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Abstract

Dynamic data pruning techniques aim to reduce
computational cost while minimizing information
loss by periodically selecting representative sub-
sets of input data during model training. How-
ever, existing methods often struggle to maintain
strong worst-group accuracy, particularly at high
pruning rates, across balanced and imbalanced
datasets. To address this challenge, we propose
RCAP, a Robust, Class-Aware, Probabilistic dy-
namic dataset pruning algorithm for classification
tasks. RCAP applies a closed-form solution to es-
timate the fraction of samples to be included in
the training subset for each individual class. This
fraction is adaptively adjusted in every epoch us-
ing class-wise aggregated loss. Thereafter, it em-
ploys an adaptive sampling strategy that prioritizes
samples having high loss for populating the class-
wise subsets. We evaluate RCAP on six diverse
datasets ranging from class-balanced to highly im-
balanced using five distinct models across three
training paradigms: training from scratch, trans-
fer learning, and fine-tuning. Our approach con-
sistently outperforms state-of-the-art dataset prun-
ing methods, achieving superior worst-group ac-
curacy at all pruning rates. Remarkably, with only
10% data, RCAP delivers > 1% improvement in
performance on class-imbalanced datasets com-
pared to full data training while providing an av-
erage 8.69× speedup. The code can be accessed
at https://github.com/atif-hassan/
RCAP-dynamic-dataset-pruning

1 INTRODUCTION

The remarkable success of deep learning across domains
such as computer vision [He et al., 2016, Dosovitskiy et al.,

2021], natural language processing [Brown et al., 2020, Rad-
ford et al., 2019, OpenAI, 2023], and speech [Radford et al.,
2023, Baevski et al., 2020] is largely fueled by training mas-
sive networks on datasets with millions or even billions of
samples. However, this scale of training demands exorbitant
computational resources over prolonged periods, incurring
unsustainable monetary costs [Mindermann et al., 2022].
These expenses not only limit accessibility for resource-
constrained researchers but also discourage investment in
model refinement activities like hyper-parameter tuning and
architecture search. Consequently, reducing training costs
has emerged as a critical research challenge in deep learning.

One promising approach to mitigate these costs is to reduce
the number of training updates which can be achieved by
shrinking the dataset size. Approaches such as dataset dis-
tillation [Zhao and Bilen, 2023, Cazenavette et al., 2022],
coreset selection [Xia et al., 2024, Yang et al., 2024, Zheng
et al., 2023] and data pruning [Zhang et al., 2024, Yang
et al., 2024, Okanovic et al., 2024a, Qin et al., 2024] have
garnered attention with data pruning striking the best bal-
ance between performance and training cost by removing
the least informative examples [Paul et al., 2021].

Pruning methods typically use scoring mechanisms to iden-
tify the most informative samples for training. Static pruning
techniques [Paul et al., 2021, Yang et al., 2023, Zhang et al.,
2024, Yang et al., 2024] select a fixed subset prior to train-
ing, discarding the remaining data to reduce storage and
computation. However, their scoring mechanism relies on
training a model for multiple epochs before determining
sample importance. This process is not only expensive but
also model-dependent, thus restricting its applicability to
diverse downstream architectures. Dynamic dataset pruning,
in contrast, recomputes subsets during training, leveraging
accessible metrics like per-sample loss to adaptively select
data for each epoch [Raju et al., 2021, Qin et al., 2024,
Okanovic et al., 2024a]. This dynamic approach ensures
that the sampled subset evolves with model training, offer-
ing near loss-less average performance even at high pruning
rates while reducing overall training time.
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1.1 MOTIVATION

Developing robust models is a crucial aspect of real-
world AI applications as it mitigates bias against under-
represented/minority groups. However, existing state-of-the-
art dynamic pruning algorithms, such as RS2 [Okanovic
et al., 2024a] and InfoBatch [Qin et al., 2024], overlook
a critical metric: worst-group accuracy, essential for eval-
uating model robustness, especially in class-imbalanced
datasets. Moreover, even in class-balanced datasets these
methods often neglect class-specific hardness, achieving
strong average performance but underperforming on harder
or minority groups. For instance in CIFAR10, certain
classes, such as cats and dogs, accumulate higher loss in
comparison to other groups, leading to non-robust models
with poor worst-class performance [Vysogorets et al., 2024].
Thus, we aim to answer the following question,

“Does incorporating class hardness, while per-
forming data pruning, enhance model robustness
across both balanced and imbalanced data set-
tings?”

1.2 OUR CONTRIBUTION

We propose RCAP, a novel, Robust, Class-Aware, Proba-
bilistic dynamic dataset pruning algorithm for classification
tasks. RCAP automatically determines the appropriate sub-
set size for individual classes through a parameter which is
updated in every epoch based on the aggregated class-wise
loss of the previous epoch. Thereafter, RCAP prioritizes
samples with higher loss for each subset by sampling from
a distribution over per-sample losses.

We evaluate RCAP across a diverse set of datasets, spanning
various scales and class imbalance levels. These include
class-balanced datasets of medium scale (CIFAR10 and CI-
FAR100), a class-balanced large-scale dataset (ImageNet),
a moderately imbalanced small-scale dataset (Waterbirds),
a relatively high imbalance medium-scale dataset (CelebA),
and an extremely imbalanced large-scale dataset (iNatural-
ist). Our experiments employ five distinct network archi-
tectures, ResNet18, ResNet50, EfficientNetV2, Dinov2 and
EfficientFormerV2 across three training paradigms: training
from scratch, transfer learning, and fine-tuning.

We compare against seven state-of-the-art baselines, in-
cluding both dynamic and static data pruning techniques.
To the best of our knowledge, this is the first comprehen-
sive evaluation of dynamic dataset pruning algorithms in
both class-balanced and imbalanced data settings in terms
of worst-group performance. The results demonstrate that
RCAP consistently surpasses all methods, achieving signif-
icantly superior worst-group accuracy, especially at high
pruning rates across all architectures, datasets and training
paradigms.

2 PRELIMINARIES

2.1 NOTATIONS

We denote S = {(Xi, yi)}ni=1 as a labelled set of input and
target pairs. Here, Xi ∈ X and yi ∈ Nc where X is the
input space while Nc = {1, · · · , c} with c being the num-
ber of classes and n the total number of samples. Here,
(X, Y ) ∼ PD where PD is the underlying distribution.
Given a label j ∈ Nc, define Sj = {(Xk, yk)}

nj

k=1 where
∀k, yk = j. Then clearly, S =

⋃c
j=1 Sj and n =

∑
j nj .

Let r ∈ (0, 1) be the pruning rate supplied by the user such
that the total number of samples to be selected is (1− r)n.
We define the retain set, St ⊂ S as the subset of samples
selected for training at epoch t where |St| = (1 − r)n.
Here, t = {1, 2, · · · , T} where T is the total number
of epochs. The retain set comprises class-wise subsets,
St
j = St ∩ Sj , ∀j ∈ Nc where |St

j | = αt
jnj such that,∑c

j=1 α
t
jnj = (1 − r)n. Here, αt

j is the fraction of sam-
ples to be selected to form the subset for class j at epoch
t. The set of unused samples, S \ St, at epoch t form the
pruned set. Let fθ(·) be any arbitrary model parameterized
by θ ∈ Rm. Let f̃θt(Xi) = σ (fθt(Xi)) ∈ Rc at epoch t

such that ∀t, ∀i,
∥∥∥f̃θt(Xi)

∥∥∥
1
= 1. Here, σ(·) is the Softmax

function. The loss function is denoted as, L : Rc ×Nc → R
with its value at epoch t for some input Xi being represented
as L

(
f̃θt (Xi) , yi

)
. For brevity, we represent the loss at

epoch t for some input Xi as L
(
f̃θt(Xi)

)
. The derivative

of L
(
f̃θt (Xi)

)
at epoch t for any input Xi is denoted as

∇θtL
(
f̃θt(Xi)

)
. Let Bp denote a batch of examples at it-

eration p with |Bp| = b being the batch size. Then the total
number of iterations at epoch t over the entire dataset and a
subset, St ⊂ S, are ⌈|S|/b⌉ and ⌈|St|/b⌉, respectively. We
use η to denote the learning rate.

3 RCAP

An effective data pruning algorithm should account for
class-wise performance when selecting samples for the
retain set. This is because the performance of individual
groups/classes vary for a given classification task, thus re-
quiring non-uniform representation in the selected subset.
Some methods such as Data Diet [Paul et al., 2021], implic-
itly address this by inducting high-error samples into the
retain set. However, at high pruning rates, such strategies
risk discarding classes with consistently low-error samples.
Other techniques such as MetriQ [Vysogorets et al., 2024]
incorporate class-wise performance but rely on ad-hoc rules
to determine sample allocation. To overcome these limita-
tions, we propose the following two fundamental problems
that any effective data pruning algorithm should solve:



• Determining the appropriate subset size for each class
in the retain set.

• Selecting the most informative samples within each
subset.

We address the first problem by adaptively adjusting the
class-wise subset size in each epoch, as formalized in The-
orem 3.1 (Section 3.1). The second problem is tackled
through a novel epoch-wise adaptive sampling strategy, de-
tailed in Section 3.2.

3.1 ADAPTIVE PER-CLASS SUBSET SIZE

Allocating more training samples to classes that a model per-
ceives as difficult can lead to performance improvements on
underrepresented or challenging groups [Vysogorets et al.,
2024]. Theorem 3.1 formalizes this intuition, demonstrating
that classes with higher loss values should have a propor-
tionally larger representation in the training subset.

Theorem 3.1. Let, the total empirical error be given by,

Et+1 =
∑
j

pj

αt+1
j nj

Ẽt+1
j

where Ẽt+1
j =

∑
Xi∈St+1

j

L
(
f̃θt (Xi)

)
and pj =

nj

n

Then, under the assumption of full batch gradient descent,
the optimal solution to the minimization problem

min
αt+1

j

Et+1

subject to
c∑

j=1

αt+1
j nj = (1− r)n

is given by α̂t+1
j =

√
pjẼ

t+1
j∑

j

√
pjẼ

t+1
j

(1− r)
n

nj

Proof. Introducing the Lagrange multiplier λ, the optimiza-
tion problem becomes,

G = Et+1 + λ

 c∑
j=1

αt+1
j nj − (1− r)n


If
(
α̂t+1
j , λ̂

)
is an optimal pair, then the optimality condi-

tions imply:

∂G

∂αt+1
j

∣∣∣∣∣
(α̂t+1

j ,λ̂)

= −
pjẼ

t+1
j(

α̂t+1
j

)2
nj

+ λ̂nj = 0

=⇒ α̂t+1
j =

√
pjẼ

t+1
j√

λ̂nj

(1)

Substituting the value of α̂t+1
j in the constraint gives us,

1√
λ̂

∑
j

√
pjẼ

t+1
j = (1− r)n

=⇒ 1√
λ̂
=

(1− r)n∑
j

√
pjẼ

t+1
j

(2)

Replacing the value of
√

λ̂ from Eqn. 2 in Eqn. 1, we get,

α̂t+1
j =

√
pjẼ

t+1
j∑

j

√
pjẼ

t+1
j

(1− r)
n

nj
(3)

Remark 1. Eqn. 3 provides a closed-form solution for deter-
mining the appropriate class-wise fraction, which suggests
allocating more samples to classes with larger error. By pri-
oritizing high-error groups, the total training error can be
reduced. However, Eqn. 3 cannot be directly implemented
since the optimal value for the class-wise fraction of sam-
ples in the retained set for epoch t+ 1 requires loss values
that are yet to be observed. Instead, approximating Ẽt+1

j

with Ẽt
j in Eqn. 3 can resolve this issue. However, doing so

incurs some approximation error which, as shown in Eqn. 4,
is bounded.

∣∣∣Ẽt
j − Ẽt+1

j

∣∣∣ ≤ ηK1

(1− r)n

∥∥∥∥∥∥
∑

Xi∈St

∇θt−1L
(
f̃θt−1(Xi)

)∥∥∥∥∥∥
2

+
∣∣St

j

∣∣K2

∥∥∥f̃θt (X)− f̃θt
(
X ′)∥∥∥

2
+

|St+1
j |∑

i=|St
j |+1

L
(
f̃θt

(
X ′

i

))
(4)

Here K1 and K2 are the Lipschitz constants for L with
respect to the change in parameters and input, respectively,
while X ∈ St

j and X ′ ∈ St+1
j . The full derivation is pro-

vided in Section B of the Appendix. The gradient norm
reduces exponentially during training [Boyd, 2004] while
η ≪ 1 and (1 − r)n ≫ 1 ensure that the first term in
the R.H.S. quickly converges early on in training. The sec-
ond term converges quickly early on in training [Paul et al.,
2021] as

∥∥∥f̃θt (X)− f̃θt (X ′)
∥∥∥
2

is the norm of the differ-
ence between the confidence scores across c classes for two
samples from the same class with ∥X∥1 = ∥X ′∥1 = 1.
Under the assumption that the fraction of samples allocated
to each class does not change significantly between consecu-
tive epochs, the third term in the R.H.S. of the inequality also
decreases as training progresses. Thus, the approximation
error reduces as training progresses. Therefore, rewriting
Eqn. 3:

α̂t+1
j =

√
pjẼt

j∑
j

√
pjẼt

j

(1− r)
n

nj
(5)



We find that this approximation to the optimal value of αt+1
j ,

obtained in Eqn. 5, works well in practice as demonstrated
in Tables 1 and 2.

Implementation Detail: Note that Ẽ0
j is the class-wise ag-

gregated loss at model initialization which determines α̂1
j .

Furthermore, closely inspecting Eqn. 5 reveals that the con-
dition α̂t+1

j > 1 is plausible as the fraction is unconstrained.
To mitigate this issue, we perform the following operation,

α̂t+1
j =


1 if α̂t+1

j > 1√
pjẼ

t
j∑

j

(√
pjẼ

t
j

)
mj

(1− r)n−k
nj

otherwise

where,

mj =

{
1 if α̂t+1

j < 1

0 otherwise

k =
∑
j

(1−mj)nj

(6)

In doing so, we guarantee that α̂t+1
j ≤ 1 with excess values

being re-distributed among the remaining classes.

3.2 ADAPTIVE PER-CLASS SAMPLE SELECTION

The goal of any dynamic dataset pruning algorithm is to train
a model on a carefully selected subset of data at each epoch
such that the model’s performance is indistinguishable from
a model trained on the full dataset. Formally, this goal can
be expressed as,

E
(Xi,yi)∼PD

[∣∣∣L(
f̃θ̃T (Xi)

)
− L

(
f̃θT (Xi)

)∣∣∣] ≤ ϵ (7)

where,

θT = θ1 − η

T∑
t=1

⌈
|S|
b

⌉∑
p=1

1

b

∑
(Xi,yi)∈Bp

∇θt,pL
(
f̃θt,p (Xi)

)
(8)

θ̃T = θ1 − η

T∑
t=1

⌈
|St|
b

⌉∑
p=1

1

b

∑
(X̃i,ỹi)∈B̃p

∇θ̃t,pL
(
f̃θ̃t,p

(
X̃i

))
(9)

Here, Bp and B̃p are batches sampled from S and St,
respectively, at iteration p. Here, θT and θ̃T are the pa-
rameters obtained after training on S and its subset, re-
spectively. Similarly, θt,p and θ̃t,p are the parameters ob-
tained at epoch t and iteration p after training on S and
St, respectively. We now look at the condition to achieve
Eqn. 7. Let 1

b

∑
(Xi,yi)∈Bp ∇θt,pL

(
f̃θt,p(Xi)

)
= gt,p and

1
b

∑
(Xi,yi)∈B̃p ∇θ̃t,pL

(
f̃θ̃t,p(Xi)

)
= g̃t,p. Assuming that

L is Lipschitz continuous having Lipschitz constant K1 with
respect to the change in parameters, we get:∣∣∣L(

f̃θ̃T (Xi)
)
− L

(
f̃θT (Xi)

)∣∣∣ ≤ K1

∥∥∥θ̃T − θT
∥∥∥
2

(10)

Replacing θ̃T and θT from Eqns. 8 and 9 in Eqn. 10, and
taking expectation on both sides, we get:

E
(Xi,yi)∼PD

[∣∣∣L(
f̃θ̃T (Xi)

)
− L

(
f̃θT (Xi)

)∣∣∣] ≤

K1η E
(Xi,yi)∼PD


∥∥∥∥∥∥∥∥

T∑
t=1


⌈
|S|
b

⌉∑
p=1

gt,p −

⌈
|St|
b

⌉∑
p=1

g̃t,p


∥∥∥∥∥∥∥∥
2


(11)

Hence, to achieve Eqn. 7, the right-hand-side in Eqn. 11
needs to be minimized. One can observe that in each epoch,
the term

∑⌈(|S|/b)⌉
p=1 gt,p is dominated by the samples with

the largest gradient norm. We empirically find that the cross-
entropy loss and the magnitude of the gradient exhibit a
monotonic relation (see Section A in the Supplementary Ma-
terials). This empirical relation is further reinforced by Paul
et al. [2021], as they observe that “examples that are learned
faster and maintain small error over training have a smaller
GraNd score on average,” where the GraNd score is the
gradient norm of a sample. Thus, we choose to form St with
high-loss samples to approximately minimize the right-hand
side in Eqn. 11. A naïve approach involves sorting samples
in S by their loss values which is computationally expen-
sive (O(log n) per sample, e.g. [Paul et al., 2021]). Instead,
RCAP samples from every Sj by defining St

j ⊆ Sj as the set
of examples sampled at epoch t for class j in the following
manner.

St+1
j = {(Xi, yi)}

α̂t+1
j nj

i=1 ∼ Pt+1
j (Xi) (12a)

Pt+1
j (Xi) =

e(ϕ
t
j(Xi)/β)∑

Xq∈Sj
e(ϕ

t
j(Xq)/β)

(12b)

ϕt
j(Xi) =

{
γ
(
L
(
f̃θt(Xi)

)
, j
)

if Xi ∈ St
j

ϕt−1
j (Xi) otherwise

(12c)

γ(x, j) = min
(
x,max

(
ϕ0
j (Xi)

))
∀Xi ∈ Sj (12d)

ϕ0
j (Xi) = L

(
f̃θ0(Xi)

)
(12e)

Before training ensues, all examples are forward passed
through a randomly initialized network and the correspond-
ing loss values are stored in ϕ0

j as shown in Eqn. 12e. These
loss values correspond to completely random predictions.
Next, ϕ0

j is used to compute the aggregate class-wise losses,
Ẽ0

j , that determine the fraction of samples to be allocated
per class, α̂1

j , as shown in Eqn. 5. Next, a class-wise proba-
bility distribution is generated over the collected loss values,
ϕ0
j , using a Softmax function with β as the temperature

hyper-parameter as shown in Eqn. 12b. The training subset
is then generated by sampling over this distribution as per
Eqn. 12a. The model is then trained using these samples.
Following an epoch of training, ϕ0

j is updated with the new
loss values corresponding to the selected samples, forming
ϕ1
j as per Eqn. 12c which in turn determines α̂2

j . The distri-
bution is updated using Eqn. 12b and sampling re-occurs



Figure 1: An overview of the sequence of steps involved in
RCAP

as per Eqn. 12a. This iterative process continues until the
end of training. Fig. 1 gives a graphical overview of the
sequence of steps involved in each epoch. It is important
to note that the softmax-based sampling distribution built
from the loss values can become highly skewed due to the
presence of a few large values, leading to unstable or biased
subset selection. Hence, we define a clipping function in
Eqn. 12d with the clipping threshold as the maximum loss
observed in epoch 0, before training begins. If a sample’s
loss exceeds this baseline during training, we assume the
model is making a deliberate or persistent error, possibly
due to label noise or input corruption. By capping the per-
sample loss before computing the sampling distribution, we
reduce the likelihood of repeatedly selecting such samples,
thereby keeping the pruning process fairly robust.

Crucially, RCAP’s per-class sample size determination and
per-class sample selection modules incur no additional com-
putational overhead, as they are determined entirely based
on loss values that are computed during the forward pass.
Such a strategy allows our proposed approach to achieve
a per-sample time complexity of O(1). Algorithm 1 pro-
vides the implementation details, where I[j] = {i | ∀ yi ∈
Y, yi = j} at t = 1.

4 EXPERIMENTS

4.1 BASELINES

We evaluate our proposed approach against seven repre-
sentative baselines: two static and four dynamic data prun-
ing methods as well as a coreset selection technique. CCS
[Zheng et al., 2023] is a state-of-the-art coreset selection
technique that maximizes data distribution coverage. TDDS
[Zhang et al., 2024] is the current leading static data pruning
method. It incorporates training dynamics to determine sam-
ple importance. MetriQ [Vysogorets et al., 2024] is a class-
ratio-aware static data pruning method designed to reduce

Algorithm 1: The proposed RCAP Algorithm
Input :Dataset S = (X, Y ), Number of classes c, Pruning

rate r ∈ (0, 1], Number of training epochs, T ,
Softmax temperature β and Set of indices selected I

Output :Trained Model.
1 α,m = [ ], [ ]
2 n = length(Y )
3 ϕ← L(Xi) ∀Xi ∈ S
4 for t = 1 to T do
5 for j = 1 to c do
6 idx← {i | ∀ yi ∈ Y, yi = j}
7 m[j] = length(idx)

8 α[j] =

⌊ √
nc[j]

n
ϕ[I[j]]∑√

nc[j]
n

ϕ[I[j]]
× (1− r)× n

m[j]

⌋
9 Use Eqn. 6 to fix violating α

10 P = e(ϕ[idx]/β)∑
e(ϕ[idx]/β)

11 I[j] = {i | ∀ (Xi, yi) ∈ X ∼ P (X[idx], Y [idx])}
and |X | = (α[j]×m[j])

12 Update model parameters using I
13 Update ϕ

classification bias. UCB Raju et al. [2021] is one of the earli-
est dynamic data pruning approaches utilizing sample uncer-
tainty and Reinforcement Learning inspired exploration to
prune unimportant samples. InfoBatch [Qin et al., 2024] is
a state-of-the-art dynamic data pruning method that selects
samples based on their loss and adaptively determines the
pruning ratio via a hyperparameter. RS2 [Okanovic et al.,
2024b] is another state-of-the-art dynamic data pruning ap-
proach that performs pruning by random selection with and
without replacement. Note: For brevity’s sake, we omit com-
parisons with older methods (e.g., GraNd, CRAIG, Grad-
Match, Glister, and CREST) as all considered baselines have
demonstrated superior performance in prior studies.

4.2 DATASET AND MODEL DETAILS

We benchmark RCAP on six diverse datasets in terms of
scale and class imbalance using five distinct networks. CI-
FAR10 [Krizhevsky et al., 2009] is a medium-scale, class-
balanced dataset comprising 10 classes, each containing
5000 samples over which we trained the ResNet18 model
[He et al., 2016] from scratch. CIFAR100 [Krizhevsky et al.,
2009] is a medium-scale, class-balanced dataset compris-
ing 100 classes, each containing 500 samples, over which
we trained the ResNet18 model from scratch as well. Ima-
geNet [Deng et al., 2009] is a large-scale, relatively class-
balanced dataset of over 1.2 million images comprising
1000 classes, each containing approximately 1300 samples
with slight variations. We trained a two layer MLP on top
of the Dinov2-b model [Radosavovic et al., 2020] on this
dataset. Waterbirds [Sagawa et al., 2019] is a moderately
class-imbalanced, small scale dataset with 4795 images



Table 1: Worst Group Accuracy (Top-1) averaged over three separate runs. The best scores are shown in bold while the
second best are underlined. The time, in minutes, required by RCAP in comparison to full data training is also reported.

Dataset
Prune
Rate CCS(%) MetriQ(%) TDDS(%) UCB(%) InfoBatch(%) RS2 w/r(%) RS2 w/o(%) RCAP(%) Time

CIFAR10

00% 91.13±0.29 91.13±0.29 91.13±0.29 91.13±0.29 91.13±0.29 91.13±0.29 91.13±0.29 91.13±0.29 23.3

50% 88.87±0.29 90.53±0.41 90.27±0.33 90.00±0.45 89.97±0.48 89.83±0.24 90.10±0.59 90.60±0.14 13.3

70% 83.50±1.31 86.63±0.29 84.57±1.11 87.97±0.45 88.50±0.16 88.43±0.49 88.60±0.22 89.73±0.38 6.7

80% 77.53±0.87 82.50±0.62 80.17±1.11 84.53±0.34 86.53±0.97 87.43±0.48 88.10±0.50 88.70±0.37 5.3
90% 67.20±0.36 71.30±1.08 68.63±0.95 73.17±0.38 83.53±0.45 79.63±0.45 80.47±0.33 85.07±0.34 3.3

CIFAR100

00% 55.00±1.41 55.00±1.41 55.00±1.41 55.00±1.41 55.00±1.41 55.00±1.41 55.00±1.41 55.00±1.41 23.3

50% 43.67±0.47 54.00±1.41 43.67±0.47 49.33±0.47 52.33±0.47 53.67±1.25 54.00±0.00 55.00±1.63 13.3
70% 34.67±0.47 43.67±0.94 23.33±1.70 42.57±1.89 51.00±1.63 50.33±1.70 52.00±0.82 52.67±0.94 6.7

80% 21.00±0.82 30.33±0.47 15.67±0.47 33.33±1.89 50.33±0.47 50.33±1.70 49.00±0.00 50.67±0.47 5.3

90% 07.00±0.82 11.00±1.63 05.33±0.47 14.33±1.25 46.67±0.47 35.67±0.94 35.33±0.94 48.33±1.89 3.3

ImageNet

00% 20.67±2.49 20.67±2.49 20.67±2.49 20.67±2.49 20.67±2.49 20.67±2.49 20.67±2.49 20.67±2.49 249.0

50% 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 18.67±2.49 22.67±0.94 19.33±0.94 24.00±0.00 130.5

70% 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 18.00±2.83 20.00±1.64 20.00±4.32 24.00±2.83 82.7
80% 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 14.00±0.00 20.67±0.94 23.33±0.94 24.00±1.63 58.0

90% 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 20.00±2.83 19.33±1.89 23.33±2.49 26.00±0.00 30.5

Waterbirds

00% 90.27±0.67 90.27±0.67 90.27±0.67 90.27±0.67 90.27±0.67 90.27±0.67 90.27±0.67 90.27±0.67 70.0

50% 89.97±0.47 89.22±0.27 90.10±0.35 50.00±0.00 90.48±0.71 90.48±0.17 89.72±1.42 91.34±0.01 35.0
70% 91.02±0.06 82.35±0.87 90.11±0.18 50.00±0.00 90.60±0.61 90.10±0.18 90.35±0.35 92.09±0.09 20.0

80% 90.40±0.21 81.73±0.26 90.71±0.52 50.00±0.00 89.83±0.25 89.61±1.70 89.60±0.94 91.60±0.18 15.0
90% 90.27±0.04 79.05±0.37 90.48±0.18 50.00±0.00 89.06±0.57 89.78±0.35 88.97±0.47 91.21±0.38 10.0

CelebA

00% 90.14±0.35 90.14±0.35 90.14±0.35 90.14±0.35 90.14±0.35 90.14±0.35 90.14±0.35 90.14±0.35 21.7

50% 86.43±0.80 91.72±1.40 87.44±1.80 50.00±0.00 86.47±2.62 88.99±0.91 87.97±2.46 92.30±0.16 12.1

70% 86.28±1.27 91.45±0.30 88.29±2.12 50.00±0.00 84.46±5.06 85.76±2.21 88.27±2.01 92.19±0.22 5.8
80% 89.58±0.31 90.70±0.26 86.16±0.59 50.00±0.00 82.17±0.34 88.21±1.58 88.96±1.54 91.64±0.57 4.0

90% 84.75±1.99 89.39±1.48 80.57±3.02 50.00±0.00 79.35±0.26 81.49±1.72 84.25±2.05 91.24±0.41 2.0

iNaturalist

00% 69.66±1.17 69.66±1.17 69.66±1.17 69.66±1.17 69.66±1.17 69.66±1.17 69.66±1.17 69.66±1.17 58.5

50% 65.62±0.13 65.97±0.48 49.32±1.79 0.00±0.00 62.76±0.26 61.73±1.46 63.01±1.37 66.44±2.06 34.1

70% 61.12±0.12 65.94±0.82 48.61±1.39 00.00±0.00 40.42±8.91 51.37±2.05 54.79±0.00 69.18±2.06 19.6

80% 61.53±2.09 65.70±0.70 26.05±1.74 00.00±0.00 36.31±6.17 40.42±4.8 37.68±0.69 69.18±0.69 10.2
90% 56.64±0.89 65.14±4.31 00.00±0.00 00.00±0.00 05.48±4.11 03.41±0.71 00.69±0.69 68.49±2.74 6.7

split into land birds and water birds (76.8%vs.23.2%). We
fine-tuned the EfficientNet-b3 model [Tan and Le, 2019]
pre-trained on ImageNet. CelebA [Liu et al., 2015] is a
relatively high class-imbalanced, medium-scale dataset con-
taining over 160K images. We chose the blonde 85.1%
vs not blonde 14.9%, binary classification task. We train
an EfficientFormerV2 [Li et al., 2023] from scratch, for
this dataset. iNaturalist [Van Horn et al., 2018] is a large-
scale, extremely imbalanced dataset with over 600K images
across 13 superclasses. The largest group contains 196, 613
images, while the smallest has 381. We fine-tune an Ima-
geNet pre-trained ResNet50 [He et al., 2016].

4.3 TRAINING DETAILS

To ensure fair evaluation, we re-implement all baselines
and verify that the Top-1 average accuracy of each method
matches its corresponding reported value. For robustness
analysis, we report the worst group accuracy and corre-

sponding average group accuracy (Top-1). In doing so, the
average group accuracy of each method as reported in their
corresponding manuscripts changes considerably, especially
at high pruning rates. All static methods utilize the same net-
work for subset selection and training which is the best-case
scenario for such techniques. For a fair comparison between
InfoBatch and other baselines, we adjust the number of
training iterations as recommended by Qin et al. [2024]. To
understand RCAP’s training efficiency, we report its training
time across all pruning rates as well as the total time for full
dataset training, in minutes. Further training specifics are
detailed in Section C of the Supplementary Material.

4.4 RESULTS

Table 1 presents the Top-1 worst-group accuracy across six
datasets at four pruning rates. RCAP consistently outper-
forms all baselines in every experiment. Notably, on Ima-
geNet, Waterbirds and CelebA, it surpasses full-data train-



Table 2: Average Group Accuracy (Top-1) averaged over three separate runs. The best scores are shown in bold while the
second best are underlined. The time, in minutes, required by RCAP in comparison to full data training is also reported.

Dataset
Prune
Rate CCS(%) MetriQ(%) TDDS(%) UCB(%) InfoBatch(%) RS2 w/r(%) RS2 w/o(%) RCAP(%) Time

CIFAR10

00% 95.41±0.10 95.41±0.10 95.41±0.10 95.41±0.10 95.41±0.10 95.41±0.10 95.41±0.10 95.41±0.10 23.3

50% 93.85±0.16 92.81±0.19 94.88±0.06 94.78±0.04 94.84±0.04 94.85±0.14 94.64±0.17 94.81±0.24 13.3
70% 90.10±0.59 89.89±0.40 91.79±0.61 93.80±0.17 94.14±0.21 94.19±0.16 94.09±0.39 94.40±0.14 6.7
80% 86.50±0.38 86.31±0.54 89.59±0.72 91.24±0.28 93.44±0.36 93.22±0.29 93.50±0.32 93.04±0.16 5.3
90% 81.20±0.17 76.26±1.00 83.60±1.03 84.29±0.83 91.83±0.85 88.82±0.24 89.11±0.81 91.45±0.27 3.3

CIFAR100

00% 77.85±0.56 77.85±0.56 77.85±0.56 77.85±0.56 77.85±0.56 77.85±0.56 77.85±0.56 77.85±0.56 23.3

50% 69.16±0.51 69.50±0.44 71.87±0.54 74.95±0.32 76.03±0.47 76.35±0.36 76.76±0.38 76.90±0.30 13.3
70% 64.85±0.20 60.98±0.36 64.94±0.45 69.95±0.98 75.53±0.30 74.86±0.59 75.76±0.23 75.63±0.13 6.7
80% 53.15±1.30 51.03±1.35 57.13±1.33 62.13±0.48 74.68±0.11 73.77±0.71 73.68±0.40 74.62±0.13 5.3
90% 35.42±0.72 29.99±1.04 40.98±1.69 40.03±1.65 71.93±0.38 66.90±0.29 66.59±0.76 70.92±0.22 3.3

ImageNet

00% 84.47±0.05 84.47±0.05 84.47±0.05 84.47±0.05 84.47±0.05 84.47±0.05 84.47±0.05 84.47±0.05 249

50% 74.78±0.19 71.78±0.16 78.78±0.27 80.23±0.39 84.40±0.03 84.17±0.09 84.31±0.07 84.37±0.04 130.5
70% 73.95±0.21 70.95±0.39 75.82±0.72 77.29±0.15 84.09±0.18 83.88±0.11 84.14±0.06 83.89±0.13 82.7
80% 69.25±0.19 70.98±0.21 71.09±0.44 72.43±0.59 83.78±0.05 83.77±0.03 83.94±0.01 83.46±0.06 58.0
90% 62.23±0.41 70.16±0.49 69.13±0.63 71.24±0.96 83.46±0.06 83.19±0.02 83.49±0.03 83.54±0.02 30.5

Waterbirds

00% 90.87±0.30 90.87±0.30 90.87±0.30 90.87±0.30 90.87±0.30 90.87±0.30 90.87±0.30 90.87±0.30 70.0

50% 90.84±0.40 89.42±0.24 90.71±0.21 50.00±0.00 91.65±0.61 91.15±0.74 90.54±1.08 91.78±0.42 35.0
70% 91.40±0.06 84.41±1.62 90.98±0.58 50.00±0.00 91.42±0.64 90.30±0.16 90.82±0.36 92.26±0.56 20.0
80% 90.61±0.14 83.49±0.96 90.93±0.59 50.00±0.00 90.09±0.18 90.01±1.30 90.53±0.29 91.98±0.40 15.0
90% 90.33±0.34 81.84±0.34 90.77±0.08 50.00±0.00 89.42±0.72 89.99±0.46 89.36±0.35 91.47±0.33 10.0

CelebA

00% 92.04±0.35 92.04±0.35 92.04±0.35 92.04±0.35 92.04±0.35 92.04±0.35 92.04±0.35 92.04±0.35 21.7

50% 91.15±0.09 93.14±0.36 91.45±0.57 50.00±0.00 91.28±0.59 91.94±0.26 90.87±0.35 92.84±0.36 12.1
70% 91.28±0.47 92.42±0.05 91.10±0.27 50.00±0.00 90.19±1.75 90.93±0.67 91.03±1.05 93.00±0.07 5.8
80% 91.48±0.09 91.68±0.19 90.53±0.38 50.00±0.00 89.44±0.09 90.20±0.79 90.19±0.54 92.39±0.26 4.0
90% 87.08±0.44 91.14±0.62 87.46±0.64 50.00±0.00 87.79±0.19 88.50±0.48 89.38±0.55 91.47±0.31 2.0

iNaturalist

00% 83.62±0.06 83.62±0.06 83.62±0.06 83.62±0.06 83.62±0.06 83.62±0.06 83.62±0.06 83.62±0.06 58.5

50% 84.03±0.06 84.19±0.16 80.32±0.26 07.69±0.00 81.65±0.05 81.45±0.18 81.87±0.04 84.26±0.09 34.1

70% 81.86±1.14 82.50±0.17 76.12±0.48 07.69±0.00 75.40±0.74 78.82±0.33 79.85±0.15 84.12±0.36 19.6

80% 80.25±0.38 82.81±0.36 70.20±0.30 07.69±0.00 76.73±0.03 76.31±0.16 76.43±0.86 83.93±0.24 10.2
90% 79.74±0.16 78.32±4.50 63.19±0.14 07.69±0.00 70.67±0.85 70.40±0.32 70.34±0.76 82.97±0.57 6.7

ing, even at a 90% pruning rate. The improvement stems
from the class imbalance in these datasets, ranging from
mild to high. By pruning aggressively, RCAP naturally re-
tains fewer samples from the majority class while preserving
most or all minority-class samples. This results in a more
balanced classification task, which enhances worst-group
accuracy. Other pruning methods like MetriQ and CCS also
benefit from the same effect. We find that on large-scale
imbalanced datasets with few classes, particularly CelebA
and iNaturalist, static pruning methods such as CCS and
MetriQ perform significantly better than dynamic pruning
techniques. However, such methods fail entirely, in terms
of worst group accuracy, on ImageNet where the number
of classes is large. Note that all static pruning techniques
are evaluated in their best-case scenario, i.e., the architec-
ture used for data pruning and consequent training on the
retained data are the same. We find that UCB, which was
originally only tested on CIFAR10 and CIFAR100, performs
the worst among all baselines with the resultant models pro-

ducing random output for four out of six datasets. Table
2 reports Top-1 average-group accuracy. RCAP performs
comparably to existing methods on class-balanced datasets.
On class-imbalanced datasets, it outperforms all baselines
and even full-data training, primarily due to its gains in
worst-group accuracy.

Beyond accuracy, RCAP is highly efficient. It delivers up
to 8.69× speed-up in comparison to full-data training with
less than 1% drop in performance on ImageNet, Waterbirds,
CelebA and iNaturalist datasets, on average, as demon-
strated in Table 1 (or Table 2). This combination of effi-
ciency and robustness establishes RCAP as the new state-
of-the-art in robust dynamic dataset pruning.

4.5 PERFORMANCE WITH VARYING β

The Softmax temperature hyper-parameter, β, is the sole
hyper-parameter in RCAP and plays a critical role in deter-



(a) CIFAR10 (b) CIFAR100 (c) Waterbirds (d) CelebA

Figure 2: Variation of the Softmax temperature hyper-parameter, β, across different pruning rates over four datasets:
CIFAR10, CIFAR100, Waterbirds, and CelebA.

mining the sampling probabilities, thereby influencing the
overall performance of our algorithm. Specifically, β con-
trols the sharpness of the sampling distribution with values
> 1 promoting a more uniform sampling strategy, while val-
ues < 1 prioritizing samples having high loss by assigning
them higher sampling probabilities. To evaluate the impact
of β on RCAP’s performance, we conduct an ablation study
by varying β within the range [ 14 , 4] across four datasets,
CIFAR10, CIFAR100, Waterbirds, and CelebA over four dif-
ferent pruning rates, 50%, 70%, 80%, and 90%. The results,
presented in Fig. 2, reveal that the choice of β is crucial,
especially at higher pruning rates where fewer samples are
retained. Interestingly, at relatively moderate pruning rates
(50%), β > 1 performs better with the performance being
more stable across a wider range of β, allowing for more
flexibility in hyper-parameter selection. On the other hand,
at high pruning rates (90%), β < 1 achieves better results
with the choice of β becoming increasingly critical as fewer
samples are retained. Suboptimal values lead to sharp per-
formance drops, particularly in Waterbirds and CIFAR100.
These findings suggest that β must be carefully tuned based
on dataset characteristics and pruning rates. We recommend
that starting with β =

{
1
3 ,

1
2 , 2, 3

}
provides a strong base-

line across most scenarios.

5 RELATED WORK

Dataset pruning algorithms aim to identify and remove less
"informative" examples, minimizing the performance gap
between models trained on subsets and full datasets. This
is achieved through various sample importance estimation
metrics that measure the amount of "information" imparted
by an example during model training.

Geometry based methods reduce redundancy by leverag-
ing spatial similarity in feature space. Popular techniques
like Herding [Welling, 2009] minimize the distance between
coreset and dataset centers, while K-Center Greedy [Sener
and Savarese, 2018] minimizes the maximum distance to
the nearest coreset sample.
Uncertainty based methods prioritize low-confidence sam-
ples using metrics like least confidence, entropy, and margin

[Coleman et al., 2020]. For example, Chang et al. [2017]
use predictive distribution variance for selection.
Loss based methods focus on samples contributing higher
loss or gradient values. Forgetting events [Toneva et al.,
2019], GraNd, and EL2N scores [Paul et al., 2021] are
prominent techniques. CCS [Zheng et al., 2023], a state-
of-the-art one-shot coreset selection technique maximizes
data distribution coverage while utilizing stratified sampling
to form the retain set. InfoBatch [Qin et al., 2024], a dy-
namic pruning approach, combines loss thresholds with
score based sampling and uniform sampling along with gra-
dient scaling for bias reduction.
Decision boundary based methods prioritize samples near
decision boundaries. Adversarial DeepFool [Ducoffe and
Precioso, 2018] measures perturbations needed to alter pre-
dictions, while CAL [Margatina et al., 2021] emphasizes
predictive divergence among neighbors.
Gradient matching based methods optimize coresets to
approximate full-dataset gradients. CRAIG [Mirzasoleiman
et al., 2020] and GradMatch [Killamsetty et al., 2021a] min-
imize gradient error, with GradMatch introducing penalties
to prevent over-reliance on few samples.
Bilevel optimization based methods frame sample selec-
tion as an optimization problem. Retrieve [Killamsetty et al.,
2021c] applies this to semi-supervised learning, while Glis-
ter [Killamsetty et al., 2021b] introduces robustness by
adding a validation set on the outer optimization and the
log-likelihood in the bilevel optimization.
Training dynamics incorporating methods track impor-
tance over epochs. Dyn-Unc [He et al., 2024] averages pre-
diction uncertainty across epochs, and TDDS [Zhang et al.,
2024] aligns gradients over the full training run.
Submodularity based methods maximize diversity and
informativeness through submodular functions like Facility
Location and Log Determinant [Iyer et al., 2021]. Prism
[Kaushal et al., 2021] targets labeling efficiency in large
datasets.
Proxy based methods train a proxy model (a smaller, shal-
lower version of the original model) on the entire training
dataset to determine the importance of each sample [Cole-
man et al., 2020, Sachdeva et al., 2021].
Random sampling based methods perform uniform sam-



pling and are tough-to-beat baselines [Ayed and Hayou,
2023]. RS2 [Okanovic et al., 2024b] employs dynamic
uniform sampling (with and without replacement), while
MetriQ [Vysogorets et al., 2024] adjusts sample fractions
by class.

6 CONCLUSION

We present RCAP, a novel, Robust, Class-Aware, Probabilis-
tic dynamic dataset pruning algorithm tailored for classifi-
cation tasks. In every epoch, RCAP applies a closed-form
solution to estimate the fraction of samples that need to be in-
cluded in the training subset for each individual class. There-
after, RCAP employs a novel, adaptive sampling strategy
that prioritizes samples having a higher loss for populating
the class-wise subset. Our method incurs no computational
overhead, achieving an impressive 8.69× speed-up on aver-
age across multiple datasets while maintaining < 1% drop
in performance with respect to full data training. Extensive
evaluation on six datasets, ranging from class-balanced to
highly imbalanced, across four pruning rates and three dis-
tinct training paradigms, shows that RCAP significantly im-
proves worst-group accuracy while maintaining competitive
average-group accuracy compared to seven state-of-the-art
pruning methods.
Limitations and Future Scope: RCAP requires a few train-
ing epochs to accurately approximate the optimal class-wise
fractions, which could hinder its utility in scenarios requir-
ing immediate effectiveness. For instance, LLMs are few-
shot learners [Brown et al., 2020] but are computationally
expensive to train due to their reliance on massive datasets.
Therefore, we aim to refine RCAP to reduce approximation
error early in training, enhancing its applicability to LLMs
and other large-scale models. Another important limitation
is the β hyper-parameter, which currently requires manual
selection. A promising direction of future work is to make
β adaptive during training by utilizing the loss values or
annealing schedules.
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A ADDITIONAL SIMULATION RESULTS

To further support our argument, we train a small feed-forward neural network using the Adam optimizer on a toy, three-class
classification dataset consisting of 90 examples and provide a plot of the loss and gradient norm of 10 randomly selected
examples over a 100 epoch training run. The figure demonstrates that there indeed is a monotonic relation.

Figure 3: Visualizing the relationship between cross-entropy loss against gradient norm.
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B APPROXIMATION ERROR

Approximating α̂t+1
j with Ẽt

j incurs some approximation error. In this section, we derive an upper bound on this error.
Specifically,
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We now derive separate upper bounds for both terms in Eqn. 13. Assuming that L is Lipschitz continuous having a Lipschitz
constant K1 with respect to the change in parameters θ, we get:∣∣∣∣∣∣
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We now derive the upper bound for the second term in Eqn. 13. Without loss of generality, we assume that
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Finally, applying Eqns. 14 and 15 in Eqn. 13, we get:
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C TRAINING DETAILS

We run all our tasks on a single NVIDIA A100 GPU in combination with an Intel Xeon processor. We use the Pytorch
Lightning library to implement all methods. Each reported result is averaged over three different runs usings seeds, 0, 27, 100.
Apart from standard image augmentations, we also employ TrivialAugmentWide Müller and Hutter [2021]. In all our
experiments, we use the CosineAnnealing Scheduler Loshchilov and Hutter [2022].

Table 3: All the training details required to reproduce our results.

Dataset Model Augmentations Optimizer LR Weight Decay Batch Size Epochs

CIFAR10 ResNet18
RandomCrop

RandomHorizontalFLip
SGD

momentum= 0.9 0.1 5e−4 128 200

CIFAR100 ResNet18
RandomCrop

RandomHorizontalFLip
SGD

momentum= 0.9 0.1 5e−4 128 200

ImageNet

Frozen dinov2_vitb14_reg
with two linear layers
2304 → 512 → 1000

Resize
CenterCrop

TrivialAugmentWide AdamW 0.001 − 256 10

Waterbirds
pretrained

efficientnet_b3

Resize
RandomCrop

RandomHorizontalFlip
TrivialAugmentWide AdamW 0.00004 5e−4 32 300

CelebA EfficientFormerV2

CenterCrop
RandomHorizontalFlip
TrivialAugmentWide AdamW 0.001 5e−4 256 5

iNaturalist
pretrained
ResNet50

Resize
CenterCrop

RandomHorizontalFlip
TrivialAugmentWide AdamW 0.001 5e−4 256 5

Table 4: β values used across all datasets and pruning rates.

Dataset 50% 70% 80% 90%

CIFAR10 3 1 2 1

CIFAR100 3 2 2 2

ImageNet 1
3

4 2 2

Waterbirds 3 1
2

1
2

1
2

CelebA 2 2 3 1

iNaturalist 2 3 3 1
3
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