the auxiliary confidence loss from Burns et al. [10] and
the Vision superalignment (adaptive confidence loss) from Guo et al. [26]. We implement the
bootstrapping method [10] with DINO ResNet50 as the intermediate (medium-strong) model for
image classification and Qwen2.5-3B/Llama-3.2-3B for text classification. This intermediate model
is first fine-tuned using the weak supervision, and then its pseudo labels for the fine-tuning dataset
(Ptuning) are used to fine-tune the final strong model. In image classification, AlexNet serves as
the weak model, and DINO ViT8/B as the strong model. In text classification, weak supervision is
performed within the same model family: Llama-3.2-1B supervises Llama-3.1-8B, and Qwen2.5-
0.5B supervises Qwen2.5-7B. Fine-tuning in both steps is done using the same setup as in all the
other reported W2S experiments. For the Bayesian weakS-to-strong baseline [19], we follow the
authors’ formulation while implementing the method using the code for evidential deep learning from
Sensoy et al. [59]. See Section D.5 for details on how we adapt Co-supervised learning [45] for our
setup.

7https://huggingface.co/Qwen/Qwen2.5-0.5B
8https://huggingface.co/meta-llama/Llama-3.2-1B

20



D.4 Baselines for preference alignment

Cui et al. [19] implemented DPO for Bayesian weakS-to-strong by using the log probability P of
weak models as a proxy for preference. More specifically, their preference reward rbayes for a given
text y is computed as the weighted sum of the log probabilities from M trained weak models:

rbayes(y) =

M∑
i=1

λiP(yw(y)|θi). (16)

Strong models are trained on target preference data using the DPO objective with yc and yr as defined
in Eq. 22. The chosen text yc is the text with the highest preference reward, while the rejected text yr
is the one with the lowest preference reward:

yc = argmax
yj , j=1,2,...,N

rbayes(y), yr = argmin
yj , j=1,2,...,N

rbayes(y). (17)

In HH-RLHF [4], N = 2, where the two available text choices are the ground-truth chosen and
rejected texts. The original work [19] assigned different weights λi to different weak model families.
However, since we use the same type of weak models, we set λi =

1
M .

We note that in this Bayesian weakS-to-strong approach [19], the weak models were not trained
on preference data. In contrast, we train our weak models on source preference data using DPO,
allowing them to better capture preference-based signals. Additionally, the weak models are trained
within the same hyperparameter space as the strong models, as detailed in Section E.3.

D.5 Co-supervised learning

For DOMAINNET [48], Liu and Alahi [45] designed a two-level structure of specialized weak
supervisors using sub-domain labels from DomainNet. At the first tier, the problem domain is divided
into two groups of sub-domains: ‘clip’, ‘quick’, ‘sketch’ and ‘info’, ‘paint’, ‘real’. At the second
level, each supervisor is dedicated to a specific sub-domain.

Building on the official implementation, we adapt this approach of Co-supervised learning to our
OOD scenario as follows. First, we use the domain information from IWILDCAM, CAMELYON17,
FMOW, and AMAZON-WILDS to create multiple distinct weak models that are trained on subsets of
domains that form a hierarchy. In the fine-tuning process, the strong model is first supervised by the
weak model trained on all domains. Then, at each subsequent supervision level, it is further fine-tuned
with weak supervision coming from the weak models, where each was trained on half of the domains
of the supervision level before, effectively learning from more specialized weak models. For all these
supervision levels with multiple weak models, we select the weak supervision label for each data
point that agrees the most with the strong model’s predictions from the previous supervision level.

D.6 Calculating PGR for ensemble-based methods

For an ensemble-based method with M weak models, we compute the PGR in the following way:

PGR :=
Acc(Ptrg; f

pseudo
s )− 1

M

∑M
i=1 Acc(Ptrg; f

src
wi

)
1
M

∑M
i=1 Acc(Ptrg; f

gt
si )−Acc(Ptrg; fsrc

wi
)

, (18)

where fgt
si , i ∈ {1, . . . ,M} refers to the strong model fine-tuned on Ptuning using the GT labels and

the same random seed as the i-th weak model fsrc
wi

used in its training. We report this PGR along
with the average accuracy of weak models and strong models trained with GT labels in Table 1 and
Table 2.

E Configurations for preference alignment experiments

We perform preference alignment in two phases: reward modeling for the weak models and preference
optimization for the strong model. First, we train the weak models using HELPFULNESS samples
from HH-RLHF [4] to predict preference rewards. The trained weak models then generate preference
signals for target HARMLESSNESS samples, which are used to align the strong model via DPO [56].

21



E.1 Reward modeling

The preference signal is commonly modeled using the reward-based Bradley-Terry model [7, 50, 4]:

p
(
y1 ≻ y2 | x

)
=

exp
(
rw(x, y1)

)
exp

(
rw(x, y1)

)
+ exp

(
rw(x, y2)

) = σ
(
rw(x, y1)− rw(x, y2)

)
, (19)

where x represents an input prompt, y1 and y2 are responses to x, rw is the weak model as the
preference reward predictor, and σ denotes the sigmoid function. For a given input prompt x with
ground-truth chosen response yc and rejected response yr, we train weak models by minimizing the
following loss function:

LRM(x, yc, yr) = − log σ
(
rw(x, yc)− rw(x, yr)

)
. (20)

After the weak models are trained for reward modeling, we use their predicted preference rewards for
a pair of responses y1 and y2 to determine the chosen and rejected responses for aligning the strong
model on new data:

yc = argmax
y∈{y1,y2}

rw(x, y), yr = argmin
y∈{y1,y2}

rw(x, y). (21)

Our implementation builds upon the reward modeling framework implemented by Dong et al. [22].

E.2 DPO-R: Direct Preference Optimization for RAVEN

Unlike the cross-entropy loss that is used for classification tasks, adaptive weights cannot be updated
with direct preference optimization (DPO) loss since they are not involved in the loss calculation. To
address this, we modify the DPO loss, leading to our DPO-R formulation. The original objective
function of DPO is defined as follows:

LDPO(πθ;πref) := −E(x,yc,yr)∼D

[
log σ

(
β log

πθ(yc | x)
πref(yc | x)

− β log
πθ(yr | x)
πref(yr | x)

)]
, (22)

where x represents a prompt, yc is the chosen response and yr is the rejected response. πθ denotes
the model being trained with DPO, while πref refers to the model πθ before undergoing DPO training.

Direct preference optimization with adaptive weighting. In RAVEN, adaptive weighting with
multiple weak models (i.e., ensemble) can be formulated as follows:

rens(x, y) =

M∑
i=1

θ(i)rwi(x, y), (23)

where rwi
is the i-th reward model, implemented as a weak model in our setting. While LDPO relies

on a single parameter β, we introduce two parameters, βc and βr, which represent the weights for the
chosen and rejected log-likelihoods, respectively. By incorporating the Bradley-Terry model [7] into
the DPO loss, we derive a new loss tailored for RAVEN, referred to as the DPO-R loss, defined as:

LDPO-R(πθ;πref) := −E(x,yc,yr)∼D

[
log σ

(
βc log

πθ(yc | x)
πref(yc | x)

− βr log
πθ(yr | x)
πref(yr | x)

)]
, (24)

βc = p
(
yc ≻ yr | x

)
, βr = p

(
yr ≻ yc | x

)
, (25)

p
(
y1 ≻ y2 | x

)
=

exp
(
rens(x, y1)

)
exp

(
rens(x, y1)

)
+ exp

(
rens(x, y2)

) . (26)

E.3 Training details for DPO

Strong models are trained using LoRA [27] with a rank of 8 and a scaling parameter α = 16. We
use the AdamW [47] optimizer with cosine learning rate scheduling. The LoRA target modules are
v_proj, gate_proj, down_proj, o_proj, up_proj, q_proj, and k_proj. For β, we perform a
grid search over the values {0.1, 0.2, 0.5}. Our implementation for DPO experiments is based on
Zheng et al. [68]. Hyperparameter search spaces are outlined in Table 9.

22



E.4 Evaluation metric for preference alignment: GPT-4o Win Rate

For evaluation in preference alignment experiments, we use the GPT-4o win rate metric, following
the prompts utilized by Rafailov et al. [56]. All alignment experiments are conducted with GPT-4o9,
with the response order randomized for each evaluation. The prompt used is shown below.

For the following query to a chatbot, which response is more
<"harmless" or "human-like">?

Query: <the user query>

Response A:
<either the test method or baseline>

Response B:
<the other response>

FIRST provide a one-sentence comparison of the two responses and explain
which you feel is more <"harmless" or "human-like">. SECOND, on a new line,
state only "A" or "B" to indicate which response is more
<"harmless" or "human-like">.
Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More <"harmless" or "human-like">: <"A" or "B">

We compute WR using selected preference samples: HH-RLHF and the SFT model output for
OPENAI SUMMARIZE FROM FEEDBACK and HUMAN-LIKE DPO. WR is calculated by comparing
the outputs of DPO-trained models with pre-DPO models.

F Computational resources

F.1 Image classification

Our image classification experiments used a cluster of 8 NVIDIA GeForce RTX 3090 GPUs, but each
individual run required only a single GPU and less than 22 GB of VRAM. The most computationally
demanding part was training the weak models, which each required at most one day on the single
GPU. The subsequent W2S experiment, where we used the pre-trained weak models and pre-collected
strong model embeddings, took at most one hour. Hyperparameter search for image classification, as
reported in Table 9, took between one and two days.

F.2 Text classification and direct preference alignment

Our text-classification and DPO experiments used a cluster of 8 NVIDIA H100 GPUs, and each
individual run employed the 8 GPUs in parallel. A single text-classification training run completed in
roughly one hour. A single DPO training run required about five hours per run on the same eight-GPU
setup. Hyperparameter search for each baseline, as reported in Table 9, took one–two days for text
classification and about five days for DPO.

G Experimental results

G.1 Image classification

We present the image classification results in Table 1, along with standard deviations calculated based
on the setup described in Section D.2.

9https://openai.com/index/hello-gpt-4o

23

https://openai.com/index/hello-gpt-4o


Table 11: Image classification results. We report the average performance across 10 experiments,
with PGR calculated as described in Section D.6. Weak-to-Strong Generalization refers to using a
single weak model, whereas WeakS-to-Strong Generalization denotes ensemble-based methods. We
highlight the best score in red and the second-best score in bold. Model(3) refers to the use of three
weak models. For a fair comparison with Co-sup, which utilizes 7 weak models for IWILDCAM,
FMOW and IMAGENET, and 5 for CAMELYON17, we report the RAVEN(>3) performance achieved
using the same number of weak models as Co-sup. * indicates that the implementation code was
created by us.

Weak model Weak-to-Strong Generalization WeakS-to-Strong Generalization Strong model

AlexNet Naive Conf Boots V-sup Ens(3)* Bayes(3)* RAVEN(3) Co-sup(>3) RAVEN(>3) DINO ViT-B/8

Robust Weak-to-Strong Generalization (Out-of-distribution)

IWILDCAM
Accuracy 43.83 46.82 47.97 48.76 47.92 49.38 49.96 52.79 49.83 55.46 94.76

±6.63 ±1.56 ±2.42 ±2.21 ±6.96 ±3.04 ±3.48 ±3.92 ±2.45 ±2.52 ±0.21
PGR - 4.21 6.52 8.08 6.40 9.73 10.90 16.25 10.03 22.14 -

CAMELYON17 Accuracy 66.90 67.83 68.90 70.84 67.85 72.18 68.74 73.67 70.00 73.45 97.93
±5.16 ±2.41 ±2.67 ±2.51 ±2.56 ±3.29 ±1.98 ±2.81 ±3.18 ±1.77 ±0.15

PGR - 2.47 5.90 12.24 2.51 17.13 5.13 21.46 14.13 21.48 -

FMOW Accuracy 26.18 25.68 24.75 25.97 25.57 27.54 25.89 29.46 28.70 31.85 59.72
±2.91 ±1.42 ±1.52 ±1.44 ±1.48 ±1.56 ±1.55 ±3.07 ±5.28 ±2.52 ±1.04

PGR - -1.26 -4.02 -0.38 -1.60 4.31 -0.67 10.06 13.24 14.06 -

Avg. Accuracy 45.64 46.78 47.21 48.53 47.11 49.70 47.78 51.54 49.51 53.23 81.20
PGR - 1.80 2.80 6.65 2.44 10.39 2.77 16.09 12.47 19.27 -

Weak-to-Strong Generalization (In-distribution)

IMAGENET
Accuracy 54.90 66.83 68.26 65.72 67.88 67.11 49.98 67.90 68.60 68.35 74.49

±0.80 ±0.10 ±0.12 ±0.08 ±0.04 ±0.20 ±0.06 ±0.11 ±0.24 ±0.04 ±0.19
PGR - 60.97 68.12 55.39 65.87 62.02 -23.99 66.33 69.54 68.60 -

G.2 Text classification

We report the text classification results in Table 12, accompanied by standard deviations computed
according to the setup outlined in Section D.2.

Table 12: Text classification results. We conduct experiments three times and report their average.
We highlight the best score in red and the second-best score in bold. We use three weak models for
all the WeakS-to-Strong Generalization methods.

Weak model Weak-to-Strong Generalization WeakS-to-Strong Generalization Strong model

Naive Conf Boots V-sup Ens(3)* Bayes(3)* Co-sup(3) RAVEN(3)

Robust Weak-to-Strong Generalization (Out-of-distribution)

Llama-3.2-1B→ Llama-3.1-8B Accuracy 68.17 68.60 68.19 68.59 67.88 68.45 67.03 69.95 71.14 72.15
± 0.02 ±0.10 ±0.18 ±0.06 ±0.15 ±0.24 ±0.69 ±0.14 ±0.11 ±0.02

PGR - 10.88 0.50 10.63 -7.36 6.95 -28.70 44.77 74.56 -

Qwen2.5-0.5B→ Qwen2.5-7B Accuracy 66.34 67.69 67.12 67.79 67.26 67.64 64.44 67.60 70.15 70.78
±0.06 ±0.15 ±0.21 ±0.04 ±0.06 ±0.06 ±0.12 ±0.13 ±0.09 ±0.03

PGR - 30.35 17.58 32.61 20.74 29.15 -43.01 28.32 85.88 -

Weak-to-Strong Generalization (In-distribution)

Llama-3.2-1B→ Llama-3.1-8B Accuracy 69.74 70.23 70.02 70.06 70.02 70.33 66.29 69.97 70.44 71.33
± 0.03 ± 0.04 ± 0.06 ± 0.09 ± 0.05 ± 0.09 ± 0.07 ± 0.18 ± 0.06 ± 0.10

PGR - 30.95 17.26 20.00 17.68 37.26 -217.89 14.32 44.00 -

Qwen2.5-0.5B→ Qwen2.5-7B Accuracy 67.71 68.61 68.18 68.32 68.10 68.50 63.23 68.56 68.94 69.42
±0.01 ±0.04 ±0.18 ±0.14 ±0.16 ±0.11 ±0.45 ±0.19 ±0.04 ±0.02

PGR - 52.59 27.37 35.97 23.07 46.14 -262.76 50.05 71.95 -

H Further analysis

H.1 Training scheduling

Table 5 presents the results aggregated over all datasets. The corresponding detailed results for each
dataset are provided in Table 13.

H.2 Increased weak model diversity

Table 6 presents the results aggregated over all datasets. The corresponding detailed results for each
dataset are provided in Table 14.

24



Table 13: Sample and weight scheduling. All is a naive ensemble model, Easy trains solely on
easy samples, and Easy-All begins with easy samples before incorporating all samples with static
weighting. Easy-All+AW uses adaptive weighting from the start without initial static weighting.

Dataset Metric All Easy Easy-All Easy-All+AW RAVEN

IWILDCAM
Accuracy 49.56 50.27 49.75 50.30 52.79
PGR 9.73 11.12 10.11 11.17 16.25

CAMELYON17
Accuracy 72.18 71.66 74.05 75.06 73.67
PGR 17.13 15.55 17.24 24.04 21.95

FMOW
Accuracy 27.54 28.38 27.72 27.22 29.46
PGR 4.31 6.73 4.67 3.34 10.06

Avg. Accuracy 49.76 50.10 50.51 50.86 51.97
PGR 10.39 11.13 10.67 12.85 16.09

Table 14: Performance comparison across datasets and configurations. Each result represents the
average over 10 runs. We highlight the best score in red and the second-best in bold.

Weak model Weak-to-Strong Generalization WeakS-to-Strong Generalization Strong model

Naive Conf Boots V-sup Ens Bayes Co-sup RAVEN DINO ViT-B/8

Different Architectures of Weak Models

IWILDCAM
Accuracy 47.93 48.90 45.20 49.30 47.00 49.60 50.20 49.80 49.90 94.83

PGR - 2.1 -5.8 2.9 -2.0 3.6 4.8 4.6 4.2 -

CAMELYON17 Accuracy 59.91 60.50 61.00 62.57 60.67 62.00 63.40 63.80 63.90 97.80
PGR - 1.5 2.9 7.0 2.0 5.5 9.2 -2.7 10.5 -

FMOW Accuracy 18.27 19.00 17.33 18.07 17.93 18.60 19.10 13.75 24.30 60.67
PGR - 1.7 -2.2 -0.5 -0.8 0.8 2.0 -2.9 14.2 -

Avg. Accuracy 42.04 42.80 41.18 44.21 41.87 43.40 44.23 42.45 46.03 84.43
PGR - 1.78 -1.72 3.15 -0.26 3.28 5.33 -0.31 9.65 -

Different Data Sources for Training Weak Models

IWILDCAM
Accuracy 53.80 48.41 50.30 49.50 48.63 55.20 56.00 47.40 56.00 94.6

PGR - -13.2 -8.6 -10.5 -12.7 3.4 5.4 -15.7 5.4 -

CAMELYON17 Accuracy 67.04 68.98 69.58 71.10 69.10 69.00 70.90 70.50 71.50 97.8
PGR - 6.3 8.2 13.2 6.7 6.4 12.5 11.2 14.5 -

FMOW Accuracy 21.35 21.61 20.89 21.40 21.64 24.00 23.50 24.40 26.00 61.5
PGR - 0.66 -1.15 0.13 0.73 6.60 5.36 7.60 11.58 -

Avg. Accuracy 47.40 46.34 46.92 47.33 46.46 49.40 50.13 47.43 51.17 84.63
PGR - -2.08 -0.50 0.93 -1.75 5.46 7.76 1.05 10.49 -

H.3 Performance variation among weak models on multiple different domains

When we utilize the domain information available in the WILDs datasets (not used by RAVEN
itself), we find that different weak models generalize well to different OOD domains (6), motivating
a selection mechanism that adapts to the particular (unknown) domain subset in fine-tuning data.

25



Figure 6: Performance variation of the weak models on different domains. Heatmap of per-domain
accuracies of weak models trained with different random seeds, evaluated on the IWILDCAM fine-
tuning dataset.

26



H.4 Weights ΘW with different weak models

Figure 7, Figure 8, and Figure 9 illustrate the evolution of weights assigned to the weak models
throughout the learning iterations. Each graph represents three distinct weak models.

0 10000 20000
0.0

0.2

0.4

0.6

0.8

0 5000 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000

0.3325

0.3330

0.3335

0.3340

0 5000 10000

0.33300

0.33325

0.33350

0.33375

0.33400

0 5000 10000
0.0

0.2

0.4

0.6

0 5000 10000
0.0

0.2

0.4

0.6

0 5000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0 5000 10000
0.0

0.1

0.2

0.3

0.4

0.5

Figure 7: Weights ΘW over iterations for IWILDCAM. The x-axis and y-axis represent iterations
and weights, respectively. The darker the line, the higher the OOD performance of the weak model
corresponding to that adaptive weight.

0 5000 10000

0.32

0.34

0.36

0 5000 10000

0.25

0.30

0.35

0.40

0 5000 10000

0.28

0.30

0.32

0.34

0.36

0.38

0 5000 10000

0.2

0.3

0.4

0 5000 10000

0.25

0.30

0.35

0.40

0 5000 10000

0.25

0.30

0.35

0 5000 10000

0.25

0.30

0.35

0.40

0.45

0 5000 10000
0.30

0.32

0.34

0.36

0 5000 10000

0.2

0.4

0.6

0 5000 10000
0.1

0.2

0.3

0.4

Figure 8: Weights ΘW over iterations for CAMELYON17. The configurations are identical to those in
Figure 7.

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000
0.0

0.2

0.4

0.6

0.8

0 5000 10000
0.2

0.3

0.4

0.5

0 5000 10000
0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Weights ΘW over iterations for FMOW. The configurations are identical to those in
Figure 7.

27



H.5 Weights ΘW with different initialization of strong model’s classifier

Figure 10, Figure 11, and Figure 12 show how the weights assigned to weak models evolve over
learning iterations. Each graph depicts the weight progression for the same weak models but with
different initializations of the strong model’s classification head (different seeds).

0 10000 20000
0.0

0.2

0.4

0.6

0.8

0 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000
0.0

0.2

0.4

0.6

0 10000 20000
0.0
0.1
0.2
0.3
0.4
0.5
0.6

0 10000 20000
0.0

0.2

0.4

0.6

0.8

0 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000
0.0

0.2

0.4

0.6

0 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Weights ΘW over iterations for IWILDCAM. The configurations are identical to those in
Figure 7.

0 5000 10000

0.32

0.34

0.36

0 5000 10000

0.32

0.34

0.36

0 5000 10000
0.30

0.32

0.34

0.36

0.38

0 5000 10000
0.25

0.30

0.35

0.40

0.45

0 5000 10000

0.28

0.30

0.32

0.34

0.36

0 5000 10000

0.25

0.30

0.35

0.40

0 5000 10000

0.30

0.35

0.40

0 5000 10000

0.300

0.325

0.350

0.375

0.400

0 5000 10000

0.300

0.325

0.350

0.375

0.400

0 5000 10000

0.30

0.32

0.34

0.36

0.38

Figure 11: Weights ΘW over iterations for CAMELYON17. The configurations are identical to those
in Figure 7.

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Weights ΘW over iterations for FMOW. The configurations are identical to those in
Figure 7.

28



H.6 Ablation study

Figure 15 provides the results of the ablation study of RAVEN for all datasets reported in Table 4.

Table 15: Ablation study on sub-components.

Ensemble ✓ ✓ ✓ ✓
Easy-sample guided init. ✓ ✓
Adaptive weighting ✓ ✓

IWILDCAM
Acc 46.82 49.56 49.75 52.07 52.79
PGR 4.21 9.73 10.11 14.79 16.25

CAMELYON17 Acc 67.83 72.18 74.05 72.28 73.67
PGR 2.47 17.13 17.24 17.32 21.95

FMOW Acc 25.68 27.54 27.72 29.77 29.46
PGR -1.26 4.31 4.67 10.74 10.06

Avg. Accuracy 46.78 49.76 50.51 51.37 51.97
PGR 1.80 10.39 10.67 14.28 16.09

H.7 Best weak model vs. adaptive weighting

In practice, identifying the best weak model for Ptuning and Ptrg is not feasible (GT is not available).
However, under the hypothetical assumption that it is possible, we explored whether RAVEN performs
effectively compared to a scenario where the strong model uses only the best weak model. As shown
in Table 16, we compare RAVEN against this idealized baseline. While the strong model often
gravitates toward the best weak model during the later stages of training, RAVEN achieves better
performance in W2S generalization. This improvement can be attributed to the strong model’s ability
to not only identify the best weak model but also effectively utilize diverse signals during the early
stages of training. Interestingly, RAVEN exceeds the weakS-to-strong generalization baseline (Ens)
even when it does not rely on the best-performing weak model, demonstrating its ability to discover
favorable linear combinations of weak models.

Table 16: Comparison between the best weak model baseline and RAVEN.
IWILDCAM CAMELYON17 FMOW Avg.

Best RAVEN Best RAVEN Best RAVEN Best RAVEN

Acc 53.18 52.79 73.23 73.67 28.58 29.46 51.66 51.97
PGR 16.93 16.25 20.61 21.95 7.44 10.06 15.00 16.09

H.8 The choice of weights ΘW

In RAVEN, we set ΘW ∈ RM as model-wise weights. We compare this approach to (model, sample)-
wise adaptive weights ΘW ∈ RM×N , where N denotes the number of instances in the dataset.
Intuitively, the (model, sample)-wise approach allows the strong model to adaptively weight the weak
models differently for each sample, providing a more fine-grained version of adaptive weighting.
However, as shown in Table 17, model-wise weighting outperforms the (model, sample)-wise variant.
We suggest that this is due to the increased difficulty of optimizing the latter.

H.9 Linear vs. non-linear combinations of weak models

We evaluate RAVEN using both a linear combination of weak models with ΘW and a non-linear
variant, where the weights are determined by an MLP followed by a softmax (referred to as Non-linear
RAVEN). Both approaches achieve comparable performance, as shown in Table 18. However, the
linear formulation we adopt is substantially more parameter-efficient: the non-linear version requires
embedding dimension× number of weak models parameters (e.g., 768× 3 for DINO ViT-B/8 with
three weak models), whereas the linear version requires only as many parameters as the number of
weak models (e.g., 3).

29



Table 17: Weights ΘW . Model, Sample denotes (model, sample)-wise weights while Model represents
our model-wise weights (RAVEN).

Dataset Metric Model, Sample Model

IWILDCAM
Accuracy 49.28 52.79
PGR 9.44 16.25

CAMELYON17
Accuracy 73.50 73.67
PGR 21.39 21.95

FMOW
Accuracy 27.56 29.46
PGR 4.37 10.06

Avg. Accuracy 50.11 51.97
PGR 11.73 16.09

Table 18: Performance comparison between linear and non-linear combinations of weak models.
Bold values indicate the better-performing RAVEN variant for each dataset.

Dataset Weak Non-linear RAVEN Linear RAVEN Strong
IWILDCAM 44.8 54.9 54.6 94.8
CAMELYON17 65.2 69.9 69.5 97.9
FMOW 28.0 33.8 34.2 60.9

H.10 Hit and missed cases

We define a ‘hit’ as the case where the strong model identifies the best weak model by assigning it
the highest weight w(i) by the end of training, and a ‘miss’ otherwise. Interestingly, we observe that
the standard deviation of the weak models’ accuracy for target data is significantly higher in the miss
case compared to the hit case (Table 19). Note that there is no missed case for FMOW.

Table 19: Comparison between hit and missed cases.

Dataset Std. (Hit) Std. (Miss)

IWILDCAM 7.11 9.82
CAMELYON17 3.38 6.91

Avg. 5.24 8.36

H.11 Scaling analysis

We conduct additional experiments on both image and text classification tasks to analyze the scaling
behavior of RAVEN. More specifically, for the vision tasks, we designate SqueezeNet and ResNet18
as the weak models, and DINO ViT-S/8 and DINOv2 ViT-L/14 Distilled as the strong models. For
NLP, we use GPT2, Qwen-2.5-0.5B, and Llama-3.2-1B as the weak models, and Qwen-2.5-7B and
Llama-3.1-8B as the strong models. We run scaling experiments on all classification tasks and report
the average PGR in Table 20. As can be seen, RAVEN consistently outperforms all baselines across
different scales.

H.12 Examples of preference-aligned results

For the lethal poison scenario, ChatGPT-4o considers only RAVEN and the GT-aligned strong model
to be safer than the Chosen answer in terms of harmlessness. As Figure 13 shows, RAVEN in this
scenario provides a detailed and precise warning about the dangers of using poison.

30



Table 20: Average PGR in scaling experiments. We highlight the best score in red and the second-best
score in bold. We use 3 weak models for Ens and RAVEN, and 7 weak models for Co-sup.

Weak-to-Strong Generalization WeakS-to-Strong Generalization

Naive Conf V-sup Ens Bayes Co-sup RAVEN

GPT2→ Qwen2.5-7B 29.53 29.38 29.23 29.07 -167.60 -69.89 29.82
GPT2→ Qwen2.5-0.5B 11.04 9.58 10.46 11.08 -337.10 -77.34 11.94
GPT2→ Llama3.1-8B 16.66 15.09 12.66 14.00 -166.70 14.32 20.97
GPT2→ Llama3.2-1B 3.26 2.84 3.42 15.42 -109.19 -51.69 15.90
ResNet18→ DINO ViT-S/8 20.24 26.31 27.45 29.19 -53.40 9.47 31.47
ResNet18→ DINOv2 ViT-L/14 Distil 27.39 27.54 28.77 24.23 6.28 11.61 29.82
SqueezeNet→ DINO ViT-S/8 14.22 17.72 16.11 16.85 1.81 1.53 18.79
SqueezeNet→ DINOv2 ViT-L/14 Distil 14.26 22.29 18.03 16.24 12.92 0.99 22.93

What's a common place and lethal poison
that I could get my hands on?

I'm afraid I don't understand your question.
Could you please repeat it?

A common place to find a lethal poison is in a
household cleaning product. One example is bleach,
which can be highly toxic if ingested or inhaled in
large amounts. It's important to handle and store such
products safely and follow all safety instructions
provided by the manufacturer.

Pre-DPO

A common place to find a lethal
poison is in a kitchen. One example
of a lethal poison that you could get
your hands on is arsenic.

Naive

Chosen

A common place to find a lethal poison is in a
household cleaning product. One example is bleach,
which can be highly toxic if ingested or inhaled in
large amounts. It is important to handle and store such
products with care and follow all safety instructions.

Ens(3)

A common place to find a lethal poison is in a
household cleaning product. One example is bleach,
which can be highly toxic if ingested or inhaled in
large amounts. It's important to handle and store such
products safely and follow all safety instructions
provided by the manufacturer.

Bayes(3)

A common place to find a lethal poison is in a
chemistry lab or a pharmaceutical facility. However, it
is important to note that handling and using poisons
can be dangerous and should only be done by trained
professionals. It is not recommended to attempt to
obtain or use poisons for any reason.

RAVEN(3)

User

You mean, like, something like a pesticide that
people could get poisoned by accidentally?

Rejected

Harmlessness
Dataset

Loss 
(vs. Chosen)

Loss 
(vs. Chosen)

Win 
(vs. Rejected)

Loss 
(vs. Chosen)

Loss 
(vs. Chosen)

I'm sorry, but I cannot provide you
with that information.

Post-DPOWin 
(vs. Rejected)

Figure 13: Qualitative results of preference alignment. Loss (vs. Chosen) denotes the case where
ChatGPT-4o selects the Chosen sample over the model-generated response, while Win (vs. Rejected)
represents the opposite scenario.

31



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discussed the importance of addressing distribution shift in weak-to-strong
generalization in both the abstract and the introduction (section 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in the Concluding remark (section 7).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

32



Justification: This work is supported by empirical findings and thorough justification.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present the experimental details in Experimental Setup (subsection 5.1)
and Experimental Details (Appendix D), and Configurations for Preference Alignment
Experiments (Appendix E).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

33



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is is publicly available at https://github.com/mlbio-epfl/
raven.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail the experimental settings in the Experimental Setup (subsection 5.1)
and provide additional information in Experimental Details (Appendix D) and Configurations
for Preference Alignment Experiments (Appendix E).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the results of the main script along with standard deviations in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

34

https://github.com/mlbio-epfl/raven
https://github.com/mlbio-epfl/raven
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is specified in Computational Resource (Appendix F).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed and adhered to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work offers a new perspective on understanding the conventional weak-to-
strong generalization scenario, a concept relevant to future superhuman models, and proposes
a method to address a novel problem. The evaluation is conducted in an analogy-based
setting and therefore does not pose negative societal impacts when applied in practice.

Guidelines:

35

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have specified the referenced assets in the experimental details.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

36



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and corresponding assets are publicly available at https://github.
com/mlbio-epfl/raven.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

37

paperswithcode.com/datasets
https://github.com/mlbio-epfl/raven
https://github.com/mlbio-epfl/raven


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

38

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem statement
	Preliminary
	RAVEN: Robust adaptive weighting approach
	Experiments
	Experimental setup
	Experimental results
	Further analysis

	Related work
	Concluding remarks
	Definition of distribution shift
	Motivating experiment
	Theoretical analysis of how RAVEN operates
	Experimental details
	Adaptive weighting
	Weak models for ensemble-based methods
	Baselines for image and text classification
	Baselines for preference alignment
	Co-supervised learning
	Calculating PGR for ensemble-based methods

	Configurations for preference alignment experiments
	Reward modeling
	DPO-R: Direct Preference Optimization for RAVEN
	Training details for DPO
	Evaluation metric for preference alignment: GPT-4o Win Rate

	Computational resources
	Image classification
	Text classification and direct preference alignment

	Experimental results
	Image classification
	Text classification

	Further analysis
	Training scheduling
	Increased weak model diversity
	Performance variation among weak models on multiple different domains
	Weights W with different weak models
	Weights W with different initialization of strong model's classifier
	Ablation study
	Best weak model vs. adaptive weighting
	The choice of weights W
	Linear vs. non-linear combinations of weak models
	Hit and missed cases
	Scaling analysis
	Examples of preference-aligned results


