
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FMP-AE: A HYBRID APPROACH TO TIME SE-
RIES ANOMALY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Unsupervised anomaly detection in time series presents significant challenges,
especially due to the lack of labeled data and the prevalence of highly imbal-
anced datasets. Traditional statistical and machine learning methods often suffer
from low recall and computational inefficiency. While deep learning techniques
can automatically extract features, they still struggle with data imbalance. This
paper introduces a novel anomaly detection model, Feature map Matrix Profile
with an AutoEncoder (FMP-AE), which integrates matrix profile techniques with
deep learning. The model uses a 1D-CNN to extract features and compute the
matrix profile. A new Matrix Profile loss function is introduced and combined
with the Autoencoder’s reconstruction loss to enhance anomaly detection. The
approach also incorporates a sliding window technique to improve sensitivity to
sparse anomalies and increase efficiency. Experimental results on the UCR250
benchmark datasets demonstrate the model’s superior performance across mul-
tiple metrics, including accuracy, precision, recall, F1-score, and AUC. These
results highlight the FMP-AE model’s ability to efficiently process large-scale
datasets and generalize well across diverse time series domains, offering signifi-
cant improvements in both detection accuracy and computational efficiency.

1 INTRODUCTION

As society and industrial processes continue to digitize, numerous sensor-equipped devices generate
vast amounts of time series data, including data from financial markets, meteorological data, web
traffic monitoring, and manufacturing sensors. Anomaly detection (AD), often referred to as outlier
detection (Kieu et al., 2019), is the technique used to identify data points that exhibit substantial
deviations from the norm. This field of research has gained widespread attention since the 1960s
(Grubbs, 1969), with increasing importance due to growing demand and applications (Pang et al.,
2021). The primary goal is to detect these abnormal behaviors to enable corrective or preventive
measures. Anomaly detection plays a crucial role across numerous fields, including identifying
fraudulent or manipulative trading behaviors in finance (Hilal et al., 2022), monitoring equipment
performance to prevent breakdowns in industrial manufacturing (Hsieh et al., 2019), assessing pa-
tient vital signs for early detection of potential health problems in healthcare (Chauhan & Vig, 2015),
and recognizing unusual network traffic to guard against cyber attacks and data breaches in network
security (Hwang et al., 2020). Generally, Anomalies are categorized into three primary categories:
point anomalies, contextual anomalies, and collective anomalies, which are common across different
datasets.

Time-Series Anomaly Detection (TSAD) is critical in applications like fault detection in industrial
systems, health monitoring, and fraud detection in finance. However, TSAD faces unique challenges
due to the sequential nature of time-series data. One major issue is the scarcity of labeled anoma-
lies, as they are rare and often require domain expertise to identify, making unsupervised meth-
ods particularly important. Additionally, time-series data often varies significantly across different
domains, and existing methods struggle to generalize due to the dynamic temporal dependencies,
making generalizability a key requirement. Another challenge is efficiency. Real-time monitor-
ing systems must process vast amounts of time-series data at scale, yet many current methods lack
the computational efficiency needed for large-scale deployment. Despite the development of vari-
ous approaches, many still depend heavily on labeled data, lack cross-domain adaptability, or are
computationally expensive, limiting their applicability in real-world TSAD scenarios.

1

Y(^_^)Y~yy
Highlight

Y(^_^)Y~yy
Highlight

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To overcome these challenges, we propose a novel model, the Feature map Matrix Profile combined
with an Autoencoder (FMP-AE), which addresses the key issues of label scarcity, generalizability,
and computational efficiency. Our approach introduces a new Matrix Profile (MP) loss function
that complements the Autoencoder’s reconstruction loss, enabling unsupervised anomaly detection
without the need for labeled data. This effectively addresses the challenge of label scarcity by lever-
aging the power of unsupervised learning, allowing the model to detect anomalies in a wide range
of time-series data. Additionally, we incorporate a sliding window technique that further mitigates
label scarcity and data imbalance by treating smaller subsequences as individual units, making it
easier to detect local anomalies and reducing the impact of rare events. To further enhance the gen-
eralizability of our model, we conduct experiments on univariate time-series datasets from multiple
domains, demonstrating that the FMP-AE model exhibits strong cross-domain adaptability and can
generalize well across varied time-series patterns. Additionally, we incorporate 1D Convolutional
Neural Networks (CNN) within the FMP-AE model, which not only speeds up Matrix Profile com-
putation but also allows for parallel processing, making the model highly scalable and suitable for
large-scale, real-time applications. This design addresses the challenge of efficiency by reducing
computational overhead and improving processing time without sacrificing accuracy.

The key contributions of this paper are the following:

• We propose a novel loss function that integrates Matrix Profile (MP) loss with Autoen-
coder reconstruction loss, addressing the label scarcity challenge by enabling unsupervised
learning for time-series anomaly detection.

• We leverage 1D-CNN for feature extraction and Matrix Profile computation, improving
computational efficiency while maintaining high accuracy and generalizability across di-
verse domains.

• We employ a sliding window technique to address the issue of label scarcity and data
imbalance, allowing for the detection of local anomalies in imbalanced datasets.

• We conducted comprehensive experiments on the UCR250 benchmark datasets (Wu &
Keogh, 2021), which consist of 250 time series from diverse domains. Experimental results
demonstrate the superior performance of our model across multiple evaluation metrics.
Additionally, we perform five ablation studies to validate the effectiveness of each key
component of our approach.

2 RELATED WORK

Unsupervised anomaly detection in time series is an essential real-world problem that has been ex-
tensively studied. Approaches for detecting anomalies can be categorized into statistical, machine
learning, and deep learning methods. Statistical methods detect anomalies by calculating statistical
characteristics of time series data. While these methods are generally simple and computation-
ally efficient, they tend to be less effective in capturing complex time series patterns and struggle
with non-linear or high-dimensional data. Machine learning methods model time series data using
supervised or unsupervised learning algorithms to detect anomalies, such as Local Outlier Factor
(Breunig et al., 2000), One-Class SVM (Erfani et al., 2016), and Support Vector Data Description
(Zhou et al., 2021). These classic methods do not take into account temporal information, making
them challenging to generalize to unknown real-world scenarios.

Deep learning methods have demonstrated considerable advantages in the field of time series
anomaly detection in recent years. It aims to learn feature representations and calculate anomaly
scores through neural networks for detecting anomalies. Deep anomaly detection methods include
Autoencoder (AE) (Sakurada & Yairi, 2014), Variational Autoencoder (VAE) (An & Cho, 2015),
Recurrent Neural Networks (RNN), and Long Short-Term Memory networks (LSTM) (Malhotra
et al., 2015). In addition, many hybrid approaches have been proposed. The LSTM-VAE method
(Lin et al., 2020) uses a VAE to extract robust local features from short windows of the sequence,
then pass these features to an LSTM to estimate the long-term dependencies in the sequence, thereby
achieving anomaly detection. The Beat-GAN (Zhou et al., 2019) uses the Generative Adversarial
Networks to generate samples similar to real data through adversarial training between the genera-
tor and discriminator models, detecting anomalies by comparing generated samples with real data.

2

Y(^_^)Y~yy
Highlight

Y(^_^)Y~yy
Highlight

Y(^_^)Y~yy
Highlight

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Anomaly Transformer method (Xu et al., 2022) introduces the Association Discrepancy of time
series with a new Anomaly-Attention mechanism to extract information for anomaly detection.

One-dimensional Convolutional Neural Networks (1D-CNN) have been applied to time series data
(Yin et al., 2020), utilizing convolutional operations to effectively extract local patterns and fea-
tures. This approach has proven to be well-suited for detecting local anomalies in time series data,
as shown in previous studies. In 2016, Eamonn Keogh’s team at the University of California, River-
side, introduced the matrix profile data structure (Yeh et al., 2016), specifically designed to analyze
internal associations within subsequences of time series data by computing a similarity matrix. It
is primarily used for pattern (i.e., Motif) discovery and anomaly detection in both univariate and
multivariate time series data. There are several algorithms for computing Matrix Profile, and effi-
ciency is crucial for large time series. Notable methods include STAMP (Yeh et al., 2016), STOMP
(Zhu et al., 2016), and SCRIMP (Zhu et al., 2018). Among them, SCRIMP and anomaly detec-
tion techniques like MERLIN++ (Nakamura et al., 2023) achieve the highest accuracy. However,
MP methods can be computationally demanding due to pairwise distance calculations. In scenarios
where rapid anomaly detection is critical, we aim to optimize the MP computation to reduce costs.

Despite the development of numerous anomaly detection methods for various datasets, a recent
survey (Goswami et al., 2023) found that no single method consistently outperforms others across
all datasets. They performed extensive experiments on various real-world datasets and introduced
an innovative robust rank aggregation approach to merge several surrogate metrics into a cohesive
model selection standard.

This study presents an accurate, efficient anomaly detection method with strong generalization abil-
ity, demonstrating its effectiveness on the UCR datasets. This approach leverages Autoencoder to
capture normal patterns and employs matrix profiles to assess local similarities, significantly en-
hancing the performance of anomaly detection models.

3 METHOD

A time series T = ⟨t1, t2, . . . , tn⟩ represents a sequence of vectors arranged in chronological order.
A subsequence of length k that begins at position i is represented as xi = ⟨ti, ti+1, . . . , ti+k−1⟩,
with the condition 1 ≤ i ≤ n−m+1. An anomaly within a time series is characterized by a notable
divergence in behavior or patterns compared to the series’ typical behavior.

Anomaly Score (AS) quantifies how much a data point or vector deviates from the expected normal
behavior. For a time series T = ⟨t1, t2, . . . , tn⟩, the anomaly score AS(ti) for each ti indicates
the likelihood of ti being an outlier. Generally, a higher value of AS(ti) indicates an increased
probability that the vector is an anomaly.

Problem Description. For a given time series T , the goal is to develop a model that generates an
anomaly score AS(ti) for every data point ti. A higher score indicates a greater deviation from the
normal behavior, thus increasing the probability that ti is an anomaly.

3.1 CALCULATE OPTIMIZED-MP BY 1D-CNN

One-Dimension Convolutional Neural Network (1D-CNN) is usually used for processing sequence
and time series data. Our model framework is shown in Figure 1. First, We preprocess the time
series data using a sliding window technique, where the window moves step-by-step across the
series, generating overlapping segments. This approach helps handle long sequences and addresses
data imbalance and label scarcity, as each segment can be independently analyzed for anomalies.
Additionally, we introduce a rule that if any point within a window is flagged as anomalous, the
entire window is considered anomalous. This increases the likelihood of detecting larger anomalous
regions and ensures that sparse anomalies or larger abnormal events are captured as a whole, rather
than fragmented.

Each segment is input into the 1D-CNN for feature extraction. The CNN consists of three con-
volutional layers with batch normalization and ReLU activation, followed by Max Pooling. The
convolutional layers capture local patterns, while pooling reduces dimensionality and highlights key
features for anomaly detection. After feature extraction, we compute the Matrix Profile by calcu-
lating Euclidean distances between feature maps of different segments. These distances form an

3

Y(^_^)Y~yy
Highlight

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

optimized matrix profile, which identifies the most similar segments. The segments with unusually
large distances from their most similar counterparts are flagged as anomalies.

The Matrix Profile (MP) serves as a data structure specifically designed for analyzing time series. It
consists of a vector that holds similarity scores among the subsequences within the time series. Tra-
ditional Matrix Profile is computed directly on raw time series data, but it can be sensitive to noise,
trends, and seasonality. In our approach, we first extract high-dimensional feature representations
from the time series using a 1D-CNN. These features are more robust and better suited for capturing
complex patterns, which allows for a more reliable matrix profile calculation. Given a time series T
and a predetermined subsequence length k, the set of all subsequences of length k can be defined as:

X (k) = {xi | xi = [ti, ti+1, . . . , ti+k−1], i = 1, 2, . . . , n− k + 1}

where each subsequence xi is a contiguous segment of length k starting at position i in the time
series T . Each segment of the time series is passed through a 1D-CNN to extract local features, as
described in the model architecture. These features are more abstract and stable compared to the
raw time series data.

Firstly, for each feature vector fi extracted from CNN, we calculate the L2 norm:

∥fi∥2 =

√√√√ d∑
j=1

f2
ij (1)

where d is the dimensionality of the feature vector for each segment. Then, we compute the simi-
larity matrix. We calculate the similarity matrix S based on the dot product of feature vectors and
normalize it:

Sij = fi · fjS′
ij =

Sij

∥fi∥2∥fj∥2
(2)

We use a sliding window of size k to compute the local mean for each window:

MPi =
1

k2

i+k−1∑
p=i

i+k−1∑
q=i

S′
pq (3)

Fianlly, we aggregate the local means to construct the optimized matrix profile:

P = [MP1,MP2, . . .] (4)

Each element of P represents the similarity score for a given subsequence, with lower values indicat-
ing high similarity (recurring patterns or motifs) and higher values suggesting anomalies. By using
the CNN-extracted features, our approach improves the robustness of the matrix profile calculation.
Unlike traditional methods that operate directly on raw data and are sensitive to noise or trends, our
model focuses on stable, high-level feature representations. As a result, the optimized matrix profile
is better suited for identifying anomalies by highlighting the dissimilarity between subsequences
with higher accuracy. Typically, lower values in the optimized MP correspond to recurring patterns
(Motifs), while higher values indicate anomalies.

3.2 TRAINING FMP-AE WITH NEW LOSS FUNCTION

Given a time series T , we first apply a sliding window of length k to the sequence, generating m
subsequences, where m is the number of windows extracted. These subsequences are then passed
through a 1D-CNN to extract feature maps. We subsequently compute the Matrix Profile (MP) based
on these feature maps, with the values in the MP denoted as pi = MP[i].

The reconstruction loss is defined as the mean squared error (MSE) between the original input
sequence X and the reconstructed output X̂ from the Autoencoder, and the Matrix Profile loss (MP
loss) as the mean of the elements in the Matrix Profile:

Lrecon =
1

m

m∑
i=1

∥xi − x̂i∥2, LMP =
1

m

m∑
j=1

pj , (5)

4

Y(^_^)Y~yy
Highlight

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1x

2x

mx

3x

C
on

vo
lu

tio
na

l
L

ay
er

 1

C
on

vo
lu

tio
na

l
L

ay
er

 2

M
ax

Po
ol

in
g

 L
ay

er
 1

C
on

vo
lu

tio
na

l
L

ay
er

 3

M
ax

Po
ol

in
g

 L
ay

er
 2

Flatten

 F
ul

ly
-c

on
ne

ct
ed

 L
ay

er

Feature Maps

Calculate Batch
Euclidean Distance

·
·
·

·
·
·

Calculate Batch
Matrix Profile

INPUT 1D-CNN Matrix Profile

Figure 1: Overview of our proposed model

To ensure consistency across all batches, we normalize both the reconstruction loss and the Matrix
Profile loss using global normalization factors computed across the entire dataset. The normalized
MP loss is defined as:

L̃MP =
LMP

p
, where p =

1

N

N∑
b=1

1

m

m∑
j=1

p
(b)
j (6)

where N is the total number of batches, p(b)j represents the Matrix Profile value of the j-th element
in the b-th batch.

Similarly, the normalized reconstruction loss is defined as:

L̃recon =
Lrecon

e
, where e =

1

N

N∑
b=1

1

m

m∑
i=1

∥x(b)
i − x̂

(b)
i ∥2 (7)

where e(b)i = ∥x(b)
i − x̂

(b)
i ∥2 represents the reconstruction error of the i-th element in the b-th batch,

and e is the mean reconstruction error across all batches.

The final total loss function is then defined as:

Ltotal = L̃recon + λ · L̃MP (8)

Here, Lrecon measures the Autoencoder’s ability to reconstruct the sequence, with higher recon-
struction errors indicating potential anomalies. Conversely, LMP assesses the similarity between
subsequences in the Matrix Profile, where lower similarity (higher MP loss) suggests anomalies.
The hyperparameter λ balances the contributions of reconstruction loss and MP loss, enabling the
model to focus on both reconstruction errors and similarity features.

The method detects anomalies by utilizing both reconstruction error and MP values. A large recon-
struction error indicates a potential anomaly, while a high MP value suggests low similarity with
other segments, also signaling anomalies. To enhance detection, the weight of the MP loss, rep-
resented by λ, is dynamically increased during training. This gradual adjustment is beneficial, as
prioritizing local anomaly detection too early may lead the model to converge to local minima or
neglect the global data structure. By progressively emphasizing the matrix profile error, the model
can initially focus on global features before honing in on local anomaly patterns. Figure 2 illustrates
the training process.

The FMP-AE training process involves several steps: First, a 1D-CNN extracts features from data
segments, which are then reconstructed using an Autoencoder. The matrix profile is computed from
these features, and both reconstruction loss and MP loss are integrated into a new loss function. Gra-
dients are calculated through backpropagation, with dynamic adjustments to λ to prevent gradient

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

mxxx ,,, 21
1,_ knmkwindowsliding

 1D-CNN
MP LOSS

 Autoencoder
Recon LOSS

 combined
loss function

Train both models

Capture
Global
Discrepancy

Focus on
Local
Discrepancy

Figure 2: Training model using the combined loss

explosion. As the Matrix Profile evolves during training with updated model parameters, the MP loss
also changes dynamically. As the model learns data patterns, the MP loss gradually decreases, re-
flecting improved performance in global similarity. This dual learning approach allows the model to
capture local features through reconstruction loss while simultaneously enhancing global similarity
through MP loss, thereby improving anomaly detection effectiveness.

Intuitively, MP loss captures internal sequence correlations, while reconstruction loss addresses the
overall differences between the original and reconstructed sequences. Reconstruction loss ensures
effective reconstruction of normal patterns, while MP loss increases sensitivity to anomalies. This
combination improves anomaly detection, making the model more accurate and robust in identifying
anomaly in time series data.

3.3 ANOMALY DETECTION

We propose an integrated Anomaly Score for detecting anomalies. First, we compute the MP values
pi based on 1D-CNN. Then we use the Autoencoder to reconstruct the input subsequence xi and
calculate the reconstruction error ei = ∥xi − x̂i∥2. Next, we apply Softmax to pi to get the weights
wi :

wi =
exp(pi)∑
j exp(pj)

(9)

The final Anomaly Score ASi is then computed as ASi = wi · ei. This score combines global
similarity from the Matrix Profile with local reconstruction errors for effective anomaly detection.
Finally we use a threshold τ to determine anomalies through the following labels:

labeli =
{
1 if ASi > τ,

0 if ASi ≤ τ,
(10)

the value 1 indicates an anomaly, while the value 0 does not.

4 EXPERIMENT

4.1 RESULTS AND ANALYSES

Datasets The UCR Anomaly Detection datasets (Wu & Keogh, 2021) include 250 files across vari-
ous domains, such as medicine (64%), biology (22%), industry (9%), and meteorology (5%). Each
file contains a training set of normal data and a test set with one anomaly, reflecting the rarity of
anomalies in real-world scenarios. Time series lengths range from 6,680 to 900,000 points, with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

training sets making up about 31% of the total. All series are min-max normalized. Designed for re-
alism, the UCR datasets address the oversimplification and lack of authenticity in previous datasets.

Baselines We compared our FMP-AE model against several baseline methods, including THOC
(Shen et al., 2020), OC-SVM (Erfani et al., 2016), IForest (Liu et al., 2008), LOF (Breunig et al.,
2000), ARIMA (Yaacob et al., 2010), LSTM-VAE (Lin et al., 2020), LSTM-VAE(p) (Park et al.,
2018), OmniAnomaly (Su et al., 2019), BeatGAN (Zhou et al., 2019), ADTransformer (Xu et al.,
2022), USAD (Audibert et al., 2020), GDN (Deng & Hooi, 2021), InterFusion (Li et al., 2021),
and Deep-SVDD (Zhou et al., 2021). This includes traditional machine learning, deep learning, and
hybrid approaches. We evaluated all methods based on Precision, Recall, and F1-score metrics. We
have uploaded the code to this link:https://github.com//FMP-AE.

As shown in Table 1, our model outperforms others in both Precision and F1-score, demonstrating
a strong balance between Precision and Recall. The visual comparison of the models is displayed in
Figure 3.

Table 1: Comparison results between different models

Model Precision Recall F1-score Type of paradigm Category
THOC 52.30 82.95 64.33 Clustering Traditional
OC-SVM 41.14 90.04 57.23 Clustering Traditional
IForest 40.77 93.60 56.07 Clustering Traditional
LOF 41.47 98.80 58.42 Density-based Traditional
ARIMA 13.59 85.71 39.75 Forecasting Traditional
LSTM-VAE 65.73 89.45 75.73 Reconstruction Deep
LSTM-VAE(p) 62.08 95.54 75.89 Reconstruction Deep
OmniAnomaly 64.21 86.93 73.86 Reconstruction Deep
BeatGAN 45.20 88.42 59.82 Reconstruction Deep
ADTransformer 72.80 99.60 84.12 Reconstruction Deep
USAD 23.75 95.60 47.86 Reconstruction Deep
DCdetector 61.62 100.00 74.05 Reconstruction Deep
GDN 32.46 98.60 46.59 Forecasting Based

Graph
Deep

InterFusion 60.74 95.20 74.16 Reconstruction Hybrid
Deep-SVDD 47.08 88.91 61.56 Distance-based Hybrid
Our Model 81.03 94.30 86.79 Reconstruction Hybrid

Figure 3: Comparison results of these models

Analyses Among all the evaluated models, our
model demonstrates the best overall perfor-
mance, particularly in terms of precision and
F1-score. Our model achieves a precision of
81.03% and a F1-score of 86.79%, showcasing
its excellent balance between accuracy and re-
call. The high precision suggests that our model
successfully reduces false positives, while the
elevated F1-score demonstrates its effective-
ness in maintaining a good balance between
precision and recall. In comparison, although
the LOF model has the highest recall rate at
98.80%, which suggests it almost never misses
any anomalies, its lower precision may lead to
more false positives. Other models such as Om-
niAnomaly and InterFusion also perform well in terms of precision and recall but do not surpass our
model in overall performance. Notably, ADTransformer performs well in both precision and re-
call, but its F1-score of 82.37% is still lower than our model’s 86.79%. This further underscores
the exceptional balance our model maintains between accuracy and recall. In summary, our model
FMP-AE delivers not only high accuracy in anomaly detection but also achieves an excellent balance
between precision and recall, resulting in the best overall performance for the task.

7

https://github.com/FyingE/FMP-AE
Y(^_^)Y~yy
Highlight

Y(^_^)Y~yy
Highlight

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We present the reconstructed loss and MP loss in Figure 4. Comparing these two types of loss, we
conclude that Reconstruction loss may not effectively distinguish anomaly in some cases, while MP
loss demonstrates better discrimination ability. The original anomaly map and the detected results
(only contain validation data) are shown in Figure 5; the AUC-ROC curve is presented in Figure 6.
It can be observed that our model effectively detects anomalies in the time series.

Figure 4: Reconstruction loss (the first line) and MP loss (the second line) are plotted alongside the
original time series with annotated abnormal regions. For both types of loss, a higher value indicates
an anomaly. From the figure, it is evident that MP loss demonstrates a stronger ability to identify
anomalies compared to reconstruction loss, particularly in aligning with the annotated abnormal
regions.

Figure 5: Original time series and detected anomalies (only validation data) are shown on the map.
The figure demonstrates how the model identifies anomalies within the time series, highlighting
the correspondence between the detected anomalies and the actual abnormal regions. This visual
comparison helps in evaluating the effectiveness of the model in anomaly detection on real-world
data.

Figure 6: AUC-ROC curve showing the model’s performance across various thresholds. A higher
AUC value indicates better effectiveness, representing a higher true positive rate and a lower false
positive rate. This figure demonstrates the model’s overall capability to correctly identify anoma-
lies while minimizing false positives, providing a comprehensive evaluation of its detection perfor-
mance.

4.2 ABLATION EXPERIMENTS

To illustrate the function of each component of FMP-AE, we conducted original experiments
(i.e.,MP+1D-CNN+AE) on the UCR datasets and performed five ablation studies, by (1) replac-
ing 1D-CNN with MLP (MP+MLP+AE), (2) removing 1D-CNN feature extraction (MP+AE), (3)
removing matrix profile loss (Only AE), (4) removing Autoencoder (MP+1D-CNN) and (5) re-
moving MP (1D-CNN+AE) respectively. The experimental results show the performance of each

8

Y(^_^)Y~yy
Highlight

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

experiment in terms of accuracy, precision, recall, and F1-score. The results are presented in Table
2. From these results, we can draw the following conclusions.

Table 2: Performances of five ablations

Metric Accuracy Precision Recall F1-score
Our model 97.96 81.03 94.30 86.79
MP+MLP+AE 96.15 71.64 83.25 74.92
Only AE 96.70 60.17 84.16 67.87
MP+AE 79.69 20.48 81.86 31.41
1D-CNN+AE 90.45 65.73 73.29 69.30
MP+1D-CNN 89.81 27.84 89.59 40.12

It can be seen that our model performs the best across all metrics, maintaining a balance between
precision, recall, and F1-score. Based on the experimental results in the Table 2, we can compare
each ablation study with the original model (our model) and analyze the performance change.

MP+MLP+AE (Replacing 1D-CNN with MLP): Compared to the original model, the accuracy in
the MP+MLP+AE experiment dropped from 97.96% to 96.15%, and the F1-score decreased from
86.79% to 74.92%. This decline highlights the critical role of 1D-CNN in extracting local features
from time series data. Unlike 1D-CNN, MLP is less effective in capturing temporal dependencies
and local patterns, which are crucial for identifying anomalies in time series. This experiment
demonstrates that leveraging convolutional operations is essential for enhancing the model’s ability
to detect subtle anomalies.

Only AE (Remove MP loss): When using only Autoencoder, the accuracy remains relatively high
at 96.70%, but precision drops significantly to 60.17%, and the F1-score decreases to 67.87%. The
high recall (84.16%) indicates that Autoencoder alone can detect most anomalies but struggles with
precision, leading to more false positives. This result underscores the importance of the MP loss
in refining anomaly detection by improving the precision and reducing false positives. It highlights
how combining reconstruction-based and pattern-based metrics enables more balanced and reliable
anomaly detection.

MP+AE (Removing 1D-CNN): After removing the 1D-CNN, the model’s accuracy decreases to
79.69%, with a sharp decline in F1-score to 31.41% and precision to 20.48%. This experiment
demonstrates that the absence of 1D-CNN significantly weakens the model’s ability to extract local
features, making it challenging to distinguish between normal and anomalous patterns. The results
underline the indispensable role of 1D-CNN in capturing the nuanced temporal structures of time
series, which are crucial for robust anomaly detection.

1D-CNN+AE: In this experiment, the accuracy drops to 90.45%, with an F1-score of 69.30%. The
precision (65.73%) and recall (73.29%) indicate that while 1D-CNN and Autoencoder can still detect
anomalies, the absence of MP loss reduces precision and overall performance. This highlights the
role of MP loss in refining detection by improving the balance between precision and recall.

MP+1D-CNN (Removing Autoencoder): When removing the Autoencoder, the accuracy is
89.81%, and the F1-score is 40.12%. Although the recall remains high at 89.59%, precision drops
significantly to 27.84%. This indicates that without the reconstruction-based anomaly detection
metric provided by the Autoencoder, the model heavily relies on pattern-based detection, leading to
more false positives. This result highlights the complementary nature of the Autoencoder and the
MP loss, where the Autoencoder provides a reconstruction-based perspective to better differentiate
normal from anomalous patterns.

AUC-ROC curve: The performance of the five models is evaluated using Receiver Operating Char-
acteristic (ROC) curves, comparing their True Positive Rate (TPR) and False Positive Rate (FPR).
The effectiveness of each model is quantified by the Area Under the Curve (AUC) score, which
serves as a comprehensive measure of classification performance. The results are depicted in Figure
7. Among the models, the MP+1D-CNN achieved the highest AUC score, underscoring the pivotal
role of 1D-CNN in effectively extracting features for time series anomaly detection. However, de-
spite its superior AUC, the MP+1D-CNN model demonstrates a weaker ability to balance precision
and recall compared to our model. Furthermore, substituting 1D-CNN with MLP or employing only

9

Y(^_^)Y~yy
Highlight

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the Autoencoder and Matrix Profile resulted in a marked decline in performance, reinforcing the
necessity of 1D-CNN for achieving high accuracy in anomaly detection.

This analysis highlights that, for the specific datasets, 1D-CNN is significantly more effective than
MLP or a purely Autoencoder-based approach in capturing local patterns within time series data.

Figure 7: AUC-ROC curve of original model and five ablation experiments

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a hybrid method, FMP-AE, which combines traditional matrix profile
techniques with deep learning for univariate time series anomaly detection. We employ a 1D-CNN
to extract features and compute the matrix profile, while introducing a novel Matrix Profile loss
function that integrates with the reconstruction loss during model training. The MP loss captures
internal similarities between sequences, and the reconstruction loss accounts for discrepancies be-
tween the original and reconstructed sequences. We conducted comparative experiments and five
ablation studies on the UCR250 datasets. The results show that FMP-AE significantly outperforms
traditional methods in key metrics such as Precision, Recall, F1-score, and AUC-ROC. Our ap-
proach not only improves anomaly detection accuracy but also enhances computational efficiency
and generalization across diverse time series domains, demonstrating the advantages of combining
matrix profile techniques with deep learning for robust and scalable anomaly detection. Future work
could focus on dynamic or multi-scale windowing techniques, adaptive thresholding methods, and
testing in real-world applications like industrial control and financial monitoring to further enhance
anomaly detection.

REFERENCES

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruc-
tion probability. Special lecture on IE, 2(1):1–18, 2015.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad:
Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 3395–3404, 2020.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
based local outliers. In Proc. 2000 ACM SIGMOD Intern. Conf. on Management of data, pp.
93–104, 2000.

Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ECG time signals via deep long short-
term memory networks. In Proc. IEEE Intern. Conf. on Data Science and Advanced Analytics
(DSAA), pp. 1–7, 2015.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027–
4035, 2021.

Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher Leckie. High-
dimensional and large-scale anomaly detection using a linear one-class svm with deep learning.
Pattern Recognition, 58:121–134, 2016.

Mononito Goswami, Cristian I. Challu, Laurent Callot, Lenon Minorics, and Andrey Kan. Unsuper-
vised model selection for time series anomaly detection. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023.

10

Y(^_^)Y~yy
Highlight

Y(^_^)Y~yy
Highlight

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Frank E Grubbs. Procedures for detecting outlying observations in samples. Technometrics, 11(1):
1–21, 1969.

Waleed Hilal, S Andrew Gadsden, and John Yawney. Financial fraud: a review of anomaly detection
techniques and recent advances. Expert Syst. With Appl., 193:116429, 2022.

Ruei-Jie Hsieh, Jerry Chou, and Chih-Hsiang Ho. Unsupervised online anomaly detection on mul-
tivariate sensing time series data for smart manufacturing. In Proc. IEEE 12th Conf. on Service-
Oriented Computing and Applications (SOCA), pp. 90–97, 2019.

Ren-Hung Hwang, Min-Chun Peng, Chien-Wei Huang, Po-Ching Lin, and Van-Linh Nguyen. An
unsupervised deep learning model for early network traffic anomaly detection. IEEE Access, 8:
30387–30399, 2020.

Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S Jensen. Outlier detection for time series
with recurrent autoencoder ensembles. In Proc. Twenty-Eighth Intern. Joint Conf. on Artificial
Intelligence (IJCAI), pp. 2725–2732, 2019.

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time se-
ries anomaly detection and interpretation using hierarchical inter-metric and temporal embedding.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
3220–3230, 2021.

Shuyu Lin, Ronald Clark, Robert Birke, Sandro Schönborn, Niki Trigoni, and Stephen Roberts.
Anomaly detection for time series using vae-lstm hybrid model. In Proc. IEEE Intern. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4322–4326, 2020.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pp. 413–422. IEEE, 2008.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, Puneet Agarwal, et al. Long short term memory
networks for anomaly detection in time series. In Proc. 23rd European Symposium on Artificial
Neural Networks (ESANN), volume 2015, pp. 89, 2015.

Takaaki Nakamura, Ryan Mercer, Makoto Imamura, and Eamonn Keogh. MERLIN++: parameter-
free discovery of time series anomalies. Data Mining and Knowledge Discovery, 37(2):670–709,
2023.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021.

Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly detector for robot-
assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation
Letters, 3(3):1544–1551, 2018.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In Proc. MLSDA 2nd Workshop on Machine Learning for Sensory Data
Analysis, pp. 4–11, 2014.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierar-
chical one-class network. Advances in Neural Information Processing Systems, 33:13016–13026,
2020.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

Renjie Wu and Eamonn J Keogh. Current time series anomaly detection benchmarks are flawed and
are creating the illusion of progress. IEEE Trans. on Knowledge and Data Engineering, 35(3):
2421–2429, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Asrul H Yaacob, Ian KT Tan, Su Fong Chien, and Hon Khi Tan. Arima based network anomaly
detection. In Proc. Second Intern. Conf. on Communication Software and Networks, pp. 205–
209, 2010.

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh
Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. Matrix profile I: all pairs
similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In
Proc. IEEE 16th Intern. Conf. on data mining (ICDM), pp. 1317–1322, 2016.

Chunyong Yin, Sun Zhang, Jin Wang, and Neal N Xiong. Anomaly detection based on convolu-
tional recurrent autoencoder for iot time series. IEEE Trans. on Systems, Man, and Cybernetics:
Systems, 52(1):112–122, 2020.

Bin Zhou, Shenghua Liu, Bryan Hooi, Xueqi Cheng, and Jing Ye. Beatgan: Anomalous rhythm
detection using adversarially generated time series. In IJCAI, volume 2019, pp. 4433–4439, 2019.

Yu Zhou, Xiaomin Liang, Wei Zhang, Linrang Zhang, and Xing Song. Vae-based deep svdd for
anomaly detection. Neurocomputing, 453:131–140, 2021.

Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning,
Abdullah Mueen, Philip Brisk, and Eamonn Keogh. Matrix profile II: exploiting a novel algorithm
and gpus to break the one hundred million barrier for time series motifs and joins. In Proc. IEEE
16th Intern. Conf. on Data Mining (ICDM), pp. 739–748, 2016.

Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and Eamonn Keogh. Ma-
trix profile XI: SCRIMP++: time series motif discovery at interactive speeds. In Proc. IEEE
Intern. Conf. on Data Mining (ICDM), pp. 837–846, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TIME COMPLEXITY ANALYSIS

Our method FMP-AE uses 1D-CNN to compute the Matrix Profile, which can significantly reduce
the computational complexity compared to traditional methods. It can also leverage parallelism to
accelerate execution and shorten runtime.

(1) Traditional Matrix Profile Algorithms

The traditional Matrix Profile computation method uses a sliding window mechanism on the original
time series to calculate the Euclidean distance or other similarity metrics between each window.
Here we introduce two commonly used traditional algorithms. The first is STAMP (Scalable Time
series Anytime Matrix Profile), a brute-force global computation method that uses Fast Fourier
Transform (FFT) to calculate the similarity between sliding windows, with a time complexity of
O(n2 log n). The other is STOMP (Scalable Time series Ordered Matrix Profile), an incremental
update method that optimizes STAMP, reducing time complexity to O(n2). However, it still operates
at a quadratic complexity.

(2) Our Method: FMP-AE

The 1D-CNN extracts local features through convolution operations. While convolution is still a
sliding window operation, it reduces the computational load by sharing weights. The time complex-
ity of CNN is generally O(nfk), where n is the sequence length, f is the number of filters, and k is
the kernel size. Comparatively, 1D-CNN can effectively lower the computational complexity, espe-
cially for long time series. Additionally, 1D-CNN operations are highly parallelizable, especially on
GPUs or other hardware accelerators, which can significantly improve computational speed. Many
Deep Learning Frameworks like PyTorch offer efficient GPU support for CNNs. By moving the
model and data to the GPU, convolution operations and backpropagation are automatically paral-
lelized. we use ’torch.cuda()’ to ensure both the model and data run on the GPU. Convolution
operations also are highly parallel because the computation for each output feature map is nearly
independent, allowing for parallel processing of different windows and channels. On the other hand,
we can process multiple time series segments at once, called Batch Processing. By increasing the
batch size , data processing parallelism can be significantly improved, especially on multi-GPU se-
tups. Specifically, each sequence segment in a batch can be independently processed, enabling par-
allel computation. Finally, for the computation of similarity matrices in the matrix profile, parallel
matrix operation libraries (such as GPU tensor operations in PyTorch) can be utilized to accelerate
the process. This enables the distribution of pairwise computations across multiple threads or GPU
cores. Additionally, CNNs reduce feature redundancy between windows, further speeding up the
computation. For instance, by selecting appropriate filter numbers and kernel sizes, the computa-
tional load of CNNs can be significantly reduced without substantially affecting performance.

Consequently, compared to traditional matrix profile algorithms, using 1D-CNN for feature extrac-
tion and MP computation reduces the complexity from O(n2) to O(nfk), making it more efficient,
particularly for long time series. 1D-CNN is highly parallelizable, especially on GPUs, where batch
processing, convolution operations, and matrix computations can greatly accelerate both training
and inference. Increasing the batch size , enabling GPU computation, parallelizing matrix opera-
tions, and leveraging multi-core CPUs are effective strategies to optimize parallelism. Our method
substantially reduces the time required for matrix profile computation while effectively leveraging
parallelism to accelerate the runtime. This advancement enables real-time or near-real-time anomaly
detection in large-scale datasets, expanding its applicability to time series anomaly detection appli-
cations.

A.2 LOSS FUNCTION

The loss function of our model is to combine the reconstruction error of the Autoencoder and the
MP loss of the 1D-CNN feature map. It can be expressed as in the following:

Ltotal = L̃recon + λ · L̃MP,

where, L̃recon is the reconstruction error of the Autoencoder with Batch Normalization, measuring
how effectively the model can reconstruct the input time series, L̃MP is the difference in the matrix

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

profile between feature maps extracted by the 1D-CNN, also with Batch Normalization, λ is a dy-
namically adjusted weighting parameter used to balance the reconstruction loss and the MP loss,
increasing gradually during training.

This loss is based on the difference between the input data and the model’s reconstruction, commonly
measured using Mean Squared Error (MSE):

Lreconstruction =
1

m

m∑
i=1

(xi − x̂i)
2
.

The second derivative (i.e., the Hessian matrix) is:

∂2Lreconstruction

∂θ2
=

2

m

m∑
i=1

∂2x̂i

∂θ2

The second derivative of the loss function measures its curvature, which reflects the convergence
behavior during optimization. In the case of MSE (Mean Squared Error), the second derivative
is constant, providing stable curvature that facilitates convergence. MSE directly quantifies the
Euclidean distance between the original and reconstructed time series, assessing whether the model
has effectively captured the characteristics of normal data. For normal data points, the reconstruction
error is expected to be small, whereas for anomalies, the error will be large. This makes MSE a
reliable criterion for anomaly detection. Moreover, as a quadratic function with a positive definite
Hessian matrix, MSE is a standard convex function. This ensures that the reconstruction error term
is convex, guaranteeing that any local minimum is also a global minimum, which is crucial for stable
and efficient optimization.

The Matrix Profile is generated by computing the feature similarity matrix of the time series. For
feature representations F , the similarity matrix is computed as S(i, j) = similarity(Fi, Fj). This
similarity matrix reflects the similarity between different parts of the time series. After computing
the similarity matrix, it is further optimized into a Matrix Profile, which provides a global view
of time series similarity indicators, usually calculated via a sliding window. This similarity matrix
reflects the similarity between different parts of the time series. After computing the similarity
matrix, it is further optimized into a Matrix Profile, which provides a global view of time series
similarity indicators, usually calculated via a sliding window. The convexity of the matrix profile
loss ∥S − P∥ depends on the choice of similarity measure. If Euclidean distance is used and the
CNN feature extraction layers are designed appropriately, this loss function is also convex. Even if
the non-linear structure of the CNN may introduce local non-convexity, the dynamically adjusted λ
helps to gradually overcome local minima traps.

Batch Normalization In our loss function design, batch normalization is applied to ensure con-
sistency in loss calculations across different batches, addressing potential variations in data distri-
bution. We normalize using the mean reconstruction error within each batch for the reconstruction
loss, which effectively adjusts the scale of the loss. This normalization is based on the average
reconstruction error across all batches, ensuring that reconstruction errors are comparable across
batches. The Matrix Profile loss is normalized using the global mean of the Matrix Profile values
across all batches. Batch normalization is necessary because batch-level data characteristics may
vary significantly. Without normalization, it could lead to instability in the training process, such
as gradient explosion or premature convergence. By normalizing based on actual reconstruction
errors and Matrix Profile values, we ensure that each batch contributes more evenly to the total
loss function, facilitating more effective model learning and improving overall training stability and
robustness.

Dynamically Adjusted Coefficient λ During model training, λ is incrementally adjusted to increase
the emphasis on matrix profile error over time. This approach offers several benefits. At the early
stages of training, the model primarily focuses on reconstructing input data using the Autoencoder,
which allows it to learn the overall structure of the data. As training advances, λ is gradually in-
creased, shifting the model’s attention toward minimizing the matrix profile error. This encourages
the model to focus more on local feature similarities or emerging anomaly patterns, which is crucial
for detecting subtle irregularities in the time series.

This gradual increase in λ is a strategic choice. If the model were to emphasize anomaly detection
too early, it might converge prematurely to suboptimal solutions or fail to grasp the global structure

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

of the data. By initially prioritizing global feature learning and progressively incorporating the
matrix profile error, the model can effectively capture both broad patterns and local anomalies.

Gradient Clipping In addition, during the optimization of the loss function, gradient clipping is
employed to mitigate the risk of gradient explosion, a problem that becomes particularly critical in
the later stages of training when λ increases. As the matrix profile error term grows in influence,
it can lead to larger gradient updates during backpropagation, potentially destabilizing the training
process. Without proper control, these large gradients could cause abrupt changes in model weights,
resulting in convergence issues or even complete divergence.

By applying gradient clipping, we limit the magnitude of the gradients to a predefined threshold,
ensuring that updates remain within a stable range. This not only preserves the model’s ability
to learn from significant error signals but also prevents excessive weight shifts that could otherwise
cause the loss function to oscillate or explode. Consequently, gradient clipping serves as an essential
procedure, promoting stable convergence while allowing the model to effectively learn both global
structures and local anomaly as λ continues to increase during training.

In essence, gradient clipping strikes a balance between preventing overly aggressive updates and
maintaining the flexibility needed for the model to adapt to the increasing emphasis on the matrix
profile error, ensuring smoother and more reliable optimization.

A.3 MODEL ARCHITECTURE AND HYPERPARAMETER

In this section, we examine the architecture of the 1D-CNN and Autoencoder models, listing details
such as convolution kernel size, number of channels, activation functions, and pooling layers.

(1) 1D-CNN

The 1D-CNN has three Convolutional layers (Conv) followed by Batch Normalization(BN), Max
Pooling layers, and two Fully Connected layers (FC). The input to this model is a one-dimensional
time series with window size as the input sequence length. The structure of 1D-CNN is shown in
the following Table 3.

Table 3: Architecture of the 1D-CNN

Layer Type Kernel
Size

Stride Padding Output
Channels

Activation Pooling

Conv1 Conv1d 5 1 2 16 ReLU MaxPooling
(kernel=2,
stride=2)

BN1 BatchNorm1d – – — – – –
Conv2 Conv1d 5 1 2 32 ReLU MaxPooling

(kernel=2,
stride=2)

BN2 BatchNorm1d – – – – – –
Conv3 Conv1d 3 1 1 64 ReLU MaxPooling

(kernel=2,
stride=2)

BN3 BatchNorm1d – – – – – –
FC1 Fully Con-

nected
– – – 128 ReLU Dropout

(p=0.3)
FC2 Fully Con-

nected
– – – 64 – –

Next, we will provide the input and output dimension changes for each layer of the 1D-CNN model.
Here, we assume that the input window size is 128. The following Table.4 is a detailed description
of each layer from input to output.

(2) Autoencoder

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Architecture of 1D-CNN with Input Size = (1, 128)

Layer Input Shape Output Shape Operation
Input (1, 128) (1, 128) Raw time series input
Conv1 + ReLU (1, 128) (16, 128) Conv1d with 16 filters (5x1)
MaxPool1 (16, 128) (16, 64) MaxPool1d (kernel=2, stride=2)
Conv2 + ReLU (16, 64) (32, 64) Conv1d with 32 filters (5x1)
MaxPool2 (32, 64) (32, 32) MaxPool1d (kernel=2, stride=2)
Conv3 + ReLU (32, 32) (64, 32) Conv1d with 64 filters (3x1)
MaxPool3 (64, 32) (64, 16) MaxPool1d (kernel=2, stride=2)
Flatten (64, 16) (1024) Flatten the feature map
FC1 + ReLU (1024) (128) Fully connected layer (128 units)
Dropout (128) (128) Dropout (p=0.3)
FC2 (128) (64) Fully connected layer (64 units)
Output (64) Feature vector output

The Autoencoder consists of two fully connected layers for the encoder and two fully connected lay-
ers for the decoder. Assuming the input window size is 128, the input is flattened to one dimension
before passing through the Autoencoder. The hierarchy changes as shown in the Table.5.

Table 5: Architecture of the Autoencoder

Layer Type Input Dimension Output Dimension Activation
Encoder FC1 Fully

Con-
nected

Input (depends on window size) Input/2 ReLU

Encoder FC2 Fully
Con-
nected

Input/2 Input/4 ReLU

Decoder FC1 Fully
Con-
nected

Input/4 Input/2 ReLU

Decoder FC2 Fully
Con-
nected

Input/2 Input Sigmoid

We continue to assume an input window size of 128, which is flattened before passing through the
Autoencoder layers. The following Table.6 shows the layer-wise changes.

Table 6: Architecture of the Autoencoder with Input Size = 128

Layer Input Shape Output Shape Operation
Input (1, 128) (128) Flatten the time series window
Encoder FC1 (128) (64) Fully connected layer (128/2)
Encoder FC2 (64) (32) Fully connected layer (64/2)
Decoder FC1 (32) (64) Fully connected layer (32 to 64)
Decoder FC2 (64) (128) Fully connected layer (64 to 128)
Output (128) (1, 128) Reshape to original input shape

(3) Total Parameters

Now, we calculate the total number of parameters for both models. The number of parameters in a
convolutional layer is given by the formula:

Number of Parameters = (Input Channels × Kernel Size + 1)× Output Channels

where the ”+1” accounts for the bias term.

• Conv1: (1× 5 + 1)× 16 = 96 parameters.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Conv2: (16× 5 + 1)× 32 = 2592 parameters.
• Conv3: (32× 3 + 1)× 64 = 6208 parameters.
• FC1: 1024× 128 + 128 = 131200 parameters.
• FC2: 128× 64 + 64 = 8256 parameters.

Thus, the total number of parameters for the 1D-CNN is: 96+ 2592+ 6208+ 131200+ 8256 =
148352.

Then, we discuss the parameters of Autoencoder. The number of parameters in a fully connected
layer is given by the formula:

Number of Parameters = (Input Dimension × Output Dimension) + Output Dimension

When the input size is 128, the total number of parameters for the encoder and decoder are:

• Encoder FC1: 128× 64 + 64 = 8256 parameters.
• Encoder FC2: 64× 32 + 32 = 2080 parameters.
• Decoder FC1: 32× 64 + 64 = 2112 parameters.
• Decoder FC2: 64× 128 + 128 = 8320 parameters.

Thus, the total number of parameters for the Autoencoder is: 8256 + 2080 + 2112 + 8320 =
20768.

• The total parameters for 1D-CNN: 148,352.
• The total parameters for Autoencoder: 20,768.
• The total number of parameters for the entire model:

148352 + 20768 = 169120

The entire model has approximately 169k parameters, making it relatively compact and highly suit-
able for efficient anomaly detection in time series data. This streamlined architecture not only ac-
celerates the training process but also reduces computational resource requirements. The compact
design enhances the model’s scalability, making it suitable for real-time applications as well as envi-
ronments with limited computational power. Additionally, the reduced number of parameters helps
mitigate the risk of overfitting, thereby improving the model’s generalization ability to new data.

A.4 FEATURE MAP EXTRACTED BY 1D-CNN

Anomaly detection is designed to identify inputs that deviate significantly from established data
patterns. At its core, the model’s task is to extract features that can distinguish between normal and
anomalous instances. Convolutional layers within Convolutional Neural Networks (CNNs) excel at
this task by automatically extracting local features from input data. These features might include
abrupt changes, periodic variations, and other structural characteristics, all of which are critical for
distinguishing between normal and anomalous patterns in time series or signal processing contexts.
The essence of anomaly detection is to pinpoint rare events or phenomena that diverge notably from
typical patterns. The convolutional layers’ outputs play a crucial role in this process, as they provide
essential insights into the presence of anomalies. Sharp changes, such as spikes in the feature maps,
are often indicative of anomalies, while smooth or low-frequency variations generally reflect normal
behavior.

When input data contains anomalies, these are often manifested as significant fluctuations or ab-
normal peaks in the outputs of specific convolutional filters. For instance, certain channels might
exhibit more pronounced changes compared to others, highlighting anomalous regions within the
input data. As illustrated in Figure 8, feature maps derived from normal data typically display pre-
dictable and repetitive patterns. In contrast, anomalies can cause certain channels to produce outputs
that significantly deviate from the norm, showing up as spikes or abrupt changes. Smooth channel
outputs, which are nearly constant, suggest that no significant features have been captured, indicat-
ing that the data may be normal. On the other hand, significant fluctuations in channel outputs often

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: Feature maps extracted by 1D-CNN

point to anomalous patterns, especially when a convolutional filter produces sudden peaks over a
specific time interval. Such sudden peaks frequently signal the presence of an anomaly.

By analyzing these convolutional layer outputs, one can effectively identify and understand anoma-
lous patterns, thereby enhancing the accuracy and efficiency of anomaly detection systems. This
approach ensures that both the subtle and dramatic deviations from normal patterns are captured and
addressed appropriately.

Feature Map & Matrix Profile When calculating the Matrix Profile, larger values in the feature
maps indicate that certain segments of the time series exhibit pronounced characteristics, suggesting
these segments are unique. In contrast, smaller feature map values imply that these segments are
relatively ordinary and do not stand out in the model. To compute the similarity between different
time series windows, the features extracted by the 1D-CNN (i.e.,the feature maps) serve as the
primary input.

The process begins with calculating the Euclidean distance between feature maps to construct a
similarity matrix. This matrix captures the similarity between various time series windows by mea-
suring how closely related they are in terms of their extracted features. Following this, the Matrix
Profile is computed based on the minimum distances found in the similarity matrix. Smaller values
in the Matrix Profile denote higher similarity between windows, suggesting that the segments are
closely related. Conversely, larger values indicate significant differences between windows, which
may help in identifying unusual or anomalous time segments.

Therefore, the Matrix Profile reflects both large and small values from the feature maps. Specifically,
anomalies detected in the feature maps tend to result in higher values in the Matrix Profile, signaling
potential anomalies or deviations from normal patterns. On the other hand, normal values in the
feature maps lead to lower values in the Matrix Profile, indicating that the time series segment is
similar to other segments and is more likely to represent typical, non-anomalous behavior. This

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

approach allows for a nuanced understanding of both normal and anomalous patterns in time series
data.

A.5 MATRIX PROFILE FROM ORIGINAL TIME SERIES AND FEATURE MAP

In this section, we will compare the matrix profile calculated using traditional methods on the raw
time series with which computed using our model.

Stumpy is an efficient Python library designed specifically for time series analysis. Its core function
is the computation of the Matrix Profile, a critical tool for time series pattern discovery, similarity
search, and anomaly detection.

Length Difference As shown in the Figure 9 below, the Matrix Profile extracted by 1D-CNN is
more shorter. This is mainly because 1D-CNN reduces the original time series through pooling
layers and convolution operations, producing feature vectors that are shorter than the original in-
put. This reduction helps decrease computational complexity while retaining important features. In
traditional Matrix Profile methods, the similarity of each subsequence is computed individually, so
the length of the output Matrix Profile is generally equal to the length of the original time series
minus the length of the subsequence. In contrast, 1D-CNN significantly reduces the data resolution
through its convolutional kernels and pooling layers, resulting in a shorter Matrix Profile. Below, we
will compare the advantages of using the 1D-CNN model versus the Matrix Profile computed with
the Stumpy library for anomaly detection by analyzing Figure 9.

Figure 9: The Stump calculating Matrix profile and 1D-CNN calculating Matrix profile

(1) Clarity of Anomalies and Peak Distribution

In the second part of each figure, the results from Stumpy show multiple peaks with relatively
frequent fluctuations. Although these fluctuations might indicate potential anomalies, their frequent
occurrence complicates threshold setting. Multiple peaks suggest that several subsequences within
the time series have low similarity, which can lead to false positives and obscure the true anomalies.
Additionally, when compared to the ground truth (the first part of each figure), it is evident that
each sequence contains only one anomaly, which is a characteristic of the UCR250 datasets. In
contrast, the results from our model present anomalies that are more concentrated and distinct. The
figure reveals only a single significant global peak, indicating that the model successfully identifies
one anomaly while other areas remain relatively low. This clear peak demonstrates that our model
more accurately captures anomalies without generating false positives from irrelevant fluctuations.
In other words, it effectively reduces false positives, thereby increasing precision.

(2) Global vs Local Perspective

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Since the Stumpy library uses a sliding window technique based on Euclidean distance for its cal-
culations, it primarily identifies patterns through local similarities. When the time series contains
multiple similar patterns or noise signals, Stumpy’s results often exhibit numerous local peaks. Not
all of these peaks may correspond to actual anomalies, which complicates the process of setting
thresholds and accurately identifying anomalies. In contrast, our model captures data features from a
broader, global perspective through advanced feature extraction mechanisms. This approach allows
the model to filter out some of the local noise and focus on identifying global patterns. As a result,
our model is more attuned to overall trends, concentrating on genuine anomalies while maintaining
stable outputs in other regions. This makes the task of setting thresholds more straightforward and
effective.

(3) Noise Filtering and Model Robustness

While the Stumpy method is efficient, it is relatively sensitive to noise and can easily interpret
minor fluctuations and local deviations in the data as anomalies, leading to multiple peaks. Our
model, through convolutional kernels and subsequent layers that integrate these features, is poten-
tially more robust and capable of filtering out minor noise. The orange curve in the figure shows
smoother anomaly detection results with minimal significant noise, aside from actual anomalies.
This smoothness indicates that the model has strong noise resistance and effectively focuses on the
main trends and true anomalies in the time series.

(4) Reliability and Efficiency of Anomaly Detection

The peaks calculated using Stumpy, while representing some local anomalies, may require manual
intervention to adjust detection thresholds due to their numerous and uneven distribution. For appli-
cations, this results in lower reliability because the complexity of the peaks increases the risk of false
positives and missed detections. The 1D-CNN model, however, significantly simplifies the anomaly
detection process. With its very clear and concentrated output, it is easy to set a higher detection
threshold, focusing only on the prominent global peaks, thus maintaining a high detection rate while
reducing false positives.

Therefore, we conclude that our model has these advantages over the Stumpy-based Matrix Profile
in anomaly detection:

• Anomalies are more prominent and concentrated, reducing the likelihood of false positives.

• Threshold setting is simpler, without the need to handle multiple local peaks

• Greater robustness, capable of filtering out noise and focusing solely on global anomalies.

• Smoother output makes the model more stable and reliable, suitable for various real-world
anomaly detection scenarios.

20

	Introduction
	Related Work
	Method
	Calculate optimized-MP by 1D-CNN
	Training FMP-AE with New Loss Function
	Anomaly Detection

	Experiment
	Results and Analyses
	Ablation Experiments

	Conclusion and future work
	Appendix
	Time Complexity Analysis
	Loss Function
	Model Architecture and Hyperparameter
	Feature Map Extracted By 1D-CNN
	Matrix Profile From Original Time Series and Feature Map

