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Abstract
Recent advances in artificial intelligence have
been fueled by the development of foundation
models such as BERT, GPT, T5, and Vision
Transformers. These models are first pretrained
on vast and diverse datasets and then adapted
to specific downstream tasks, often with signifi-
cantly less data. However, the mechanisms behind
the success of this ubiquitous pretrain-then-adapt
paradigm remain underexplored, particularly the
characteristics of pretraining checkpoints that en-
hance downstream adaptation. We introduce a
Bayesian model selection criterion, called the
downstream free energy, which quantifies a check-
point’s adaptability by measuring the concentra-
tion of nearby favorable parameters for the down-
stream task. We demonstrate that this Bayesian
model selection criterion can be effectively imple-
mented without access to the downstream data or
prior knowledge of the downstream task. Further-
more, we provide empirical evidence that the crite-
rion reliably correlates with improved fine-tuning
performance, offering a principled approach to
predicting model adaptability.

1. Introduction
The advent of foundation models has significantly reshaped
the landscape of modern machine learning (Bommasani
et al., 2021). Trained on expansive, diverse datasets using su-
pervised or self-supervised learning methods, these models
learn generalized representations that can then be success-
fully adapted (or finetuned) to a wide array of downstream
tasks, often where there is significantly less data or limited
computational resources (Bengio, 2012; Brown et al., 2020).
This pretrain-then-adapt paradigm has emerged as a dom-
inant and highly successful technique driving significant
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progress across natural language processing and computer
vision with applications including text classification (Qiu
et al., 2020), text generation (Li et al., 2024), image classifi-
cation (Liu et al., 2023b), object detection (Sanchez et al.,
2020), medical imaging (Mormont et al., 2018; Chen et al.,
2019; Ke et al., 2021), autonomous driving (Kim & Park,
2017) and robotics (Jaquier et al., 2023).

As a result, there is a growing body of research that aims to
better understand the theoretical reasons behind the success
of this pre-train-then-adapt paradigm (Galanti et al., 2022;
Munn et al., 2024). One of the key open questions is to
understand how to select pretraining checkpoints which are
optimal for adaptation. A number of practical heuristics
have emerged through experimental intuition and empirical
analysis (Liu et al., 2023a), but a principled theoretical
framework for effective checkpoint selection is still lacking.

To address this, we repurpose well-established concepts
from Bayesian statistics and propose downstream free en-
ergy as a pretraining model selection criterion. Downstream
free energy measures the negative log of the concentration of
well-performing network weights near a pretraining check-
point when evaluated on downstream data. In statistical
lingo, this is nothing more than the (negative log) marginal
likelihood where the integral is restricted to a local neighbor-
hood around the pretraining checkpoint. Intuitively, lower
downstream free energy indicates a higher concentration of
parameters in parameter space for which the model is more
adaptable and capable of generalizing well on downstream
tasks. In short, checkpoints with lower downstream free
energy are better suited for adaptation and thus should be
preferred during pretraining.

Although the use of downstream free energy as a pretraining
model selection criterion has strong theoretical grounding in
Bayesian statistics, it comes with an unfortunate caveat: to
compute it requires access to the downstream dataset which
may not be available to the practitioner during pretrain-
ing. However, under certain distributional shift conditions
between the pretraining and downstream data, it is possi-
ble to overcome this limitation. Namely, we introduce the
pretraining free energy, which is computed solely on the
pretraining data, and show that minimizing it serves as a
reliable proxy for minimizing the downstream free energy
(see Proposition 5.1). Together, these insights provide a
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solid justification for using the pretraining free energy as a
model selection criterion during pretraining. This strategy
is particularly advantageous when pretraining is intended
to be general purpose, as is the case with most foundation
models.

Figure 1. We plot pretraining free energy versus two types of trans-
fer accuracy (top and bottom) for checkpoints at the end of pretrain-
ing. As expected, checkpoints with lower pretraining free energy,
across various pretraining hyperparameters such as learning rate,
batch size, and momentum, show higher transfer accuracy. The
size of the icons represent magnitude of the hyperparameter value;
e.g., a larger triangle means higher momentum. The reported val-
ues are averaged over five random seeds. See Section 6 for details.

To justify our theoretical results, we exploit certain pretrain-
ing mechanisms that are known to reduce the pretraining
free energy, such as larger learning rates, smaller batch sizes
and higher momentum (Lau et al., 2025). We then verify
that these mechanisms, which lead to reduced pretraining
free energy, in turn correlate with improved downstream
adaptation performance. A preview of these results is pre-
sented in Figure 1. In summary, our contributions are:

• We introduce the downstream free energy as novel
model selection criterion for quantifying downstream
adaptability (Section 4.1).

• We prove the downstream free energy can be controlled
by the pretraining free energy (Proposition 5.1) and
provide insight into how this free energy perspective
informs practical pretraining heuristics (Section 5.1).

• We experimentally confirm (Section 6), using varied
datasets and architectures, that lower pretraining free
energy not only enhances downstream adaptability
(Figure 2 and Figure 3) but also exhibits a stronger
correlation with adaptability compared to other pre-
training metrics (Table 1).

2. Relationship to Prior Work
Implicit bias in transfer learning. The term implicit bias
refers to the tendency of optimization processes, such as
stochastic gradient descent (SGD), to inherently guide the
model’s learning dynamics towards solutions with proper-
ties which are not explicitly prescribed by the loss function
(Neyshabur et al., 2017; Soudry et al., 2018; Gunasekar
et al., 2018). For example, the selection of training hyperpa-
rameters, such as the learning rate and batch size, can have
a significant effect on the optimization efficiency as well
as on the quality of the learned model (Keskar et al., 2017;
Masters & Luschi, 2018; Goyal, 2017; He et al., 2019; An-
driushchenko et al., 2023). As a result, there has been con-
siderable effort to understand the mechanisms which govern
these implicit biases during model training. However, the
effect of implicit bias in transfer learning—particularly how
it impacts successful downstream domain adaptation—is a
growing but less explored area of research (Lippl & Lindsey,
2024; Kumar et al., 2022).

In transfer learning, the ability to identify and leverage
pretraining biases to predict and improve downstream test
error is highly valuable. Recent work of (Liu et al., 2023a;
Galanti et al., 2022; Munn et al., 2024) can be viewed as
establishing relationships of the form

downstream test error ≲ pretraining characteristic. (1)

Ideally, these pretraining characteristics are sensitive to fac-
tors which can be manipulated by practitioners, thus allow-
ing for deliberate influence and intentional design during
pretraining. Furthermore, any such pretraining characteris-
tic should be accessible using only pretraining data, since
knowledge to the downstream task or data is typically not
available. It is worthwhile to note that (Liu et al., 2023a;
Galanti et al., 2022; Munn et al., 2024) mainly consider the
linear probe as their fine-tuning method while we consider
full fine-tuning.

(Liu et al., 2023a) explore the role of implicit bias in lan-
guage modeling and establish an empirical relationship be-
tween the pretraining flatness (measured by the trace of the
Hessian of the pretraining loss) and the downstream test
accuracy. Their experiments verify that lower pretraining
flatness, which they show is effectively regularized by SGD,
strongly correlates with better downstream performance. Al-
though this work does not provide a formal bound as in (1),
it offers valuable empirical evidence on how the implicit
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flatness regularization of SGD acts to benefit transfer learn-
ing. This is particularly beneficial since techniques exist for
explicitly minimizing loss landscape sharpness; e.g., (Foret
et al., 2021; Wen et al., 2023).

(Galanti et al., 2022) examine the efficacy of transfer learn-
ing through the lens of neural collapse, a recently observed
phenomenon which characterizes the geometry of last-layer
features and weights for overparameterized classification
networks (Papyan et al., 2020). They show through theory
and experiments that the neural collapse exhibited during
pretraining generalizes to new classes of the downstream
task as well, thus enabling successful model adaptation.
Drawing on the formalism described in (1), (Galanti et al.,
2022) can be seen as deriving theoretical bounds of the form

downstream
test error ≲ downstream

neural collapse ≲ pretraining
neural collapse.

However, despite supporting neural collapse as a beneficial
pretraining characteristic, practical methods to explicitly
regularize it are lacking.

(Munn et al., 2024) make progress in this direction by means
of the geometric complexity, a model complexity measure
introduced and analyzed in (Dherin et al., 2022). They
prove that the geometric complexity of the model’s learned
feature representations upper bounds the model neural col-
lapse. Furthermore, their experiments verify that techniques
which implicitly reduce this geometric complexity during
pretraining (such as large learning rates, small batch sizes
and increased L2 regularization) in turn put regularizing
pressure on the pretraining neural collapse leading to im-
proved transfer test accuracy.

Our key contribution is the identification of free energy
as a novel and significant pretraining characteristic which
exhibits direct theoretical and empirical connections govern-
ing successful downstream model adaptability. We prove
in Section 5 that, similar to neural collapse, the pretraining
free energy bounds from above the downstream free energy.
In addition, we establish (see Appendix A) a theoretical
link between downstream free energy and the downstream
Bayesian prediction, providing theoretical guarantees on the
downstream Bayes test error. Together, these theoretical
results, viewed in the context of (1), imply

downstream
Bayesian test error ≲ downstream

free energy ≲ pretraining
free energy.

Furthermore, using mechanisms established in (Lau et al.,
2025) which are known to implicitly regularize the pretrain-
ing free energy—such as large learning rates, small batch
sizes, and increased momentum—we experimentally ver-
ify (see Section 6) that lower pretraining free energy does
indeed lead to improved fine-tuning performance.

Bayesian model selection criterion. The idea of using free
energy has its roots in Bayesian model selection. Given a

collection of models, M1, . . . ,Mk, the task of choosing
an optimal model for some given data is known as model
selection. There are different (and sometimes irreconcilable)
model selection criteria; but, in general, all model selection
criteria attempt to balance fit and complexity. A particu-
larly appealing Bayesian model selection criterion is the
free energy criterion which is widely used and accepted
in the both the statistical and machine learning literature
(Hinton & van Camp, 1993; Kass & Raftery, 1995; MacKay,
2002; Robert et al., 2007). The free energy model selection
criterion says we should pick the model with the lowest
free energy. Since the free energy is the negative log of
the marginal likelihood, also known as Bayesian model evi-
dence, free energy minimization is equivalent to marginal
likelihood maximization. To our knowledge, this work rep-
resents the first application of the free energy criterion in
the domain of transfer learning.

3. Problem Setup
Here, we shall mainly treat the supervised setting though the
theory developed below applies equally to the unsupervised
setting. During pretraining, for input x and target y, we
employ a probabilistic model p0(y|x,w) parameterized by
w ∈ W ⊂ Rp. Throughout, we assume the pretraining
model p0(y|x,w) depends on x through a neural network
fPT
w (x) = σout(v

Tϕθ(x)) where w = (v, θ). Here ϕθ de-
notes the feature extractor parameterized by θ and v the
weights of the linear head. The final activation is denoted
σout; e.g., softmax or sigmoid for classification tasks.

For fine-tuning, we attach a new linear head u to the
backbone ϕθ resulting in a neural network fFT

w′ (x) =
σout(u

Tϕθ(x)) where w′ = (u, θ) with u potentially hav-
ing different dimension to v. The fine-tuning probabilistic
model is denoted p1(y|x,w′) where the dependence on x is
through fFT

w′ .

Given a pretraining checkpoint w∗ = (v∗, θ∗), we initialize
fFT
w′ at (u0, θ

∗) where u0 is randomly initialized. All param-
eters of w′ are then fine-tuned via stochastic optimization.
In this work, we employ limited fine-tuning where the lin-
ear head undergoes standard training, while the backbone
remains mostly frozen, with updates governed by a separate,
smaller learning rate. This approach is particularly useful
in scenarios with limited downstream data, where the dif-
ferential learning rates help to prevent overfitting or loss of
general-purpose representations; cf. (Lee et al., 2022).

For theoretical convenience, we will assume that u and v
share the same dimensionality1

This way, we can use p(y|x,w) to denote both the pretrain-

1This eases exposition by avoiding having to distinguish be-
tween p0(y|x,w) and p1(y|x,w′). Note, we do not adhere to this
restriction in our experiments.
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ing and fine-tuning models. Let the true (and unknown)
pretraining (i = 0) and fine-tuning (i = 1) joint distribu-
tions be denoted

ri(x, y) := ri(y|x)ri(x), i = 0, 1;

and define the pretraining (i = 0) and fine-tuning (i = 1)
test loss to be

Ki(w) := Eri(x)DKL(r
i(y|x)||p(y|x,w)).

Let D0 and D1 be datasets drawn from the pretraining and
downstream distributions (resp.) and

the corresponding pretraining (i = 0) and fine-tuning (i =
1) sample losses be

K̂i(w) :=
1

|Di|
∑

(x,y)∈Di

(
log ri(y|x)− log p(y|x,w)

)
.

Note that minimization of Ki(w) and K̂i(w) with respect to
w can recover the standard cross-entropy loss and squared
loss frequently employed in deep learning. Indeed, if we
drop the entropy term in Ki and K̂i, which does not depend
on w, we obtain the negative log likelihoods, for i = 0, 1,

Li(w) := −Eri(x,y) log p(y|x,w)

L̂i(w) := − 1

|Di|
∑

(x,y)∈Di

log p(y|x,w).

We double load test loss to mean either Ki or Li and train
loss to mean either K̂i or L̂i.

4. Pretraining and downstream free energy
In this section, we begin by introducing the downstream
free energy as a measure of how suitable a checkpoint is for
downstream adaptation. We then introduce the pretraining
free energy as a proxy that can be measured solely using
the pretraining data.

Let U0 = {w∗
α = (v∗α, θ

∗
α)}α denote the set of local min-

ima of the pretraining test loss K0(w). In our theoretical
development, we will frequently refer to the elements of U0

as pretraining checkpoints. Note that the elements of U0,
being local minima of the test loss, generally differ from
the actual checkpoints obtained during pretraining, which
are governed by the training loss K̂0(w) (or equivalently,
L̂0(w)). To bridge this gap between theory and practice,
checkpoints should correspond to local minima of the train-
ing loss. This ensures that the theoretical objects we analyze
– minimizers of the test loss – are meaningfully related to
their empirical counterparts.

Given a single model – a parametric family M =
{p(y|x,w) : w ∈ W} – with multiple optima (as neural net-
works are prone to exhibit), we can perform internal model

selection (Balasubramanian, 1997) using a local version of
the free energy criterion to select among the local optima.
This amounts to comparing the downstream free energies
between elements of U0. We now define the downstream
free energy associated to an element of U0.

4.1. Downstream free energy

With datasets D0 and D1 as above, let n = |D0| and m =
|D1|. Informally, we might say that a pretraining checkpoint
w∗ = (v∗, θ∗) ∈ U0 is a good candidate for adaptation if
there are many weights θ in the vicinity of θ∗ with low
fine-tuning test loss; i.e., low values of K1(w). One way to
make this mathematically precise is via the downstream
free energy

F̄1(Bγ(w
∗)) := − log Z̄1(Bγ(w

∗)), (1)

which is the negative log of a local marginal likelihood

Z̄1(Bγ(w
∗)) :=

∫
Bγ(w∗)

exp{−mK1(w)}φ(w) dw. (2)

Here φ(w) is a prior over the model parameters w, and
Bγ(w

∗) := {w = (v∗, θ) : ||θ − θ∗||22 ≤ 1/γ} is the γ-
neighborhood around w∗ with v∗ frozen. Note that large
values of γ force us to stay near θ∗ and thus, ultimately, stay
near the pretraining checkpoint w∗ = (v∗, θ∗) as well.

Taken together, equations (1) and (2) imply that a large con-
centration of weights θ near θ∗ with low downstream test
loss K1(w) results in a large Z̄1(Bγ(w

∗)) and, equivalently,
a small F̄1(Bγ(w

∗)). Thus, we propose the following down-
stream free energy strategy for improved fine-tuning:

Pretraining checkpoints with lower downstream
free energy are more likely to adapt successfully
to downstream tasks.

Formally, we seek to find parameters w∗ ∈ U0 which mini-
mize the downstream free energy; i.e.,

arg min
w∗∈U0

F̄1(Bγ(w
∗)). (3)

Before addressing the implementation of this free energy
strategy, let’s first understand the competing forces behind
this model selection criterion. Given w∗ ∈ U0, following
the techniques set out in (Watanabe, 2009), the asymptotic
expansion of F̄1(Bγ(w

∗)) in the sample size m is

F̄1(Bγ(w
∗))

= mK1(w∗1) + λ1(w∗) logm+O(log logm),
(4)

where w∗1 := argminw∈Bγ(w∗) K
1(w). Further discus-

sion, including the derivation of equation (4), can be found
in Section 4 and Appendix B of (Lau et al., 2025).
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Remark 4.1. From (4), note that that downstream free energy
of a checkpoint w∗ is a weighted sum of two things: the fit,
as measured by K1(w∗1), and the complexity, as measured
by λ1(w∗). This complexity measure λ1(w∗) was recently
introduced as the local learning coefficient; see Lau et al.
(2025). Lower local learning coefficient means lower model
complexity. Note that a checkpoint with higher loss under
the downstream distribution may still be preferred as long as
its complexity is low enough to compensate. Furthermore,
note that for pretraining checkpoints that are in the same
level set of K1, the checkpoint with the lowest model com-
plexity, as measured by λ1, will have the lowest downstream
free energy.

The free energy strategy in (3) which uses F̄1(Bγ(w
∗)) to

select among candidate checkpoints in U0 is conceptually
sound but presents two notable implementation challenges.
First, F̄1(Bγ(w

∗)), besides involving some unknown terms
such as K1, is the negative log of an intractable integral.
This is not insurmountable as many techniques such as
MCMC or variational inference are available to deal with
intractable integrals.

The second, and more significant, issue is that applying
F̄1(Bγ(w

∗)) to select among checkpoints w∗ ∈ U0 requires
access to downstream data. This poses a problem because,
in many practical scenarios, the downstream task may not
be known or fully available during pretraining. To address
this limitation, we introduce the pretraining free energy, an
analog of the downstream free energy but which can be
computed using only the pretraining data. In Section 5 we
show how these two quantities are related.
Remark 4.2. Note that the free energy as defined in equa-
tions (1) and (2) is not scale invariant with respect to pa-
rameters w. Thus, for certain neural network architectures
exhibiting strict scale invariance, such as those composed
purely of ReLU activations, it’s possible for a global pa-
rameter rescaling to leave model outputs and downstream
accuracy unaffected, while potentially altering the free en-
ergy in some non-trivial way. However, our investigation
here centers on commonly deployed neural networks, which
typically incorporate elements like normalization layers or
weight decay that break strict parameter scaling invariance.

4.2. Pretraining free energy

Similar to the downstream free energy defined in (1), we
define the pretraining free energy for a pretraining check-
point w∗ = (v∗, θ∗) ∈ U0 as

F0(Bγ(w
∗);β) := − log Z0(Bγ(w

∗);β) (5)

where

Z0(Bγ(w
∗);β) :=

∫
Bγ(w∗)

exp{−nβK̂0(w)}φ(w) dw

(6)

and β > 0 is an inverse temperature. Unlike Z̄1(Bγ(w
∗))

and F̄1(Bγ(w
∗)), here the quantities Z0(Bγ(w

∗);β) and
F0(Bγ(w

∗);β) are stochastic. We indicate this by dropping
the overhead bar.

Analogous to (4), the asymptotic expansion of
F0(Bγ(w

∗);β) in n for w∗ ∈ U0 is

F0(Bγ(w
∗);β)

= nβK̂0(w∗0) + λ0(w∗) log n+Op(log logn)
(7)

where w∗0 := argminw∈Bγ(w∗) K
0(w). Note that the

asymptotic expansion of F̄1(Bγ(w
∗)) in (4) involves the

downstream test loss K1 whereas the asymptotic expansion
of F0(Bγ(w

∗);β) in (7) involves the pretraining train loss
K̂0. To compare the two, we take the expectation over the
dataset in (7), arriving at the following expansion involving
only deterministic quantities:

ED0F0(Bγ(w
∗);β)

= nβK0(w∗0) + λ0(w∗) log n+O(log log n).
(8)

In the next section, we will use these asymptotic expan-
sions to bound the discrepancy between the downstream
and pretraining free energy.

5. Relationship between pretraining and
downstream free energy

In this section, we show there is a satisfying relationship
between pretraining free energy and downstream free energy,
asymptotically speaking. Relying on the leading order terms
of the asymptotic expansion of the downstream free energy
in (4), we can express the downstream free energy strategy
in (3) as

arg min
w∗∈U0

[
mK1(w∗1) + λ1(w∗) logm

]
, (9)

where w∗1 := argminw∈Bγ(w∗) K
1(w). To avoid requir-

ing the downstream test loss K1, we introduce the pretrain-
ing asymptotic free energy strategy which relies only on
the pretraining distribution and (under mild assumptions, be-
low) serves as a viable proxy for (9). Formally, this strategy
seeks a solution of the following optimization

arg min
w∗∈U0

[
nβ0K

0(w∗) + λ0(w∗) log n
]

(10)

where β0 = M m logn
n logm . This strategy is supported by the

following result whose proof can be found in Appendix C.

Proposition 5.1. Let w∗ be a local minimum of K0(w);
i.e., w∗ ∈ U0 and γ be such that w∗0 is a local minimum of
K0(w); i.e., w∗0 ∈ U0. Further suppose λ1(w∗) ≤ λ0(w∗).
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Define M := max(x,y)∼r0(x,y)
r1(x,y)
r0(x,y) < ∞. Then,

K1(w∗1) + λ1(w∗)
logm

m

≤ MK0(w∗) +D + λ0(w∗)
logm

m

(11)

where D =
∫
log r1(y|x)

r0(y|x)r
1(x, y) dx dy.

Proposition 5.1 justifies model selection using the asymp-
totic expansion of the pretraining free energy as in (10).
This follows from (11) by first multiplying both sides by m
and then noting that minimizing

mMK0(w∗) +mD + λ0(w∗) logm

is equivalent, up to constants, to minimizing

log n

logm

[
mMK0(w∗) + λ0(w∗) logm

]
,

which leads us precisely to (10). To further illustrate Propo-
sition 5.1, we include explanatory examples in Appendix D
which interprets this result applied to Gaussian distributions.

There are some real-world scenarios for which Proposition
5.1 would be uninformative. For example, if the pretrain-
ing data includes only images of horses while the down-
stream data contains only cars, their label supports would
be disjoint, leading to an infinite M . To address this, our
experiments in Section 6 focus on settings where the pre-
training dataset is significantly larger and more diverse than
the downstream dataset. This also reflects common practice
in the field and an established heuristic in transfer learning;
see also (Kornblith et al., 2019). Specifically, we achieve
this by using pretraining datasets with a substantially larger
set of image classes. If this were reversed; i.e., the pretrain-
ing dataset has substantially fewer classes than the down-
stream dataset, the relationship we establish in Proposition
5.1 would be uninformative.

5.1. Observations of the pretraining asymptotic free
energy strategy

In this section, we present practical observations that fol-
low from selecting pretraining checkpoints according to the
pretraining asymptotic free energy strategy defined by (10).

Observation 1: A suboptimal checkpoint in terms of pre-
training test loss can still be preferred by the pretraining
asymptotic free energy strategy in (10). Suppose we have
two models w∗

α, w
∗
β ∈ U0; i.e., both models are local min-

ima of the pretraining test loss K0. In order to determine
which model is preferred for fine-tuning, our strategy (10)
directs us to compare

Fα = nβ0K
0(w∗

α) + λ0(w∗
α) log n (12)

and
Fβ = nβ0K

0(w∗
β) + λ0(w∗

β) log n. (13)

Suppose K0(w∗
α) < K0(w∗

β); i.e., w∗
α and w∗

β are in differ-
ent level sets and checkpoint w∗

α has lower pretraining test
loss; but λ0(w∗

α) > λ0(w∗
β), implying checkpoint w∗

β is less
complex than checkpoint w∗

α. Then it is entirely possible
for Fα > Fβ so that checkpoint w∗

β will be preferred by
(10) despite having higher pretraining test loss. In fact, this
happens precisely when

m

logm
<

1

M

λ0(w∗
α)− λ0(w∗

β)

K0(w∗
β)−K0(w∗

α)
.

Recall, m represents the number of examples in the down-
stream dataset. Note that, when M is large, there’s a smaller
range of m under which the suboptimal pretraining check-
point will be preferred. In other words, if the downstream
distribution is very different to the pretraining distribution,
the free energy strategy will look to the lower level sets of
pretraining test loss.

Observation 2: When nβ0 ≫ log n, a checkpoint with
lower pretraining test loss will always be preferred by
the pretraining asymptotic free energy strategy in (10).
Again, suppose we have two local minima w∗

α, w
∗
β ∈ U0

but which are in different level sets of the test loss; i.e.,
K0(w∗

α) ̸= K0(w∗
β). Without a handle on β0, we cannot

decide which checkpoint has lower free energy since, as
described above in Observation 1, the complexity term λ0

also plays a role in comparing Fα and Fβ .

However, when nβ0 is significantly larger than log n, the
first term in (10) dominates the second. In this case, the
pretraining asymptotic free energy strategy prioritizes check-
points with lower pretraining test loss K0.

Using the definition of β0 in (10), the setting described
here is equivalent to Mm ≫ logm, where m is the size of
the fine-tuning dataset and M measures distributional shift.
Since m already grows faster than logm, this may offer an
intriguing insight which justifies the pretraining test loss as
a heuristic for checkpoint adaptability.

Observation 3: For checkpoints with the same pretrain-
ing test loss, the one with the lowest complexity is pre-
ferred by the pretraining asymptotic free energy strat-
egy in (10). Suppose we have two models w∗

α, w
∗
β ∈ U0

in the same level set of K0; i.e., same pretraining test loss
K0(w∗

α) = K0(w∗
β). As before, our strategy (10) directs

us to compare Fα and Fβ as defined in equations (12) and
(13), resp.

However, since the first terms are equal, selecting the pre-
ferred pretraining checkpoint depends only on the model
complexity, as measured by λ0(w∗

α) and λ0(w∗
β). Thus,

all else being equal, the strategy in (10) naturally prefers
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simple pretraining checkpoints over more complex ones for
improved fine-tuning.

5.2. Estimating pretraining free energy

So far, we have established the pretraining asymptotic free
energy strategy as a theoretically principled approach to
pretraining model selection for improved finetuning. In this
section, we show how to estimate the pretraining asymp-
totic free energy required in (10) using only the sample
pretraining train loss L̂0. This estimation technique, which
we employ in our experiments (Section 6), enables the ap-
plication of our proposed strategy in (10) for real-world
machine learning scenarios.

We begin by focusing first on model selection for pretraining
checkpoints in the same level set of K0. In this case, we
can set β0 to an arbitrary value; we set β0 = 1. Next, note
that the optimization objective in (10) can be equivalently
expressed in terms of L0 since it differs only from K0 by a
constant with respect to w. In other words, we have

argmin
w∗∈U0

[
nK0(w∗) + λ0(w∗) log n

]
= argmin

w∗∈U0

[
nL0(w∗) + λ0(w∗) log n

]
. (14)

To estimate the RHS of (14), we refer to recent work
of (Lau et al., 2025) which shows that the Widely Ap-
plicable Bayesian Information Criterion (WBIC) around
w∗ ∈ U0 is an asymptotically unbiased estimator of
nL0(w∗) + λ0(w∗) log n. This localized version of the
WBIC is computed from the sample pretraining train loss
L̂0 measured in the neighborhood Bγ(w

∗) of the checkpoint
w∗ as described below.

Consider a localizing Gaussian prior which acts as a sur-
rogate for enforcing the domain of integration given by
Bγ(w

∗). Specifically, let

φγ⃗(w) ∝ exp{−γ⃗T ||w||22}, γ⃗ ∈ Rp
>0

which is centered at the origin with scale vector γ⃗ =
(γ1, . . . , γp). Since we only want to measure the free en-
ergy with respect to parameters θ of the model backbone
(recall, the fine-tuning setup described in Section 3), we
take γj = ∞ in the coordinates of v and γj = γ in the
coordinates of θ, where γ is the same as the radius defining
the neighborhood Bγ(w

∗); recall, (2).

Define the pretraining posterior distribution

p0(w;w∗, β, γ⃗) ∝ exp{−nβL̂0(w)}φγ⃗(w − w∗). (15)

Following Lau et al. (2025), we define the pretraining
WBIC at w∗ ∈ U0 by

WBIC(w∗;β∗) :=

∫ [
nL̂0(w)

]
p0(w;w∗, β∗, γ) dw,

(16)

where β∗ = 1
logn . It is not hard to see that (16) is a local-

ized adaptation of Watanabe’s classic Widely Applicable
Bayesian Information Criterion (WBIC) (Watanabe, 2013).
The classic WBIC itself was developed because the stan-
dard Bayesian Information Criterion (BIC) (Schwarz, 1978)
is unsuitable for singular statistical models. Recall that a
model is said to be ‘regular’ if its parameter-to-distribution
mapping is one-to-one and its Fisher information matrix
is positive definite for all possible parameter values; other-
wise, it is singular. The key distinction of the pretraining
WBIC, as defined in (16), and the classic WBIC is its local-
ization through a Gaussian prior centered on the pretraining
checkpoint w∗.

The pretraining WBIC at a checkpoint w∗ is a good estimate
of the (expected) pretraining free energy around w∗ defined
by equations (5) and (6). Furthermore, WBIC(w∗;β∗) can
be reliably computed via SGLD sampling methods; see Lau
et al. (2025, Appendix G).

Therefore, to apply the pretraining asymptotic free energy
strategy in (10) to checkpoints with the same K0, we simply
select the one with the smallest pretraining WBIC given by
WBIC(w∗;β∗). Next, we empirically verify this strategy
using the CIFAR dataset trained on ResNet-18.

6. Experiments
The goal of our experiments is to evaluate how well the
pretraining WBIC, which estimates the pretraining free en-
ergy as described in Section 5.2, correlates with downstream
performance. In order to measure the impact of lower pre-
training WBIC, we apply mechanisms during pretraining
which are known to implicitly regularize this quantity, as
shown in (Lau et al., 2025). These include including large
learning rates, small batch sizes, and high momentum.

We use the CIFAR-FS dataset (Bertinetto et al., 2019),
derived from CIFAR-100 where the 100 classes are di-
vided into 64 classes for meta-training, 16 classes for meta-
validation, and 20 classes for meta-testing. We pretrain on
the meta-training set and then assess model adaptability on
the unseen meta-test set via limited fine-tuning described in
Section 3. The meta-validation classes are not used.

Pretraining. For pretraining, we use all 64 classes from
the CIFAR-FS meta-training set to train a ResNet-18 model
using stochastic gradient descent (SGD). We explore ranges
of hyperparameter values for the learning rate, batch size
and momentum. Interaction effects between these are not
considered. Full experiment details for each hyperparameter
sweep are provided in Appendix B.1. During training we
track the pretraining train loss (first column of Figure 2) and
the pretraining WBIC (second column of Figure 2). The
hyperparameter settings for pretraining WBIC computation
are provided in Appendix B.1.
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Figure 2. Model checkpoints with lower pretraining WBIC (second column) consistently result in better transfer accuracy, both when
fine-tuning on the full downstream dataset (third column) and in the few-shot setting (fourth column). Lower pretraining WBIC correlates
with better downstream performance for Top row: larger learning rates, Middle row: smaller batch sizes, and Bottom row: increased
momentum. Additional experiments on mini-ImageNet and a VGG model yield similar results; see Figure 3 and Appendix E.

Full meta-test fine-tuning uses the full meta-test dataset,
consisting of all 20 meta-test classes with 600 examples
per class. We use an 80/20 split for training and testing,
with stratification within each class. In this setting a new
(randomly initialized) linear head is attached for the 20-
class classification task, and the model is fine-tuned for
100 steps using SGD. This setting corresponds to the “Fine-
tune Transfer Accuracy” metric (third column) in Figure 2.
Hyperparameter details for this setting are in Appendix B.2.

Few-shot meta-test fine-tuning examines a data-limited,
few-shot scenario. A single few-shot task is created by ran-
domly sampling 5 classes and 5 examples per class from
the meta-test dataset, creating a dataset with 25 total train-
ing examples. A new (randomly initialized) linear head is
attached for the 5-class classification task, and the model
is finetuned for 100 steps using full batch gradient descent.
The transfer accuracy is evaluated on 100 randomly selected
test examples for each of the 5 classes. The overall transfer
accuracy is averaged over 100 few-shot tasks. This setting
corresponds to the “Avg 5-shot Transfer Accuracy” metric
(fourth column) in Figure 2. Hyperparameter details for this
setting are in Appendix B.2.

Results. In each of these two fine-tuning scenarios, we
observe a strong correlation between lower pretraining free
energy (as measured by the pretraining WBIC, see Section

5.2) and better downstream performance; see Figure 2. In
particular, we see that increasing learning rate, decreasing
batch sizes, and increasing momentum all result in lower
pretraining WBIC, which in turn leads to better downstream
performance. Note the Avg 5-shot transfer accuracy (fourth
column) is typically higher than the finetune transfer accu-
racy (third column); this is likely because the former only
needs to learn 5 classes at a time while the latter needs to
learn 20 classes. Interestingly, we can view pretraining train
loss (the first column of Figure 2) as a baseline comparison.
We see that pretraining train loss often collapses to a sim-
ilar value as training proceeds, rendering it ineffective for
distinguishing different fine-tuning behaviors.

In Figure 1, we take each checkpoint at the end of pretrain-
ing and plot its pretraining WBIC (called pretraining free
energy there since the terminology had not been introduced)
versus transfer accuracy. The left (right) plot of Figure 1
corresponds to the third (fourth) column of Figure 2.

Comparison of with other pretraining metrics. As de-
scribed in Section 2, recent work of (Galanti et al., 2022)
and (Munn et al., 2024) examines the role of neural col-
lapse and geometric complexity as effective pretraining met-
rics for assessing the suitability of a model checkpoint for
transfer learning. To compare the effectiveness of our free
energy strategy against these other pretraining metrics, we
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conducted a correlation analysis computing the Pearson cor-
relation coefficients (Pearson & Galton, 1895) using model
checkpoints obtained from training a ResNet-18 model on
CIFAR-FS to convergence; see Table 1.

These experiments involved a comprehensive exploration
of the hyperparameter space (see Appendix B.3). For each
checkpoint, we compared the Geometric Complexity, Neu-
ral Collapse, and Free Energy of the pretrained model to its
downstream performance, measured via both full meta-test
fine-tuning and few-shot meta-test fine-tuning. As indicated
in Table 1, the pretraining Free Energy exhibits a substan-
tially stronger correlation with downstream performance
than other metrics considered.

Pretraining
Metric Finetune Accuracy Avg 5-shot Accuracy

Geometric
Complexity −0.767 −0.443

Neural Collapse −0.632 −0.1875
Free Energy −0.820 −0.8901

Table 1. Correlation comparision between pretraining metrics (ge-
ometric complexity, neural collapse, and free energy) and down-
stream performance (finetune and few-shot transfer accuracy).

7. Conclusion and Future Work
In this work, we introduced the downstream free energy
as a Bayesian model selection criterion for quantifying the
adaptability of pretraining checkpoints, offering a principled
way to predict their performance on unseen downstream
tasks. Our key insight is that checkpoints with lower down-
stream free energy are more adaptable, making them ideal
candidates for fine-tuning. Our empirical results across var-
ied datasets (CIFAR-FS, mini-Imagenet) and architectures
(ResNet, VGG) validate the utility of the pretraining free en-
ergy as a practical checkpoint selection criterion, especially
when downstream data is scarce or inaccessible.

Despite the promising results, some limitations remain.
First, our analysis currently lacks a direct link between
downstream free energy and downstream predictive per-
formance. At the moment, we provide a rigorous connec-
tion only when downstream adaptation is performed in a
Bayesian manner (see Appendix A). While Bayesian deep
learning is not yet widely adopted due to its computational
overhead, this link may become valuable as computational
barriers are reduced, particularly in fine-tuning scenarios.

In addition, while our theoretical framework supports the
use of free energy as a selection criterion, the practical
computation of the pretraining WBIC as in (16), remains
challenging for large models which may possess tens or hun-
dreds of billions of parameters. Developing tractable meth-
ods for this computation remains a challenge and presents
a significant direction for future work. An alternative ap-

proach would be to instead identify computationally effi-
cient “levers” that influence pretraining free energy, thus
allowing us to improve downstream adaptation performance
without relying on direct computation of the pretraining
WBIC.

Impact Statement
This work proposes a novel theoretical framework for under-
standing the mechanisms behind successful fine-tuning in
machine learning. Our findings have the potential to guide
development of more efficient fine-tuning strategies, reduc-
ing computational costs and resource consumption, with
implications for diverse applications like NLP and computer
vision. As the primary focus of this work is theoretical,
there are no direct societal consequences of our work that
we feel must be specifically highlighted.

Acknowledgments
We would like to thank Javier Gonzalvo for helpful discus-
sions, suggestions, and feedback during the development of
this work.

References
Andriushchenko, M., Varre, A. V., Pillaud-Vivien, L., and

Flammarion, N. Sgd with large step sizes learns sparse
features. In International Conference on Machine Learn-
ing, pp. 903–925. PMLR, 2023.

Balasubramanian, V. Statistical inference, occam’s razor,
and statistical mechanics on the space of probability dis-
tributions. Neural Computation, 9(2):349–368, 1997.

Bengio, Y. Deep learning of representations for unsuper-
vised and transfer learning. In Proceedings of ICML
workshop on unsupervised and transfer learning, pp. 17–
36. JMLR Workshop and Conference Proceedings, 2012.

Bertinetto, L., Henriques, J. F., Torr, P., and Vedaldi, A.
Meta-learning with differentiable closed-form solvers. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HyxnZh0ct7.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D.,
Castellon, R., Chatterji, N. S., Chen, A. S., Creel, K. A.,
Davis, J., Demszky, D., Donahue, C., Doumbouya, M.,
Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K.,
Fei-Fei, L., Finn, C., Gale, T., Gillespie, L. E., Goel, K.,
Goodman, N. D., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T. F., Jain, S., Jurafsky, D., Kalluri,

9

https://openreview.net/forum?id=HyxnZh0ct7
https://openreview.net/forum?id=HyxnZh0ct7


A Bayesian Model Selection Criterion for Selecting Pretraining Checkpoints

P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O.,
Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R.,
Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J.,
Levent, I., Li, X. L., Li, X., Ma, T., Malik, A., Man-
ning, C. D., Mirchandani, S. P., Mitchell, E., Munyikwa,
Z., Nair, S., Narayan, A., Narayanan, D., Newman, B.,
Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J. F.,
Ogut, G., Orr, L., Papadimitriou, I., Park, J. S., Piech,
C., Portelance, E., Potts, C., Raghunathan, A., Reich, R.,
Ren, H., Rong, F., Roohani, Y. H., Ruiz, C., Ryan, J.,
R’e, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A.,
Srinivasan, K. P., Tamkin, A., Taori, R., Thomas, A. W.,
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A. Theoretical guarantees on fine-tuning predictive performance
Here we discuss theoretical guarantees on downstream predictive performance when employing the version of the down-
stream free energy strategy in equation 9. We would like to give an analysis of downstream predictive performance without
being tied to a specific training algorithm e.g., SGD with momentum, ADAM, etc. Towards this end, we consider measuring
predictive performance through quantities related to the downstream posterior distribution over neural network weights:

p1(w;w∗, γ) ∝ exp{−mK1(w)}φγ(w − w∗) (17)

This does not mean we are advocating for Bayesian prediction, but rather we believe the posterior distribution above contains
highly relevant information that all sensible downstream training algorithms are sensitive to.

Since fine-tuning entails finding a small perturbation of said w∗ which performs well on the downstream training dataset D1,
we might consider an indicator of the downstream training performance to be given by

Tm(w∗) := Ew∼p1(w;w∗,γ)K̂
1(w). (18)

Let us call equation 18 the downstream Gibbs training error. Select γ such that w∗ is a local minimum of K0(w); i.e.,
w∗ ∈ U0. Then, on average, over the draw of D1, the expected downstream Gibbs training error is given by

ED1Tm(w∗) = K1(w∗1) +
λ1(w∗)− ν1(w∗)

m
+ o

(
1

m

)
(19)

where ν1(w∗), like the local learning coefficient λ1(w∗), is a positive number called the singular fluctuation that is an
invariant of the underlying model-truth-prior triplet. Since ν1(w∗) is always positive, the strategy in equation 9 leads us to
select a checkpoint that minimizes an upper bound on ED1Tm(w∗).

We can also look at the population counterpart to equation 18 given by

Gm(w∗) := Ew∼p1(w;w∗,γ)K
1(w) (20)

Let us call equation 20 the downstream Gibbs test error. The expected value of this, over the draw of D1 is given by

ED1Gm(w∗) := K1(w∗1) +
λ1(w∗) + ν1(w∗)

m
+ o

(
1

m

)
. (21)

It does not appear the strategy in equation 9 gives control over the (expected) downstream Gibbs test error.

Finally consider the test error resulting from Bayesian model averaging:

GBMA
m (w∗) := Er1(x)DKL(r

1(y|x)||Ew∼p1(w;w∗,γ)p(y|x,w)) (22)

where the expectation over the posterior has been moved inside the logarithm. Let us call equation 22 the downstream
Bayes test error. We have that

ED1GBMA
m (w∗) := K1(w∗1) +

λ1(w∗)

m
+ o(

1

m
). (23)

It is evident that the strategy in equation 9 leads us to select a checkpoint that minimizes an upper bound on ED1GBMA
m (w∗).

B. Experiment details
This section provides details for the experiment results presented in Figure 1 and Figure 2. For these experiments we use the
CIFAR-FS dataset (Bertinetto et al., 2019) which has been pre-partitioned into 64 meta-training classes, 14 meta-validation
classes and 20 meta-test classes. Each class contains 600 examples. We use the meta-training dataset for pretraining and the
meta-test dataset during fine-tuning. We do not use the meta-validation dataset.

Random seeds To account for stochasticity, we repeat all experiments below with 5 different random seeds. These
seeds control the randomness in the pretraining optimization trajectory, the train-test split and the fine-tuning optimization
trajectory in full meta-test finetuning (Section B.2 below), and the construction of few-shot tasks in few-shot meta-test
finetuning (Section B.2 below). The variability across the random seeds is reflected in Figure 2, although the error bands
may not always be visible due to the wide scale of the y-axis in some cases.
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B.1. Pretraining details

We pretrain a ResNet-18 (He et al., 2016) on the CIFAR-FS meta-training dataset (Bertinetto et al., 2019) using SGD with
cross-entropy loss. We vary SGD hyperparameters such as the learning rate, batch size, and momentum. We use plain SGD
optimizer without any regularization nor schedule to avoid masking effects. We used random crop and random flip for
data augmentation. Throughout training we report the pretraining train loss on the augmented data (Figure 2 first column)
and the pretraining WBIC computed on the augmented data (Figure 2 second column). Note, we use the same SGLD
hyperparameters to compute the WBIC across all experiments. That is, we use step size ϵ = 2× 10−7, chain length of 3,000
iterations, batch size of 2,048, γ = 1.0, and β∗ = 1

logn where n is the size of the pretraining dataset.

Learning rate. For experiments that vary the learning rate in Figure 2 (top row), for each learning rate value in {0.01,
0.05, 0.1, 0.2} we run SGD without momentum with a fixed batch size of 512 for 50,000 iterations. The WBIC estimations
were performed every 2,000 iterations with the SGLD hyperparameters above.

Batch size. For experiments that vary the batch size in Figure 2 (middle row), for each batch size in {16, 32, 64, 128, 256,
512} we run SGD without momentum with a fixed learning rate of 0.05 for 50,000 iterations. The WBIC estimations were
performed every 4,000 iterations with the SGLD hyperparameters above.

Momentum. For experiments that vary the momentum in Figure 2 (bottom row), for each momentum in {0.0, 0.2, 0.4,
0.6, 0.8} we run SGD with a fixed learning rate of 0.01 and batch size of 512 for 80,000 iterations. The WBIC estimations
were performed every 2,000 iterations with the SGLD hyperparameters above.

B.2. Fine-tuning details

We perform fine-tuning in two scenarios: full CIFAR-FS meta-test finetunining which uses all 20 classes of the meta-test set,
and few-shot meta-test finetuning which consists of multiple tasks constructed from the CIFAR-FS meta-test dataset. In
both settings we fine-tune a ResNet-18 model initializing the weights of the ResNet backbone with the pre-training weights.
The weights of the model head are randomly initialized.

Full meta-test fine-tuning. When fine-tuning on the full CIFAR-FS meta-test dataset, we use all 20 meta-test classes and
all 600 examples in each class. We then create an 80/20 train/test split. We use SGD with L2 regularization rate of 0.01
and with a fixed learning rate of 0.0001 for the model backbone and a fixed learning rate of 0.01 for the model head. We
fine-tune for 100 steps using a batch size of 128.

Few-shot meta-test fine-tuning. For few-shot fine-tuning, we use only part of the CIFAR-FS meta-test dataset by sampling
5-class classification tasks randomly from the 20 classes available in the meta-test dataset. For each of these 5 classes we
sample 5 training examples to create a 5-shot dataset for fine-tuning. During fine-tuning, as with full meta-test fine-tuning,
we use a fixed learning rate of 0.0001 for the model backbone and a fixed learning rate of 0.01 for the model head. We
perform 100 steps of full-batch gradient descent (GD) with L2 regularization rate of 0.001 and then measure the model
performance on 100 random test samples from each class. This constitutes a single task. Finally, we report the resulting
accuracy rates averaged over 100 randomly chosen tasks.

B.3. Correlation Analysis for Table 1

To assess the effectiveness of our free energy strategy in comparison to these other pretraining metrics, we computed the
Pearson correlation coefficients (Pearson & Galton, 1895) for each of the pretraining metrics {} against the downstream
{full meta-test fine-tuning transfer accuracy, few-show meta-test fine-tuning transfer accuracy} using model checkpoints
obtained from experiments with CIFAR-FS, trained on ResNet-18 to convergence.

These experiments, detailed in Section 6, involved a comprehensive exploration of the hyperparameter space. We swept
across three hyperparameters (learning rate, batch size, and momentum), with six values for learning rate, six for batch
size, and five for momentum. Each configuration was trained with five different random seeds, resulting in a total of 85
model checkpoints. For each checkpoint, we compared the Geometric Complexity, Neural Collapse, and Free Energy of
the pretrained model to its downstream performance, measured via both full meta-test fine-tuning and few-shot meta-test
fine-tuning. Notably, as indicated by the Pearson correlation coefficients in Table 1, the pretraining Free Energy exhibits a
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substantially stronger correlation with downstream performance than other metrics considered.

C. Proof of Proposition 5.1
Proof. By definition of the test loss and rearranging terms via change of measure, for all w,

K1(w) =

∫
log

(
r1(y|x)
p(y|x,w)

)
r1(x, y)dxdy

=

∫
log

(
r0(y|x)
p(y|x,w)

r1(y|x)
r0(y|x)

)
r1(x, y)

r0(x, y)
r0(x, y)dxdy

=

∫
log

(
r0(y|x)
p(y|x,w)

)
r1(x, y)

r0(x, y)
r0(x, y) dx dy

+

∫
log

(
r1(y|x)
r0(y|x)

)
r1(x, y) dx dy

≤ MK0(w) +D.

Also, by definition of w∗1, we have K1(w∗1) ≤ K1(w∗). Combining these two facts, we get K1(w∗) ≤ MK0(w∗) +D
and obtain the conclusion in (11).

D. Examples of Proposition 5.1
In this section we provide two detailed examples involving Gaussian distributions which help to illustrate Proposition 5.1 in
action.
Example 1 (Covariate shift between pretraining and downstream distributions). Suppose r0(y|x) = r1(y|x) = r(y|x).
Our pretraining and fine-tuning joint model is pi(x, y|w) = p(y|x,w)ri(x). Then we have λ0(w∗) = λ1(w∗) and
Ki(w) = Eri(x)K(x,w) where K(x,w) = DKL(r(y|x)||p(y|x,w)). Writing

Er1(x)K(x,w) =

∫
K(x,w)

r1(x)

r0(x)
r0(x) dx

we have that if M = maxx∼r0(x)
r1(x)
r0(x) < ∞ then

Er1(x)K(x,w) ≤ MEr0(x)K(x,w)

Putting this together we have D = 0 and

K1(w∗1) ≤ K1(w∗) ≤ MK0(w∗).

Suppose the two covariate distributions are Gaussians

ri(x) ∝ exp{−||x− µi||22
2σ2

i

}

then M is finite if σ0 > σ1, in which case M = σ0

σ1
exp{ (µ0−µ1)

2

2(σ2
0−σ2

1)
}

Example 2 (Nuisance parameter mismatch between pretrain and downstream distributions). Suppose the pretrain (i = 0)
and downstream (i = 1) distributions are given by

ri(x, y) = r(y|x,w0, σ
2
i )r(x)

where r(y|x,w0, σ
2
i ) = N(fw0

(x), σ2
i ) with fw(x) representing neural network with weight w. The pretraining and

fine-tuning model are given by
pi(x, y|w) = r(y|x,w, σ2

i )r(x)

Then we have λ0(w∗) = λ1(w∗) and M = σ0/σ1.
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Figure 3. Model checkpoints with lower pretraining WBIC (second column) consistently result in better transfer accuracy, both when
fine-tuning on the full downstream dataset (third column) and in the few-shot setting (fourth column). Lower pretraining WBIC correlates
with better downstream performance for Top row: larger learning rates, Middle row: smaller batch sizes, and Bottom row: increased
momentum.

E. Additional Experiments for mini-Imagenet; see Figure 3
E.1. Pretraining details

We pretrain a VGG-16 (Simonyan, 2014) on the mini-Imagenet meta-training dataset (Dhillon et al., 2019) using SGD
with cross-entropy loss. We vary SGD hyperparameters such as the learning rate, batch size, and momentum. We use
plain SGD optimizer without any regularization nor schedule to avoid masking effects. We used random crop and random
flip for data augmentation. Throughout training we report the pretraining train loss on the augmented data (Figure 2 first
column) and the pretraining WBIC computed on the augmented data (Figure 2 second column). Note, we use the same
SGLD hyperparameters to compute the WBIC across all experiments. That is, we use step size ϵ = 2× 10−7, chain length
of 1,000 iterations, batch size of 1,024, γ = 1.0, and β∗ = 1

logn where n is the size of the pretraining dataset. The results
are plotted in Figure 3.

Learning rate. For experiments that vary the learning rate in Figure 2 (top row), for each learning rate value in {0.0025,
0.005, 0.01} we run SGD without momentum with a fixed batch size of 512 for 50,000 iterations. The WBIC estimations
were performed every 2,000 iterations with the SGLD hyperparameters above.

Batch size. For experiments that vary the batch size in Figure 2 (middle row), for each batch size in {16, 32, 64, 128, 256,
512} we run SGD without momentum with a fixed learning rate of 0.01 for 50,000 iterations. The WBIC estimations were
performed every 2,000 iterations with the SGLD hyperparameters above.

Momentum. For experiments that vary the momentum in Figure 2 (bottom row), for each momentum in {0.0, 0.1, 0.3,
0.5} we run SGD with a fixed learning rate of 0.005 and batch size of 512 for 50,000 iterations. The WBIC estimations
were performed every 2,000 iterations with the SGLD hyperparameters above.
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E.2. Fine-tuning details

We perform fine-tuning in two scenarios: full mini-Imagenet meta-test finetunining which uses all 20 classes of the meta-test
set, and few-shot meta-test finetuning which consists of multiple tasks constructed from the mini-Imagenet meta-test dataset.
In both settings we fine-tune a VGG-16 model initializing the weights of the VGG backbone with the pre-training weights.
The weights of the model head are randomly initialized.

Full meta-test fine-tuning. When fine-tuning on the full mini-Imagenet meta-test dataset, we use all 20 meta-test classes
and all 600 examples in each class. We then create an 80/20 train/test split. We use SGD with L2 regularization rate of 0.01
and with a fixed learning rate of 0.0001 for the model backbone and a fixed learning rate of 0.01 for the model head. We
fine-tune for 500 steps using a batch size of 32.

Few-shot meta-test fine-tuning. For few-shot fine-tuning, we use only part of the mini-Imagenet meta-test dataset by
sampling 5-class classification tasks randomly from the 20 classes available in the meta-test dataset. For each of these 5
classes we sample 5 training examples to create a 5-shot dataset for fine-tuning. During fine-tuning, as with full meta-test
fine-tuning, we use a fixed learning rate of 0.0001 for the model backbone and a fixed learning rate of 0.01 for the model
head. We perform 100 steps of full-batch gradient descent (GD) with L2 regularization rate of 0.01 and then measure the
model performance on 100 random test samples from each class. This constitutes a single task. Finally, we report the
resulting accuracy rates averaged over 100 randomly chosen tasks.
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